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The Model Selection Curse†

By Kfir Eliaz and Ran Spiegler*

A statistician takes an action on behalf of an agent, based on the 
agent’s self-reported personal data and a sample involving other 
people. The action that he takes is an estimated function of the 
agent’s report. The estimation procedure involves model selection. 
We ask the following question: Is truth-telling optimal for the agent 
given the statistician’s procedure? We analyze this question in the 
context of a simple example that highlights the role of model selec-
tion. We suggest that our simple exercise may have implications for 
the broader issue of human interaction with machine learning algo-
rithms. (JEL C52)

In recent years, actions in ever-expanding domains are taken on our behalf by 
automated systems that rely on machine learning tools. Consider the case of online 
content provision. A website obtains information about a user’s personal charac-
teristics. Some of these characteristics are actively provided by the user himself; 
others are obtained by monitoring his online navigation history. The website then 
feeds these characteristics into a predictive statistical model, which is estimated on a 
sample consisting of observations of other users. The estimated model then outputs 
a prediction of the user’s ideal content. In domains like autonomous driving or med-
ical decision making, AI systems are mostly confined to issuing recommendations 
for a human decision maker. In the future, however, it is possible that decisions in 
such domains will be entirely based on machine learning.

How should users interact with such a procedure? In particular, should they truth-
fully share personal characteristics with the automatic system? Of course, in the 
presence of a conflict of interest between the two parties—e.g., when the online con-
tent provider has a distinct political or commercial agenda—the user might be better 
off if he misreports his characteristics or deletes cookies from his computer. This is 
a familiar situation of communication under misaligned preferences, which seems 
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amenable to economists’ standard model of strategic information transmission as a 
game of incomplete information (with a common prior).

However, suppose there is no conflict of interest between the two parties—i.e., 
the objective behind the machine learning algorithm is to make the best predic-
tion of the user’s ideal action. But how do such actual systems perform this pre-
diction task? Consider a very basic textbook tool like LASSO.1 This is a variant 
on standard linear regression analysis, which adds a cost function that penalizes 
nonzero coefficients. The procedure involves both model selection (i.e., choosing 
which of many available variables will enter the regression) and estimation of the 
selected variables’ coefficients. The predicted action for an agent with a particular 
vector of personal characteristics  x  is the dependent variable’s estimated value at  x .  
Such a procedure is considered useful when users have many potentially relevant 
characteristics relative to the sample size, and especially when we can expect 
few of them to be relevant for predicting the agent’s ideal action (i.e., the true 
 data-generating process is sparse).

However, LASSO is not a fundamentally Bayesian procedure. Although one 
can justify its estimates as properties of a Bayesian posterior derived from some 
prior (Tibshirani 1996; Park and Casella 2008; Gao, van der Vaart, and Zhou 2015), 
these properties are not necessarily relevant for maximizing the user’s welfare. 
Furthermore, there is no reason to assume that the prior that rationalizes LASSO in 
this manner coincides with the user’s actual prior beliefs (the priors in the above-
cited papers involve Laplacian distributions over parameters). Thus, neither the 
preferences nor the priors that take part in the Bayesian foundation for LASSO are 
necessarily the ones an economic modeler would like to attribute to the user in a 
plausible model of the interaction.

This observation could be extended to many machine learning predictive methods 
that are far more elaborate than the simple textbook example of penalized regres-
sion. If we want to model human interaction with such algorithms, some departure 
from the standard Bayesian framework with common priors seems warranted. Put 
differently, if one were to analyze a model with common priors, where a benevolent 
Bayesian decision maker tries to take the optimal action for an agent with unknown 
characteristics, then for almost all prior beliefs, the decision maker’s behavior will 
not be perfectly mimicked by a familiar machine learning procedure. Our approach 
in this paper is to take the statistician’s procedure as  given  (rather than trying to pro-
vide a formal rationalization for it) and examine the user’s strategic response to it.

Machine learning algorithms can be extremely complicated. Nevertheless, in this 
paper we follow the tradition of using simple “toy” models to get insight into com-
plex phenomena. Economists have developed models in this tradition to study the 
behavior of large organizations or the macroeconomy; surely these are more com-
plex than the most intricate machine learning algorithm. Accordingly, our model is 
perhaps the simplest that can capture the key element we wish to address—namely, 
how the element of model selection in machine learning algorithms affect users’ 
self-reporting decision.

1 The least absolute shrinkage and selection operator (Tibshirani 1996). 
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Specifically, we present a model of an interaction between an “agent” and a “stat-
istician”—the latter is a stand-in for an automated system that obtains personal data 
from the agent and outputs an action on his behalf. The agent has a single binary 
personal characteristic  x  , which is his private information. The agent has an ideal 
action, which is a function of  x . This function is unknown. The statistician learns 
about it by obtaining noisy observations of  other  agents’ ideal actions. This sample 
constitutes the statistician’s private information. It is  small , consisting of  one  obser-
vation for each value of  x . The statistician follows a penalized regression procedure: 
the estimated coefficients of his model minimize a combination of the residual sum 
of squares and a cost function that combines two common forms of penalties: A 
fixed penalty for the mere inclusion of the explanatory variable  x  (  L 0    penalty) and a 
penalty for the absolute value of the variable’s coefficient (  L 1    penalty or LASSO). 
The procedure’s element of model selection in this simple example consists of the 
decision whether to admit  x  as a predictor of the agent’s ideal action.

