Department of Computing
The City University
London

MAGNET: A Dynamic Resource Management
Architecture

Patricie Kostkova

July 1999

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor
of Philosophy in Computer Science at City University, London, UK.

Copyright (©1999 Patricie Kostkova

ii
Abstract

This thesis proposes a new dynamic resource management architecture, MAG-
NET, to meet the requirements of users in flexible and adaptive systems. Computer
systems no longer operate in centralized isolated static environments. Technological
advances, such as smaller and faster hardware, and higher reliability of networks
have resulted in the growth of mobility of computing and the need for run-time
reconfigurability. The dynamic management of this diversity of resources is the
central issue addressed in this thesis. Applications in environments with frequently
changing characteristics are required to participate in dynamic resource manage-
ment, to adapt to ever-changing conditions, and to express their requirements in
terms of quality of service.

MAGNET enables dynamic trading of resources which can be requested indi-
rectly by the type of service they offer, rather than directly by their name. A
dedicated component, the Trader, matches requests for services against demands
and establishes a component binding — resource allocation. In addition, the archi-
tecture is extensible — it does not constrain the information on services and allows
user-customization of the matching process. Consequently, this allows resource defi-
nitions to be parametrized (to include QoS-based characteristics), and the matching
process to be user-customized (to preform QoS-based negotiation). In order to ful-
fill the requirements of users relying on ever-changing conditions, MAGNET enables
runtime adaptation (dynamic rebinding) to changes in the environment, constant
monitoring of resources, and scalability of the architecture.

The generality of the MAGNET architecture is illustrated with several examples
of resource allocation in dynamic environments.

iii
Acknowledgements

Over the last three years, there were many people who have directly, or indirectly,
intentionally or accidently contributed to this work having come to fruition. They
are all owed my thanks.

First of all, I would like to thank all my official and unofficial supervisors: Tim
Wilkinson, Peter Osmon, Steve Crane, Julie McCann and Kevin Murray.

Tim, the ‘father’ of the component-based resource management idea, gave me
expert technical support in various aspects of this thesis, and desperately needed
encouragement before public presentations at my first conferences.

Peter Osmon gave me constant encouragement and support in his ever-optimistic
style. His guidance and helpful comments, particularly during the writing-up phase
of my thesis, are much appreciated.

Many thanks are due to Steve Crane, who appeared in my final year, just in time
to suggest Regis for my implementation environment. His perfectionist attitude,
insight into the subject, and expert technical support helped me to improve, justify,
and better formalize this work.

My thanks are also due to Julie McCann for moral support during all three
years, many stimulating discussions, and valuable comments on my research. In
particular, I would like to thank her for proof-reading the first draft of this thesis,
and her constructive feedback greatly influenced the final presentation of this work.

I would like to thank Kevin Murray for many helpful suggestions during the
initial ‘shaping’ of my thesis theme, and many constructive discussions.

Further, Nick Plumb and Kim Harries were always ready to provide helpful
comments, and corrections of Czech-English drafts of my papers. In addition, Nick,
Kim, Andy Whitcroft, James Green, Peter Loh and Irena Arambasic were excellent
friends who put up with me over the last three years.

Many thanks are due to Nomi Harris, who volunteered to do the final proof-
reading of this thesis.

Also, other PhD students and members of staff who provided a stimulating
atmosphere in the office or a relaxing time off-site (or both) also contributed; not
directly into my reseach, but significantly into my understanding of English culture.
In particular, they include: Paul Howlett, Sheun Olatunbosun, Akmal Chaudhri,
Shim Young, Chris Marshall, Tony Valsamidis, Gary Mullen, Nick Williams, Maia
Dimitrova, Michael Schroeder and Greg Law.

Also, I owe thanks to my lectures from the Faculty of Mathematics and Physics,
Charles University in Prague, where I received my Masters degree for preparing me
for my PhD research.

Finally, many thanks go to my family and friends back in the Czech Republic.
First of all, I have never been able to fully express my thanks to my parents, Daniela
and FrantiSek, for their remote support and constant encouragement during all my
life. In addition, my great sister Jana who enjoyed with me many happy times, and
supported me when things were difficult. My granny Josefa, with her inexhaustible
source of energy and ability to battle against extreme adversity, has always been
a source of inspiration for me. Finally, thanks for support from other friends, in
particular, Dafe gimonek, Markéta Starobova, Renata gkopkové, Hynek Pikhart,
Marek Zindulka and Eva Simgova.

Thank you all!

Contents

1 Introduction

2

1.1 Motivation
1.1.1 Technological Advances
1.1.2 Characteristics of Frequently-Changing Environments
1.1.3 Limitations of Traditional Operating Systems
1.1.4 A New Role of Resource Management

1.2 Requirements for a Resource Management
Architecture
1.2.1 Dynamic Trading
1.2.2 Extensibility
1.2.3 QoS-based Management
1.2.4 Dynamic Rebinding
1.2.5 Information Monitoring
1.2.6 Scalability

1.3 Contributions Lo
1.3.1 Identifying a New Role of Resource Management
1.3.2 A Model of Dynamic Third-party Trading
1.3.3 MAGNET: A Dynamic Resource Management Architecture .

1.4 Thesis Structure L

Resource Management in Distributed Systems

2.1

2.2

2.3

Resource Management in Extensible Operating Systems
2.1.1 Exokernel
2.1.2 SPIN . .. e
213 Inferno
214 Kea
2.1.5 DEIMOS
2.1.6 Nemesis o L e
2.1.7 Other Systems
2.1.8 Discussion
Other Trading and Reconfigurable Architectures
2.2.1 Tuplespace-based Architectures
2.2.2 ANSAware Distributed Systems Platform
223 CORBA
224 DCOM
225 Aster
2.2.6 Matchmakingo
2.2.7 Other Systems o o
2.2.8 Discussion L
QoS Architectures
2.3.1 QoS-based Trading Architectures
2.3.2 Other QoS Architectures

O O UL UL UL UL U i i i W W W NN ==

NolNo BNoIEN BEN BN |

CONTENTS

2.3.3 Discussion Lo
2.4 Chapter Summary
A Model of Dynamic Third-party Trading
3.1 Terms and Definitions
3.2 Assumptions
3.3 The Binding Process o
3.3.1 Exporting Service Definitions
3.3.2 Negotiating Service Definitions
3.3.3 Establishing a Communication Channel
34 Rebindingo
3.4.1 The Rebinding Process
3.4.2 Rebinding Situations oL oL
3.5 Quality of Service Management
3.5.1 Introduction
3.5.2 QoS Definition oo
3.5.3 QoS Negotiation
3.5.4 QoS Maintenance
3.6 Chapter Summary
A Resource Management Architecture
4.1 Requirements for Dynamic Resource Management
4.2 Using the Tuplespace Paradigm for the Trader
4.2.1 Overview of the Trader
4.2.2 The Information Pool,
4.2.3 The Trader Operations
4.2.4 The Tuple Matching
4.2.5 Reasoning about the Trading Paradigm
4.3 Components for the MAGNET Architecture
43.1 The Trader
4.3.2 The Tree
4.3.3 Distribution Issues L.
4.3.4 The Glue Factory
4.3.5 Client and Server
4.3.6 Binders
4.4 The Binding Process o
4.4.1 Export Service Definitions
4.4.2 Negotiating Service Definitions
4.4.3 Establishing a Communication Channel
4.5 Naming
4.5.1 Tuple Naming
4.5.2 Interface Reference Naming
4.5.3 Trader Naming
4.6 Protectiono
4.6.1 Trader Protection
4.6.2 Tuple Protection oo
4.6.3 Component Protection

4.7 Chapter Summary

17
17

19
19
21
23
23
24
26
27
27
28
31
31
32
34
34
35

CONTENTS

5 Advanced Features of the Architecture

5.1

5.2

5.3

5.4

9.5

6.1

6.2

6.3
6.4

6.5

6.6

6.7

6.8

6.9

Information Monitoring 0L
5.1.1 Components for Monitoring
5.1.2 Monitoring Lo
5.1.3 Discussion L Lo
Quality of Service Management
5.2.1 QoS Definition 0oL
5.2.2 QoS Negotiation
5.2.3 QoS Maintenance
Rebinding Lo
5.3.1 Components for Rebinding
5.3.2 The Rebinding Process
5.3.3 Rebinding Situationso 0oL
5.3.4 First-Party Renegotiated First-Party Rebinding
5.3.5 First-Party Renegotiated Third-Party Rebinding
5.3.6 Third-Party Renegotiated Third-Party Rebinding
5.3.7 No-Renegotiation Third-Party Rebinding
5.3.8 OtherIssues.
Scalability
5.4.1 Federations o oL
5.4.2 Dynamically Reconfigurable Domains
5.4.3 Scaling the Architecture
Chapter Summary

Implementation Experience

Regis Distributed Environment
6.1.1 Overviewof Regis
6.1.2 Adaptation of Regis
MAGNET Implementation in Regis
6.2.1 System Components
Tuples o
The Tree.
6.4.1 The Tree Data Structure
6.4.2 Implementation of the Trader Operations
6.4.3 The Complexity of the Trader Operations
The Trader
6.5.1 Tree Distribution o 0oL
6.5.2 Tree Allocation on Processors
QoS Management
6.6.1 QoS Definition 00
6.6.2 QoS Negotiation
6.6.3 The Complexity of QoS-based Matching Operations
Limitations L
6.7.1 Large Number of Components
6.7.2 Large Number of Tuples
Usability and Porting L.
6.8.1 Usability
6.8.2 Porting
Chapter Summary

vi

52
52
92
53
o4
95
35
57
39
60
60
61
63
64
64
65
65
65
67
67
68
71
75

CONTENTS vii

7 Case Studies and Evaluation 96
7.1 System Components 96
711 CPU . . .o 96
7.1.2 Memory 97
713 Disko 97
7.1.4 Printer. 98
7.1.5 Discussion Lo 99

7.2 QoS-based Allocation 0L 99
7.3 Dynamic Network Connectivity 101
7.3.1 Disconnected Case 101
7.3.2 Weakly Connected Case 102
7.3.3 Fully Connected Case 104

74 Evaluation. 105
7.4.1 Evaluation of Provided Features 105
7.4.2 Discussion on Assumptions 107
7.4.3 Comparison with Existing Architectures 109

7.5 Chapter Summary 110
8 Conclusion 111
8.1 Thesis Review 111
8.1.1 A New Role of Resource Management 111
8.1.2 A Model of Dynamic Third-party Trading 111
8.1.3 MAGNET: A Dynamic Resource Management Architecture . 112

8.2 Future Work 113
8.2.1 The Resource Management 113

83 Summary 114

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4

5.1
5.2
9.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10

6.1
6.2
6.3
6.4
6.5

7.1

Binding between Server and Client established by the Trader

A Trading System consisting of two Federations
Trading
First-party Renegotiated First-party Rebinding
First-party Renegotiated Third-party Rebinding
Third-party Renegotiated Third-party Rebinding
No-Renegotiation Third-party Rebinding

The Trader Structure
MAGNET’s architecture
Binding establishment in MAGNET
Admission Protocol

The architecture with the Monitor and the Updater
MAGNET with Components for Rebinding
First-Party Renegotiated First-Party Rebinding in MAGNET
First-Party Renegotiated Third-Party Rebinding in MAGNET
Third-Party Renegotiated Third-Party Rebinding in MAGNET
No-Renegotiation Third-Party Rebinding
Operation JOIN
Operation LEAVE
Trading scheme based on 1P addresses
Communication between Federations

Regis bindings used in the MAGNET architecture
Tuple representation L.
Tree data structureo
The Trader and distributed Tree components
Tree data structure incorporating QoS Definition

Essential system server components

viii

22
25
26
29
30
31
32

38
43
46
50

List of Tables

3.1 QoS-based Definition of a printer and a CPU 33
5.1 Matching functions L oo oo 58
5.2 Results of QoS-rating match between tuples A,B, Cand D 59
7.1 The Information Pool containing tuples A, B,and C. 100
7.2 QoS-based allocation — matching between tuples A,B, C and D . . 100
7.3 The Information Pool containing tuples A, B, Cand F. 101
7.4 The Portable Information Pool the disconnected case 102
7.5 The Portable Information Pool the weakly connected case 103
7.6 The Office-Based Information Pool 103
7.7 The Portable Information Pool — the fully connected case 104

Chapter 1

Introduction

The role of resource management has recently changed due to two factors: techno-
logical improvements, resulting in a diversity of computing environments, and the
inability of traditional operating systems to provide a flexible dynamically-adaptable
platform. This thesis addresses the design of a resource manager, MAGNET, ful-
filling requirements of users in frequently-changing environments. In particular, we
present a framework enabling user-customized dynamic resource allocation support-
ing runtime adaptations, and quality of service-based resource description.

Now we will discuss our motivations in greater detail (section 1.1), outline the
high-level requirements for the resource management architecture (section 1.2) and
then summarize our contributions (section 1.3).

1.1 Motivation

In the last decade we have witnessed significant technological advances in the areas
of wireless communication and hardware component design that have fundamen-
tally changed the computing environment. It has become structurally diverse, with
frequently-changing characteristics of system components, such as availability of re-
sources, degree of connectivity, and local site hardware configuration. In addition,
traditional operating systems (including microkernels) still suffer from high-level
centralized resource management, and the inability to tailor resource abstractions
to application needs [13].

1.1.1 Technological Advances

Technological improvements in reliability, speed and coverage of wireless communi-
cation, and the rapidly-decreasing size and weight of mobile phones are major fac-
tors enabling the current boom in mobile computing. Therefore, weakly-connected
systems (e.g., Infra-red (IR) networks, cellular radio networks) no longer suffer from
significantly low bandwidth, high error-rates, throughput fluctuations, frequent dis-
connections or limited coverage [21]. The affordability of mobile phones is another
factor that has contributed to the change in the computing environment.

Other hardware technology advances have accelerated this process by enabling
users to become mobile. These include: the invention of the colour LcD display,
small disks, lightweight batteries, track-ball and touch-pad. The overall size and
weight of hardware components has also decreased while their capacity and perfor-
mance has increased.

The timely combination of these achievements has enabled the development of
two types of transportable computers: Personal Digital Assistants (PDAs) such as

CHAPTER 1. INTRODUCTION 2

Palm Pilots, and ‘portable’ computers, such as laptops. PDAs are small, lightweight,
transportable hand-held computers designed for specific mobile applications running
unique software, for example an ‘on-line’ tourist navigation program [17]. Portables
are transportable computers, typically running classical operating systems and ap-
plications, and are commonly used when complex work-related tasks are expected
to be performed whilst on the move. Their use while in transit (e.g., on train or
plane), or when movement is in the nature of the particular business (e.g., travelling
salesmen) has become commonplace.

1.1.2 Characteristics of Frequently-Changing Environments

Here we describe four issues illustrating the dynamic nature of frequently-changing
computing platforms. Primarily, we address environments with course-grained fre-
quency of changes, that is minutes and hours rather that seconds and milliseconds
(e.g., a typical example is a roaming portable user requiring to adapt to local re-
source configurations in offices where he arrives.) We further elaborate on assump-
tion on our computing environment in chapter 3.

The classical resource allocation problems caused by fluctuation in availability
and other characteristics of traditional system resources (such as length of printer
queue, processor load, network throughput, disk usage) still remain. Resource allo-
cation for mobile computers has to deal with restricted hard-disk space and limited
battery life.

Owing to the enormous growth in wireless communication, resource allocation
also has to reflect changes in characteristics of additional resources such as network
connectivity of mobile users — the degree of connectivity may vary from totally
disconnected, through weakly-connected (by wireless communication, such as, IR
networks, cellular radio networks), to fully-connected (by Ethernet or high-speed
optical-fibre networks such as FpDI and ATM) [21].

Above all, the mobility of users results in the high volatility of location and time-
dependent information, such as local time (related to the user current position,
changing while on the move, e.g., on a plane), local site hardware configuration
(using local resources in offices where a portable computer is plugged in), and a
useable Internet Service Provider (1sP) (according to town, state where a portable
user is currently travelling).

Finally, computing environments are no longer coarse-grained and monolithic.
System elements at all levels (hardware, software, and data) are becoming finer-
grained [45] (for example, a word processor consists of independent components:
editor, spell-checker, viewer, etc.). The structure of the computing environment,
reflecting this trend toward ‘componentisation’ [47, 45], enables applications to tai-
lor the selection and configuration of required components, and allows composition
of customized computing environments.

1.1.3 Limitations of Traditional Operating Systems

Operating systems form the interface between system resources and applications by
providing abstractions of hardware devices, protection of applications, and resource
management.

Classical operating systems (including microkernels) limit flexibility, perfor-
mance and utilization of system resources by forcing applications to use inappro-
priate high-level abstractions, uniform protection schemes and high-level static re-
source management [13]. Unsatisfactory performance of both the operating system
and applications, together with a lack of flexibility and run-time configurability,
are the result of forcing applications to use inappropriate system services. Also, it
has become clear that the requirements of all applications cannot be met by any

CHAPTER 1. INTRODUCTION 3

operating system in advance [65]. Therefore, applications require a platform where
they can implement their own abstractions, tailor existing servers to their needs,
define their own protection schemes, and customize resource management policies.

In addition, applications in environments with frequently changing character-
istics impose additional requirements on operating systems, such as the ability to
participate in dynamic resource management, and to support adaptation to ever-
changing conditions. Due to the trend towards finer granulation [13] of system
services (discussed in section 1.1.2), the resource manager’s role, as the key compo-
nent, has significantly expanded.

1.1.4 A New Role of Resource Management

The traditional resource manager operated within a set of pre-defined static policies
for the allocation of resources to applications. Resources must have been connected
to the system and configured in advance (typically at boot time).

Such resource strategies were sufficient for traditional computing environments,
but recent technological improvements have extended the role of resource manage-
ment. It now has to provide dynamic resource allocation strategies and support run-
time adaptation to frequently-changing system conditions. In addition, the higher
availability of distributed resources together with fluctuation of their characteristics
have introduced a resource description specifying non-functional features, known as
quality of service (QoS). Resource managers have to enable QoS-based resource
description and QoS-based allocation policies.

In open systems, the requirement to enable requests for services to be described
by a type of service (e.g., a printer), rather than directly by a name (e.g., the
printer lwa) is a problem which is encountered by run-time resource allocators.
This implies communication between system components which did not know their
identity a priori. In addition, dynamic features such as the monitoring of selected
resource features, and the provision of location and time-dependent information
are also required. These features enable a resource manager to provide dynamic
adaptation to variations in system environment.

Besides classical resource allocation requests, there are other applications requir-
ing dynamic resource management which rely on the availability of dynamically-
updated location and time-dependent information. They include, for example,
tourists running guide-like sightseeing information software on PDAs [17] or portable
mobile users requiring local resources while in transit and in different company of-
fices [33] (e.g., a Web client running on a portable connected by a mobile phone
while on the move needs to switch to the fast connection when the portable is
plugged into the network in an office). Dynamic resource management also makes
it feasible for mobile or non-mobile systems to provide continuous operation which
requires support for hardware upgrades and on-line software updates.

1.2 Requirements for a Resource Management
Architecture

In order to design a dynamic resource manager, we need to identify the high-level
requirements of typical applications utilizing the potential of frequently changing
computing environments.

1.2.1 Dynamic Trading

The primary role of the resource manager for dynamic and mobile applications is to
enable extensible dynamic resource allocation. In contrast to requesting resources

CHAPTER 1. INTRODUCTION 4

directly by name, they should be allocated by the type of service they offer, such as
a printer, a file system, etc. Therefore, the system must provide a dedicated com-
ponent, Trader, which collects information on services, and dynamically matches
requests against demands. By doing this it can establish dynamic binding between
components which did not need to know their identity in advance.

1.2.2 Extensibility

To achieve full generality, the Trader should not constrain the format or the seman-
tics of information on services and should allow the user to customize the matching
process. This permits extensibility in two areas: firstly, existing services and data
formats can be extended (new resources, services and user requests can be defined
at run-time). Secondly, the matching process, performed by the Trader, can also
be dynamically redefined (resource allocation strategies can be user-customized).
Applications can adapt their behaviour to changes in the environment, and can
therefore dynamically extend system functionality. However, this relies on the pres-
ence of the Trader component providing a framework for these extensions.

In addition, the framework should be designed not only for resource management
purposes. It should enable potential utilization for any kind of applications requiring
dynamic trading of up-to-date information.

1.2.3 QoS-based Management

The Trader performs component coupling based on the type of service provided
or required. However, the extensibility of the architecture enables applications to
describe system components in terms of non-functional characteristics of the service,
the quality of service. For example, these might be static values (such as a printer
resolution or speed), or dynamically changing characteristics (such as length of a
printer queue, current network throughput, location of a resource regarding the
location of a mobile user, etc.)

QoS-based resource description requires user-customization of the matching pro-
cess, in order to enable applications to define their preferences. Therefore, in addi-
tion to basic exact matching which is sufficient if requirements are expressed exactly,
the extensible Trader also supports user-customized matching requests against de-
mands. This is necessary in situations where component characteristics include a
QoS-based description, as components must express their preferences in order to
define semantics of their matching process.

