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ABSTRACT 

Glioblastoma is the most common and malignant form of brain cancer, for which the standard treatment 

is maximal surgical resection, radiotherapy and chemotherapy. Despite these interventions, mean overall 

survival remains less than 15 months, during which extensive tumor infiltration throughout the brain 

occurs. The resulting metastasized cells in the brain are characterized by chemotherapy resistance and 

extensive intratumoral heterogeneity. An orthogonal approach attacking both intracellular resistance 

mechanisms as well as intercellular heterogeneity is necessary to halt tumor progression. For this reason, 

we established the WINDOW Consortium (Window for Improvement for Newly Diagnosed patients by 

Overcoming disease Worsening), in which we are establishing a strategy for rational selection and 

development of effective therapies against glioblastoma. Here, we overview the many challenges posed 

in treating glioblastoma, including selection of drug combinations that prevent therapy resistance, the 

need for drugs that have improved blood brain barrier penetration and strategies to counter 

heterogeneous cell populations within patients. Together, this forms the backbone of our strategy to 

attack glioblastoma.  

 

BACKGROUND AND CHALLENGES 

 

Classification of glioblastoma and inter-patient heterogeneity 

Gliomas are the most common malignancies of the central nervous system (CNS). Most glioblastomas (GBMs) 

arise de novo without any sign of a less malignant precursor (Ohgaki and Kleihues, 2013). Primary GBMs 

typically occur at an average age of 62 years, rapidly progress and have an extremely poor prognosis. 

However, 10% of GBMs progress from low-grade diffuse astrocytomas or anaplastic astrocytomas (Figure 

1A). These “secondary” GBMs occur at an average age of 45 years and offer a slightly better prognosis than 

primary lesions. According to the WHO 2016 classification, gliomas are defined based on mutations in the 

IDH1 gene with/without chromosomal 19q loss (summarized in Figure 1B, taken from Verhaak 2016). 

Astrocytic gliomas are classified based on histologic criteria from lower grade lesions (grades II–III) to high-

grade (grade IV) malignancies (WHO 2016; previous classifications given in Louis et al, 2007; Zhu and Parada, 

2002; Weller et al, 2005). Originally, the Cancer Genome Atlas Network (TCGA, Verhaak et al, 2010) defined 



molecular signatures within GBM (grade IV), which were distinguishable based on expression of lineage 

markers. These subgroups are termed “classical”, “mesenchymal”, “proneural” and “neural”, although 

existence of the latter group is debated (Sideway 2017). The proneural subtype correlates with better 

prognosis whereas the mesenchymal and classical subtypes correspond to poor prognosis (Lin et al, 2014). 

These quantitative relationships, based on WHO criteria, molecular features and histology are summarized 

in Figure 1. 

 

 Figure 1. (A) Circos plot showing the histological classification system as used in the clinic until recently. (B) 

Sankey plot showing the quantitative relation of different adult gliomas (based on 1,122 patients in the TCGA 

database www.cbioportal.org, see also Ceccarelli et al 2016 and Weller et al 2017), grouped by the WHO 

2016 classification (IDH mutated; IDH/ATRX comutated;1p19q codeletion); molecular profile (Mesenchymal, 

Classic like, LGm6-GBM_PA [LGGs in the third methylation cluster of IDH-wild type tumours as pilocytic 

astrocytoma-like], GCIMP; and histological class: astrocytoma (AS), oligodendroglioma (OD) and 

glioblastoma (GBM). (C) Current treatment of GBM after maximal safe surgical resection. After surgery, RT is 

continued for 6 weeks combined with TMZ treatment. Subsequently, adjuvant TMZ five days per week is 

indicated for at least six months. po, per os (oral administration).  

 

Current clinical trials are not focused on GBM driver mutations 
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The standard treatment of GBM is based on the international EORTC-study (Stupp et al. 2005), consisting of 

maximal safe surgical resection, followed by six weeks of radiotherapy (RT) and concomitant Temozolomide 

(TMZ) chemotherapy with subsequent adjuvant TMZ chemotherapy for six months, Figure 1C. Compared to 

RT alone, with a median survival time of 12.1 months, the combination of RT plus TMZ increases median 

overall survival time (OS) by 2.5 months to 14.6 months (Weller et al, 2017; Stupp et al, 2009; 2005). A group 

of patients displaying silencing of the MGMT-gene promoter via DNA methylation, have repressed DNA 

damage repair and is therefore more sensitive to the alkylating effect of TMZ (Hegi et al, 2005). In clinical 

practice, TMZ is administered regardless of the patient’s promoter methylation status.  