With one binary characteristic and two sample points, this environment is as far 
from big data as one could imagine. Nevertheless, it shares a crucial feature with a 
typical big data predicament that motivates machine learning methods: the sample 
size is roughly the same as the number of potential explanatory variables, such that 
an estimation procedure that does not involve selection or shrinkage risks over-fit-
ting (e.g., see Hastie, Tibshirani, and Wainwright 2015). Indeed, an unpenalized 
regression would perfectly fit the data. As a result, the estimator would have high 
variance and its predictive performance could be poor, relative to an estimator that 
excludes  x  or shrinks its coefficient. Thus, the merit of our simple example is that it 
manages to capture in a tractable manner the over-fitting problem.

We pose the following question: Fixing the statistician’s procedure and the 
agent’s prior belief over the true model’s parameters, would the agent always want 
to truthfully report his personal characteristics to the statistician? When this is the 
case for all possible priors, we say that the statistician’s procedure (or “estimator”) 
is incentive-compatible. Our analysis identifies an aspect of the problem that creates 
a misreporting incentive. Because the agent’s report of  x  only matters when this 
variable is selected by the statistician’s procedure, he should only care about the 
distribution of the variable’s estimated coefficient conditional on the pivotal event 
in which the variable’s coefficient is not zero. One can construct distributions of the 
sample noise for which the estimated coefficient conditional on the pivotal event is 
so biased that the agent is better off introducing a counter-bias by misreporting his 
personal characteristic.

We refer to this effect as the “model selection curse.” As the term suggests, the 
logic is reminiscent of pivotal-reasoning phenomena like the winner’s curse in auc-
tion theory (Milgrom and Weber 1982) or the swing voter’s curse in the theory of 
strategic voting (Feddersen and Pesendorfer 1996). The model selection curse does 
not disappear with large samples: When the noise distribution is asymmetric, the 
statistician’s procedure can fail incentive-compatibility even asymptotically. In con-
trast, we show that when the sample noise is symmetrically distributed, the estimator 
is incentive-compatible.

Related Literature.—Our paper joins a small literature that has begun explor-
ing incentive issues that emerge in the context of classical statistics procedures. 
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Cummings, Ioannidis, and Ligett (2015) study agents with privacy concerns who 
strategically report their personal data to an analyst who performs a linear regres-
sion. Caragiannis, Procaccia, and Shah (2016) consider the problem of estimating 
a sample mean when the agents who provide the sample observations want to bias 
the mean close to their value. Hardt et al. (2016) consider the problem of designing 
the most accurate classifier when the input to the classifier is provided by a strategic 
agent who faces a cost of lying. Chassang, Padró i Miquel, and Snowberg (2012) 
argue for a modification of randomized controlled trials when experimental subjects 
take unobserved actions that can affect treatment outcomes. Banerjee et al. (2017) 
rationalize norms regarding experimental protocols (especially randomization) by 
modeling experimenters as ambiguity-averse decision makers. Spiess (2018) stud-
ies the design of estimation procedures that involve model selection when the statis-
tician and the social planner have conflicting interests (e.g., when the statistician has 
a preference for reporting large effects).

I. A Model

An agent has a privately known, binary personal characteristic  x ∈ {0, 1} . In the 
context of medical decision making,  x  can represent a risk factor (e.g., smoking). 
In the context of online content provision, it can indicate whether the agent vis-
ited a particular website. A statistician must take an action  a ∈ 핉  on the agent’s 
behalf. The agent’s payoff from action  a  is  −  (a − f  (x))   2   , where  f  (x) ∈ 핉  is the 
agent’s ideal action as a function of  x . It will be convenient to write  f  (0) =  β 0    and  
 f  (1) =  β 0   +  β 1   , such that   β 1    captures the effect of  x  on the agent’s ideal action. The 
parameter profile  β = ( β 0  ,  β 1  )  is unknown.

Before taking an action, the statistician privately observes a noisy signal about  f .  
Specifically, for each  x = 0, 1 , he obtains a single observation   y x   = f  (x) +  
ε x    , where   ε 0    and   ε 1    are drawn  i.i.d . from some distribution with 0 mean. Denote 
 ε = ( ε 0  ,  ε 1  ) . The observations do not involve the agent himself. We have thus 
described an environment with two-sided private information: the agent privately 
knows  x  , whereas the statistician has private access to the sample  ( y 0  ,  y 1  ) .