1.2.4 Dynamic Rebinding

In order to support runtime adaptation to system environment changes, such as the
continuous operation of a system during a hardware upgrade or a software update
(such as version upgrade), changes to existing bindings must be possible.

Therefore, in addition to the previously discussed dynamic binding of system
resources to applications, the framework should also support dynamic rebinding. It
can be originated by components themselves (first-party rebinding), or performed by
a managerial third-party with knowledge of overall application semantics (so-called
third-party rebinding [15]). In addition, rebinding should also enable first-party
renegotiating (leaving the selection of a new component on the unbound peer),
or presenting the rebound component with an appropriate replacement that
might be found either in the Trader (third-party renegotiation), or obtained from
an external entity (in this case no-renegotiation is necessary).

Supporting dynamic rebinding introduces the problem of consistency. The se-
mantics of this operation have to be defined; in particular, the circumstances under

CHAPTER 1. INTRODUCTION)

which an existing binding can be broken, and the definition of who is responsible
for maintaining end-to-end consistency.

1.2.5 Information Monitoring

To provide up-to-date information on changing system resources, a mechanism for
automated periodical monitoring of selected services is required, in addition to the
manual update of information in the Trader. A manual alteration is a sequence of
operations performed by components themselves. An automated update is carried
out by monitors independent, of the actual components.

1.2.6 Scalability

Typical computing environments are open distributed systems consisting of interact-
ing components clients and servers which can join and leave without impairing
system continuity [15].

As our framework is designed for applications running in such open distributed
systems, it has to be scalable, in order to permit a larger physical area to be covered,
to support mobility of users, and to allow a high number of users to dynamically
join and leave the system.

As the key role of the system is to fulfill requirements of mobile users accessing
local resources in various offices, it must support resource configuration as a result
of frequent arrival and departure of system components.

A design of open systems that enable the architecture to scale faces a trade-
off between response time and precision of provided information. Therefore, the
framework has to define constraints under which scaling becomes feasible, such as
constraints on the scale of the matching process.

1.3 Contributions

Contributions of this thesis lie in four areas:

e mapping the field of resource management in current systems and identifying
its new role

e a unifying model of a third-party trading, forming a basis for the design of
the MAGNET architecture

e a design and specification of MAGNET, a dynamic resource manager

1.3.1 Identifying a New Role of Resource Management

We have mapped the field of operating systems and resource management, and iden-
tified the new role of resource managers in dynamically changing adaptive systems.

1.3.2 A Model of Dynamic Third-party Trading

In order to design MAGNET, it was essential to identify entities involved in the
resource management process, and specify features supported by the architecture.
Therefore, we have elaborated a model of extensible service trading by a third-
party, the Trader, enabling component coupling based on the description of a type
of service, in contrast to direct name-based requests. The extensibility of the model
enables user-customization of the service information and the matching process.
The model forms a basis for our design of MAGNET.

CHAPTER 1. INTRODUCTION 6

1.3.3 MAGNET: A Dynamic Resource Management Archi-
tecture

The third contribution of this thesis is the design of MAGNET, a framework for dy-
namic resource management which aims to satisfy applications running in frequently-
changing environments. Based on an information trading model, it provides a set
of features which enable powerful dynamic resource management (dynamic trading,
extensibility, QoS Management, dynamic rebinding, monitoring, and scalability).
We have chosen the tuplespace paradigm for the design of the Trader, as it enables
dynamic component matching and extensibility.

1.4 Thesis Structure

In this chapter we have discussed our motivations for research described in this thesis
by identifying a new role of a resource manager in diverse computing environments.
Based on our motivations, we have elaborated requirements for a dynamic resource
management architecture and briefly summarized contributions of this work.

The second chapter analyzes various resource management architectures and ex-
tensible operating systems projects, both from academia and industry, that address
similar problems.

In the third chapter, we define the terminology used in describing MAGNET
and formulate a model of dynamic trading. We present a discussion of the binding
process, then describe rebinding issues relevant to this thesis and present approaches
to QoS management.

Based on this model, in chapters four and five we describe the resource manager
architecture, MAGNET. The former presents the architecture, provides its specifi-
cation and justification of its components, and describes the binding process. The
latter presents advanced features, such as monitoring, QoS management, scalability
and the support for rebinding.

Chapter six discusses implementation issues. We describe Regis, the computing
environment used for implementing MAGNET’s prototype, and present the imple-
mentation of key features of the architecture.

In chapter seven we describe several examples of MAGNET, as a resource man-
ager, and illustrate how it provides support for dynamic resource allocation and
runtime adaptation. In addition, we evaluate the framework by discussing features
it provides, and providing comparison with existing architectures.

Chapter eight summarizes contributions of this work, and presents directions for
future research in this problem area followed by closing remarks.

Chapter 2

Resource Management in
Distributed Systems

Before we discuss the design of the proposed resource manager, MAGNET, we must
examine existing resource management architectures in order to present the state
of the art in this area (from both academic and industrial environments). We focus
on systems providing support for mobile users in frequently changing environments,
according to the requirements outlined in chapter 1.

As ‘resource management’ is a very broad subject which can be addressed at
different levels (hardware level, operating systems level, user level, object interac-
tion level, etc.), we will focus on major projects shaping the state of knowledge in
this area. We consider resource management in the following three areas: extensible
operating systems research (section 2.1), trading and reconfigurable architectures
(section 2.2), and support for resource management in quality of service architec-
tures (section 2.3). In addition, section 2.1 presents current trends in extensible
operating systems as alternative approaches to the component-based architecture,
BiT1s, proposed in this thesis.

2.1 Resource Management in Extensible Operating
Systems

In this section, we will outline current research in operating systems design focusing
on eztensible systems. We discuss major projects, putting extra emphasis on aspects
of resource management. However, a full description of the presented architectures
is beyond the scope of this work. As MAGNET provides support for dynamic binding
and adaptation to changes in computing environment, we will relate our discussion
to these issues. We describe in greater detail extensible systems (Exokernel, SPIN,
Inferno, Kea, DEIMOS and Nemesis), as they are relevant to BiTs, then briefly
mention other related architectures (section 2.1.7) and close this section with a
summary (section 2.1.8).

2.1.1 Exokernel

Exokernel [19, 31], developed at the MiT Laboratory for Computer Science, is a
major extensible system. It demonstrates that the separation of resource protection
from management enables application-specific customization of traditional resource
abstractions without impacting efficiency.

By pushing the kernel interface closer to the hardware, Exokernel allows greater

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 8

flexibility and more efficient user implementation of higher-level abstractions. Ex-
okernel has proven that application-level virtual memory and interprocess commu-
nication primitives (1PC) can be implemented in an order of magnitude faster than
state-of-the-art implementations [19].

Exokernel presents a flexible computing environment enabling users to build
customized applications from available system services.

Resource Management

Exokernel presents an environment where resource management can be implemented
at application level by untrusted servers. This is achieved by secure multiplexing
of available hardware resources which are exported to library operating systems
implementing desired high-level abstractions. Protection is achieved by tracking
ownership of resources, using secure binding of applications to machine resources
and event handles, and by visible resource revocations.

Exokernel achieves excellent performance by presenting applications raw hard-
ware, and extensibility by enabling high-level libraries to be replaced or customized.
However, its focus is more on ‘static’ issues, rather then on ‘dynamic’ features,
such as adaptation to changes in system configurations, or runtime application-
customized resource allocation.

Exokernel is a good example of a platform for a dynamic resource manager, like
MAGNET, proposed in this thesis.

2.1.2 SPIN

The sPIN [5, 59| project provides user-level extensions of traditional operating sys-
tem services by downloading user code into the kernel (user extensions written in
a type-safe language are compiled by the kernel compiler and linked to the kernel).
Extensible procedure calls, called events [59], can be executed by multiple han-
dlers in response to an event. This technique provides dynamic binding of events
to handlers by extended procedure call semantics, such as conditional execution,
multicast, and asynchrony.

Although spIN enables applications to write their own system calls (extensions),
it does not allow them to implement their abstractions by accessing resources
directly. This approach, together with a considerable additional cost of safety-
guaranteeing code, impacts system performance [40].

Resource management

Although spPIN addresses the problem of providing user-level extensions on top of a
traditional operating system, its resource management is rather static. A level of
flexibility is provided by dynamic binding of events to multiple handlers; however,
their dynamic selection is not supported.

2.1.3 Inferno

Inferno [18], an operating system developed at Lucent Technologies and Bell Labs,
is a commercial project (a successor to Plan 9 [60]) contributing to the research of
distributed services in network environments.

Inferno is designed to support a wide diversity of network environments such
as advanced telephones, hand-held devices, Internet computers, and above all, tradi-
tional operating systems. It provides standard interfaces to access system services,
and can run as an application on top of a host operation system or on bare hardware.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 9

Inferno applications are developed in Limbo, a module-based concurrent lan-
guage, which compiles into byte-code, and is interpreted by a virtual machine DIs,
enabling wide-range portability for applications and services.

Resource Management

All resources in the Inferno system, both local and remote, are represented by a
hierarchical file system; users or processes assemble a private customized view of
the system by constructing a file system containing only required resources. This
approach provides unification of all system resources, user-customization of the
computing environment, and distribution transparency by applying a uniform com-
munication protocol, Styx, to all local and remote resources. However, dynamic
features targeted by our architectures are not addressed.

2.1.4 Kea

The operating system Kea [73, 74| provides an environment enabling dynamic bind-
ing and runtime rebinding. Having inherited its design from the microkernel (a
lightweight abstraction of physical resources), it does not allow runtime extensions
and suffers from efficiency problems due to cross-domain procedure calls [73].

Its abstraction is based on the notion of portals describing entry-points to do-
mains (virtual address spaces) through which interprocess communication is achieved.
Interactions, based on RpCs generated by the Kea kernel, permit the remapping of
a portal into a different domain at runtime.

Resource Management

Kea provides dynamic binding of applications to services, and enables runtime adap-
tations transparent rebinding to new services (so called, portal remapping). How-
ever, application participation in dynamic resource allocation and other features
required by users in dynamic environments are not addressed.

2.1.5 DEIMOS

DEIMOS [14], an extensible operating system developed at Lancaster University,
addresses the problem of runtime dynamic extensibility and enables applications
to build customized execution environments. Applications can load and unload
modules on demand. A special module, the configuration manager, although itself
subject to being unloaded, is responsible for configuration of system resources on
application request (described as a system graph in terms of modules and bindings).

Resource Management

System resources, represented as modules, can implement abstractions and a range
of protection schemes. The configuration manager enables runtime bindings to be
established between system modules on demand, supporting system configuration
and on-the-fly reconfiguration.

Although dynamic binding mechanisms supported by DEIMOS are very flexible,
they cannot be parametrized. System scalability is limited as the communication
manager has to maintain a system graph representing the configuration of the cur-
rent system.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 10

2.1.6 Nemesis

The Nemesis [64, 39] single address space operating system, developed at the Uni-
versity of Cambridge under the aegis of Pegasus and Pegasus II projects, aims to
support time-sensitive applications requiring a consistent Quality of Service, such
as those which use multimedia. The Nemesis kernel consists of a scheduler and the
Nemesis Trusted Supervisor Code, which is used for Internet Domain Communi-
cation and interaction with the scheduler. The kernel also handles memory faults
and other low-level processor features. It was driven by the idea of providing only
the necessary functionality in the kernel, and leaving applications the flexibility to
build customized environments on top of it.

Resource Management

The design of Nemesis was driven by the aim to provide QoS support (which we
discuss in greater detail in the next section 2.3.2), which resulted in the design
enabling applications to execute their code directly rather than via shared servers.
Shared servers are used only for security or concurrency control.

Nemesis provides dynamic allocation of resources to applications by the QoS
Manager which allocates applications a share of the processor and ensures that
short term demands can be always met. Also, the QoS Manager uses algorithms
considering a long term view of the availability of resources, provides a consistent
guaranteed resource to the application. In additional, users are expected to provide
overall control of resource allocation in terms of observation and by defining QoS
specification.

The approach to inter-domain communication supports implicit and explicit
bindings. Supported name servers or traders performing interface reference match-
ing provide clients with an interface reference to requested servers. However, user-
customization and extensibility of the matching is not addressed.

2.1.7 Other Systems

Other extensible system, such as Vino [71], or kernel protection by proof-carrying
code [54] address techniques for ensuring security of kernel extensions implemented
by untrusted user-level code downloaded into the kernel.

Also, the non-extensible network-based system Scout [49] provides ‘static’ spe-
cialization — by creating dedicated ‘paths’ (multi-layered communication channels),
it provides advanced application customization. Synthetix [62] also investigates in-
cremental specialization of existing systems code. It focuses on reducing the length
of ‘paths’ in the kernel in order to provide kernel optimization which is done without
application-specific requirements.

QNX microkernel [27] offers a flexible environment, realtime support, and enables
upwards scalability for large, multiprocessor applications, as well as downward scal-
ability for resource-constrained PDA hardware. A customizable operating system,
Arena [44], provides operating system-level resource management at user-level where
it is accessed by libraries. Hardware is presented through low-level abstraction; cus-
tomization is enabled only at the user-level by instantiation resource managers for
particular policies.

2.1.8 Discussion

In recent years, research in operating systems has focussed on investigating issues of
extensibility enabling applications to implement their own abstraction by presenting
them raw hardware, or providing user extensions of existing system services.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 11

Although research results have proven that this is a step in the right direction,
the majority of existing systems (except Kea and DEIMOS) still lack the support
for dynamic reconfiguration, enabling adaptation to changing conditions. In addi-
tion, issues such as QoS-based resource allocation enabling application participation,
parametrized resource selection (as opposed to name-based allocation) and issues of
scalability are still to be addressed. However, operating systems such as Exokernel,
Nemesis, provide flexible environments where the required dynamic functionality
can be provided by a resource manager running on top of them.

2.2 Other Trading and Reconfigurable Architectures

In this section we describe representative systems that support dynamic third-party
binding. We focus on systems supporting trading and reconfigurations. Firstly,
we describe the tuplespace approach, as it was applied to MAGNET, and discuss
several related projects (section 2.2.1). Then, we discuss other trading and dynamic
architectures, ANSAware, CORBA, DCOM, Aster and Matchmaking. In section 2.2.7
we briefly introduce other related architectures, and in section 2.2.8 we close with
a discussion.

2.2.1 Tuplespace-based Architectures

Distributed applications often need to establish communication without a priori
knowledge of their peer identity. In addition, in mobile environments it is desirable
to enable services to be described dynamically by their parameters, rather than to
refer to services directly by their names. Therefore, the tuplespace [22] fulfilling these
requirements represents a very successful distributed communication scheme. In
this section, we will discuss the original tuplespace with the programming language
Linda, and several frameworks derived from this idea: Limbo!, Osprey, JavaSpaces,
Jini, FT-Linda, and T Spaces.

Tuplespace and Linda

The original tuplespace was designed by D. Gelernter at Yale University, with a
set of operations (called Linda) enabling tuple manipulation [22]. The architecture
enables communication by exchanging information in the form of tuples placed into
or withdrawn from the tuplespace. Applications can use the tuplespace for com-
munication and synchronization purposes. Its features include free-naming (parties
need not know each others’ identity in order to communicate), time decoupling (par-
ties need not exist at the same time) and space decoupling (parties from different
address spaces can communicate).

Linda is discussed in greater detail in chapter 4, as it inspired the approach
undertaken in this thesis.

Limbo

Limbo, a QoS-based distributed system platform developed at Lancaster University
[8] represents a successful attempt to utilize the tuplespace paradigm in a mobile
environment. The framework extends the basic architecture by the notion of mul-
tiple tuplespaces (specialized for application-specific requirements, e.g., security),
an explicit tuple-type hierarchy supporting dynamic subtyping and QoS manage-
ment. QoS is supported by providing QoS-aware tuplespaces; residing tuples are

The tuplespace-based architecture Limbo, disccussed here, should not be confused with the
programming language Limbo designed for Inferno operating system, discussed in section 2.1.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 12

enhanced with QoS attributes, such as expiration time, priority, etc. Changes in
system features are kept up-to-date by QoS monitoring agents acting as proxies to
a service. Reacting to these changes, Limbo performs an adaptation implemented
using specific components such as filtering agents and bridging agents.

Osprey

Osprey [10], designed at The City University in London, uses Linda for application-
server coupling resource allocation. Information about system services and their
requests are exchanged in the form of tuples. It provides more flexibility than
the traditional Linda, by adding additional semantics into the tuple format. For
example, a result-based tuple naming scheme — a client describes the request by
its result (e.g., Time, LocalTime), rather than by the name of the server itself. By
implementing a hierarchy of tuplespaces, Osprey provides scalability and protection.
The architecture provides higher flexibility, but it does not address issues of user-
customized matching and extensibility. This project is still in its early stages,
therefore we cannot provide a more detailed description of the Osprey architecture.

JavaSpaces and Jini

JavaSpaces, developed at Sun Microsystems, provide a tuplespace-like distributed
environment manipulating objects rather than data tuples. It enables global scala-
bility and forms a base for the Jini technology [75]. The Jini infrastructure provides
automated configuration mechanisms for devices (such as desktop and portable
computers, printers, scanners, Webcams, etc.) to join and leave the network —
it establishes dynamically (without drivers) the communication, sharing, and ex-
change of services between any hardware or software on a network.

The key techniques used in Jini are: leasing (a grant of guaranteed access over a
time period), transactions (two-phase commit-based service protocol encapsulating
a series of operations), events (enabling object-defined event handling) and lookup
service (finding and resolving system services defined by their operational interface).

Although the lookup service provides dynamic binding between clients and
servers by passing over server proxies to clients, it is rather restrictive neither
parametrized requests (such as describing services by their types and characteris-
tics), nor user-customization of the interaction protocol are supported.

FT-Linda

The communication framework FT-Linda [24], developed at the University of Ari-
zona as a part of the x-kernel project [29], is based on a fault-tolerant version
of the Linda language. Its design techniques include: the notion of stable and
volatile tuplespace, shared and private tuplespace, failure detection and ordered
atomic multicast. However, as the primary goal of the framework is to provide
fault tolerance, it addresses issues of reliability, stability and ordering, in contrast
to the user-customization and dynamic flexibility required by the mobile users we
are targeting. If our architecture was providing fault tolerance, approaches used in
FT-Linda could have been adopted for MAGNET, as it is also based on a tuplespace
framework, however, our platform does not aim to provide this functionality.

T Spaces

A Linda-based technology developed at IBM Almaden Research Center, T Spaces
[76] is a network communication ‘buffer’ with database capabilities. In addition to
Linda operations, T Spaces provide services (data indexing and query capability),

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 13

and event notification services and group communication services. Allowing applica-
tions and services to describe their functionality in terms of tuples, T Space enables
communication between applications and devices in a network of heterogeneous
computers and operating systems. The architecture presents a rather universal
high-level framework; it does not deal with support for particular requirements of
applications in mobile environment.

2.2.2 ANSAware Distributed Systems Platform

The ANSAware software model [1], developed at APM Ltd., is based on a location-
independent object model providing uniform interaction schemes between commu-
nication objects the model is based on the RM-ODP architecture [66, 67]. A
special object, the trader, acts as a mediator for services wishing to advertise their
services (by exporting operational interfaces), and clients requiring them (by im-
porting operational interfaces). Clients are enabled to specify their requests in terms
of attribute values. Interfaces in ANSAware are defined in an Interface Definition
Language (IDL), and the operations import, ezport, and interface implementations
are described by a second language, Distributed Processing Language (ppL). If
matching candidates are found by the trader, an implicit binding between the peers
is created.

Although attribute-based matching provided by the trader enables enhanced

flexibility, there is no notion of runtime adaptation and user-customization.

2.2.3 CORBA

The Common Object Request Broker Architecture (CORBA) [56] provides an ar-
chitecture for communication in distributed object-based systems. Building ele-
ments of the architecture, objects, written in different programming languages, are
described by an 1bL. The architecture provides distribution transparency by im-
plementing rRpC-like remote object invocation which hides the physical location of
interacting objects.

Although CORBA is very popular architecture for distribution object interaction,
from the ‘dynamic’ point of view it is restrictive. Its naming service supports
parametrized nameservers, but unlike MAGNET, user-customized trading of objects
defined by their types is not supported. However, MAGNET running with CORBA
could provide dynamic trading at an object level.

2.24 DCOM

Distributed Communication Object Model (Dcom) [48], developed at Microsoft, is
an application-level platform enabling objects on different physical locations to com-
municate through common protocols, including Internet and Web-based protocols.
Objects, defined by strongly-typed multiple interfaces described by an interface
definition language, interact by an rRpC-like communication enabling authentication
and security.

As the architecture provides an environment for a distributed object communi-
cation, it would be a suitable computing platform for MAGNET which can enhance it
with the dynamic features, such as object trading and runtime user-customization.

2.2.5 Aster

The Aster project [30], developed at IrRISA/INRIA, addresses middleware reconfigu-
rations based on software specification matching that selects the components of the

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 14

middleware (such as ORB), customized to the application needs. The Aster Envi-
ronment provides three elements Aster Type checker (implements type checking
of components described using the Aster language), Aster Selector (retrieves mid-
dleware components that satisfy the interaction requirements), and Aster Genera-
tor (responsible for interfacing the source code files with the middleware objects).
Non-functional properties, described in terms of formulas of the first order pred-
icate calculus, are processed by the selector in the three-stage selection process:
exact match selection, plug-in match selection (the selected component implements
behaviour that satisfy the application, but does not match exactly the applica-
tion’s requirements), closest match selection (the selected middleware needs to be
customized through complementary components).