Many efforts are underway to improve the outcome of the current standard therapy, attacking driver 

as well as non-driver targeted therapies (graphically summarized in Figure 2A). Currently, there are more 

than 225 ongoing trials in GBM, of which over 60% include systemic therapy, comprising chemotherapy/DNA 

damaging compounds (23%), immunotherapy (13%), VEGF targeted therapy (8%) and PI3K targeted therapy 

(3%), shown in Sankey plot in Figure 2B.  
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Figure 2. Driver versus non-driver focussed therapies against GBM in clinical trials (ClinicalTrials.gov). (A) 

Circos plots showing non-driver targets and driver targets of currently applied clinical trials against GBM. 

Cellular location of targets is shown as extracellular, membrane bound or intracellular. Non-driver genes are 

classified into immune targets, receptors and receptor ligands; and cytotoxic/DNA damaging targets. The 

driver mutation circos plot is divided in targetable mutations, absence of druggable mutations and non-

druggable driver mutations. (B) Sankey plot showing the quantitative relation of the number of trials towards 

each target in ongoing clinical trials. Non-driver targets (upper portion) as well as driver targets using FDA 

approved mutation specific small molecules (lower portion) are shown. Note that almost no approaches to 

driver targets are currently in clinical trials. Abbreviations: RTK, receptor tyrosine kinase; SMO, smoothened 

Shh receptor; Ptc, Patched Shh receptor; TGF Transforming growth factor beta; HGF, Hepatocyte growth 

factor; CRM1, chromosome region maintenance 1; COX2, Cyclooxygenase 2; PD1, Programmed cell death 

protein 1; EGFR, Epidermal growth factor receptor, ATRX, Alpha Thalassemia/Mental Retardation Syndrome 

X-Linked gene; RB1, retinoblastoma 1 protein; TP53,  tumour protein p53; p15/CDK2NB, cyclin-dependent 

kinase inhibitor 2B; IDH1 Isocitrate dehydrogenase homolog 1; NF1, Neurofibromatosis type 1; PIK3R1 

Phosphatidylinositol 3-kinase regulatory subunit alpha; PIK3CA, Phosphatidylinositol-4,5-Bisphosphate 3-

Kinase Catalytic Subunit Alpha; PDGFRA, Platelet-derived growth factor receptor A; MDM2, Murine double 

minute 2; PTEN, Phosphatase and tensin homolog; p16/CDK2NA, cyclin-dependent kinase inhibitor 2A; CDK4, 

cyclin dependent kinase 4.  

 

Although 70% of GBMs contain tumor driver mutations that are targetable by therapy (Figure 2, Cacarelli et 

al, 2016), in current clinical trials there is no focus on these driver mutations, except for EGFR- targeted 

therapy (11% of clinical trials, Figure 2B).Trials aimed at driver-mutations have been largely unsuccessful (for 

instance NCT00187486, NCT0062243 and NCT00671970 aimed at EGFR inhibition), possibly because of poor 

penetrance of drugs into the CNS through the blood brain barrier [BBB; (Oberoi et al, 2013; Tang et al, 2012; 

Porta et al, 2011)].  

Here, we address the challenges associated with the efficient treatment of GBM though combination 

therapy. We see these as: (1) identification of drugs that have desired BBB penetration, (2) addressing 

whether combination-therapies are of benefit in targeting intratumoral heterogeneity and (3) overcoming 

https://en.wikipedia.org/wiki/Cyclooxygenase


drug resistance. Based on this landscape, we outline the strategy adopted by the WINDOW consortium for 

the selection and further development of effective therapies against GBM. 

 

Challenge 1: The BBB and perivascular/perineural microinvasion – The BBB is the natural barrier that 

prevents toxins from reaching the brain. It is a major obstacle to brain tumor therapy, preventing the delivery 

of most chemotherapeutic and targeted agents to the tumor location (e.g. Sminia and Westerman 2016; van 

Tellingen et al, 2015). Since most drugs have been developed for applications outside the brain and therefore 

selected for low BBB penetration to avoid neurotoxicity, most FDA approved drugs have poor target 

engagement in the brain.  