Equipped with the sample  ( y 0  ,  y 1  ) , the statistician follows a penalized regression 
procedure for estimating  β . That is, he solves the following minimization problem:

(1)   min  
 b 0  ,  b 1  

      ∑ 
x=0,1

    ( y x   −  b 0   −  b 1   x)   2  + C( b 1  ) .

The first term is the standard residual sum of squares, whereas the sec-
ond term is a cost associated with   b 1   ; the intercept   b 0    entails no cost. (Of 
course, given our simple setup, referring to the procedure as a penal-
ized regression is a bit of an exaggeration.) The solution to (1) is denoted  
 b(ε, β) = ( b 0   (ε, β),  b 1   (ε, β)) . We refer to   (b(ε, β)) ε    as the estimator. The depen-
dence on  (ε, β)  follows from the fact that the estimator is a function of  ( y 0  ,  y 1  ) , 
which in turn is determined by  (ε, β) .

We assume the penalty function

  C( b 1  ) =  c 0   1  b 1  ≠0   +  c 1   |  b 1   | ,
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where   c 0  ,  c 1   ≥ 0 . This is a linear combination of the two common penalties men-
tioned in the introduction,   L 0    and   L 1   .2 Assume that when the statistician is indiffer-
ent between including and excluding  x  , he includes it.

In the absence of the penalty  C  , the solution to (1) is   b 0   =  y 0    ,  
  b 1   =  y 1   −  y 0    , such that the residual sum of squares is 0. In other words, the 
estimator perfectly fits the data. As a result, the estimator’s predictive perfor-
mance will tend to be poor—relative to an estimator that sets   b 0   =   1 _ 2   ( y 0   +  y 1  ) ,  
  b 1   = 0 —when the true value of   β 1    is relatively small.

Having estimated  f  , the statistician receives a report  r ∈ X  from the agent. The 
statistician then takes the action  a =  b 0   +  b 1  r . The agent’s expected payoff for a 
given  β  is therefore

(2)  −  E ε     [ ( b 0   (ε, β ) +  b 1   (ε, β) r −  β 0   −  β 1  x) ]    
2  .

This expression can also be written as

  − E ε    [    f   ˆ  (r) − f  (x)]    
2
  ,

where    f ˆ    (r) =  b 0   (ε, β) +  b 1   (ε, β)r  is the estimated model’s value at the agent’s 
self-report  r .

Note that the agent’s preferences are given by a quadratic loss function. This is 
also a standard criterion for evaluating estimators’ predictive success. Suppose that  
r = x —i.e., the agent submits a truthful report of his personal characteristic. Then, 
the agent’s expected payoff coincides with the estimator’s mean squared error.

The following are the key definitions of this paper.

DEFINITION 1: The estimator is incentive compatible at a given prior belief over 
the true model  f  (i.e., the parameters  β ) if the agent is weakly better off truthfully 
reporting his personal characteristic, given his prior. That is,

   E β     E ε    [    f ˆ   (x) − f (x)]    
2
  ≤  E β     E ε    [    f ˆ   (r) − f (x)]    

2
  

for every  x, r ∈ {0, 1} .

In this definition, the expectation operator   E ε    is taken with respect to the given 
exogenous distribution over the noise realization profile. The expectation operator   
E β    is taken with respect to the agent’s prior belief over  β .

DEFINITION 2: The estimator is incentive compatible if it is incentive compatible 
at every prior belief. Equivalently,

(3)   E ε    [    f ˆ   (x) − f (x)]    
2
  ≤  E ε    [   f ˆ   (r) − f  (x)]    

2
  

for every true model  f  and every  x, r ∈ {0, 1} .

2 Adding an   L 2    (Ridge) term   c 2    ( b 1  )   2   would not change any of the results in the paper. 
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Incentive-compatibility means that the agent is unable to perform better by 
misreporting his personal characteristic, regardless of his beliefs over the true 
model’s parameters. How should we interpret this requirement, given that we do 
not necessarily want to think of the agent as being sophisticated enough to think in 
these terms? One interpretation is that lack of incentive-compatibility is a purely 
normative statement about the agent’s welfare—namely, given how the statistician 
takes actions on the agent’s behalf, it would be advisable for the agent to mis-
report. Furthermore, there are opportunities for new firms to enter and offer the 
agent paid advice for how to manipulate the procedure—in analogy to the industry 
of search engine optimization. Incentive-compatibility theoretically eliminates the 
need for such an industry. In the context of online content provision, deviating 
from  x = 1  to  r = 0  can be interpreted as deleting a cookie. This deviation is 
straightforward to implement, and the agent can check if it leads to better content 
match in the long run.

The agent’s expected payoff function is known to be decomposable into two 
terms, one capturing the bias of estimator and another its variance. Comparing the 
predictive success of different estimators thus boils down to trading off the estima-
tors’ bias and variance. Incentive-compatibility can thus be viewed as a collection 
of bias-variance comparisons between two estimators: one is the statistician’s esti-
mator, and another is an estimator that applies the statistician’s procedure to  r  rather 
than  x . The latter is not an estimation method that a real-life statistician is likely to 
propose, but it arises naturally in our setting.