Although Aster presents a powerful framework for parametrized component se-
lection enabling automated customization, it does not address dynamic runtime
adaptations nor enable users to participate in the selection and customization pro-
cess.

2.2.6 Matchmaking

The Matchmaking framework [63], developed at the University of Wisconsin-Madison
is a part of project Condor [41]. The environment is based on components describing
their requirements and provisions in classified advertisements which are matched by
a designated service the Matchmaker. Classified advertisements enable compo-
nents to be described in terms of parameters enhanced with arithmetical and logical
operators (e.g. Type = “Machine”, Activity = “Idle”, Arch = “INTEL”, Rank >=10,
etc.) The Matchmaker compares relevant parameters of component advertisements,
and notifies components; then the client contacts the server using a claiming pro-
tocol to establish a dynamic binding.

Powerful parameter-based matching resource allocation provides the required
flexibility, however it does not allow user-defined service selection from a group of
matching ones, nor does it support decentralization and runtime adaptation.

2.2.7 Other Systems

As was mentioned above, in this section we will briefly introduce other architectures
supporting dynamic binding, or some kind of reconfiguration. However, as they are
not directly related to our research, we will not discuss them in detail.

Regis [15, 42], an environment for constructing distributed systems, provides
a unified framework for dynamic binding and runtime rebinding of components in
distributed systems. As this architecture was used for implementation of MAGNET,
the resource management framework presented in this thesis, we will describe Regis
in greater detail in chapter 6.

The problem of dynamic adaptation to an environmental change at low level
(device-driver level) has been successfully addressed by the pc card (former PCM-
c1A). Popular ethernet cards can be added and removed from the system without
powering-off or rebooting the computer. The Linux kernel daemon is another suc-
cessful attempt, enabling operating system kernel adaptation by adding or removing
modules transparently on demand [70]. At an application level, a Java-based object
abstraction, JavaBeans, provides a dynamic platform for object communication.

Zero downtime operating support for dynamic data objects communication has
been explored in ‘The information bus architecture’ [57] which is based on prin-
ciples such as self-describing, anonymous communications and minimal semantics
communication protocol. Nevertheless, this name-based approach does not support
more flexible parameter-based addressing.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 15

Open bindings, implementing component interactions which are constructed
from a chain of objects performing particular functions, were investigated by Fitz-
patrick et al [20]. They support the inspection and adaptation of the communication
paths required by mobile multimedia applications. However, the flexibility of open
bindings is gained at the expense of performance. Also, we believe that incorpo-
rating additional functionality into the complex communication path rather than
into the communicating components themselves takes the control out of applica-
tions, which contrasts to the approach undertaken in MAGNET (enabling them to
participate).

Guarana’ [58], an architecture based on meta-object protocols, presents a tool for
structuring and building fault-tolerant distributed programs. Meta-objects can be
combined through composers that provide the glue code for them to work together,
delegating control to them and resolving conflicts when they arise. It supports meta-
level security policies and, by further composing composers, it enables construction
of a dynamic reconfigurable object hierarchy.

2.2.8 Discussion

In recent years, dynamic issues such as providing greater flexibility, supporing dy-
namic runtime adaptations or designing loosely coupled communication schemes
have been successfully addressed by many research projects and commercial tech-
nologies. However, these architectures typically target one issue, rather than pro-
viding a unified architecture and therefore are unable to support the requirements
of mobile applications (see chapter 1). Nevertheless, MAGNET dynamic resource
architecture can be used for trading objects (such as CORBA objects, DCOM objects,
JavaBeans etc.) rather then resources. Then, platforms such as CORBA, bCoM are
suitable for implementing the proposed architecture at an ‘object level’.

2.3 QoS Architectures

A service provided by a resource is described as its functional behaviour. Addi-
tional service characteristics such as timeouts, are described as the non-functional
behaviour of the resource. Quality of service is a general term for an abstraction
covering aspects of the non-functional behaviour of a system. In particular, it in-
cludes not only the specification of non-functional service characteristics, but also
necessary data models, operational constraints, and information about data mea-
surement, monitoring and maintenance.

In recent years, research into QoS has typically targeted the area of continuous
data transmission — multimedia: video and audio, and computer music. In this
class of application, the aim is to provide acceptable quality in real-time?. In
this case, the QoS manager must maintain agreed end-to-end service characteristics
through all layers of the communication channel. A brief description of architectures
providing this kind of QoS support is given in section 2.3.2.

However, our aim is to provide QoS-based trading (e.g., dynamic resource allo-
cation, software upgrades, etc), as opposed to maintaining the QoS of the commu-
nication channel. For our purposes, QoS-based resource description covers in par-
ticular: guaranteed characteristics of system resources (such as monitor resolution,
processor speed), consistency (defined in terms of ‘up-to-dateness’ of information
on resources, accuracy, precision, as granularity of environment change), timeliness
(described in terms of availability, delay), location-dependent information. Leading
architectures addressing this subset of QoS support are discussed in section 2.3.1
(a general overview of services and mechanisms for QoS resource management is

2Quality, in this context, means both accuracy of the timing and the accuracy of output values.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 16

discussed in [53], and detailed review of the state of the art can be found in [2]). In
section 2.3.3 we summarize the discussed architectures.

2.3.1 QoS-based Trading Architectures

The Cactus project [28], developed at the University of Arizona, addresses fine-grain
customization of QoS in distributed middleware. As the relationship between QoS
attributes (such as consistency, correctness, timeliness, security) is a tradeoff, the
ability to customize QoS is especially important in resource-constrained systems
(e.g., mobile computing). By adaptation of micro-protocols (collections of event
handlers) that ensure different QoS attributes and a configuration protocol, a user-
customized environment can be constructed.

QoS-based resource management for distributed multimedia applications was
addressed by the QoS Broker [51] developed at the University of Pennsylvania. It is
based on the notion of a duality of communicating system components: broker-
buyers and broker-sellers. According to the component activating the process,
the QoS Broker distinguishes between a sender-initiated brokerage, and receiver-
initiated brokerage. The QoS Broker Protocol facilitates the negotiation of re-
source characteristics, and runtime adaptation requiring a renegotiating process.
QoS Brokers are a basis for the QualMan architecture [50] providing soft real-time
QoS guarantees to multimedia applications, such as video-on-demand and MPEG
players. In addition, QoS Brokers are also used in the Omega architecture [52] to
ensure end-point resource guarantees (such as responce time, etc.), presuming it is
coupled with networks which can make bandwidth and delay guarantees.

In addition, several QoS-trading projects were discussed in section 2.2: Limbo
[8], a tuplespace-based project provides quality of service, in particular monitoring
and adaptation. Matchmaking [63], providing the coupling of applications to servers
based on classified advertisements (equipped with arithmetical and logical opera-
tors), also supports a level of QoS-based selection. Aster [30], a framework based
on software specification matching, provides complex QoS-based resource selection.
Nevertheless, none of these architectures supports a user-customization of the se-
lection process which adds an extra flexibility over QoS-based resource definition.

2.3.2 Other QoS Architectures

The QoS-Architecture (QoS-A) [11], developed at University of Lancaster, addresses
the support for performance of multimedia applications over high-performance ATM-
based networks. Kendra [46] is investigating adaptive techniques to improve the
performance of data delivery over the Internet. Specifically, runtime adaptation
occurs when network bandwidth falls or improves.

The Nemesis project [64, 39] (discussed in section 2.1 in greater detail) pro-
vides a probabilistic guarantee of resources and expects applications to monitor
their performance and to adapt when resource allocation changes. It is based on
a QoS Manager providing QoS-based scheduling (discussed in section 2.1) and two
techniques: feedback for QoS Control supported by QoS Controller which defines
the policy to be followed and can be directly dictated by users, and QoS Crosstalk
between time-related data streams in network protocol stacks.

Formal approaches to QoS specification, based on description of the resources
in Z [61] language, has been investigated by Staehli et al [69]. Focusing on end-to-
end service quarantees for continuous media, they distinguish between content, view
and quality specification and define the presentation quality in terms of a subjective
error interpretation. The error models extend the opportunity for optimization of
resource utilization.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 17

Other architectures providing comprehensive end-to-end QoS support include
the CESAME project [6], TINA [55], the Heidelberg Transport System (HeiTS) [25]
and an Extended Integrated Reference Model (XRM) [38].

2.3.3 Discussion

In recent years, support for QoS has been investigated at various system levels (such
as hardware, operating system, middleware, etc.) and targeted to different classes
of application (multimedia, resource allocation, adaptation, monitoring).

Our approach focuses on QoS-based trading of resources, in contrast to ensur-
ing agreed QoS of the underlying infrastructure. There are several successful at-
tempts in providing parametrized QoS-based trading of applications requirements
and server offers (Matchmaking, Aster, QoS-Broker, ANsaA trader, QoS Broker, etc.).
However, none of them provide user customization of the matching process, nor scal-
ability of the architecture.

2.4 Chapter Summary

In this chapter we have presented existing architectures supporting dynamic re-
source management. As it is a broad issue, we focussed on major projects in three
following areas: extensible operating systems, trading and reconfigurable architec-
tures, and quality of service architectures.

Extensible Operating Systems

Research in operating systems has focussed on investigating issues of extensibil-
ity enabling applications to implement their own abstraction by presenting them
with raw hardware (e.g., Exokernel), or providing user extensions of existing sys-
tem services (e.g., SPIN, Vino). Although it is a step in the right direction, support
for dynamic reconfiguration enabling adaptation to changed conditions and user-
customized parametrized resource allocation still need to be addressed. In addition,
due to the diversity of hardware resources, changing degree of connectivity, and cur-
rent technology improvements, the need for user-customization and runtime adap-
tation has increased. But from the computing environment point of view, we have
identified that architectures, such as Exokernel and Nemesis, provide a sufficient
flexibility for these features to be supported by a dynamic resource manager.

Trading, Reconfigurable and QoS Architecture

There are many successful projects providing support for dynamic trading and re-
configuration: tuplespace-based architectures (such as Linda, FT-Linda, Jini, Os-
prey, Limbo, etc.), and others (such as Aster, Matchmaking) enabling more flexible
component coupling based on a parameter description.

QoS support is investigated by many ongoing projects. Typically, it focuses on
providing a guaranteed QoS of the underlying infrastructure at runtime. However,
as the primary goal of this work is a dynamic resource manager, we have discussed
architectures providing QoS-based resource trading (such as QoS-Broker, Cactus,
Limbo, Aster, etc.)

All trading and QoS architectures provide a certain level of flexibility and adapt-
ability, however, applications in mobile environments seek a unified framework of-
fering in addition user-customization of the trading process and extensibility.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 18

Thesis objective

This thesis seeks to develop a dynamic extensible resource management architecture,
MAGNET, enabling trading of resources based on requests for a type of a service,
rather than for a service name. Extensibility of the architecture should enable
users to define services and requests at runtime, and to user-customize the trading
process. This further allows QoS-based description of services to be implemented. In
addition, runtime adaptation to changes in the computing environment, monitoring
of information about services and scaling the architecture should be also supported.

Chapter 3

A Model of Dynamic
Third-party Trading

From an ‘abstract component interaction’ point of view, the problems of dynamic
resource management that MAGNET attempts to solve are trading of information
about services and dynamic third-party binding of components. In order to provide
the required generality of the MAGNET architecture, we will define its framework
in general ‘component-binding’ terms. This chapter is devoted to formalizing this
architecture.

We start by defining basic terms for a component environment (section 3.1),
then we summarize our assumptions (section 3.2), and give an overview of phases
of a binding process, section 3.3. Next, in section 3.4, we focus on rebinding issues
relevant to this thesis, and finally, in section 3.5, we discuss several aspects of quality
of service management.

3.1 Terms and Definitions

In this section we define basic functional elements and relevant terms involved in
service trading (components and their service interfaces, interface references, ser-
vice definitions, component bindings, binding idioms, the Trader, a matching pro-
cess, communication channels, and communicational protocols). Definitions of these
terms are derived from the RM-ODP standards [66, 67, 68] tailored to the trading
approach used in this work.

Components

Distributed systems comprise basic functional units — components of varying gran-
ularity that represent a wide range of system elements, such as hardware resources,
abstraction servers (such as file systems), and user-level programs. Also, compo-
nents can represent any objects in terms of object-oriented languages and environ-
ments (such as, C++ objects, CORBA objects, JavaBeans, etc.)

The functionality of components is assumed to be mutually independent; any
dependencies are expressed in terms of component interaction. Structure-wise, they

can be primitive or composed of other components.

Service Interfaces

Components act as ‘black boxes’ and their functional behaviour is fully described
by a service interface which defines services provided to, and services required from

19

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 20

other components in the system.

Components requiring a service are called clients; components offering a service
are servers. These terms are defined for a particular service interface pair, therefore,
a particular component can concurrently play both roles in different interactions.
Server-client interaction is defined as ‘one to many’ (one server can communicate
with many clients over the same interface). In addition, clients are considered active
entities, while servers are passive (requiring an external third-party to manage them,
as this approach simplifies the semantics of rebinding, as will be discussed in section
3.4.2).

Unlike traditional objects, components can have multiple interfaces to meet the
need to express QoS requirements and describe various service characteristics which
cannot be attached to a single interface.

Interface References

Every service interface can be located and accessed by its ‘name’, called an interface
reference. The interface reference must be unambiguous within the system range,
embodying sufficient information to allow the required interaction to be established.
Service interfaces, together with corresponding interface references, can be created
during component creation, or dynamically at runtime.

Services Definitions

In addition to the ‘name’ (an interface reference), services may also be described
by a type of service they offer (such as a printer or a scanner), which need not be
unambiguous, and by additional characteristics, such as a QoS description of the
required interaction (e.g., resolution, speed, etc.) This issue is covered in greater
detail in section 3.5. A combination of an interface reference, a type of a service
and its characteristics is called a service definition.

Component Bindings

In order to enable interaction between distributed components, a binding' between
their interfaces has to be established. A binding is a result of a process, called
the binding process (defined in section 3.3), consisting of a sequence of actions to
be performed which result in the creation of a communication channel between
component service interfaces.

Binding Idioms

Once corresponding interfaces and relevant interface references have been created,
components can be bound by a first-party (so-called first-party binding), or by a
third-party (so-called third-party binding) [15].

First-party binding is established by a client component, and can be performed
if the peer interface reference is known to the binding initiator, and therefore the
service interface can be accessed directly.

Third-party binding is established by an intermediate component (neither server
nor client), and is performed by a sequence of first-party bindings — a client and
a server link to the intermediate component, requesting or offering a particular
service, then the third-party, with a knowledge of overall system behaviour, can
establish the resultant client-server binding.

I This term suffers from being ‘overloaded’. In addition to the resultant interaction (used as a
noun), it can also mean the process of establishing it (used as a verb, to bind).

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 21

The Trader

Communication between components in open systems can be based on an Interface
Definition Language (IDL) which predefines the syntax of the interaction, like in
CORBA [56]. Another solution, offering higher flexibility, is a third-party component,
called the Trader, which collects service definitions defined at runtime, performs a
matching process, and establishes a resultant client-server binding.

A Matching Process

The process of finding corresponding requests (expressed in terms of service defini-
tions) performed by the Trader is called a matching process.

If service definitions are expressed exactly, the Trader finds an exact match.
However, matching of server characteristics which include additional constraints,
such as QoS definitions, requires parameterization defining preferences of particular
components. As these are impossible to define for all components a priori, the
Trader supports user-customization of the matching process. It is described in
detail in section 3.3.2.

Communicational Channels

A channel represents the actual communication path enabling a binding between
components. It is obliged to satisfy requirements on the properties of the interaction,
including maintaining the agreed QoS. It comprises objects such as stubs, protocols,
and binders [66].

Communication Protocols

The syntax and semantics of the established binding over a communication channel
is defined by a communication protocol. It specifies, typically a set of functions
(called a functional interface) provided by the server to its clients, and their guar-
antees (such as reliability).

Example

Figure 3.1 illustrates bindings between three components the Trader, Client and
Server. Darwin, an architecture-description language, provides a convenient nota-
tion for specifying interactions in distributed systems [43]. We use its graphical
form throughout the thesis to represent interconnections between system elements.
A rectangle represents a component, a circle stands for a service interface. A pro-
vided service is represented by a filled circle, a required service by an empty circle.
A line between filled and empty circles represents a binding implemented by a par-
ticular communication channel.

In Figure 1, Server and Client find corresponding interface references for the
resultant communication using the Trader. Numbers by the lines represent phases
in which relevant bindings must be established. Firstly, Server and Client export
their service definitions by binding to the Trader (phase 1). These two steps can be
performed in any order. Secondly, when the required interface reference is discovered
by the matching process, the resultant end-to-end binding between Client and Server
can be established (phase 2).

3.2 Assumptions

In this section, we will define the assumptions we made concerning our computing
environment, and system components’ behaviour. The MAGNET framework pro-

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 22

Figure 3.1: Binding between Server and Client established by the Trader

posed in this thesis is feasible only in systems where these assumptions are valid. In
addition, in order to keep the problem tractable, we left out support for application
areas which are beyond this, such as those requiring the environment to change very
frequently, real-time and fault-tolerant applications, etc. In chapter 7, we elaborate
on the implications for the architecture if these assumptions were not the case. The
assumptions on which the framework is built include:

1.

Consistency. All system components are assumed to maintain overall con-
sistency. That is: rebinding can be performed only when the system is in
a safe state, unexpected component crash cannot happen, and a component
finishing its operation must leave the MAGNET structures (the Trader) in a
consistent state and release the allocated resources.

. Protection. Components are responsible for ensuring the validity of informa-

tion on their services. This prevents components from advertising misleading
information on non-existent resources.

Synchronization. Components are responsible for synchronization. This
includes communication with the MAGNET framework as well as component-
to-component, interaction.

. Security. The architecture supports a user-defined matching process. This

is assumed to be secure in that control is returned back to the Trader while
not altering other system data.

Federation Scale. A domain-type unit in the architecture is called a fed-
eration (discussed in detail later). We assume the number of components in
a federations to be roughly tens, they can generate roughly tens to hundreds
service requests placed into the Trader, not more than ten at the same time.
It implies that a federation can have roughly tens of processors, as they are
also components for our architecture.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 23

6. Frequency of Change. We assume each component in the environment to
change its features with frequency of minutes and hours, rather than seconds
and milliseconds.

7. Service Characteristics. We assume that that component requests and
offers have not more than tens of elements. In addition, the system is more
suitable for processing requests and offers if they are equally distributed ac-
cording to the number of elements in the request. In addition, we expect the
number of types of service characteristics to be not more than tens. However,
we do not constrain the semantics of the elements.

8. Naming. The architecture uses the naming scheme of the environment where
it operates (e.g., the Internet with its 1P addresses). We assume that the
names are unambiguous and are constructed in a way that they can form
a hierarchical tree structure with a single root, and an unambiguous ‘path’
in the tree (at the naming level) between two federations can be determined
(however, nothing about the network topology at the implementation level is
assumed.)

3.3 The Binding Process

A sequence of actions to be performed preceding the establishment of a component
interaction is called the binding process. This can be achieved by linking to the peer
component directly, if its reference is known to the initiator in advance, or establish-
ing the binding indirectly, via a third party. In open systems due to their required
flexibility, the latter case prevails. A trading of service definitions is performed by
the Trader in our model.

In traditional systems, the binding process is typically implemented as an inte-
gral action inhibiting component customization, and disabling the participation of
a third party (e.g., Unix system calls [3], RPC [7], CORBA [56], etc.) However, in
open distributed systems, the binding process requires clearly delimited phases [66]
in order to achieve flexibility and provide user-customization.

In our model, the binding process comprises the following phases:

1. Exporting service definitions
2. Negotiating service definitions

3. Establishing a communication channel

When a communication channel is established (the third phase is successfully per-
formed), the required end-to-end binding takes place. Although this is the final

goal, it is not a part of the actual binding process. In this section we describe these
phases in greater detail.

3.3.1 Exporting Service Definitions

A service definition created for a service interface has to be passed to a compo-
nent containing a complementary interface via the Trader which finds the requested
match. A service export is a process of offering a service (defned by its service defini-
tion) to the Trader. A complementary operation, service withdrawal, is a process of
removing a service definition from the Trader. Although it is not necessary for the
binding process, service withdraw is an essential operation of the Trader. Figure 3.3
illustrates service export, service withdraw and negotiation of service definitions.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 24

Policies

In order to achieve an agreement between components exporting their service defini-
tions, policies defining operation semantics must be formulated. An export policy is
a set of rules controlling the service export to the Trader including, for example, an
obligation for a specific format, permission rules, timeout, etc. The complementary
set of rules defining service withdrawal is called a withdrawal policy. In the case of
distributed trading systems, these policies must define the propagation of service
export between remote parts of the system.

It is up to system designers to decide whether all three types of policy are
enabled. In addition, each particular application should be able to define and tailor
available policies for its components.