Gliomas show perivascular and perineural microinvasion (Cuddapah et al, 2014; Gritsenko et al, 

2012; Montana et al, 2011; Farin, et al, 2006). Glioma tumor cells can form multicellular networks connected 

through branched filamentous protrusions connecting cells, or epithelial-like linear adherent junctions 

between directly adjacent cells (Friedl et al, personal communication). Therefore, individual tumor cells are 

localized distantly from the bulk of the tumor (Sherriff et al, 2013) and might be more difficult to reach both 

therapeutically as well as surgically.  

For many years, different strategies have been investigated to facilitate BBB penetration by 

chemotherapeutics, reviewed in Upadhyay, 2014 and Lu et al, 2014. These include the use of 1) non-invasive 

techniques, such as radiotherapy (Trnovec et al, 2016), ultrasound and microbubbles (Lamanauskas et al, 

2013; Escoffre et al, 2013; Rachlin et al, 2013; Chu et al, 2016), and biological approaches via cell penetrating 

peptides and viral vectors (Sidaway, 2017); 2) invasive techniques, such as convection enhanced delivery 

(reviewed by Vogelbaum and Aghi, 2015), and 3) alternative routes such as intranasal application, bypassing 

the cardiovascular system (reviewed by Peterson et al, 2014).  

The high prevalence of brain metastasis from the lung, breast and melanoma, makes it attractive to 

develop compounds that target driver mutations specific for these tumor types, leading to the development 

of potent kinase inhibitors that do cross the BBB. These include compounds targeting driver mutations such 

as Osimertinib (targeting EGFR T790M) and Lorlatinib (targeting ALK mutations), as well as the radio-

sensitizing drug AZD0156 (ATM) and the PI3K/AKT/mTOR pathway inhibitor GDC-0084. GBM is rarely the 

main therapeutic focus, due to its relatively small market size. However, because drug discovery is a long-



term endeavour and an extremely expensive one (estimated that a single drug can take over 10 years and 

cost more than £500M to develop) (source ABPI, http://www.abpi.org.uk/), drug repurposing (i.e. the 

identification of new therapeutic uses for existing drugs), is the only route currently available as a solution 

to this challenge. To date, there has been no systematic evaluation of the already available approved drugs 

against GBM.  

 

Challenge 2: Drug resistance and intratumoral molecular heterogeneity 

GBM is characterized by intratumoral heterogeneity in which subpopulations of cells have distinct features, 

largely consisting of  (1) gene copy number variations as shown for PTEN, TP53 and MDM4 (Sottoriva et al, 

2013; Johnson et al, 2014; Meyer et al 2015), (2) clonal ploidy differences (Stieber et al, 2014; Johnson et al. 

2014; Meyer et al, 2015), (3) extrachromosomal DNA elements (deCarvalho et al, 2018; Turner et al, 2017), 

(4) signalling heterogeneity as a result of mosaic receptor tyrosine kinase activity (Snuderl et al, 2011; Little 

et al. 2012; Szerlip et al. 2012) including structural variants of EGF receptor (Francis et al, 2014; Meyer et al, 

2015), and (5) lineage heterogeneity, i.e. GBM cells express markers of lineage derivatives of stem/progenitor 

cells such as proneural, neural as well as astroglial genes (Verhaak et al, 2010; Phillips et al, 2006; Al-Mayhani 

et al, 2011; Sottoriva et al. 2013; Patel et al, 2014; Kenney-Herbert et al, 2015; Piccirillo et al, 2015a; Piccirillo 

et al, 2015b; Wang et al, 2016, Meyer et al, 2015). The different forms of cellular heterogeneity are 

summarized in Figure 3A.  