II. Analysis

We first derive a complete characterization of the estimator.

PROPOSITION 1: The solution to the statistician’s minimization problem (1) is as 
follows:

(4)    b 1   (ε, β) =  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 
 β 1   +  ε 1   −  ε 0   −  c 1  

  
if  β 1   +  ε 1   −  ε 0   −  √ 

_
   ( c 1   )   2  + 2  c 0     ≥ 0

       β 1   +  ε 1   −  ε 0   +  c 1    if  β 1   +  ε 1   −  ε 0   +  √ 
_

   ( c 1   )   2  + 2  c 0     ≤ 0,      

0

  

otherwise

      

and

   b 0   (ε, β) =   1 _ 
2
   [ y 0   +  y 1   −  b 1   (ε, β)] . 

The proof is mechanical and relegated to the online Appendix. Note that   L 0    pen-
alty leads to model selection without affecting the value of   b 1    conditional on being 
nonzero. The   L 1    penalty term leads to both shrinkage and selection.

Let us now turn to incentive-compatibility. Two factors create a problem in this 
regard: sample noise and model selection. Neither factor is problematic on its own, 
as the following pair of observations establishes.

CLAIM 1: Suppose that  ε = (0, 0)  with probability 1. Then, the estimator is incen-
tive compatible.
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PROOF: 
Suppose that   β 1    is such that   b 1   = 0 . Then, the agent’s report has no effect on the 

statistician’s action, and incentive-compatibility holds trivially. Now suppose   β 1    is 
such that   b 1   > 0 . Given the characterization of   b 1   , we must have   β 1   −  c 1   ≥ 0 . The 
statistician’s action as a function of the agent’s report is   b 0    if  r = 0  and   b 0   +  b 1    if  
r = 1 , where

  b 0   =  β 0   +   1 _ 
2
    β 1   −   1 _ 

2
    b 1   =  β 0   +   1 _ 

2
    β 1   −   1 _ 

2
   ( β 1   −  c 1  ),

 b 0   +  b 1   =   β 0   +   1 _ 
2
    β 1   −   1 _ 

2
    b 1   +  b 1   =  β 0   +   1 _ 

2
    β 1   +   1 _ 

2
   ( β 1   −  c 1  ) .

When  x = 0  ( x = 1 ), the agent’s ideal action is   β 0    (  β 0   +  β 1   ), and since  
  β 1   −  c 1   ≥ 0 , the action   b 0    (  b 0   +  b 1   ) is closer to the ideal point than   b 0   +  b 1    (  b 0   ).  
Thus, honesty is optimal for the agent. A similar calculation establishes incen-
tive-compatibility when   b 1   < 0 . ∎

CLAIM 2: If   c 0   =  c 1   = 0 , then the estimator is incentive-compatible.

PROOF: 
When   c 0   =  c 1   = 0 , we have   b 1   = ( β 1   +  ε 1   −  ε 0  ) . Suppose  x = 1  and the 

agent contemplates whether to report  r = 0.  In this case inequality (3) can be sim-
plified into

   E ε   [ ( b 1   (ε, β))   2  + 2 b 1   (ε, β) · ( b 0   (ε, β) −  β 0   −  β 1  )]  ≤ 0 .

Plugging in the expressions for   b 0   (ε, β)  and   b 1   (ε, β)  given by (4), this inequality 
reduces to

(5)   E   ε –   0  ,   ε –   1     [− ( β 1  )   2  + 2 β 1   ε 0   +  ( ε 1  )   2  −  ( ε 0  )   2 ]  ≤ 0 .

This inequality holds for all   β 1    because   ε 0    and   ε 1    are  i.i.d . with mean zero. An anal-
ogous argument shows that an agent with  x = 0  will not benefit from reporting  
r = 1 . ∎

Thus, sampling noise and model selection are both necessary to produce vio-
lations of incentive-compatibility in our simple setup. This finding should not be 
taken for granted. First, even in the absence of sampling noise, the penalty  C  cre-
ates a wedge between the statistician’s objective function and the agent’s utility. 
Therefore, it is not obvious a priori that this defacto conflict of interest does not give 
the agent an incentive to misreport. Second, as long as the agent’s prior over   β 1    is 
not diffuse, the zero-penalty estimator does not produce actions that maximize his 
subjective expected utility. This, too, creates a defacto conflict of interest between 
the two parties, which nevertheless does not give the agent a sufficient incentive 
to misreport. One might think that the unbiasedness of the zero-penalty estimator 
explains Claim 2. However, this intuition is misleading because the agent’s utility 
function involves a bias-variance trade-off. As a result, Claim 2 breaks down when 
the statistician draws different numbers of observations for  x = 0  and  x = 1 : the 
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agent may be willing to experience a biased action due to misreporting because it 
will reduce its variance.