Federation

In scalable distributed systems Traders must be networked in order to cooperate on
providing remote information. One approach is to form a global trading system that
any Trader may dynamically join or leave. Although there are systems requiring
global shared information (e.g., distributed database engines, Internet search en-
gines), this approach encounters problems similar to designing a global nameserver
[37].

As components often interact on a local scale (such as resource managers within
a particular domain), an alternative solution to the global trading system is a local
trading system. In this case inter-Trader communication must be supported to
enable service export for components beyond the local domain. Trader domains with
domain-specific security and propagation policy information, internetworking with
other Trader domains are called federations. Passing service definitions across the
federation boundary, consequently, must be handled by appropriate communication
channels reflecting the ‘beyond-federation’ distribution and security issues [66].

In Figure 3.2 a trading system consisting of two federations is illustrated.

3.3.2 Negotiating Service Definitions

A service definition (a type and characteristics of the requested binding together
with enough naming information to locate the interface, the interface reference) is
exported via the Trader. These characteristics form the set of requirements, from
both components involved in the communication, which must be met before the
binding can be established. A communication channel can only be established if
the requested properties of both involved parties are satisfied.

Rules

When all service definitions are exported into the trading system according to sys-

tem policies, the actual matching process takes place. In the general case, it com-

prises two phases — search and select, defined by the client and the Trader.
Matching rules define the search operation; they include [67]:

e pre-conditions of the binding ensuring that the interaction can be technically
established, e.g., interfaces must be of the same type, and complementary
roles (client, server).

e a minimal set of requirements of both components (defined by the service
definitions and according to user-customizable matching process).

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 25

Figure 3.2: A Trading System consisting of two Federations

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 26

Matching process

Trader

Figure 3.3: Trading

Matching rules can be formulated exactly, or component requirements can be pa-
rameterized (user-customized matching process) enabling a set of different service
definitions to match the requirement.

Preference rules define the operation select that extracts one service from a set
of service definitions fulfilling the matching rules.

Service characteristics expressed in terms of parameters typically cannot be lin-
early ordered (e.g., “Is speed better than resolution?”) without preferences expressed
by components themselves. Therefore, components using a trading system support-
ing this level of negotiation are obliged to express their preferences in terms of
preference rules when exporting service definitions into the trading system, per-
formed as a user-customized matching process. Otherwise, the select operation
must be performed non-deterministically (e.g., first-fit strategy).

In the case of a federation, additional rules and protection checks defining the
propagation of exported service definitions may be defined, such as reflecting the
domain scope, and defining constraints under which a search or select operation
may take place beyond federation boundaries.

Figure 3.3 illustrates the negotiation phase of the binding process.

3.3.3 Establishing a Communication Channel

A special component attached to every functional component responsible for cre-
ating a communication channel is called a binder. When the required component
pair has been found by the Trader (service definitions have matched), client and
server binders are invoked to create the requested communication channel. If this
task is successfully performed, the required binding is established and components
may start communicating.

Communication channels implementing an actual binding may use primitives
of varying complexity, from simple message-passing primitives, procedure calls,
through dispatchers marshaling functions and parameters, to network protocols.
They can be primitive (represented by one functional unit), or composed (featur-
ing a sequence of functional units cooperating on the task for example, network

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 27

protocols). Bindings might operate locally, remotely within a domain, or between
federations.

If the interaction comprises service characteristics, such as QoS constraints; it
is the channel’s responsibility to maintain the agreed level of service characteristics
by constant monitoring of relevant features [46].

3.4 Rebinding

As we focus on computing environments which change characteristics frequently,
adaptations to new conditions must be possible. In addition, the support for mobile
users dependent on location and time-aware information also necessitates adapta-
tion. Breaking an existing component binding in order to establish a different one
is called dynamic rebinding?.

We distinguish between fault management handling the breaking of a binding
as a result of a component failure or a communication channel failure without pre-
vious agreement of both parties, and change management — breaking interaction
after both components have reached a safe state. Fault management is not an issue
of the architecture outlined in this thesis; more detailed discussion of related prob-
lems, such as failure discovery and dealing with inconsistency can be found in [36].
However, as we have taken the black-box approach, we assume that all components
in the system are able to decide when they can be rebound. In addition, our model
is based on the assumption that the component initiating the operation in cooper-
ation with other components involved in rebinding, is responsible for maintaining
overall system consistency. If a third party is involved it needs to cooperate with
both of the components which are to be rebound.

3.4.1 The Rebinding Process

In section 3.3 we defined three phases of the binding process: exporting service def-
initions, negotiating service definitions, and establishing a communication channel.
The rebinding process comprises four phases, semantically similar to those of the
binding process:

1. Exporting service definitions

2. Renegotiating service definitions

3. Destroying a binding

4. Reestablishing a communication channel.

In the case of rebinding, ordering of the phases is not strict — destroying a binding
may precede renegotiating service definitions in cases when a client performs the
destruction, and then searches for a better service.

Exporting Service Definitions

In section 3.3.1 we discussed issues of the framework for exporting service definitions
into the Trader. This is used for both binding and rebinding purposes, as this is
the only repository of service definitions in the system.

2Strictly speaking, every rebinding is dynamic as it is performed as a result of changes in the
system. Non-dynamic (‘a priori’) rebinding can only take place when the purpose of the original
interaction was accomplished, therefore, it could be described as a sequence of two independent
interactions. For this reason, we will use the terms rebinding and dynamic rebinding interchange-
ably.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 28

In addition to manual modification of relevant information in the Trader, an
automated monitor continuously checking the status of service exports assists with
keeping service definitions up-to-date. Monitors are separate components running
at the application level cooperating with the monitored servers and clients.

Renegotiating Service Definitions

Semantically renegotiating service definitions follows the matching process per-
formed in the Trader, defined for the negotiation phase. It involves finding a new
peer according to matching and preference rules, discussed in section 3.3.2.

In the binding process, this phase was performed by components themselves,
exporting their service definitions into the Trader. However, the renegotiation phase
leads into three different cases according to the component responsible for selection
of a new peer. The unbound peer might be left to perform the renegotiation itself
(first-party renegotiation), or it is presented with an appropriate replacement (third-
party renegotiation, or no-renegotiation in cases when an external entity presents
components with a replacement without contacting the Trader).

Destroying a Binding

There are two semantically-different situations leading to the destruction of an
interaction. Firstly, it is performed when the initial purpose of the communication
has been satisfied. Secondly, destruction is required as a first step before a rebinding
is performed, as it is the case here.

As components are represented as black boxes, it is impossible to reveal their
semantics. Therefore, the third party component can only request the destruction
which is then performed by both involved peers. This functionality can be built in
to the communication protocol as a specific function, or it can be performed by a
dedicated component attached to both client and server. Component themselves
have to transfer the state of the binding, if appropriate, enabling them to continue
operation with a new peer.

Reestablishing a Communication Channel

Once the previous interaction has been destroyed, and a new peer component has
been found, the reestablishment of a communication channel may take place. Se-
mantically, this phase does not differ from the establishing a channel phase described
in section 3.3.3.

3.4.2 Rebinding Situations

We have described the rebinding process. Now we look at possible situations in
which the system transforms if different components initiate the rebinding or rene-
gotiate the new peer (the second phase of the process).

Rebinding can be initiated from within the component as a result of changed
requirements (first-party rebinding), or by an external third-party, either human
or automated, providing an overall application strategy (third-party rebinding). In
addition to first-party and third-party rebinding distinguishing between the role
of the initiator of the rebinding process, we also have considered which component
performs the renegotiation of service definitions, because trading requests is the pri-
mary goal of the architecture. As was outlined above in section 3.4.1, we distinguish
between first-party remegotiation, third-party renegotiation, and no-renegotiation.
Therefore, there are four rebinding situations which the adapting system might use:

e first-party renegotiated first-party rebinding

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 29

Client2

Clientl

Figure 3.4: First-party Renegotiated First-party Rebinding

e first-party renegotiated third-party rebinding
e third-party renegotiated third-party rebinding
e no-renegotiation, third-party rebinding.

Remaining combinations for the first-party rebinding (third-party renegotiated, and
no-renegotiation) are not valid, as the former one would not lead to a different sit-
uation from ‘third-party renegotiated third-party rebinding’, and there will be no
rebinding performed in the latter case. These four situations have to be consid-
ered separately as they differ in several points, in addition to different components
involved:

1. phases of the rebinding process are performed in different order

2. the number of components rebound in a single action vary (from one to many)
as a result of the asymmetrical binding between clients and servers.

3. unbound clients originally attached to the same server might be all rebound
to a single new peer, or left to find new servers themselves. This might result
in different overall system configurations.

First-party Renegotiated First-party Rebinding

A component (client) initiates a rebinding if it requires an adaptation to changes in
the computing environment. As a client is considered an active entity, we assume it
can decide whether and when it needs to adapt (e.g., to change to a faster connection
when a portable is connected to the Internet). As for the order of rebinding phases,
the destruction of a binding might precede renegotiation of a new service, or vice
versa. Other interactions between the original server and its remaining clients are
not affected.

Figure 3.4 illustrates the situation where Client] initiated a rebinding, destroys
the original binding, performs a renegotiation, and links to a Server2. However,
other bindings (between Serverl and Client2) remains unaffected.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 30

Client2

~
'

Third Party

~N
~

Clientl

Figure 3.5: First-party Renegotiated Third-party Rebinding

First-party Renegotiated Third-party Rebinding

A server, as a passive component, is disconnected from the system by an external
third-party. Renegotiation is carried out independently by all client components
which might result in them finding different servers. A typical example of this case
is a server shutdown.

This situation is illustrated in Figure 3.5 where Serverl’s bindings are destroyed
by a third-party (the third party initiates the operation which is performed in
cooperation with the servers). As renegotiation is left to the unbound Clientl
and Client2, the figure illustrates that different servers (Server2 and Server3) have
replaced Serverl.

Third-party Renegotiated Third-party Rebinding

In this case, a Third-party has renegotiated a new peer in the Trader. Now, it faces
a tradeoff between the better offer on one side, and the ‘phase’ of the operation and
an overhead of the rebinding on the other side. However, its external knowledge
of system behaviour enables the Third-party to decide whether the rebinding is
beneficial. A typical example is an adaptation as a result of changes to system
state, resource availability and quality of service.

This case is illustrated in Figure 3.6. Clientl is rebound from Serverl to Server2,
found by the Third-party. Remaining bindings (between Serverl and Client2) are
preserved.

No-Renegotiation Third-party Rebinding

In this case, the operation is initiated by an external Third-party replacing a compo-
nent, e.g., a server upgrade. The third-party ensures the ‘upgrading’ of all necessary
structures in cooperation with the original component and announces the interface
reference of the replacement to all connected clients. Therefore, no trading in the
Trader has to be undertaken. Consistency, which in this case might be nontrivial,
must be handled by the upgrading server or by the manager which initiated the
upgrade.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 31

Third-Party

Clientl

Figure 3.6: Third-party Renegotiated Third-party Rebinding

In Figure 3.7, Server1’s bindings are destroyed by the Third-party. Both clients
(Client1 and Client2) are bound to the replacing server (Server2).

3.5 Quality of Service Management

As was defined above, a service interface describes the functional behaviour of a
component, either provision or requirement, and is accessed by a service interface.
Also, it is desirable to enable the service to be requested by the type of service it
provides and its characteristics. We termed this a service definition.

Service characteristics, including features such as timeouts, and service charac-
teristics under which the particular service is provided, describe the non-functional
behaviour of the component. As was introduced in chapter 2, a unifying term for
various aspects of the non-functional behaviour is quality of service.

As QoS is a quickly evolving research area, we describe these terms in greater
detail, in order to clearly define the angle from which we approach this problem.
As in section 3.3 (discussing the binding process), we base our term definitions on
the RM-ODP standard [68].

3.5.1 Introduction

QoS aspects span a wide spectrum of non-functional requirements. ‘Static’ sys-
tems, at one end of the scale, consider QoS characteristics during system design
and configuration (such as OS structure, task priorities, static resource allocation,
etc.) At the other end of the scale, fully ‘dynamic’ systems manage QoS characteris-
tics at runtime (using techniques such as monitoring, routing, filtering, application
adaptation, etc.).

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 32

Third-Party

Figure 3.7: No-Renegotiation Third-party Rebinding

As MAGNET is primarily designed for resource allocation, we focus on the QoS
of system resources, not necessarily changing at runtime (e.g., a printer resolution).
The aim is to provide a QoS-based trading (e.g., resource allocation, software up-
grades, etc), as opposed to maintaining QoS of the communication channel. There-
fore, it can be said that our approach is closer to the ‘static’ end of the scale.
However, resource allocation is never fully static. Characteristics of classical re-
sources, such as length of a printer queue, or processor load, have never been static
and predictable. In addition, we target our design to open systems where com-
ponents may join and leave at runtime which precludes their characteristics from
being known in advance. The design of our QoS framework reflects the needs of the
mobile applications.

As component lifetime (based on binding of its services) is a dynamic process,
QoS Management must reflect the needs of components at different phases of execu-
tion. Therefore, we distinguish a sequence of three phases performed in this order:
QoS Definition, QoS Negotiation, and QoS Maintenance.

3.5.2 QoS Definition

The QoS Definition comprises QoS characteristics known a priori, static or dynam-
ically changing at runtime. In addition, high-level system requirements defining
system policies — for example, dedication or reservation of particular resources —
might also be expressed in terms of their QoS Definition.

The QoS Definition covers a wide range of non-functional resource features.
In our resource management framework, it covers, in particular: guaranteed char-
acteristics of system resources (such as monitor resolution, processor speed, net-
work throughput), timeliness (described in terms of availability, delay, or response
time), consistency (for example, ‘freshness’ or ‘up-to-dateness’, accuracy, precision,
as granularity of information expressed) and possibly failure-related behaviour.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 33

| Level | Printer | CPU
Characteristics | B&W, laser, 600dpi, queue=3, floor=5 | Pentium, 200MHz, 4MBCache
Service laser WITH queue < 5 Pentium WITH 200 MHz
Application laser printer with queue < 5 AND CPU Pentium, 200 MHz
Distribution laser, queue < 5 on floor 5 | Pentium, 200 MHz, anywhere

Table 3.1: QoS-based Definition of a printer and a CPU

Components in open distributed systems can contain subcomponents, each of
them providing and requiring services. The QoS Definition framework must provide
a mechanism for expressing QoS-based service characteristics at all levels of compo-
nent hierarchy, as well as their combination priorities. We consider service features
at four levels, bottom-up: characteristics level, service level, application level, and
distribution level where each one forms the basis for the ones above:

1. Characteristics level: represents values of potential resource characteristics
(e.g., printer resolution, printer speed, colour versus black-and-white printing,
printing technology matrix, laser, ink-jet, etc.) They can have relevant
discrete values, intervals, limits (max, min), or thresholds.

2. Service level: service definitions may comprise service characteristics applica-
ble for a particular service at higher granularity (e.g., printer service: a colour
printer, 600dpi with no queue).

3. Application level: expresses a combination of components with certain QoS
characteristics (e.g., a processor and a memory Pentium running on 200MHz
with 32MB RAM memory)

4. Distribution level: components are distributed spatially; location and time-
dependent information must be able to reflect the mutual distance and time
difference between components in order to ensure realistic estimation of location-
dependent parameters (e.g., delay, ‘nearest’ resource, time-based operation
scheduling, location-dependent time: server time, client time, or ‘absolute’
which can be, for example, ‘office time’).

Example

Table 3.1 illustrates a hypothetical QoS-based resource allocation requirement. For
simplicity, it consideres only two servers — a printer and a CPU. Characteristics
of both resources with assigned values are described at the Characteristics level
(e.g., black-and-white, laser, 600dpi, queue length—3, floor—5). Their combination
defines the resource characteristics. However, they can be requested by clients
defining their QoS requirements mnot ezxactly. At the Service level, a combination
of values represents a particular resource which is to be satisfied (e.g., laser, queue
length<5).

At the application level, a combination of both resources is requested (e.g., laser
printer with queue length<5 and cpu Pentium, 200 MHz). There are resources
that might be allocated separately, but often it is necessary to reserve a group of
resources at the same time in order to be able to use them, for example CPU and
memory.

The Distribution level features represent location-dependent information. In our
example, it is the floor on which the printer should be located. This issue is essential
for mobile users changing location while requesting services.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 34

3.5.3 QoS Negotiation

The QoS Negotiation phase covers the negotiation of the service definitions ac-
cording to matching rules (defined in section 3.3.2) that are extended to express
a QoS-based matching process, in particular QoS-based operations search and se-
lect. They define the semantics of the matching process for service characteristics
(search), and component priorities ‘ordering’ matching services. For example, a
request for a printer could be defined as: search for printers with resolution over
600dpi, and select the one with the shorter queue.

As the negotiation process takes place in realtime, its time complexity also
contributes to the QoS characteristics being negotiated. Therefore, the traditional
‘best-effort’ strategies are often disappointing. This is an additional reason for
enabling the negotiating process to be component-defined and customized.

3.5.4 QoS Maintenance

During component binding, QoS characteristics may change due to a user moving
physically from one location to another, changes in the environment, or explicit
indications (e.g., the number of processes on a processor, or a number of jobs in a
printer queue) from any of the involved components.

QoS characteristics may change in both directions improvement or degrada-
tion both requiring appropriate actions to be undertaken according to component
requirements.

There are two fundamental strategies for dealing with fluctuation in QoS: re-
source management and application adaptation [68].

1. Resource management attempts to fulfill the QoS requirements originally
agreed by allocating additional resources, or, by extending the service pro-
vided by existing resources (e.g., requesting more disk and memory space,
extra cpu-cycles). However, where QoS is improved, allocated resources can
be released.

2. Application adaptation deals with resource degradation or improvement by
providing a service of a different quality within an accepted range (e.g., pre-
senting lower quality video and audio, switching into text mode instead of
providing a full-graphics interface.)

Considering these two strategies for the binding model, resource management can
be implemented by a first-party or a third-party rebinding of the client to a different
server providing the required service; application adaptation keeps the established
binding, but changes appropriate communication protocols within the communica-
tion channel.

Not every change in system resources can be adapted to. There might be cases
when changes in QoS characteristics are so drastic that none of these strategies
can provide a sufficient adaptation; then an external component (e.g., a system
administrator) must interfere in the rebinding process, or a binding cannot continue.

QoS Monitoring

QoS adaptation strategies are performed as a result of a change in QoS character-
istics. In order to achieve this, the current level of QoS must be kept up-to-date at
all times (according to a ‘accuracy-grain’ provided by the Trader. Therefore, QoS
Monitoring must be supported as an essential part of QoS Maintenance. It uses
component-dependent techniques to obtain QoS values (depending on a particular
resource) that are actually achieved by a particular binding.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 35

As in our model we treat components as black-boxes, services are obliged to
provide monitor components which, by directly interacting with the component,
keep the information about varying QoS characteristics up-to-date in the Trader.

3.6 Chapter Summary

In this chapter we have defined a unifying model for third-party trading based
on a resource description by a type and characteristics of a service. The model
is appropriate for our primary purpose — dynamic resource management — but
its generality makes it suitable for any architecture requiring a dynamic trading
architecture.

We have set the scene by defining terms and summarising our assumptions.
Then, we have defined the binding process as a sequence of actions that must be
performed in order to establish an interaction. It comprises the following phases:
exporting service definitions, negotiating service definitions, and establishing a com-
munication channel.

Rebinding of interacting components enables system adaptation to changed con-
ditions. This is performed as a sequence of four steps: exporting service definitions,
renegotiating service definitions, destroying a binding, and reestablishing a com-
munication channel. We have distinguished four rebinding situations according to
which component initializes the process, and which performs the renegotiation of a
new peer.

QoS Management, dealing with non-functional behaviour of a component, is an
essential part of support for applications in open dynamic systems. In our model, it
consists of three phases performed in sequence during a component’s lifetime: QoS
Definition, QoS Negotiation, and QoS Maintenance.

Every proposed framework must be based on well-defined and well-known re-
search terminology we have derived our terminology from RM-ODP standards
[66, 67, 68]. It is important to clarify the difference between these approaches.

The concepts defined in the RM-ODP standards such as the trader and quality
of service management are described independently and in very broad terms. Our
approach, MAGNET, attempts to unify the relevant concepts and tailor the RM-ODP
framework to its primary purpose dynamic resource management. Our definition
of the Trader does not follow the RM-ODP standard [67], which distinguishes between
two operations: service export and service import. Also, unlike the RM-ODP stan-
dard, our rebinding approach emphasizes issues concerning the renegotiating phase.
Also our approach to QoS Management significantly differs from the RM-ODP stan-
dard [68]. In particular, it emphasizes the negotiation phase and moves the target
of the problem from maintaining agreed QoS to providing a QoS-based negotiation
and selection.

Having defined an abstract model for trading, in the next chapter we can focus
on a design of an actual architecture implementing the trading functionality.

Chapter 4

A Resource Management
Architecture

In this chapter we present the design of MAGNET — an architecture for third-party
dynamic trading of service provisions and requirements in open distributed systems
with frequently changing characteristics. The model and terminology for this archi-
tecture were described in chapter 3, here we focus on the design of MAGNET. For
reasons of clarity and readability we have split the description of the architecture
into two chapters, 4 and 5.