The sensitivity of individual tumors towards drugs can vary due to intrinsic resistance which is pre-

existing or acquired as a result of drug therapy (Sequist et al, 2011; Garrett et al, 2011; Prahallad et al, 2012; 

Wilson et al, 2012). Drug resistance, intrinsic or acquired, is affected by intratumoral heterogeneity due to 

genetic or phenotypic heterogeneity (the mechanisms are listed in Figure 3B). Preclinically, intratumoral 

subpopulations display a differential response to therapeutics (Meyer et al, 2015; Hägerstrand et al, 2011; 

Heo et al, 2014; Saito et al, 2014; Lee et al, 2017; Lan et al, 2017). Moreover, a re-transplanted tumor seems 

to retain its intrinsic resistance, indicating that there is a population with a long term tumor initiation or drug 

resistance potential (Lan et al, 2017). These studies implicate intrinsic cell populations in each GBM patient 

exhibiting pre-existing resistance to therapy (Meyer et al, 2015). In the clinic, radiation resistance is observed 

frequently in relapsed GBMs (Hochberg and Pruitt, 1980; Kelley et al, 2016; Fidoamore et al, 2016). Several 



alternative mechanisms have been found to underlie therapy resistance. For instance, EGFR inhibitor 

resistance may occur as a consequence of loss of extrachromosomal mutant EGFR DNA, promyelocytic 

leukemia (PML) gene expression, PTEN phosphorylation status, PDGFR upregulation, ERBB4 activation, AMPK 

levels or IL-6 upregulation (Nathanson et al, 2013; O’Rourke et al, 2017; Iwanami et al, 2013; Fenton et al, 

2012; Akhavan et al, 2013; Donoghue et al, 2018; Guo et al, 2009; Zanca et al, 2017). 

Figure 3. Resistance and heterogeneity mechanisms of GBM. (A) Circos plot showing different molecular 

mechanisms underlying the generation of cellular heterogeneity; (B) Sankey plot quantitatively summarising 

the causes of heterogeneity and drug resistance involving driver targets in GBM. Targets that are frequently 

mutated are shown in color. PML, promyelocytic leukemia; AMPK, 5' adenosine monophosphate-activated 

protein kinase; MAPK, Mitogen Activated Protein Kinase. 

 

Challenge 3 Combination therapies against heterogeneous populations 

Since intratumoral heterogeneity and drug resistance can occur simultaneously, a promising approach might 

be to combine targeted drugs that hit several survival mechanisms at once for different cell populations. This 

could provide a synergistic (i.e. more than additive) effect and prevent therapy-resistance. However, 

identification of these synergistic combinations has thus far only been possible in an empirical setting (by 

experimentally testing all combinations). A major challenge is therefore to match GBM vulnerabilities to 

effective drug combinations. 

A                                                        B Gene/groups of genes Mechanism Result



Tumors are dependent on a limited number of molecular mechanisms for their survival and 

proliferation (Hanahan and Weinberg, 2011; Wang et al, 2015). Combination therapy enables simultaneous 

targeting of these crucial mechanisms. In addition, for personalized cancer treatment, a focus on 

drug/irradiation or drug/drug combinations is particularly appealing since enhanced efficacy can be assessed 

for each radiation-dose or drug-concentration window.  

Strategies for selecting synergistic and effective drug combinations (Dancey and Chen, 2006; Day and 

Siu, 2016) can be based on several precepts, including: (1) maximal target inhibition, achieved by synergistic 

drug combinations that hit the same target, especially important in the case of oncogene addiction. Drug 

resistance might also be avoided by this approach as well as other novel approaches (Bar-zeev et al, 2017; Li 

et al,2016; Zhitomirsky et al, 2016); (2) maximal pathway inhibition. In a similar manner, maximal pathway 

inhibition can be used to suppress an entire pathway by inhibiting it at multiple levels. An example of this 

strategy is the FDA approved combination of the BRAF inhibitor vemurafenib and the MEK inhibitor 

cobimetinib in BRAFV600 mutated melanoma which results in maximal pathway inhibition in cases where 

the tumor is dependent on the BRAFV600 mutation (Larkin et al, 2014). Also, within GBM radiotherapy and 

PARP-inhibition have shown synergy (Lesueur et al, 2018); (3) feedback inhibition between and within 

pathways. In many cases this affects upstream pathway activation through downstream targets of the initial 

inhibited pathway (Sun and Hobor et al, 2014; Sun and Wang et al, 2014; Rozengurt et al, 2014); and finally 

(4) synthetic lethality (feed forward) inhibition, in many cases affecting inhibition of two parallel pathways 

downstream of activated oncogenes (Croesmann et al, 2018). For feedback inhibition and synthetic lethality 

approaches, information on underlying therapy-resistance is scarce, and direct targets are difficult to 

identify, rendering the rational design of pathway combinations difficult. 