Our next result establishes that incentive compatibility is an issue in the pres-
ence of noisy measurement and nonzero penalty. For expositional convenience, we 
restrict attention to the case of   c 1   = 0 . However, the result can easily be extended 
to arbitrary  ( c 0  ,  c 1  ) > (0, 0) .

PROPOSITION 2: Let   c 0   >  c 1   = 0 . Then, there exists a distribution over sample 
noise for which the estimator is not incentive-compatible.

PROOF: 
Construct the following sample noise distribution. For each  x , let

   ε x   =  { 
−k

  
with probability p

    
kp/(1 − p)  with probability 1 − p,

   

where  p > 1/2  and  k > 0 . Consider an agent with  x = 1  who reports  r = 0 .  
This misreporting violates incentive-compatibility if there is some   β 1    for which

   E ε    [ b 0   (ε, β) +  b 1  (ε, β) −  β 0   −  β 1  ]    2  >  E ε    [ b 0   (ε, β) −  β 0   −  β 1  ]    2  .

Because the agent’s misrepresentation matters only in the pivotal event in which   
b 1   (ε, β) ≠ 0  , this inequality can be rewritten as

(6)   E  ε 0  ,  ε 1     [− ( β 1  )   2  + 2 β 1   ε 0   +  ( ε 1  )   2  −  ( ε 0  )   2  |  ( β 1   +  ε 1   −  ε 0  )   2  ≥ 2 c 0  ]  > 0 .

For every   c 0   > 0  , we can find a range of positive values for   β 1    and k such that   
( β 1   +  ε 1   −  ε 0  )   2  ≥ 2 c 0    if and only if   ε 1   = kp/(1 − p)  and   ε 0   = −k.  In this case 
(6) is reduced to   β 1   < k(2p − 1)/(1 − p) . Thus, fixing p, every pair of positive 
numbers  ( β 1  , k)  that satisfies the inequalities

   k ______ (1 − p)   −  β 1   <  √ 
_

 2 c 0     <   k ______ (1 − p)   +  β 1  ,

 β 1   < min {  
k(2p − 1)

 _______ (1 − p)  ,  √ 
_

 2 c 0    }  ,

will violate incentive-compatibility. ∎

The example in the above proof illustrates a feature we refer to as the model 
selection curse, in the spirit of the winner’s curse and swing voter’s curse. Like 
these familiar phenomena, the model selection curse involves statistical inferences 
from a pivotal event. Here, the pivotal event is the inclusion of an explanatory vari-
able in the statistician’s predictive model. The agent’s decision whether to misre-
port his personal characteristic is relevant only if the statistician’s model includes 
it. Misreporting will change the statistician’s action by   b 1   (ε, β)(r − x) . Therefore, 
the agent only cares about the distribution of   b 1   (ε, β)  conditional on the event  
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 {ε |  b 1  (ε, β) ≠ 0} . This distribution can be so skewed that the agent will prefer to 
introduce a counter-bias by misreporting.

A key feature of the above example is the asymmetry in the noise distribu-
tion. Our next result shows that this is a crucial feature: symmetric noise ensures 
 incentive-compatibility of the statistician’s procedure. For convenience, we consider 
the case in which the distribution of   ε x    is described by a well-defined density func-
tion. The result is stated for arbitrary   c 0  ,  c 1   ≥ 0 .

PROPOSITION 3: If   ε x    is symmetrically distributed around zero, then the estimator 
is incentive-compatible.

PROOF: 
Consider the deviation from  x = 1  to  r = 0.  This deviation matters only if   

b 1   (ε, β) ≠ 0.  Incentive-compatibility thus requires the following inequality to hold 
for all   β 0  ,  β 1   :

   E  ε 0  ,  ε 1     [ ( b 1   (ε, β))   2  + 2 b 1   (ε, β)( b 0   (ε, β) −  β 0   −  β 1  ) |  b 1   (ε, β) ≠ 0]  ≤ 0 .

Plugging the expression for   b 0   (ε)  given by (4), this inequality reduces to

   E  ε 0  ,  ε 1     [ b 1  (ε, β)(− β 1   +  ε 0   +  ε 1  ) |  b 1   (ε, β) ≠ 0]  ≤ 0 .

Fix   b 1   (ε, β)  at some value   b  1  ∗  ≠ 0 . Define  ( b   ∗ ) = {( ε 0  ,  ε 1  ) :  b 1   (ε, β) =  b  1  ∗ }.  
Suppose  ( b   ∗ )  is nonempty. Then,  (u, v) ∈ ( b  1  ∗ )  implies that  (−v, −u) ∈ ( b   ∗ ) .  
This follows immediately from the fact that   b 1   (ε, β)  is defined by the difference   
ε 1   −  ε 0   . Because   ε 0    and   ε 1    are  i.i.d.  and symmetrically distributed around zero, the 
realizations  (u, v)  and  (−v, −u)  have the same probability. This implies that for any 
given   b  1  ∗  ≠ 0, 

   E  ε 0  , ε 1     [ b 1   (ε, β)( ε 0   +  ε 1  ) |  b 1  (ε, β) =  b  1  ∗ ]  = 0 .