This chapter describes the design of the core of the MAGNET framework. Ad-
vanced features, such as information monitoring, QoS Management, dynamic re-
binding and scalability, are discussed in chapter 5.

Firstly, we summarize the requirements of the architecture outlined in chapter
1. In section 4.2 we discuss our reasoning for the chosen infrastructure model.
Then, in section 4.3 we define functional semantics of system elements, and describe
the binding process established using MAGNET (section 4.4). Finally, we focus on
naming and protection issues, in sections 4.5 and 4.6.

4.1 Requirements for Dynamic Resource Manage-
ment

Fundamental changes in computing environments have affected the role of resource
management. Here, we summarize the requirements of dynamic resource manage-
ment, as discussed in chapter 1, to refresh the main goals MAGNET attempts to
achieve.

Dynamic Trading

The primary role of the resource manager is to enable resource allocation dynamic
binding performing component coupling based on information on the type of service.
Therefore, the system must provide a third-party component, the Trader, collecting
information on services and matching requests against demands.

Extensibility

The architecture should not constrain the format nor semantics of its data, and
should enable user-customization of the matching process.

36

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 37

QoS-based Management

Unconstrained description of services and user-customization of the matching pro-
cess enables support for QoS-based management. This provides QoS-based resource
description and parametrized QoS-based matching process.

Dynamic Rebinding

In order to support runtime adaptations to changes of system environment, MAG-
NET should support dynamic rebinding of both types — first-party rebinding (ini-
tiated by component itself) and third-party rebinding performed by a managerial
third-party with knowledge of overall application semantics. In addition, rebinding
should also enable first-party renegotiating (leaving the selection of a new compo-
nent on the unbound peer), or presenting the rebound component with appropriate
replacement which can be found either in the Trader (third-party renegotiation), or
obtained from an external entity (no-renegotiation is required).

Information Monitoring

Monitoring resource characteristics is a crucial requirement of dynamic resource
management, enabling varying system features and time-dependent information to
be kept up-to-date in the Trader.

Scalability

Scalability is an essential feature of all open distributed systems. The framework
must enable mobile users dynamically joining and leaving the system to use its full
potential in a local scale, and also provide support for scaling.

4.2 Using the Tuplespace Paradigm for the Trader

As was defined in chapter 3, in the MAGNET architecture, the key component in
third-party role performing the service coupling is called the Trader. In order to
provide an information infrastructure for trading service properties, the Trader
must contain a shared data repository available to all components (however, it is
not directly accessible). We call this data structure, derived from the tuplespace
paradigm' [22], an information pool. Structured data items placed into the infor-
mation pool are tuples. In this section we describe the design of the Trader and the
information pool, and discuss our reasons for choosing this paradigm.

4.2.1 Overview of the Trader

The Trader is the key component of the MAGNET architecture available to all com-
ponents, such as system services, hardware resources, and mobile users, for estab-
lishing dynamic bindings. The Trader consists of three distinctive elements:

1. The information pool (a tuplespace-like data structure),
2. The Trader operations on tuples for their manipulation, and

3. The tuple matching function (an operation providing the actual communica-
tion).

Figure 4.1 illustrates the structure of the Trader, and its three components.

ISpeaking strictly about the data structure, the information pool is actually a tuplespace. How-
ever, the term ‘tuplespace’ is often associated with the Linda distributed programming language
[22]; therefore, we decided to call our data structure ‘information pool’ to avoid confusion.

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 38

Tuple Matching

Bind @

Client Tuple Server Tuple

WithdrawC ‘ Information Pool

Trader

Figure 4.1: The Trader Structure

4.2.2 The Information Pool

The information pool is a distributed data structure accessible by all components
using MAGNET. As was mentioned above, the information pool design was influ-
enced by the notion of a distributed tuplespace [22]. Data items (tuples) can be
inserted in, or withdrawn from, the tuplespace by a set of clearly defined opera-
tions. The internal organization of the structure is not defined, and is irrelevant for
the framework semantics.

Tuples describing requirements and provisions for resource management often
contain additional ‘non-matching’ information, such as interface references for ac-
cessing offered services, or requirements on the establishment of the communication
channel. For clarity of the framework, it is desirable to express this information
in the form of tuple elements. Therefore, the tuple (defined below in Def. 1)
distinguishes between the number of all tuple elements n and the number of match-
ing elements m. Traditional tuples containing only matching elements simply set
n = m; neither the semantics of the structure nor the matching process have to be
modified.

A tuple, a structured data item, is defined below (N is the set of natural num-
bers).

Definition 1. A tuple T is an ordered set of (n+2) elements T = (n, m, p1,p2, ..., Pn)
n > m where n € N is the number of tuple elements, m € N is number of ‘match-
able’ tuple elements, and p; € P; are values of tuple elements, all actual parameters.

3

4.2.3 The Trader Operations

The information pool must be equipped with the Trader operations defining the
semantics of manipulation of tuples, such as insert and delete. Linda [22] is a well-
known distributed programming language defining the original set of operations on
tuples built around the traditional tuplespace (IN, OuT, READ).

Although MAGNET’s Trader is based on the tuplespace paradigm, the opera-
tions and their semantics were redefined and extended to better meet requirements
of users in dynamic environments. Operations offered by the Trader include: BIND,
ADVERT (implementing service export), and WITHDRAWC, WITHDRAWS (imple-
menting service withdraw).

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 39

Semantics of the Operations

The crucial feature of Linda, which the Trader has inherited, is that it does not
treat communicating components equally, but distinguishes between the roles of
client and server. Therefore, the Trader operations also express this ‘duality’ of
character by providing client-operations (BIND, WITHDRAWC) used to manipu-
late client-tuples, and server-operations (ADVERT, WITHDRAWS) for manipulat-
ing server-tuples. Tuples themselves are syntactically identical (following Def. 1);
client-tuples and server-tuples are identified by the operation used to insert them
into the pool. In order to ensure the matching operation is performed only on
complementary-type tuples, information about tuple type must be preserved. In
section 4.2.5 we will argue for this feature in greater detail, here we define the
semantics of the four fundamental operations provided by the Trader.

Definition 2. Operation Bind (T), where T is a client-tuple (Def. 1), searches
the information pool for a complementary-type matching tuple (Def. 6). If such a
tuple is found, T is returned to the server component (which inserted the matching
tuple) without being withdrawn from the pool. If no such tuple exists, the operation
results in inserting tuple T into the information pool until one becomes available.

Definition 3. Operation Advert (T), where T is a server-tuple (Def. 1),
results in inserting the tuple into the information pool. It also searches the pool for
all complementary-type matching tuples (Def. 6). If such tuples are found, they
are removed from the pool, and returned to the calling server component.

Definition 4. Operation WithdrawC (T), where T is a client-tuple (Def. 1),
results in removing tuple T from the information pool.

Definition 5. Operation WithdrawS (T), where T is a server-tuple (Def. 1),
results in removing tuple T from the information pool.

Operations WITHDRAWC and WITHDRAWS do not perform the matching oper-
ation (Def. 6) restricted to a subset of the tuple elements, but find an equal one
(all tuple elements are checked).

Like in Linda, all these operations are performed atomically and selection from
more than one matching tuple currently available in the information pool is per-
formed non-deterministically, unless defined by components themselves in terms of
preference rules.

Discussion

In order to allow user-customization, blocking the calling component is not per-
formed by the Trader, but left to components themselves. According to the nature
of the application, a component can block itself immediately, or after a sequence of
‘insert’ operations.

Operations WITHDRAWC, WITHDRAWS are semantically identical. The only
reason why we did not define one WITHDRAW operation for both clients and servers
is performance. As the information pool is typically very large, it would be inefficient
to search all tuples (client and server ones) when it is clear which tuple type is being
searched for. As we define the actual operations used by components, there is not
any ‘lower’ layer at which this information could have been passed into the pool.

The stateless character of tuples in the pool (discussed in greater detail in section
4.2.5) enables the Trader not to worry about the state of possible ongoing bindings
while performing WITHDRAWS and WITHDRAWC operations. This information is

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 40

maintained by the communicating components themselves, and is usually ensured
by their communication protocol.

4.2.4 The Tuple Matching

The primary purpose of the framework is not to store information, but to provide
trading of data placed into the repository. This communication model is known as
generative, because a tuple generated by a component has an independent existence
in the tuplespace until explicitly withdrawn by any component [22].

Tuple matching? is a concrete implementation of the matching process discussed
in chapter 3 which enables actual communication between components in the form
of exchanging information in tuples. In the classical tuplespace, exact matching
only was supported [22]. Definition 6 defines the matching process in the MAGNET
framework which, in addition, enables matching to be performed on a subset of
tuple elements.

Definition 6. A client-tuple Ty = (n1,m1,p1, P2, .-, Pn), N1 > mq, where ny,my €
N, p; € P; and a server-tuple Ty = (na,m2,q1,G2, ..., Gn), N2 > M2, where ny, mq €
N, and ¢; € Q; match iff mi =ms & (P = Q; & p; = ¢;) for Vi € {1, m}.

As incorporating non-matching information into tuples is optional, and may
differ between a client-tuple and a server-tuple, the equality of tuple size (n; = ns)
is not a required matching condition.

The matching operation, as it is defined, is not a symmetrical operation —
it does assume client and server roles for the matching tuples. Here we discuss
the basic (exact) matching process. User-customization of the matching process is
covered in chapter 5.

4.2.5 Reasoning about the Trading Paradigm

In order to justify the tuplespace framework chosen for our information pool design,
we have to discuss key characteristics of the paradigm; in particular, the necessity
of distinct roles for client and server. Finally, we compare our approach to Linda
and a traditional namespace and clarify their differences.

Key Characteristics

Like a tuplespace, the information pool supports the following communication fea-
tures: multi-party asynchronous communication, stateless character of tuples, and
decoupling of the communication parties permitting free-naming. More general
asynchronous communication prevents applications from forced undesired synchro-
nization. The stateless nature of tuples saves the Trader from having to provide a
state-maintenance scheme; for example, checkpointing or recovery procedures. In
addition, it improves the generality of the system. If state is required, it can be
incorporated as a parameter of tuples. Decoupling the server from the client by
the Trader permits communication to proceed anonymously, therefore servers can
produce tuples of interest to any client. Consequently, this feature enables free-
naming communication can be established without previous knowledge of the
other party’s identity. Similarly to the states of tuples, names can be expressed
as parameters of tuples if required. All these features provide additional flexibility
over traditional direct one-to-one communication schemes.

2Tuple matching is also called the Matching Function or the Matching Operation.

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 41

The Necessity of Distinct Roles of Client and Server

As was said above, distinct roles of client and server assigned to interacting compo-
nents is one of the crucial feature of the Trader. Why is this sacrifice of generality
necessary?

The primary purpose of the Trader is to enable an information exchange for
establishment of component bindings. A component binding, as defined in chapter
3, is an interaction between two parties client and server, not equal system
elements. In order to tailor our framework to this model of binding, the roles
of client and server must be incorporated into the Trader semantics. Therefore,
the operations provided by the Trader — BIND, ADVERT for service export, and
WITHDRAWC, WITHDRAWS for service withdraw — reflect the duality of client
and server roles by providing ‘built-in duality’. This corresponds to Linda’s view of
tuples represented by operations IN and OuT [22].

In contrast with this dual approach, general data structures (such as ‘heap’)
treat all data items equally by providing operations with no additional semantics
(such as INSERT and DELETE).

Therefore, the built-in semantics approach outweighs the loss of full generality.
As the contents of tuples are not predefined and the matching process can be user-
customized (see chapter 5), distinguished roles do not constrain the extensibility of
the Trader.

The Trader Operation Set versus Linda

As the Trader was motivated by the Linda programming language, it is desirable
to compare these two approaches. In order to clarify our discussion, we briefly
summarize Linda’s operations below (details can be found in [22]):

OUT(N, P, ..., P;), where P,, ..., P; are parameters (actual or formal) and N is
an actual parameter of type name, results in inserting of the tuple
(N, P, ..., P;) into the tuplespace; the process (which called the op-
eration) continues immediately.

IN(N, Py, ..., P;) where P,, ..., P; are parameters (actual or formal) and N is an
actual parameter of type name. If a type-consonant tuple whose first
component in N exists in the tuplespace, the tuple is withdrawn, the
values of its actuals are assigned to the IN()-statement’s formals, and
the process executing the IN()-statement continues. If no matching tuple
is available, IN() suspends until one is available and then proceeds as
above.

READ(N, P», ..., P;) is identical to the IN()-statement except that, when a match-
ing tuple is found, assignment of actuals to formals is made as before
but the tuple remains in the tuplespace.

The key similarity was discussed in the previous section — both Linda and the
Trader enforce components to become client or server, by providing a set of dual
operations (e.g., IN and OuT in Linda; BIND and ADVERT in the MAGNET Trader).

However, there are also many significant differences between these two ap-
proaches. Here we highlight several fundamental ones. Firstly, there is the dif-
ferences in semantics of the operations. For example, ADVERT matches all tuples
inserted by BIND waiting in the pool, while OuT matches only one waiting tuple
inserted by IN; a tuple inserted by OuT can be removed from the pool by any
other component calling IN, while in the Trader clients calling BIND have no right
to remove a server tuple inserted by ADVERT. (Semantically, operation BIND is
equivalent to operation READ).

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 42

Secondly, tuples in the information pool can be ‘signed’ for identification pur-
poses. This does not constrain the tuple format, as the ‘name’ can be expressed as
one of the non-matching tuple elements (Def. 1), nor does it restrict the free-naming
feature (that is requesting a service by its type) because the matching process can
be restricted to a subset of the tuple elements, excluding the ‘name’ (Linda does
not support this feature).

Also, a particular tuple can be withdrawn from the pool by operations WITH-
DRAWC and WITHDRAWS which can identify it by searching for an equal tuple. In
Linda, designed primarily for decoupled communication, any component can with-
draw any tuple by calling an appropriate complementary operation (IN removes
OuT tuple; and OUT removes IN and READ tuples), without paying attention to
an exact tuple identity.

In addition, the Trader does not support substitution of formal parameters be-
cause there is no need for this kind of communication in the binding process.

The Information Pool versus a Namespace

A nameservice ‘maps a name for an entity (an individual, organization or facility)
into a set of labeled properties®, each of which is a string. It is the basis for resource
location, mail addressing, and authentication in distributed computing systems’
[37]. A nameservice is based on a data structure (a repository of addresses) called
a namespace.

The primary difference between the Trader and a nameservice lies in the distin-
guished roles of client and server discussed above. A namespace keeps equal data
items, while the information pool consists of server-tuples and client-tuples. In ad-
dition to this fundamental difference, there are several other important semantic
nuances.

Firstly, data items in the namespace can be considered as a static ‘pair’ (name
and address), while in the information pool, client-tuples are independent of comple-
mentary server-tuples, and only the matching operation joins them into a dynamic
‘pair’. Secondly, name address mapping can be classified as one-to-one mapping,
unlike client-tuple server-tuple matching which is defined as one-to-many. Thirdly,
name and address are semantically nondetachable in the namespace (an address with
no name does not have a valuable meaning and vice versa), while client-tuples and
server-tuples have an independent existence in the pool.

In addition there are three more minor differences: a nameservice requires unique
naming, supports only simple name mapping and considers global scalability an im-
portant issue. The Trader, in contrast, supports optional names expressed as tuple
elements, enables parametrized QoS-based matching, and is primarily designed for
a local scale, a federation.

4.3 Components for the MAGNET Architecture

Having described in detail the core approach undertaken in MAGNET’s architecture
(the Trader based on the tuplespace paradigm), now we present an overview of the
framework, and describe individual system components.

Figure 4.2 illustrates the structure of the MAGNET architecture distributed over
a single federation. The system consists of four classes of component: the Trader,
Client, Server and Tree (components performing the matching process). There is
only a single instance of the Trader component, in contrast to multiple instances
of Client, Server and Tree. In addition to these four high-level components, there
are two types of subcomponent performing dedicated functions: these are a pair

3often called ‘addresses’

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 43

GlueFactory GlueFactory GlueFactory GlueFactory

gluegen gluegen gluegen gluegen

Trader

advert pind

bc bc

glueC glueC
Client-Binder Client-Binder

Client 1 Clientn

Figure 4.2: MAGNET’s architecture

of Binders (the Client-Binder and the Server-Binder) present in all Clients and
Servers; and the GlueFactory included in all Trees. Binders in cooperation with the
GlueFactory establish the resultant client-server binding.

In addition to the static components, Figure 4.2 also illustrates the intercon-
nections between them. In this section we will describe the functionality of every
individual component, while in section 4.4 we will focus on their mutual interaction
that realizes the primary goal of the framework the binding process.

4.3.1 The Trader

The Trader is the key system component offering four fundamental operations
(BIND, ADVERT, WITHDRAWC, WITHDRAWS) used by clients and servers request-
ing to establish dynamic bindings. As the framework is primarily designed for
resource management purposes, it is desirable to have one centralized Trader com-
ponent within a federation keeping information of the available resources. This is
sufficient as resource allocation is mainly performed within a given domain (however,
distribution of the information pool preventing the Trader becoming a bottleneck
in the system is discussed below).

Other option would be running the Trader component on every system processor
and ‘escalating’ (forwarding) tuples which do not match locally to other Traders.
However, this would cause consistency problems (e.g., what happens if a single
tuple is matched in more than one Traders? What is the topology of Trader inter-
comection and how is it dynamically adapted?) As resource allocation is primarily
domain-scale problem (e.g., most of requests for resources are fulfilled in a local
Internet domain), we have chosen the federation to be the smallest architecture en-

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 44

tity. However, scalability of the framework in terms of inter-Trader communication
is also supported. We discuss these issues in the next chapter.

In order to prevent the Trader being a bottleneck in the system, the four op-
erations are actually implemented in distributed Tree components. The Trader
forms a single interface to all components calling its operations, while multiple
physically distributed Tree components actually implement these operations. The
Trader forwards the request (the operation and the tuple) into the appropriate Tree
for processing. The inner structure of Trees ensures that there is only one Tree
component able to fulfill the request.

However, the configuration of Trees and the type of tuples they hold is deter-
mined by the Trader, therefore they cannot be accessed directly by components.

From the semantic point of view, distributed Tree components form the infor-
mation pool, and are an indispensable part of the Trader functionality. For this
reason, in the previous section 4.2.5 we considered the Trader as a single compo-
nent. However, structure-wise, the information pool is physically distributed into
Trees, therefore in this section, as we are dealing with the system structure, we treat
the Trees as independent system components. Figure 4.2 illustrates the relationship
between the Trader and Trees.

4.3.2 The Tree

As was said above, Trees provide the actual functionality by implementing the
Trader operations, yet are not accessible by components directly. As was outlined
in section 4.2.5, the information pool distinguishes between client and server tuples,
therefore this feature must be also provided by every Tree component in order to en-
sure the matching process will be performed between complementary tuples. Trees
perform the requested operation forwarded from the Trader and, if the matching
process is successful, initialize the last phase of the binding process establish-
ment of a communication channel — implemented by a dedicated subcomponent,
the Glue Factory.

4.3.3 Distribution Issues

The Trader acts as an interface filter for all components involved in resource man-
agement and is responsible for distribution of Tree components. The initialization
of the Trader in a particular domain performs an instantiation of Tree components
which are physically distributed over available processors. The number of proces-
sors, given by a system administrator initializing the Trader, determines the way
Trees are distributed. These issues are discussed in section 6.5.

4.3.4 The Glue Factory

If the matching process called by the operations ADVERT and BIND finds a match,
client and server components must be informed about each other in order to estab-
lish a binding, which is the final goal of this procedure. A dedicated component
responsible for informing components of matching tuples is the Glue Factory, a
subcomponent of every Tree.

When the Glue Factory is given a matching tuple pair (a result of a successful
matching process), it establishes a communication with the Server-Binder (the in-
terface reference is obtained from the server-tuple), and is responsible for passing
over the client-tuple.

Information about the established server-client pair is not kept by the GlueFac-
tory, nor the Tree, in order to ensure the stateless nature of the Trader. As said
above, this functionality belongs to the scope of components’ responsibility.

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 45

4.3.5 Client and Server

Every component using MAGNET must interact with the Trader as a client which
requests the four Trader’s functions. Therefore, every component is equipped with
an additional service interface (cp) through which it calls the Trader’s operations
— advertises or binds its tuples.

In Figure 4.2 the client’s service interface is labeled glueC, while the server’s
service interface is glueS. In addition, both client and server must also contain a
dedicated subcomponent the Binders responsible for establishing the binding.

4.3.6 Binders

The primary purpose of Binders is to perform the last phase of the binding process
— the establishment of a communication channel. On this task, Binders cooperate
with the underlying computing environment where MAGNET operates: Binders form
the MAGNET environment-independent interface, while the resultant binding at the
low-level is established by a communication mechanism available in the system (such
as a message passing, etc.)

From the semantic point of view, there are two classes of Binder — Server-
Binders and Client-Binders. The service interface to the Server-Binder (bglue) is
inserted into the tuple sent to the Trader by an operation ADVERT. When matching
of service definitions is achieved, the Server-Binder is provided with the matching
client-tuple containing an service interface to the Client-Binder (bc) of the client
component. Then a binder-to-binder interaction can be established to exchange
required information to enable the final end-to-end client-server binding to take
place. The actual protocol and semantics of Binders is application dependent, and
for MAGNET’s purposes irrelevant.