 

AIMS OF THE WINDOW CONSORTIUM 

General aims of the consortium 

Within the WINDOW consortium, our aim is to provide a solution to these challenges by examining the links 

between intratumor molecular heterogeneity, prediction of in vitro therapeutic drug combination and 

testing, as well as emerging clinical data, areas which must be addressed for successful development of 

effective therapeutics. Our overall objective is to create a validated patient-centred platform based upon 



integration of patient-derived cell systems, detailed genetic analysis of tumor cell population, together with 

their treatment with the most effective combination therapies. At a more immediate level, we will develop 

a collaborative pipeline to enable patient-stratified treatments with the most effective combinations of FDA 

approved drugs, thereby offering a Window for Improvement for Newly Diagnosed patients thereby 

Overcoming Disease Worsening (WINDOW). 

 

WINDOW specific aim 1: Repurposing of clinically approved drugs 

To be able to repurpose FDA approved drugs against GBM, drugs must combine traditional qualities, such as 

optimal systemic absorption, distribution, metabolism, and excretion (ADME), with enhanced CNS 

bioavailability. Selection criteria are therefore: (1) molecular mode of action [i.e. target specificity], (2) 

experimental proof of efficacy, (3) ADME characteristics, (4) documented CNS penetrance and (5) toxicology 

including the absence of neural side-effects.  

Most FDA approved drugs will never reach the brain because they were selected based on inability 

to cross the blood brain barrier. In addition, most drugs are substrates for efflux pumps and are actively 

pumped out of the brain through ABC transporters such as P-gp and ABCG2. Recent development of drugs 

against metastasized from the lung, skin and breast tumors have provided important information how to 

design drugs that have optimal characteristics to reach the brain tumor. Primary brain tumor have suffered 

from a lack of clinically relevant drugs targeting brain specific lesions. Nevertheless, we show here how to 

use data from non-primary brain tumor fields to select drugs that might be lead drugs for application against 

brain tumors. A first step in this process has been to curate GBM drug information in a form that is readily 

accessible to all preclinical GBM researchers. This has now been achieved through the establishment of the 

GBM Drug Bank (www.gbmdrugbank.com; Svensson et al 2018). This resource includes all FDA approved 

drugs suitable for repurposing that are active in GBM preclinical models.  

 

WINDOW specific aim 2: Overcoming drug resistance through combination therapies 

In the WINDOW project, we have developed a novel strategy to identify effective drug-combinations using a 

topology-based approach which we call the drug-atlas (Narayan et al, submitted). This atlas is built from drug-

response encyclopedias and can be considered as a framework of therapeutic action and therefore can be 

http://www.gbmdrugbank.com/


interpreted as a drug-vulnerability landscape of cancer. The methodology is based on the finding that most 

tumors contain multiple independent survival/proliferation mechanisms. This novel rational and 

generalizable strategy opens the door to unforeseen personalized multi-drug combination approaches.  

Some of the drug combinations identified with the drug atlas will show a lack of response in a number 

of cell lines. For this we will apply CRISPR/CAS9 technologies to elucidate the molecular basis for the lack of 

therapeutic response (Tzelepis et al, 2016). We will (1) identify genetic vulnerabilities of these clonally 

derived cell lines and to determine the mechanisms that are responsible for the lack of response therapy. 

Clonally derived glioblastoma cell lines that show drug resistance are infected with a CRISPR knock out library.  

Subsequently, next gen sequencing of the CRISPR cassettes will reveal which CRISPR constructs are lost upon 

exposure to the combination therapy and hence identify the genes responsible for the sensitization to the 

drug combination. This drop out screen methodology will reveal the sensitivities of the drug resistant cell 

lines, which will differ from the control cell line. Finally, drugs can be chosen that hit the identified protein or 

process as directly as possible. In addition, drug resistance mechanisms to monotherapy or combination 

therapy can be identified using CRISPR screening technologies. 

Two major limitations of combination therapy with targeted drugs are the narrow time window 

wherein drugs can or need to be delivered, and the narrow therapeutic window between enhanced tumor 

kill and toxicity. Examples of drug combination-induced toxicities are shown in Table 1.  