Therefore, showing that the deviation from  x = 1  to  r = 0  is unprofitable reduces 
to showing that

   β 1   E  ε 0  , ε 1    [  b 1   (ε, β) |  b 1   (ε, β) ≠ 0] ≥ 0 ,

which simplifies further to

   β 1   E  ε 0  , ε 1     ( b 1   (ε, β)) ≥ 0 .

Suppose without loss of generality that   β 1   > 0 . We will show that  
  E  ε 0  , ε 1     ( b 1   (ε, β)) ≥ 0 . Denote  Δ =  ε 1   −  ε 0   . Let  G  and  g  denote the  cdf  and density 
of  Δ . Since   ε 0    and   ε 1    are symmetrically distributed around zero,  g  is symmetric. 
Denote

   c   ∗  =  √ 
_

   (  c 1   )   2  + 2  c 0     .
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We need to show that

(7)   ∫ 
−∞

  − c   ∗ − β 1     ( β 1   + Δ +  c 1  ) g(Δ) +  ∫  c   ∗ − β 1  
  

∞
    ( β 1   + Δ −  c 1  ) g(Δ) ≥ 0 .

Denote  t =  β 1   +  c   ∗  ,  s =  β 1   −  c 1   , and observe that because   c   ∗  ≥  c 1   ≥ 0  ,  
t + s > 0  and  t − s > 0 . By the symmetry of  g  , (7) becomes

(8)   ∫ 
−∞

  
−t

   (t + Δ) g(Δ) +  ∫ 
−s

  
∞

  (s + Δ) g(Δ) = tG(−t) + sG(s) +  ∫ 
s
  
t
   Δg(Δ) ≥ 0 .

Applying integration by parts and the symmetry of  g  , (8) becomes

   ∫ 
−∞

  
∞

    Δg(Δ) +  ∫ 
−∞

  
s
    G(Δ) −  ∫ 

−∞
  

−t
    G(Δ) ≥ 0 .

Since   ∫ 
−∞

  
∞

    Δg(Δ) =  E  ε 0  , ε 1    ( ε 1   −  ε 0  ) = 0  , the inequality we need to prove reduces 
to

   ∫ 
−∞

  
s
    G(Δ) −  ∫ 

−∞
  

−t
    G(Δ) ≥ 0 ,

which holds because  s > − t .
An analogous argument shows that deviation from  x = 0  to  r = 1  is 

unprofitable. ∎

The intuition behind this result is that symmetric noise curbs the model selection 
curse: although model selection implies that   b 1    is a biased estimate of   β 1   , the bias 
is too small to give the agent the incentive to introduce the counter-bias that results 
from misreporting.

III. Does the Curse Vanish with Large Samples?

So far, we focused on a sample with two observations, hence, one may think that 
the model selection curse is a small-sample phenomenon. In this section we show 
that this need not be the case. Extend our model by assuming that for each  x = 0, 1 ,  
the statistician obtains  N  observations of the form   y  x  n  = f (x) +  ε  x  n   ,  n = 1, … , N  , 
where   ε  x  n   is  i.i.d.  with mean zero across all  x, n . The statistician’s problem is essen-
tially the same:

   min  
 b 0  , b 1  

      ∑ 
x=0,1

      ∑ 
n=1

  
N

      ( y  x  n  −  b 0   −  b 1   x  k  n )    2  + N ( c 0   1  b 1  ≠0   +  c 1   |  b 1   |)  .

The entire model and its analysis are unchanged, except that now  ε =  ( ε  0  n ,  ε  1  n ) n=1,…, N   ; 
and in the solution for the estimator (4),   ε x    is replaced with the average sample 
noise    ε –   x   =   1 __ N    ∑ i=1  n     ε  x  n  . Denote  ε =  ( ε  x  n ) x=0,1; n=1,…, N   .

Returning to the Bernoulli-noise example from the previous section, we inves-
tigate whether the set of parameters that violate incentive compatibility vanishes 
as  N → ∞ . We continue to assume   c 1   = 0  and restrict attention to the case of   
β 1   > 0 —both are without loss of generality. Note that   c 0    is constant per observa-
tion, we address this issue at the end of this section.
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Suppose that for every  x = 0, 1  and every observation  n = 1, …, N  ,   ε  x  n   is inde-
pendently drawn from the Bernoulli distribution that assigns probability  p > 1/2  
to  − 1  and probability  1 − p  to  d = p/(1 − p) . Let    ε –   x   (N)  denote the average 
noise realization over all the  N  observations for  x ∈ {0, 1} . The pivotal event  
 {ε |  b 1   (ε, β) ≠ 0}  can be written as

(9)   {ε |   ε –   1   (N) −   ε –   0   (N) ∉  (−  √ 
_

 2 c 0     −  β 1  ,  √ 
_

 2 c 0     −  β 1  ) } . 