If components do not trust each other, Binders might also contain a built-in
admission protocol, providing protection for servers from untrustworthy clients.
This feature is discussed in section 4.6.

4.4 The Binding Process

Having discussed the functionality of MAGNET’s components, we focus on their
interaction resulting in dynamic binding. In chapter 3, we defined three phases of
the binding process: export service definitions, negotiating service definitions, and
establishing a communication channel. In this section we will discuss these three
phases as they are performed by the MAGNET framework.

In this chapter we discuss a local trading system; federations, as a solution to
the problem of scaling, are covered in chapter 5.

Figure 4.3 illustrates a simple binding configuration consisting of a server (the
Printer), a client (the Application), the Trader and the Tree component into which
the Printer’s and the Application’s tuples are forwarded for processing. For simplic-
ity, remaining distributed Tree components are omitted, as they are irrelevant to
this particular instance of the binding process. We define and illustrate each phase
of the binding process in this example. Detailed description of each particular phase
(in this example) is given at the end of each section defining the phase.

4.4.1 Export Service Definitions

The goal of the first phase of the binding process — export service definitions — is
to place services into the Trader where they are negotiated. In our framework, the
Trader offers four functions (BIND, ADVERT, WITHDRAWC, WITHDRAWS). In order

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 46

GlueFactory
gluegen

bc

glueC
Client-Binder

Client - Application Server - Printer

Figure 4.3: Binding establishment in MAGNET

to call them (they are represented as services provided by the Trader), components
need to bind to the Trader component. However, in this ‘first case’, it cannot be
the Trader, which establishes the binding, as it is itself being bound. Therefore,
a nameserver resident at a well-known address provides components with interface
references to the Trader’s functions so that the component-Trader bindings can be
established. The Trader forwards incoming tuples into the appropriate Tree where
the required operations are performed.

Example

In our example, the Application describes its requests by a tuple:
T1 = (4, 3, printer,laser, 600dpi, bc)

(4 determines the tuple size, 3 sets the number of elements which have to match).
The application exports service by calling the Trader’s operation BIND(T'1). The
Printer describes its offer by a tuple:

T2 = (4, 3, printer,laser, 600dpi, bglue)

(again, 4 determines the tuple size, 3 sets the number of ‘matching’ elements, there-
fore service interfaces bc and bglue used for locating components are omitted at
the matching process). It exports service by calling the Trader’s operation AD-
VERT(T'2). Performing operations in this order results in forwarding tuples 7'1 and
T2 into the Tree, where the next phase, the matching process, takes place.

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 47

4.4.2 Negotiating Service Definitions

The goal of this second phase is to perform the matching process that searches
the information pool (the particular Tree) for a matching tuple. MAGNET’s export
policy consists of operations ADVERT and BIND; the withdraw policy consists of
WITHDRAWS and WITHDRAWC. In addition, the tuple format (Def. 1) for accessing
the Trader’s operations is enforced.

The matching process consists of two phases operations search and select. The
matching function (Def. 6) defining the matching rules can be user-customized. For
each pair of tuples an equality of the ‘matching size’ m (Def. 1) is checked (3=3,
in our example); then for each tuple element, the type of the element and the value
are compared (value comparison can be user-customized, therefore strict mathe-
matical equality is not required). In our example, three comparisons are performed
(printer—printer, laser—laser, 600dpi—600dpi). If this procedure succeeds for all
tuple matching elements, the two tuples are said to match, and are forwarded to
the GlueFactory.

Removing or inserting matching tuples into the pool is performed in accordance
with the particular operation definition (e.g., a matching ADVERT tuple is inserted
into, or left in, the pool, while a BIND tuple is not inserted, or is withdrawn from
it, etc.)

Example

In our example, tuples T'1 and T2 match, therefore, they are passed into the Glue-
Factory; the server tuple T2 remains in the Tree, while the application tuple T'1 is
withdrawn as its request is satisfied.

Here we have discussed basic exact matching. Advanced QoS-negotiation which
enables the user to further customize the matching rules and define the preference
rules is discussed in chapter 5.

4.4.3 Establishing a Communication Channel

The establishment of an end-to-end binding is performed by the particular Glue-
Factory in cooperation with both Binders, the Client-Binder and the Server-Binder.
The GlueFactory passes over the client-tuple to the Server-Binder via a binding es-
tablished temporarily for this purpose. The interface reference of the Server-Binder,
necessary for establishment of this temporary binding, is obtained from the server-
tuple.

Then, the Server-Binder invokes the Client-Binder (the interface reference is
obtained from the client-tuple), and performs the binder-to-binder protocol, passing
over the required server interface reference, so the client can bind to it, the resultant
communication channel is established; and components can start interacting.

Example

In our example, the gluegen request service is bound to the bglue provision service,
and via this temporary binding, the tuple 7'1 is sent to the Server-Binder. Then,
the Server-Binder’s service reference bs is bound to the Client-Binder’s reference bc,
over which the resultant communication channel between server provision reference
glueS and the client request reference glueC is established.

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 48

4.5 Naming

Naming is an important issue in open distributed scalable systems. In MAGNET’s
framework, there are three levels at which naming must be considered: tuple nam-
ing, interface reference naming, and Trader naming.

4.5.1 Tuple Naming

As the Trader provides an environment for generative programming (discussed in
section 4.2.4), tuples are considered anonymous. Therefore, the tuple definition
(Def. 1) does not enforce any names. As was discussed above, this feature en-
ables free-naming accessing a peer component without previous knowledge of
its identity. An identification which is necessary for accessing services (interface
references) is expressed as a tuple element, invisible to the high-level MAGNET
framework. Therefore, no dedicated naming scheme for tuples is necessary.

4.5.2 Interface Reference Naming

In order to establish a binding between service interfaces of two components, they
must be identified by interface references. As components offer or require unique
services, naming of their interface references must be unambiguous. The design
of such a naming scheme depends on the particular computing environment and
identification scheme used within it, and can vary between different applications
using the same Trader.

For example, the typical computing environment where MAGNET can operate
is the Internet. Therefore, ‘names’ of interface references can be composed as a
combination of an 1P address, a process number (PID), and an internal process
(component) reference which enable unambiguous scalability. The chosen interface
reference naming scheme, and its mapping derived from a particular computing
environment, are irrelevant for MAGNET’s design.

4.5.3 Trader Naming

The third level at which naming is an issue in MAGNET is the Trader level. There
are two different ‘scales’ to consider the local domain consisting of one Trader,
and federations enabling scaling of the architecture.

Firstly, a local domain (as assumed throughout this chapter) consists of only one
Trader serving distributed Trees. The Trader is contacted via a shared nameserver
resident at an address known in advance. Therefore, in the local domain Trader
naming is not an issue.

Secondly, in order to enable scaling of the architecture, Traders are internet-
worked to connect federations. There must be a naming scheme enforced to allow
components to identify Traders in remote domains, in order to enable Trader-to-
Trader communication. Issues related to scalability and the actual design of feder-
ations, including naming of federated Traders, are covered in chapter 5.

4.6 Protection

Protection in open distributed systems is always a complex issue. MAGNET’s protec-
tion scheme targets the following crucial areas: Trader protection, tuple protection,
and components protection.

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 49

4.6.1 Trader Protection

In order to allow the Trader to distribute Tree components across the domain
transparently, Trees are not directly accessible by components. Therefore, Tree
service interfaces (all) are hidden by the public Trader’s operations (service inter-
faces: advert, bind, withdrawC, withdrawSs).

4.6.2 Tuple Protection

In order to enable free-naming, tuples are considered anonymous. This feature
allows any client to insert a type-complementary tuple that matches any server
tuple in the information pool. The matching process does not include any protection
checks.

Frequently, additional protection is necessary, as components using MAGNET do
not necessarily trust each other. Therefore, a tuple can be protected by a ‘password’
expressed as one of its elements. Trustworthy components know the password (from
system designers, or administrators) and are able to produce a matching tuple,
while untrusted components cannot. As a result of this, the distributed system
can be shared by groups of components (possibly overlapping) able to produce only
mutually matching tuples and gain access to services only within their groups.

Also, capabilities could be expressed as tuple elements, if this way of protection
is required by system administrators or applications using MAGNET. Nevertheless,
the universality of the architecture is preserved.

As the protection of tuples using signatures or capabilities is user-defined, it
does not require altering the high-level design of the framework, nor the matching
process.

4.6.3 Component Protection

In order to prevent service references from being directly passed to untrustworthy
components, bypassing the signature-matching process, components are equipped
with two additional means for their self-protection. Firstly, interface references can
be protected by Binders; secondly, an admission protocol carried out by Binders
can result in refusing service to untrusted components.

Interface Reference Protection

All bindings are established using the pair of Binders (Client-Binder and Server-
Binder). In addition to this primary purpose, Binders prevent interface references
from being advertised, and therefore exposed for misuse. Therefore, Binders’ service
interfaces (bglue in Server-Binder and bc in Client-Binder, as illustrated in Figure
4.3) are inserted into tuples which are placed into the information pool. Service
interfaces of the actual services provision (glueS) and requirement (glueC) are
never advertised, and can only be accessed by trusted Binders.

Admission Protocol

Protecting interface references from being misused by untrusted components by
hiding them behind the Binders can only have the desired effect if the Binders have
the right to refuse to establish a binding. As Binders’ interface reference can be
passed over to any untrusted component, an admission protocol between Client-
Binder and Server-Binder is required.

When the Server-Binder obtains the client-tuple containing the reference to the
Client-Binder, it performs a protection checking procedure of varying complexity.
That is, the admission can be based on simple user identification (UID), public key

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 50

Client-Binder bc ps Server-Binder

securelnt

glu

Figure 4.4: Admission Protocol

(pGP), or any other common or proprietary protocol. Ounly when the admission
protocol is successful is the access to the service is gained, and the required end-to-
end client-server binding is established.

Figure 4.4 illustrates an admission protocol between Binders based on classical
UID protection.

4.7 Chapter Summary

Based on the model defined in chapter 3, we have described the core of MAGNET’S
design, leaving its advanced features to chapter 5.

MAGNET provides a framework for establishment of dynamic binding using
third-party trading. Based on a tuplespace paradigm, the Trader consists of three
components: the information pool (a tuple-space like data structure), the Trader
operations on tuples for their manipulation, and the tuple matching operation.

The information pool is a distributed data repository for structured data items

tuples consisting of an ordered set of items. The set of operations provided by the
Trader consists of: BIND, ADVERT, WITHDRAWC, and WITHDRAWS. In this chap-
ter we have provided definitions of these operations and of the matching process.
The key characteristics of the chosen paradigm include multi-party asynchronous
communication, stateless character of tuples, and decoupling of the communication
parties permitting free-naming. In other words, communication can be established
without previous knowledge of the peer identity. We have also argued why it is nec-
essary to distinguish between the roles of client and server, and we have compared
the Trader to Linda, and the information pool to a namespace.

MAGNET consists of four classes of components: the Trader, Client, Server, Tree
and two types of dedicated subcomponent: a pair of Binders (Client-Binder and
Server-Binder), and the GlueFactory. The Trader is the key system component
providing an interface to the four operations on tuples. According to a local site
configuration, the Trader initializes distributed Trees where the actual operations
are performed. As they belong to an internal structure of the Trader, for pro-
tection reasons, they are not accessible by components directly. If the matching
process, implemented by the Trees, is successful, the GlueFactory subcomponent
(present in every Tree, dedicated to the establishment of a binding) cooperates
with Binders (present in every component) in order to establish the binding. Then
the Client-Binder and the Server-Binder perform the final phase of the binding pro-
cess, resulting in the establishment of a communication channel between client and
server.

Having discussed the semantics of all these components separately, we have

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 51

described their interaction which performs the actual binding process: exporting
service definitions, negotiating service definitions, and establishing a communica-
tion channel. We illustrated each particular phase of the binding process using an
example of a Printer and an Application components.

Naming in MAGNET is considered at three levels: tuple naming, interface refer-
ence naming, and Trader naming. As tuples are considered anonymous, no names
are enforced at the high-level. Interface reference naming requires an unambigu-
ous scalable naming scheme and depends on the actual computing environment
where MAGNET is being used. Naming of Traders, interconnected into federations,
was mentioned in this chapter, and will be discussed in chapter 5, together with
scalability issues.

Protection is another indispensable requirement of open distributed systems. In
MAGNET, we provide protection at three levels: Trader protection (hiding the Tree
components from users by the public interface provided by the Trader), tuple pro-
tection (enabling components to incorporate ‘signatures’ into their tuples in order
to prevent them from being misused by untrusted components), and component
protection (hiding the actual service interace reference behind publically advertised
Binder references, enabling an admission protocol to be performed by the Binders).

This chapter has covered the design of the core system elements and their func-
tionality. The next chapter discusses the design of MAGNET’s advanced features,
including information monitoring, QoS Management, rebinding and scalability is-
sues.

Chapter 5

Advanced Features of the
Architecture

Besides the basic functionality (described in chapter 4), MAGNET must support
additional features permitting adaptation to the requirements of changing environ-
ments. Based on the fundamental system elements (defined in chapter 4), here we
present the advanced features of the architecture: information monitoring, QoS-
based Management, dynamic rebinding, and scalability. Information monitoring,
an indispensable requirement of users in changing computing environments, is dis-
cussed in section 5.1. Section 5.2 covers issues of QoS Management, section 5.3
provides a description of MAGNET’s support for dynamic rebinding. Finally, sec-
tion 5.4 presents issues related to scalability of the architecture.

5.1 Information Monitoring

In order to enable adaptation to changes in system characteristics, service defini-
tions which are placed in the Trader must be kept up-to-date. Therefore, MAGNET
must monitor resource characteristics. For this reason, the framework presented
in this thesis is equipped with two additional components providing monitoring:
the Monitor (monitoring server provisions), and the Updater (monitoring changing
client requirements). In this section, we will describe the semantics of these two
components and the actual monitoring process.

5.1.1 Components for Monitoring

As the MAGNET framework distinguishes between the roles of client and server, it
is necessary to approach their monitoring differently. Therefore, MAGNET has two
monitoring components providing this functionality — the Monitor and the Updater
— both application-level components are attached to server or client respectively.
They are created together with the components they serve, and are instructed by
them to provide component-tailored functionality. Here we discuss their interface
to MAGNET and expected functionality.

The Monitor

The task of the Monitor component is to observe changing characteristics of the
server it is attached to, and keep the server tuple up-to-date. Figure 5.1 illustrates
the structure of the framework with the Monitor.

52

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 53

Tight cooperation with the server enables the Monitor to be informed about
current service characteristics, so that it can periodically update relevant tuples in
the pool (by removing them and replacing with updated ones). The granularity of
this operation depends on the server strategy, in particular on the actual feature
being updated, and on the overall character of an application (for example, real-
time applications rely on finer-grained updates). However, in accordance with our
assumptions, we expect the monitoring to be performed with frequency of minutes,
rather than seconds and milliseconds.

The Updater

As there are not many clients requiring rebinding after having found a requested
service, the monitoring of client requirements is less crucial. Also, client-tuples do
not reside in the pool (if a match was found), and therefore there is no need to
keep them up-to-date. However, clients in systems with frequently changing char-
acteristics may rely on a guaranteed level of service (e.g., a network throughput).
For those, adaptation to change in conditions are unavoidable (e.g., switching to
lower-quality audio and video, etc.) For these reasons, the framework must also
provide equivalent support for monitoring clients.

The Updater is a dedicated component instructed by the client it is attached
to. It searches the pool for a tuple meeting the client’s current requirements more
presisely, or looks for a different tuple if the client’s requirements have changed
(e.g., mobile users on the move need to update a requirement for the nearest server,
etc.).

The monitoring of the information pool is not the only function of the Updater.
As changes might result in rebinding the client to a new server, the primary func-
tionality of the Updater is to assist in third-party rebinding. Here we focus on the
monitoring issues, while in section 5.3 we discuss the role of the Updater in the
client rebinding process.

5.1.2 Monitoring

In this section we describe the monitoring process, as provided by the dedicated
components: the server-attached Monitor, and the client-attached Updater. Figure
5.1 illustrates the bindings discussed below. Server-Monitor and client-Updater
interactions are established statically in advance by a system administrator, not
using MAGNET.

Monitoring Server Provisions

The Monitor component is attached to the server by a binding established between
service interfaces dataS and dataM. The server keeps the Monitor informed about
relevant changes. Then, according to the granularity of update (how often it is per-
formed), and the ‘out-of-dateness’ accepted (how much can a tuple in the pool differ
from current characteristics), the Monitor decides when to perform the operations
WiTHDRAWS and ADVERT. That is, the actual update in the pool (through service
interfaces cp and wp). From the Trader’s point of view, monitoring is performed
transparently, indistinguishable from a sequence of operations WITHDRAWS and
ADVERT performed by the server itself.

Monitoring Client Requirements

The Updater component is instructed by a client about service requirements it
should search for. These two components communicate through a statically es-
tablished binding between service interfaces new and rebindC. In this case, the

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE

GlueFactory

gluegen

GlueFactory
gluegen

GlueFactory
gluegen

GlueFactory
gluegen

54

Trader

advert bind

wp cp

bglue bs glueC

dataM dataS glue pe rebindC

Server-Binder

Monitor

Figure 5.1: The architecture with the Monitor and the Updater

initiative is on the Updater component, in contrast to the Monitor that acts only
when invoked by the server.

The Updater calls the operation BIND on a tuple with higher requirements
(through service interface cp), or performs WiITHDRAWC and BIND operations when
the requirements of the client have changed. The bind-tuple, inserted by the Up-
dater, waits in the pool until it finds a match. According to the Updater protocol
and the ‘stage’ of client interaction, the Updater decides if rebinding is beneficial
(rebinding of a client close to finishing might not be beneficial, taking the overhead
of the rebinding process into account). Therefore, the new server tuple can be ig-
nored, or client rebinding can be performed. Rebinding issues are discussed in the
section 5.3.

5.1.3 Discussion

There are two important issues related to monitoring that deserve further investiga-
tion. Firstly, we discuss issues related to monitoring of the communication channel
in contrast to monitoring of component characteristics. Secondly, we briefly discuss
the efficiency of the monitoring operation.

Component Characteristics versus a Communication Channel

Monitoring of system characteristic changes ensures the maintenance of an agreed
level of service provided by the communication channel, as investigated for example
in [16]. However, the primary focus of MAGNET is to present an environment for

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 55

resource allocation based on up-to-date information, rather than maintaining the
agreed quality of a resultant binding.

Applications requiring the monitoring of a service provided by the communi-
cation channel can describe the channel as an additional component. This can be
equipped with a Monitor that keeps channel tuples in the pool updated.

Efficiency

Data monitoring efficiency is an important issue. For applications requiring only
course-grained monitoring strategies (with frequency of minutes), tuple updates
performed by a withdrawal and reinsert (as discussed in this section) are sufficient.
However, for applications requiring finer-grained updates of their data in the pool
(with frequency of seconds and milliseconds), the complexity of the Trader opera-
tions must be added to the complexity of the update operation (the complexity of
the operations will be discussed in chapter 6).

In order to improve efficiency, specific trusted Monitors and Updaters might be
authorized to have direct access to the Tree holding their tuples. However, this
solution fundamentally violates protection of the information pool (encapsulating
Trees behind the public Trader’s operations). For the reason of protection of other
data in the pool, and protection of Trees that might be misused by untrustworthy
Monitors, this approach is not a part of the framework design.

5.2 Quality of Service Management

Quality of service describes the non-functional behavior of the system components

characteristics under which service is provided. MAGNET’s approach addresses
QoS-based selection, targeting resource allocation, software upgrades, and dealing
with dynamic characteristics of system resources, such as length of a printer queue,
processor load etc.

According to the model defined in chapter 3, QoS Management is defined at three
levels: QoS Definition, QoS Negotiation, and QoS Maintenance. In this section, we
describe how MAGNET supports QoS Management, following the model discussed
in chapter 3.

5.2.1 QoS Definition

The QoS Definition covers a wide range of system characteristics and their com-
binations. In our model, the QoS Definition comprises four levels: characteristics
level, service level, application level, and distribution level.

A common formal approach to defining the QoS is the Z notation [61]. However,
our approach, derived from Regular Expressions [3], extended with an ‘evaluation’
function expressing combination priorities (section 5.2.2), better suits the require-
ments of the QoS-based matching function.

In this section we discuss MAGNET’s support for QoS Definition and illustrate
its utility with simple examples.

Characteristics Level

Based on the tuple definition T' = (n,m,p1,p2, ...,Pn), n > m where n,m € N,
pi € P; (Def. 1), resource parameters are represented as tuple elements p; € P;.
Typically, p; gains discrete actual values within the definition range P;.

However, in order to enable advanced QoS description, MAGNET also defines a
set of QoS operators enabling parameterized description of service characteristics:

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 56

Definition 7. The set of QoS operators defined on tuple parameters p; € P;
consists of:

1. operator interval p;— p; , where p;,p; € P;, and P; is a linearly ordered set,
gains any value p, € < p;, p;j >.