 

Table 1 
Examples of accumulating toxicities 

Challenge Drug combination 
Tumour 
type 

Clinical 
phase 

Outcome Reference 

Target 
engagement & 
PK/PD 

Sirolimus + erlotinib GBM Phase II 
No improvement over 
control 

Reardon et al, 
2010 

  

Cetuximab or 
panitumumab to 
bevacizumab and 
chemotherapy  

Colon Phase III 
No improvement over 
control 

Hecht et al, 2009; 
Tol et al, 2009 

Toxicity 
Bevacizumab, 
irinotecan, 
temozolomide 

GBM Phase II Hematological toxicity Peters et al, 2015 

  
Bevacizumab (VEGF 
inhibitor), 
temozolomide 

GBM 
Phase II 
 

Blood pressure, 
Hematological toxicity 

Reyes Botero et al, 
2018 

  

Onartuzumab (c-
MET) 
bevacizumab (VEGF 
inhibitor) 

GBM Phase II 
Peripheral edema, 
Asthenia 

Cloughesy et al, 
2017 



  
Bevacizumab (VEGF 
inhibitor) + sunitinib 

Renal cell 
carcinoma 

Phase I 
Vascular/hematological 
toxicities  

Feldman et al, 
2009* 

  
Temsirolimus 
(mTOR inhibitor) + 
sunitinib 

Renal cell 
carcinoma 

Phase I 
Skin/hematological 
toxicities 

Patel et al, 2009* 

  

Everolimus 
(MTORC1) 
combined with 
exemestane 

Breast 
cancer 

Phase III 
Stomatitis, intestinal, 
hematological toxicities 

Baselga et al, 2012 

  
MEK inhibitor 
combined with AKT 
inhibitor  

Various Phase II Intestinal, skin Tolcher et al, 2015 

  
Ipilimumab 
combined with 
nivolumab  

Melanoma Phase III Intestinal, skin Larkin et al, 2015 

 
BRAF inhibition 
combined with MEK 
inhibition  

Melanoma Phase II Fever Flaherty et al, 2012 

*Taken from Day and Siu Genome Medicine (2016) 8:115 

 

Additive toxicities can be avoided by using drug combinations that have different toxicity patterns. For 

example, in the combination with irradiation, the crucial issue is the scheduling and administration of 

targeted and radiosensitizing agents. To predict possible toxicities, we will generate a Toxicity Atlas, to enable 

selection of drug-combinations with complementary toxicities and prevent accumulated side effects. 

 

Future Perspectives  

By using our WINDOW consortium approach, we aim to overcome issues that currently prevent an effective 

therapeutic strategy against GBM. These issues concern intratumoral heterogeneity and identification of 

more effective therapies targeting the heterogeneous tumor populations characteristic of GBM, initially 

focussing on the repurposing of FDA-approved small molecule drugs. Recognizing the fact that many of the 

current set of FDA-approved drugs were developed with non-CNS penetrance as an objective, the WINDOW 

program has the longer-term aim of re-developing approved drugs that show efficacy in preclinical models, 

through industry-proven lead optimization approaches. 

Based on the high prevalence of brain metastases from lung cancer, breast cancer and melanoma, 

industry research is leading to the development of kinase inhibitors for treating brain metastases of other 

solid tumors, including driver-targeted compounds such as Osimertinib, AZD3759, NT113, Lorlatinib, GDC-

0084, as well as the radio-sensitizing drug AZD0156. An additional focus could be on inhibitors showing 



polypharmacology (Knight et al., 2010), in which either a single drug or a combination of drugs can restrict 

or even gridlock adaption mechanisms of the tumor. 

Many of these new approaches could be tested in preclinical models recapitulating the inter- as well 

as intra-patient heterogeneity to enable further dissection of the molecular basis of resistance development 

in the context of the host-tumor interaction, as well as direct tumor toxicity. A better mechanistic 

understanding of the toxicity of drug combinations and/or drug polypharmacology will assist in prioritizing 

candidate therapies. Moreover, activation of the immune system might further enhance the effects of our 

strategy. The objective of the WINDOW Consortium is to combine these paradigms, to deliver new and 

effective therapeutic strategies for GBM. 
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