Our goal is to find the set of parameters for which incentive-compatibility is violated 
in the  N → ∞  limit.

PROPOSITION 4: The set of parameters   β 1   > 0  and   c 0  , d  for which 
 incentive-compatibility is violated in the  N → ∞  limit is given by

(10)   β 1   <    c 0   __________  
 √ 
_

 2 c 0     +   2d ____ 
d − 1  

   .

PROOF: 
We first find the limit distribution over  (  ε –   0   (N),   ε –   1   (N)) , condi-

tional on the event (9). To do this, it helps to combine the two samples  
 ( ε  0  1 , …,  ε  0  N )  and  ( ε  1  1 , …,  ε  1  N )  into one composite sample  ( η   1 , …,  η   N ) , such that for 
every  n ,   η   n  = ( ε  1  n ,  ε  0  n ) . Thus,   η   n   is drawn  i.i.d.  according to the following distribu-
tion  π :

   π −1,−1   = Pr(−1, −1) =  p   2 ,

  π −1, d   = Pr(−1, d) = p(1 − p) = Pr(d, −1) =  π d,−1  ,

  π d, d   = Pr(d, d) =  (1 − p)   2  .

Denoting by   s i, j    the empirical frequency of the realization  (i, j)  in this composite 
sample allows us to redefine the pivotal event in terms of a subset of empirical fre-
quencies  s = ( s −1,−1  ,  s −1, d  ,  s d,−1  ,  s d,d  ) :

   R   N  =  { s   N  |( s d,−1   −  s −1, d  ) ∉  (  −  √ 
_

 2 c 0     −  β 1    _ 
d + 1  ,    √ 

_
 2 c 0     −  β 1   _ 

d + 1  ) }  .

For any empirical distribution  s  , let  D(s |  | π)  be the relative entropy of  s  with 
respect to  π :

(11)  D(s |  | π) =   ∑ 
i, j∈{−1,d}

    s i, j   ln (  
 s i, j   _  π i, j    )  .

Denote

   θ l   =   −  √ 
_

 2 c 0     −  β 1    _ 
d + 1  ,   θ h   =    √ 

_
 2 c 0     −  β 1   _ 

d + 1   .

We will now show that in the  N → ∞  limit, the distribution over   s   N   conditional on   
s   N  ∈  R   N   assigns probability one to the unique  s  that minimizes  D(s |  | π)  subject to 
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the constraint   s d,−1   −  s −1,d   =  θ h   . Recall that we are restricting attention to a range 
of parameters such that  −1 <  θ l   <  θ h   < 1 . We can partition the pivotal event   R   N   
into 2 closed intervals:  [−1,  θ l  ]  and  [ θ h  , 1] . Because   β 1   > 0  ,   |  θ l   |  >  |  θ h   |  .

The relative entropy function  D(s |  | π)  is strictly convex in  s  and attains a unique 
unconstrained minimum of zero at  s = π . Furthermore, because   π −1, d   =  π d,−1    ,  
D(s | | π)  treats   s −1,d    and   s d,−1    symmetrically. Therefore, for any  θ ∈ [−1, 1] , the mini-
mum of  D(s |  | π)  subject to   s −1,d   −  s −d,1   = θ  is equal to the minimum of  D(s |  | π)  sub-
ject to   s d,−1   −  s −1,d   = θ , and it is strictly increasing with   | θ |  . Therefore, the minimum 
of  D(s |  | π)  subject to   s d,−1   −  s −1, d   ∈ [ θ h  , 1]  is strictly below the minimum of  D(s |  | π)  
subject to   s d,−1   −  s −1,d   ∈ [ − 1,  θ l  ] . By Sanov’s Theorem (see Theorem 11.4.1 in 
Cover and Thomas 2006, p. 362), the probability of the event  [ θ h  , 1]  is arbitrarily 
higher than the probability of the event  [−1,  θ l  ]  as  N → ∞ . Therefore, we can take 
the pivotal event to be  [ θ h  , 1] . Furthermore, by the conditional limit theorem (Theorem 
11.6.2 in Cover and Thomas 2006, p. 371), in the  N → ∞  limit, the probability that  
  s d,−1   −  s −1, d   =  θ h    conditional on the event   s d,−1   −  s −1,d   ∈ [ θ h  , 1]  is 1.

It follows that the objective function is  D(s |  | π)  and the constraints are

   s d,−1   −  s −1, d   =    √ 
_

 2 c 0     −  β 1   _ 
d + 1  ,

        s −1,−1   +  s −1,d   +  s d,−1   +  s d, d   = 1 .