2. operator negation —p; where p; € P; gains any value p, € P; & py # p; and
operation equality — can be defined according to the relation on the definition
range P;.

3. operator or p;/ p; where p;,p; € P; gains either value p; or value p;.
4. operator all * gains any value py € P;.

5. additional user-defined operators.

As part of enabling user-customization of the tuple format, the framework allows
customization of the set of QoS operators. The four operators have been predefined,
as they are typical for QoS requests. Additional user-defined operators may be, for
example < z (values smaller than z), or > z (values greater than z). The following
tuples illustrate the usage of QoS operators:

X1=(3,2,a—d,555,ref)

X2=(2,2,a,x)

X3 =(3,2,alb,—66,ref).

Service Level

As tuple elements (gaining operator-enhanced values, according to Def. 7), represent
only partial information, the aim is to form a combination of parameters (forming
the tuple) that defines the final service definition. It is necessary to extend the
matching function in order to allow user-customized matching according to the set
of operators on tuple elements:

Definition 8. Let 77 and T5 be tuples defined: Ty = (ny,my1,p1,p2, .-, Pn), 11 >
my, where ny,my € N, p; € P; and Ty = (na,ma, fi(q1), f2(q2), -, fu(gn)), na >
o, where ny,mo € N, q; € Q;, and f;(g;) is one of the QoS operators or gains a
value ¢;'.

Ty, and Ty QoS-match iff mqy =mq & (P; = Q; & p; € fi(q;)) for Vi € {1,m,}.

The tuples X1, X2 and X 3 that were defined above also illustrate QoS-matching
process. Assume there is a server-tuple S = (3,2, a, 555, ref). It QoS-matches with
all tuples X1,X2 and X3.

Application Level

Resources that must be allocated together (such as a processor and its operational
memory) form a compound component consisting of two or more subcomponents.
However, for the trading system, such a component is described by one tuple
composing characteristics of both subcomponents. The complementary clients-tuple
must also express the requirement for the combination of components. Therefore,

1QoS operators are optional, clients can express their requests by tuple elements gaining only
exact values, or as a combination of operators and exact values. Therefore, is it necessary to
express the option of elements gaining an ‘exact value’ (¢;) in the definition.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 57

the matching process follows the definition above, as at the Trader level it is irrele-
vant how many services the tuple actually describes. The binder-to-binder commu-
nication, performing the establishment of a binding, ensures that all subcomponents
are connected as requested.

As an illustrative example we consider a tuple describing a CPU Pentium 200MHz
with 32MB RAM memory:

CM = (6,5, CPU, Pentium, 200, memory, 32, ref).

Distribution Level

Time and location-based information can be expressed in the form of ordinary tuple
elements that match by the QoS-matching function (Def. 8). The monitoring com-
ponents (Monitor and Updater) ensure that tuples containing this kind of element
are kept updated at all times. The matching function is performed as usual.

5.2.2 QoS Negotiation

The Matching rules, including the QoS-based operations search and select, are per-
formed in the QoS Negotiation phase. In MAGNET, the operation search is per-
formed by the QoS-based matching function (Def. 8) enabling components to de-
fine service definitions in more flexible way by the QoS operators (Def. 7). The
tuple model is universal and extensible by supporting user-defined types and the
user-defined semantics of matching. Other models, such as typed objects, tagged
trees, etc. do not provide the level of universality, we wish to support.

The exact matching results in a single tuple or a set of identical tuples matching
the request. In the latter case the selection is performed non-deterministically
(the first one is returned). However, a result of a user-customized matching can
be a set of different tuples. Therefore, the QoS Negotiation process necessitates
different semantics which enable clients to ‘order’ matching tuples which express
their preferences. All tuple elements in an exact matching are required to match
equally; however, tuple elements in a QoS-matching can deviate from an ‘ideal’
value. Therefore, they can be assigned ‘rating’ values expressing their deviation
according to the requirements of a particular component.

Definition 9. Let T' = (n,m, f1(q1), f2(q2), ..., fn(gn)), where n > m, n,m € N
be a client-tuple. The tuple element rating is a function Q(f;(¢;)) = k; for
Vi € {1, m} defined on the matching tuple elements, where f;(g;) is one of the QoS
operators or gain a value g;, and k;€ N is the rating value for tuple element g;.

Definition 10. Value X € N is the threshold value attached to a tuple T' =
(nzm: fl(q1)7f2(QQ)7 7fn(QH))7 where n Z m, n,me N.

By default, all tuple elements gain an equal rating value k; = 1 for Vi € {1,m}
and X =m.

Table 5.1 illustrates a use of rating values. Having defined the rating value k; to
express the deviation of every tuple element from the ideal value, and the threshold
value X, we have to define the combination of these partial rates to express the
overall component preferences — the QoS rating matching function.

Definition 11. Let Ty = (ni,mi,p1,p2,...,Pn), Where ny > my, ni,m; € N,
pi € P; be a server-tuple, and Ty = (n2,mo, f1(q1), f2(¢2), .-, fn(qn)), a client-tuple
where ny > mo, no,my € N, q¢; € Q; and f;(g;) is one of the QoS operators, or
gains a value ¢;.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 58

| | matching condition | tuple elements rating | threshold value
mi = m2&
&PiZQiViE{l,m1} ViE{l,m1}
filai) = ai = Qfi(q:) =1= X =mi=
match =>pi = qi =k =1 :>2le l=m1 >m
Qfilg:) =1= X =m=
QoS-match pi € fi(qi) =k =1 izzﬂzll 1=m; >m
QoS-rating
match pi € fila:) Q(fi(gi)) = ki D ki > X

Table 5.1: Matching functions

Let Q(fi(gi)) = ki for Vi € {1,m2} be the tuple element rating function and X € N
the threshold value attached to T5.

Tuples T1 and T QoS-rating match iff m; = mqe & (P; = Q; & p; € fi(q;)) for
Vie{l,m}and > ;"' k; > X.

Also, if there are more tuples fulfilling the QoS-rating matching condition (}°."", k;
> X), the first one non-deterministically found is presented to the client. For ef-
ficiency reasons, a best-fit strategy is inappropriate. However, clients have the
flexibility in setting the threshold value X in such a way as to narrow the gap be-
tween the ‘worst-accepted’ tuple and the ‘ideal’ one. Exact matching is an extreme
case accepting only ideal tuples.

In addition, the three matching functions were designed in such a way that the
exact matching function (Def. 6) is a special case of QoS-match (Def. 8) which is
a special case of the QoS-rating match (Def. 11). Table 5.1 illustrates the relations
between all matching functions. The first column compares the condition performed
on tuple elements, the second column defines the tuple element rating, and the third
column compares the sum of the partial rates compared to the threshold value.

Example

To illustrate the usage of QoS Definition and QoS Negotiation defined in this section,
we elaborate a simple example of a processor-printer component. There are three
Pentium processors in the system of different speeds with RAM memories of different
sizes:

ProcessorA 200 MHz with 32 MB RAM memory described by a server-tuple A:
A = (6,5, CPU, Pentium, 200, memory, 32, ref)

ProcessorB 200 MHz with 16 MB RAM memory described by a server-tuple B:
B = (6,5, CPU, Pentiumn, 200, memory, 16, ref)

ProcessorC 300 MHz with 4 MB RAM memory described by a server-tuple C:
C = (6,5,CPU, Pentium, 300, memnory, 4, ref)

Definition ranges for all three tuples are P, = P, = P, = N and P; = P; = S where
N is the set of natural numbers and S is the set of all words from English alphabet
(see tuple definition, Def. 1).

A client requires the fastest available Pentium processor running at least at
200MHz with at least 16MB memory (numbers are hypothetical, chosen to illustrate
QoS-based matching, rather than to demonstrate realistic resources). The client
request is defined by a tuple D:

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 59

QoS-rating mi1 = Mo P, = Q, &pi S fl(q,) Zle ki >5 result
match Vie {1,m}

tuples: A D 59=5 yes 1+1414+1+2= | match
=62>5

tuples: B D 59=5 yes 1+141+1+1= | match
=52>5

tuples: C D 5=15 fori=>5: donot

4¢16—64= no match

Table 5.2: Results of QoS-rating match between tuples A,B, C and D

D = (6,5,CPU, Pentium, 200 — 300, memory, 16 — 64, ref).
The rating values are:

CPU Q(CPU) =1 (exact match)

Pentium Q(Pentium) = 1 (exact match)

200-300 Q(—(200)) =1, 2(—(300)) = 2

memory Q(memory) = 1 (exact match)

16-64 Q(—(16)) = 1, Q(—(20)) = 2, Q(—(32)) = 3, Q(—(64)) = 4
X 5 (threshold)

From Table 5.2 it is seen that tuple D does not match because there is one
element (i—5) which does not fulfill the first condition p; € fi(g:). Therefore, the
result of the sum of rating values is irrelevant even though it would fulfill the second
condition (1+1+2+1+0=5 >5). The decision between matching tuples A and
B is performed non-deterministically — the first one tested is offered to the client.

5.2.3 QoS Maintenance

After the QoS Negotiation process has successfully finished (the appropriate server-
tuple has been found), the binding can be established. However, QoS characteristics
might change due to user physical migration, or other changes in the computing
environment.

In computing systems where change is frequent, QoS Monitoring must be sup-
ported in order to keep service information in the Trader up-to-date. When a
change is discovered, an appropriate action reflecting new system conditions must
be undertaken. In this section we discuss MAGNET’s support for QoS Monitoring
and Adaptation to change.

QoS Monitoring

QoS Monitoring does not differ from information monitoring, described in section
5.1. Therefore, the monitoring components the Monitor on the server side and
the Updater on the client side perform this task in the same way they did the
non-QoS monitoring (section 5.1).

Adaptation to Change

Service changed characteristics are expressed in terms of different tuples being
placed into the pool by the Monitor, the Updater or by the client and server them-
selves. This might result in an adaptation to new conditions. According to the

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 60

model defined in chapter 3, we distinguish between two fundamental adaptation
strategies: resource management and application adaptation.

Resource management, primarily client-initiated, attempts to obtain additional
or different resources to fulfill the original client’s requirements. In MAGNET, this
is performed by the client-instructed Updater seaching the pool for a better match,
and initiating a rebinding. The details of rebinding are provided in section 5.3.6.

Unlike resource management, application adaptation is a result of a server being
unable to provide agreed service. In MAGNET, the server cooperating with the third-
party Administrator has to be replaced and a new tuple is offered to all attached
clients. The new service can be provided by the same physical component, or by a
replacement. Details of this operation are described in section 5.3.7.

5.3 Rebinding

The rebinding process, as defined in chapter 3, comprises four phases: export-
ing service definitions, renegotiating service definitions, destroying a binding, and
reestablishing a communication channel. According to the component initiating
the operation, we distinguish between first-party rebinding and third-party rebind-
ing. In addition, a situation where an unbound component is left to find a new
peer is called first-party renegotiation, while if it is presented with a replacement,
this is called third-party renegotiation, or no-renegotiation (if it is obtained from an
external administrator).

In this section we describe MAGNET’s additional components involved in re-
binding, then we describe the rebinding process, and finally different situations into
which the system transfers.

5.3.1 Components for Rebinding

Third-party rebinding and renegotiating requires the assistance of a dedicated com-
ponent, attached to the client (Updater) or the server (Administrator). Both clients
and servers involved in rebinding contain ‘extended’ Binder subcomponents the
Rebinders. The Server-Rebinder is present in the server component, while the
Client-Rebinder is contained in the client component. All these components are
illustrated in Figure 5.2.

Rebinders

The Server-Rebinder and the Client-Rebinder constitute a pair of subcomponents
contained in all clients and servers requiring rebinding. They extend the function-
ality of classical Binders, described in chapter 4.

In addition to the establishment of a binding, the Server-Rebinder provides an
additional service interface (rebindS) through which the Administrator performs
the rebinding operation. Symmetrically, in addition to Client-Binder functionality,
the Client-Rebinder provides an service interface rebindC through which the client
is informed about rebinding. In addition, the Server-Rebinder keeps a list of clients
currently attached to the server in form of their rebindC references. Via a dy-
namically established binding between service interfaces rebindC (on clients side)
and forwardS (on the server side), clients are informed about charges in currently
provided service, such as a server upgrade.

As all rebinding operations are performed in cooperation with Rebinders, they
ensure that the rebinding takes place when components are ready to do so.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 61

The Administrator

The key operation of the Administrator component is a server upgrade. The op-
eration (performed by a human administrator or automated) consists of switching
to the new server and upgrading server ‘structures’, if required. The procedure of
upgrading server structures falls into one of the following three categories:

1. Resources offering a time-constrained service. Interacting clients are allowed
to finish on the current server to avoid the upgrading procedure, while new
clients are assigned to the new server. For example, in a printer upgrade, cur-
rent jobs in a printer queue are allowed to finish, while new jobs are allocated
the new printer.

2. Resources necessitating runtime rebinding but no state has to be maintained
and therefore no additional data structures need to be upgraded; for example,
switching between different levels of network connectivity does not require
any additional operations (such as copying), in contrast to a disk upgrade, see
point 3. In this case, the Administrator’s task is to initiate the operation and
provide a reference to the server replacement.

3. Resources necessitating an upgrade of server data structures, for example a
disk upgrade. The Administrator, in cooperation with both servers (current
one and the replacement), provides the upgrade and ensures that consistency
is maintained.

The Updater

Another component involved in the rebinding process, instructed by the client, is
the Updater. It keeps monitoring server-tuples in the information pool and, if
appropriate, initiates rebinding. Its monitoring procedure was described in section
5.1.

5.3.2 The Rebinding Process

In chapter 3, we identified four phases of the rebinding process: exporting service
definitions, renegotiating setvice definitions, destroying a binding, and reestablish-
ing a communication channel. In this section, we describe how these phases are
implemented in MAGNET.

Exporting Service Definitions

Every new component arriving into the system must export its service into the
Trader, as usual. However, in case of rebinding three cases need to be described.

Firsly, two tuples need to be inserted into the Trader structures by ADVERT
— the classical service tuple (contains service interface bglue) and a ‘rebinding’
tuple (with a service interace rebindS), see Figure 5.2. All servers in the system
participating in the rebinding process are responsible for inserting these two tuples
into the Trader.

Secondly, the Administrator, as a third-party, performs a replacement of a server.
From an insertion of a new server’s tuple by ADVERT, the new server is available to
clients. However, the Administrator must perform the upgrade operation: it obtains
the rebindS reference of the current server from the Trader by BIND (a binding
is established between the service interface destroy and rebindS), and hands over
the reference (bglue) to the ‘new’ server and provides required upgrades server
data structures.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE

GlueFactory GlueFactory GlueFactory GlueFactory

gluegen gluegen gluegen gluegen

Trader

advert bind

getRef Client-Rebinder

Administrator

Figure 5.2: MAGNET with Components for Rebinding

62

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 63

Thirdly, Updater calls the operation BIND with a higher requirements (closer
to the ideal resource) than the server currently serving the client and waits until a
matching server-tuple arrives.

Renegotiating Service Definitions

Renegotiation service definitions might be performed before or after the current
binding is destroyed. Semantically, this does not differ from the negotiation in the
binding process. However, according to which component performs it, there are
three cases:

Unbound clients (first-party rebinding) renegotiate a new server-tuple by calling
BIND as a result of being unbound, yet not given a new peer. This will result in
the client finding different servers, as client’s requirements might have changed due
to QoS requirements.

Updater, a third-party, renegotiates a new server, then it performs an additional
check (rebinding of a client close to termination might not be worth it, because of
an overhead of the rebinding operation). However, if it decides that rebinding is
beneficial, it notifies the client.

No-renegotiation needs to take place if all clients are presented with a new server
replacement obtained from an external administrator.

Destroying a Binding

Firstly, according to our assumptions, it is the responsibility of every component
to keep its tuples in the information pool up-to-date, therefore, all tuples must be
removed by calling the operation WITHDRAWS (servers only; clients do not keep
tuples in the pool) before destroying themselves.

The server informs all clients about its shutdown, which results in destroying
the communication channel (by establishing a binding between service interfaces
forwardS on the server side and rebindC on the client side). Clients use a built-in
function in the communication channel, to inform the server of its departure, so
that the Server-Rebinder can keep the list of clients up-to-date.

Reestablishing a Communication Channel

Firstly, the Server-Rebinder needs to receive the new client tuple (from a client,
or from the Updater via upgradeC and bglue), initiate the Rebinder-to-Rebinder
communication protocol (between bc and bs) which performs the final stage of
the rebinding process, to establish the new end-to-end communication channel.
Again, this phase does not differ from the classical establishment of a communication
channel. Tt performs the admission protocol, if required.

Transparency of the rebinding is achieved — it is impossible for the server to
distinguish between classical cases (tuples passed over from the Trader), and rebind-
ing components (tuples passed over via a third-party). Finally, a new client-server
binding is established.

5.3.3 Rebinding Situations

Here we will investigate the four rebinding situations described in chapter 3:
e first-party renegotiated first-party rebinding
e first-party renegotiated third-party rebinding

e third-party renegotiated third-party rebinding

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 64

rebindC

glueC
Client-Rebinder Ser ver -Rebinder

Clientl

Figure 5.3: First-Party Renegotiated First-Party Rebinding in MAGNET

e no-renegotiation third-party rebinding.

All situations are illustrated with simple examples. However, for reasons of sim-
plicity we represent rebinding of only one component (differences in number of
component rebound we described in chapter 3). Further, all figures are equipped
with numbers representing the order in which each binding is established. There-
fore, we will not describe in words each rebinding phase for each situation. Also,
for reasons of clarity, we decided to omit the Tree components and present only
interactions with the Trader. Nevertheless, the matching process does take place in
Tree components, as described in chapter 4.

5.3.4 First-Party Renegotiated First-Party Rebinding

In this case, it is the client component which requires a new service. Therefore, it
destroys the current binding with the server and renegotiates a new server in the
Trader. Figure 5.3 illustrates this rebinding situation with a simple example.

5.3.5 First-Party Renegotiated Third-Party Rebinding

In this case, a server (as a passive component) is disconnected by a third-party,
the Administer. It announces shutdown to all attached clients kept in the list in
the Rebinder. Clients are left to renegotiate a new peer themselves. Figure 5.4
illustrates this rebinding case.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 65

Administer

destroy

O forwards

Ser ver -Rebinder

Clientl Server2

Figure 5.4: First-Party Renegotiated Third-Party Rebinding in MAGNET

5.3.6 Third-Party Renegotiated Third-Party Rebinding

In this case, the Updater performs a rebinding of a client to a server that meets
the client’s requirements more accurately (informed via a binding between new and
rebindC). This feature is highly desirable in environments with systems whose char-
acteristics frequently change. In this situation, phases ‘destroying a binding’ and
‘renegotiating service definitions’ are performed in the opposite order, as it better
suits the character of the described situation.

Figure 5.5 illustrates a simple example.

5.3.7 No-Renegotiation Third-Party Rebinding

In the final situation, a third-party, Administrator, performs a server replacement.
Clients are informed about their new peer in the form of the upgradeC interface
service. No renegotiation is required, as the third-party has external knowledge
about system charge (such as a system administrator). Figure 5.6 illustrates Serverl
being upgraded to Server2.

5.3.8 Other Issues

In this section we briefly describe three important issues related to rebinding —
consistency, protection and buffering.

Consistency

As MAGNET treats components as black boxes it cannot be responsible for main-
taining consistency, as we assume throughout this thesis. This concerns both their

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 66

Trader

bind advert

Figure 5.5: Third-Party Renegotiated Third-Party Rebinding in MAGNET

destory

Administrator

cp getRef

Trader

bind advert

Figure 5.6: No-Renegotiation Third-Party Rebinding

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 67

bindings and updating the tuples kept in the information pool.

In addition, client components are expected to inform servers about the termi-
nation of the binding (by the appropriated operation built-in the communication
channel) in order to allow servers to keep the list of current clients updated for
rebinding purposes.

Protection

According to our assumptions, the framework cannot ensure the validity of infor-
mation placed into the pool. However, at the component level, no binding can be
established without a Rebinder-to-Rebinder protocol performing the required pro-
tection checks. Therefore, the protection of rebinding operations is ensured in the
same way as the protection of the binding process, discussed in chapter 4.

The only exception can be no-renegotiation third-party rebinding. Specific ap-
plications can decide to skip the admission protocol, as the client has already been
checked by the original server. If this option is supported, the new server’s Server-
Rebinder must provide an additional service interface for upgrading clients, with
simplified semantics concerning the establishment of a communication channel. Al-
though this operation adds complexity to the server and disables the transparency
of the reestablishment phase, it might be desirable for particular applications as it
improves the efficiency of the rebinding process.

Buffering

Client-server binding having a character of a ‘batch processing’ (as opposed to
interactive processing) can be performed even when the requested resource is not
available at the moment of the request. Instead of leaving the client waiting until
the server is available, its requests are ‘buffered’ in a buffer-server (special Updater
component) which allows the client to continue its operation. The buffer-servers,
substituting the real servers while they are unavailable, ensure that the operation is
performed when the requested server is connected. This can be performed without
interference from the originating client, even after its completion.