Writing down the Lagrangian, the first-order conditions with respect to  ( s i, j  )  are  
(  λ 1    and   λ 2    are the multipliers of the first and second constraints):

  1 + ln  s −1,−1   − ln  p   2  −  λ 2   = 0,

 1 + ln  s d, d   − ln  (1 − p)   2  −  λ 2   = 0,

 1 + ln  s d,−1   − ln p(1 − p) −  λ 1   −  λ 2   = 0,

 1 + ln  s −1, d   − ln p(1 − p) +  λ 1   −  λ 2   = 0. 

These equations imply

   s d,−1   s −1,d   =  s d, d    s −1,−1  ,

  s −1,−1   =  d   2   s d,d   .

Now, since

  d =   p
 _ 

1 − p  ,

   ε –   1   = ( s d,−1   +  s d,d  )(d + 1) − 1,

   ε –   0   = ( s −1,d   +  s d,d  )(d + 1) − 1 ,
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we have that in the  N → ∞  limit, the distribution over  ε  conditional on the pivotal 
event assigns probability 1 to

    ε –   0   = −   1 _ 
2
   ( √ 
_

 2 c 0     −  β 1  ) −   d _ 
d − 1   +   1 _ 

2
    √ 

___________________

    ( √ 
_

 2 c 0     −  β 1   )   2  +   4 d   2  _ 
 (d − 1)   2 

    ,

   ε –   1   =   1 _ 
2
   ( √ 
_

 2 c 0     −  β 1  ) −   d _ 
d − 1   +   1 _ 

2
    √ 

___________________

    ( √ 
_

 2 c 0     −  β 1   )   2  +   4 d   2  _ 
 (d − 1)   2 

     .

Plugging these values into (6) produces the result. ∎

Thus, the incentive-compatibility problem in the Bernoulli-noise example does 
not vanish when the sample is large. Moreover, the more skewed the underlying noise 
distribution and the larger the complexity cost, the larger the set of prior beliefs for 
which incentive-compatibility is violated in the  N → ∞  limit. The reason that large 
samples do not fix the incentive-compatibility problem is that the agent’s reasoning 
hinges on the pivotal event in which the variable is included. Therefore, even if the 
estimator’s unconditional distribution is asymptotically well behaved, the relevant 
question for incentive-compatibility is whether it is well behaved conditional on the 
pivotal event.

Recall that our original assumption of only two observations captured (in a 
highly stylized fashion) the idea that model selection can avert over-fitting. When 
we continue to assume a single explanatory variable and raise  N  , the over-fitting 
problem is attenuated and the role of model selection diminishes. Indeed, practi-
tioners of penalized regression adjust penalty parameters to sample size, such that  
  c 0  ,  c 1   → 0  as  N → ∞ . The key question is therefore whether the  rate  by which   c 0    
or   c 1    decrease with  N  is fast enough to outweigh the model selection curse. To answer 
this question, one needs to characterize the condition for  incentive-compatibility for 
arbitrary values of  N,  c 0  ,  c 1   . This is an open question that we leave for future work.

Since the probability of the pivotal event decreases with  n  , the payoff consequence 
of misreporting vanishes in the  N → ∞  limit, such that the agent becomes almost 
indifferent between reporting and misreporting (as is indeed the case in models of 
strategic voting in large elections). If we were to extend our analysis to account for 
the strategic reasoning of all the individuals—including those in the statistician’s 
sample—the equilibrium outcome could stray far from the sincere-reporting bench-
mark. Exploring this problem, too, is left for future research.

IV. Conclusion

Interactions between humans and machines that follow statistical procedures are 
becoming ubiquitous, giving rise to interesting questions for economists. Our ques-
tion is whether human decision makers should act cooperatively toward a machine 
that employs a non-Bayesian statistical procedure that aims at good predictions. We 
demonstrated, via a toy example, that the element of model selection in the proce-
dure creates nontrivial incentive issues.

Our little exercise exposed a major methodological challenge. The standard eco-
nomic model of interactive decision making is based on the Bayesian, common prior 
paradigm. However, the actual behavior of machine decision makers is often hard to 
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reconcile with this paradigm. We addressed this challenge by examining the agent’s 
response to a  fixed  statistical procedure with a given specification of its parameters. 
One would like to endogenize these choices. However, given that the procedure 
is fundamentally non-Bayesian, capturing this endogenization with a well-defined 
ex ante optimization problem is not obvious. Incorporating incentive-compatibility 
as a criterion for selecting prediction methods is therefore conceptually challenging.

In general, modeling strategic interactions that involve machine learning requires 
us to depart from the conventional Bayesian framework, toward an approach that 
admits decision makers who act as non-Bayesian statisticians. Such approaches are 
familiar to us from the bounded rationality literature (e.g., Osborne and Rubinstein 
1998; Spiegler 2006; Cherry and Salant 2016; and Liang 2018). Further study of 
human-machine interactions is likely to generate new ideas for modeling interac-
tions that involve boundedly rational  human  decision makers.
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