A typical example of such an application is a mobile user ‘printing’ from a
portable while on move. The jobs are buffered allowing the application which origi-
nated the operation to finish. All buffered tasks are printed out transparently when
the portable is connected to a network with a printer. When the real resource be-
comes available (e.g., the portable is connected to the network), the buffer-server

3

establishes an binding with the real server and the service can be performed.

5.4 Scalability

The majority of computing systems are based on scalable, connected ‘domain-size’
units such as the Internet with its domains, cellular phone network divided
into cells, etc. Therefore MAGNET, designed to support the topology of existing
computing systems, consists of connected domain-like units — federations. In this
section, we define the federations, describe their dynamic reconfiguration enabling
computers to join and leave the system at runtime, and discuss issues concerning
the scalability of the architecture.

5.4.1 Federations

MAGNET’s primarily goal dynamic resource management is targeted to be
small (for example an application requesting to print is usually not interested in
a printer on another continent). Consequently, MAGNET’s ‘local-scale domains’ —

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 68

federations (illustrated in Figure 3.2) — are the basic entity of the architecture,
because it reflects the topology of typical resource allocation problem (e.g., most of
resources are allocated in a local Internet domain). However, the architecture must
also support scaling in order to enable a larger physical area to be covered. Achieving
this by extending a single federation would result in maintaining and seaching a
world-scale global information pool. This would be not only very inefficient, but
also, for reasons of locality of resource management, also pointless.

Therefore, the framework supports the interconnection of Traders enabling inter-
federation communication within the computing environment. All system features
discussed so far assumed the existence of a single federation. As MAGNET’s typical
computing environment will use the Internet, the federation size is derived from the
size of Internet subdomains. The algorithm for the configuration of a federation
(distribution of Tree components over available processors) is discussed in chapter
6.

5.4.2 Dynamically Reconfigurable Domains

Before we describe scaling of the architecture (in the next section), we discuss the
situation of mobile users temporarily joining a local federation where they arrive.
This operation needs a special type of support as users need not know the identity of
the Trader they want to connect to. MAGNET provides this support by operations
JoiN and LEAVE. The semantics of these operations is targeted to users joining a
local site temporarily (e.g., mobile users) in order to use its services (such as printer,
scanner, file system, etc.). This presumption leads into three design decisions

e operations JOIN and LEAVE cannot be transparent (therefore, each portable
client waiting for a resource has got the right to decide whether it is able to
accept a resource from an office-based site. This is necessary to avoid mis-
allocations, such as a disk space allocated in the office-based computer will be
useless when the portable is disconnected).

e Consequently, clients and servers do not act symmetrically portable clients
might use the advantage of the portable being temporarily on-line by using
the office-based services (this is the main goal of the operation), while portable
servers will not offer their provisions to an office-based clients for two reasons.
Firstly, the connection is assumed to be temporary, and secondly, the portable
computer resources are typically very limited to be offered to other clients.
Therefore, the operation JOIN is designed as ‘one-way’ the office-based
resources are offered to the portable clients, but not vice-versa.

e As client components are responsible for deciding on the usage of office-based
resources, they are also responsible for a maintaining consistent state when
the portable is disconnected from the office-based site. Consequently, every
portable component using the office-based Trader, is responsible for with-
drawing all inserted tuples in order to leave the office-based information pool
up-to-date and consistent.

We assume that the communication channel can be established between the portable
computer and the office-based domain in the same way as within a single federa-
tion. It is the responsibility of the portable applications and the office-based site
administrator to ensure that the inter-federation interconnections can be physically
achieved. As the join is only temporary, full Trader connection necessitating the
merging of information pools is not required.

Now we define operations JOIN and LEAVE we assume two local trading
systems, a portable and an office-based domain, each consisting of one Trader.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 69

Trader Connection

In order to perform the operation JOIN, an identification of the local Trader is not
necessary as it is not known in advance which site the portable will be plugged into.

The Trader component can also participate in resource management provided
by MAGNET. In order to be able to take part in dynamic binding, it must contain
the Trader-Binder subcomponent (although, its functionality slightly differs from
traditional Binders). To perform the JOIN operation, the office-based Trader offers
its information pool to the portable Trader by calling an operation ADVERT insert-
ing a tuple T'1 = (2,1, join, bglue) into the portable information pool. The only
matching element in this specific tuple is the third element, ‘join’. As Traders are
being connected, this primary binding is established statically by a system admin-
istrator (human or automated, such as support for plug&play Ethernet cards), not
using MAGNET.

Operation JOIN

A portable client requesting a service which might be fulfilled by office-based site
servers when the portable is temporarily connected, inserts three bind tuples into
the portable pool the classical bind tuple C1 defining the request, the second
tuple of the form: C2 = (n, 1, join,C1) encapsulating the actual tuple C1 tuple,
and the third one C3 = (n, 1, leave, C'1) which will be used for disconnection.

When the portable is connected to an office-based domain by inserting the office-
based Trader tuple T1 = (2,1, join, bglue) into the portable information pool by
the system administrator, a matching between 7'1 and C2 can be achieved.

As tuple matching between T'1 and C2 does not differ from any other client-
server tuple matching, the operation is performed as usual — the particular Glue-
Factory binds to the office-based Trader and passes C2 tuple to the office-based
Trader-Binder. Nevertheless, the operational semantics of the Trade-Binder differs:
instead of establishing a binding between the office-based Trader and the client, it
retrieves the tuple C1 from the received tuple C2 and reinserts it into its informa-
tion pool by calling operation BiND. This operation features a recursion. The client
tuple is handled as an ordinary local tuple in the office-based information pool —
if a matching server-tuple is available, an inter-federation binding is established.

Figure 5.7 illustrates operation JOIN, for reasons of simplicity, we omit the Tree
components. However, the binding is established in cooperation with Trees, as
defined in chapter 4.

Trader Disconnection

Disconnecting the portable from the office-based site must return the system to a
consistent state. Firstly, the ‘connecting’ office-based Trader’s tuple 7'1 is with-
drawn from the portable’s information pool by operation WITHDRAWS called by
the administrator. Client tuples waiting to be served in the office-based informa-
tion pool must be also removed. As the local Trader cannot distinguish between an
office-based client-tuple and a portable client-tuple, the client components them-
selves must perform the withdrawal. In order to inform them that their tuples
should be removed from the office-based pool, another local Trader advert-tuple is
inserted into the portable information pool: T2 = (2,1, leave, bglue2).

Operation LEAVE

Inserted T2 tuple matches with waiting client tuple C3 = (n,1,leave, C1) which
is passed to the office-based Trader-Binder over an binding established between
particular Glue Factory and bglue2 service interface, tuple C1 is extracted from

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 70

bglue Trader

4

s BIND (C1)
T1 match C2 31 match C1

Trader-Binder Trader-Binder

bc ps bglue

glueC glueS
Client-Binder Server -Binder

Figure 5.7: Operation JOIN

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 71

C3, and operation WITHDRAWC on (C'1 is performed. If it does not succeed —
it means the client is already being served by an office-based server. However, all
clients must be informed about the disconnection, therefore the office-based Trader-
Binder establishes a binding with them (between bs and bc obtained from the tuple
C'1) and notifies them. Client-Binders participating in inter-federation binding (in
particular, the service interface bc) must handle this additional functionality. That
is the ‘notification’ about disconnection results in: the termination of the client-
server binding (if the client was bound to an office-based server), or the reinsertion
of tuples C2 and C3 into the portable information pool (if the client was still waiting
to be served).

Portable client components having finished their communication with local servers
have already removed all their tuples, therefore no tuples can be left behind.

Figure 5.8 illustrates this operation. There are two clients (Client1 and Client2)
using the option of the portable being temporarily connected to an office-based
site. Clientl (described by tuples C1, C2 and C3) is being served by an office-
based server (Server), while Client2 (described by tuples X1, X2 and X3) is still
waiting. The notification about disconnection from the office-based Trader results
in different actions: Clientl must terminate its binding with Server, while Client2
just reinserts its ‘connecting’ tuples X2 and X 3.

Discussion

In order to enable portable servers to offer their provisions to other federations,
the Trader-Binder must be equipped with four service interfaces: bglue (perform-
ing BIND), bglue2 (performing WITHDRAWC), bglue3 (performing ADVERT), and
bglue4 (performing WITHDRAWS). Also, two ‘join tuples’ would have to be inserted
into the portable pool:

T1= (2,1, join,bglue)

T3 = (2,1, joinS, bglue3),

and two more tuples to disconnect the Traders:

T2 = (2,1,leave, bglue2)

T4 = (2,1,leaveS, bglued),

and all server would call operation BIND. However for reasons listed above, it
is not supported by the architecture primarily, but can be added to the framework,
as outlined in this section.

5.4.3 Scaling the Architecture

In order to enable the architecture to scale, the Traders must be ‘identifiable’.
Therefore, a method of unambiguous Trader addressing must be enforced to operate
at a world level. However, any application using MAGNET will be running in a
particular computing environment which, if scalable, must have some unambiguous
CPU naming scheme incorporated in order to identify its processors. Running on
top of an existing computing environment, MAGNET’s Traders can use the existing
naming scheme for their identification. Therefore, we can claim that the actual
design and assignment of addresses is irrelevant to the inter-Trader communication.

However, in order to design Trader-to-Trader binding, there are two features
we must assume about the CPU naming scheme that will be used for the Trader
identification:

e names are unambiguous in the bounds of the computing environment

e names are constructed by a way that they can form a hierarchical tree struc-
ture with a single root, and a unambiguous path in the tree (at the naming

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 72

Client-Binder

WITHDRAWC(C1)
WITHDRAWC(X1)

Trader
bs bglue2

3
i; n‘ﬂtcE ;; Trader-Binder
matcl bs bglue

‘?‘(ader—Binder

bc
glueS
Server -Binder

Client-Binder
Clientl

Figure 5.8: Operation LEAVE

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 73

level) between two Traders can be determined (however, nothing about the
network topology at the implementation level is assumed.)

There are many examples of existing communication infrastructures based on nam-
ing fulfilling these requirements, such as the Internet based on 1P addresses (each
byte represents a tree naming layer, nothing about physical topology is assumed),
the world telephone network (country code, city code, etc. represent tree layers),
etc. It is irrelevant whether the MAGNET trading system is constructed from the
‘top’ (the ‘root’ Traders is created first, other Traders can be immediately connected
to the tree, therefore the trading system is never disjoint), or whether it evolves from
the ‘bottom’ by joining local Traders together (in this case, the trading system is
disjoint, and connects on demand).

Having discussed our presumption on the Trader naming system, we will define
Trader-to-Trader communication enabling bindings between components in different
federations.

The Support for Scalability

For operations JOIN and LEAVE the actual identity of the local site Trader was
irrelevant. However, for components requiring a server from a particular federation,
support for addressing and locating is essential. We assume that Traders reside on
unambiguous addresses forming a tree hierarchy which is derived from the naming
scheme used in the computing environment where MAGNET operates. The Traders
are equipped with dedicated location components, Locators which are attached to
all Traders and form a tree hierarchy according to Traders’ addresses. Figure 5.9
illustrates a fraction of a global trading system consisting of federations using 1P
addresses as their naming scheme. Locators reside at addresses forming the tree
hierarchy which subtracted from 1P addresses as illustrated in Figure 5.9.

Communication between Federations

Clients which require a tuple C1 to be inserted into an information pool on a
particular address have to incorporate it into a new tuple of the format C' =
(n,1,up, address, operation,C1). These tuple elements have following meaning;:
‘up’ is a key word the only matching tuple element, ‘address’ is the address of
the Trader where tuple C'1 is to be served, and ‘operation’ is one of the four Trader
operations. Then, tuple C is inserted into the pool by operation BIND. It matches
with special server tuple T'1 = (n, 1, up, locglue) (described below) inserted into the
pool by the Locators. As usual, the client matching tuple is passed over to the
server. However in this case, instead of the Server-Binder, it is processed by the
Locater. Their algorithm, described bellow, ensures that the tuple subsequently
reaches the Trader on the ‘address’. Here, the tuple C1 is extracted and inserted
into the pool by the ‘operation’, which is also extracted from the tuple C'1. If there
is a matching tuple available, an end-to-end binding between federations can been
established.

The remaining problem is to locate the Trader on a particular address the
task of Locators.

Locators

The Locators are attached to all Traders and perform two following actions: form
the tree by establishing bindings between appropriate Traders, and passing over
tuples addressed for other federations.

Firstly, by inserting a server-tuple T'1 = (n, 1, up, locglue) to every information
pool in the tree layer below, binding with all Traders on that level is established.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE

Locator
1.1.1

Trader
1.1.1.3

Locator
1111

Locator
11

Trader
1.1.14

Locator
1

Trader
1.1.3.4

Locator
1.1.2

Trader
1.1.2.3

Locator
1112

Locator
1121

Locator
1.1.2.2

Figure 5.9: Trading scheme based on 1p addresses

74

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 75

Consequently, a tuple of this format is inserted into every information pool by
the Locator on the layer above. The Locator in tree leaves (defined by the tree
hierarchical structure) Traders skip this step.

In addition, every Locator (including those in leaves) insert a server-tuple 72 =
(n, 1, down,locglue) to the information pool of their Trader. The service interface
locglue represents the service of the Locater which inserted the tuple. This task
is performed by the MAGNET administrator configuring the system.

Secondly, when a client tuple C' = (n, 1, up, address, operation, C1) is inserted
and matches with T'1, it is sent to the Locator on the layer above for further
processing. The Locator algorithm is recursive and is repeated by all Locators
handing over the tuple. One step leads into three cases investigated in this order:

1. the ‘address’ in the obtained tuple is the one of the attached Trader the
tuple reached its final destination. The actual tuple C1 is extracted from the
tuple C, and inserted into the local information pool by extracted ‘operation’
(the third tuple element).

2. the component with the ‘address’ belongs to the subtree connected to this

Locator. Then, the tuple can be forwarded ‘down’ towards its destination.
Firstly, matching field ‘up’ is replaced with ‘down’ :
C = (n,1,down,address,operation, C1), secondly, operation BIND on the
new tuple C'is called. In the Trader below it is inserted into the pool, matches
with tuple T2, is received by the Locator, and the algorithm performs another
recursion.

3. the tuple belongs to another subtree; it is inserted unchanged into the local
information pool by the operation BIND where it matches the tuple T1 =
(n,1,up,locglue) from the Locator above, is forwarded to to the Locator
above, and the algorithm performs another recursion.

Figure 5.10 illustrates an establishment of binding between remote federations using
Locators.

5.5 Chapter Summary

In this chapter we have described MAGNET’s advanced featres information mon-
itoring, quality of service management, rebinding, and scalability. This chapter
together with chapter 4 covers the design of all features provided within the MAG-
NET framework.

Firstly, we have discussed information monitoring as an essential system feature
allowing data in the shared information pool to be kept up-to-date. There are two
dedicated components for monitoring the Monitor responsible for monitoring
server provisions, and the Updater informing clients about changes in the computing
environment.

Quality of service management is another indispensable feature of computing
environments supporting users working with resources with frequently changing
characteristics. Following our model of QoS Management defined in chapter 3,
there are three tasks to be performed: QoS Definition, QoS Negotiation, and QoS
Maintenance.

QoS Definition is considered at four levels. Firstly, at the characteristics level,
components define values of their service characteristics, equipped with QoS oper-
ators (such as ,—,|,* specifying operations interval, negation, or, and all, in this
order, in addition user-defined operators can be added). Secondly, at the service
level, QoS-match is defined to enable matching of tuples extended of the QoS op-
erators. Thirdly, tuples might represent combinations of components to prevent

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 76

T1=(2,1,up,locglue of 1.1)
T2=(2,1,down,locglue of 1.1.1.3)
Trader 1.1.1.3

5
‘up’ replaced with ‘down’ in C
BIND(C)
4
T1 match C
C passwd to Locator 1.1.1

6
T2 match C
C passwd to Locator 1.1.1.2

4
T1=(2,1,up,locglue of 1.1.1) T1=(2,1,up,locglue of 1.1.1)
\

T2=(2,1,down,locglue of 1.1.1.1 T2=(2,1,down,locglue of 1.1.1.2)
<

Trader 11.1.1 Trader 1.1.1.2

7
C1 Bind extracted
BIND(C1)

bs
bglue
glueC glueS

Client-Binder Server-Binder

Figure 5.10: Communication between Federations

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 7

non-nondetachable resources from being allocated separately (e.g., a processor and
attached devices). And finally, tuples might contain time and location dependent
information to take into account a user’s physical location.

QoS Negotiation introduces the QoS-rating operators, and QoS rating match
operation allowing clients to define the requirements with further flexibility based
on the evaluation of each tuple element, and to select those above a threshold limit.

QoS Maintenance comprises QoS Monitoring of QoS-based resource descrip-
tions, and adaptation to change covering two strategies: resource management and
application adaptation.

Rebinding is an essential feature of any dynamic system enabling operations like
run-time server upgrades, or client adaptation to changed system configuration. The
rebinding process comprises at four phases: exporting service definitions, renegoti-
ating service definitions, destroying a binding and reestablishing a communication
channel. MAGNET’s component enabling the rebindsing operations are called the
Rebinders, the Administrator (attached to a server) and the Updater (attached to a
client). According to the component initiating the operating, we distinguish between
first-party rebinding, and third-party rebinding. In addition, components might be
left unbound to renegotiate a new peer themselves (first-party renegotiation), or are
presented with a replacement (third-party renegotiation, or no-renegotiation). Four
rebinding situations outlined in chapter 3 have been discussed.

Scalability is another indispensable requirement of mobile users. We have de-
fined ‘local’ units comprising one Trader component — federations. The framework
provides dynamic reconfiguration of federations by operations JOIN and LEAVE in
order to support mobile users requiring to join and leave a local site which dy-
namically. As Traders follow the naming scheme of the computing environment
where MAGNET operates, scaling the architecture is feasible. Special dedicated
components, Locators, attached to all Traders, enable a tuple to be passed over to a
particular Trader on a component request. If the computing environment enables a
long-distance communication channels to be established, distributed MAGNET may
assits in establishing bindings in world-scale physical distances.

Last two chapter have covered MAGNET’s design. The next chapter focuses in
its implementation issues.

Chapter 6

Implementation Experience

In this chapter we discuss implementation issues of the MAGNET architecture. Regis,
an environment for constructing distributed systems [42], was chosen as a base for
the implementation of a prototype of MAGNET because it offers an infrastructure
well-suited to MAGNET’s purposes.

In section 6.1, we start by a brief overview of Regis’ key features in order to
introduce the computing environment. Then we present how Regis was adapted for
MAGNET. In section 6.2, we discuss Regis-dependent implementation features
the components of the framework and the support for the binding process.

The rest of the chapter covers the following issues: tuple implementation and the
matching process (section 6.3), the data structure of the Tree components (section
6.4), the Trader and the distribution of Trees (section 6.5), QoS Management issues
(section 6.6), discussion on limitations and usability of the architecture, sections 6.7
and 6.8, respectably.

6.1 Regis Distributed Environment

MAGNET, as a resource trading architecture, relies on the computing environment
where it operates. We have chosen Regis, an environment for constructing dis-
tributed systems, for building MAGNET’s prototype. Although other platforms
could have been used (we discuss this issue in section 6.8), Regis provides a very
suitable framework matching our notion of components and services. Defining re-
sources as Darwin components in terms of services they offer or provide (from
which Regis code can be generated), simplifies the implementation effort. In ad-
dition, Regis, enabling communication between local or remote components which
need not be aware of their location, also supports run-time binding establishment
necessary for MAGNET architecture.

In this section, we give an overview of Regis, and discuss how it was adapted to

better suit MAGNET’s purposes.

6.1.1 Overview of Regis

Regis [42], developed at the Department of Computing at Imperial College in Lon-
don, is a computing environment for building complex distributed systems. It is
based on a model defining programs in terms of components (acting as black-boxes),
interconnected by typed interaction styles which represent primarily one-way com-
munication between server and client.

The components are defined by service interfaces, either provision or require-
ment, which is described by an interface reference, and by its type — an interaction

78

CHAPTER 6. IMPLEMENTATION EXPERIENCE 79

style. Each component can be either primitive or composed of other components.

Communication is achieved by binding components together either statically
using Darwin, a structure configuration language [43], or dynamically at runtime.
As open distributed systems enable components to join and leave the system at
runtime, support for dynamic binding is essential. Regis supports this feature by
enabling an interface reference to be passed from server to client over an existing
binding, and by providing a binding operation (bind) which, called by the client,
establishes a new communication channel.

Regis also enables physical distribution of its components over existing proces-
sors, a set of typed interaction styles from which complex bindings can be built. In
addition, Regis supports four types of binders providing both fundamental binding
operations: first-party binding, and third-party binding, and derivative operations

import and ezport binding used for dynamic offers and requests for service
interfaces.

In addition, Regis’ interface reference naming is unambiguous and ensures scal-
ing of the architecture [15]. Communication channels may be composed from a
stack of protocols which can be loaded on-demand in order to enable adaptation
to new system conditions. Consequently, the framework enables run-time program
management featuring initial configuration, programmed evolution, and runtime re-
configuration. Additional features and details of the architecture can be found in
[15]. For our prototype we used Regis version 0.5.8 ported to RedHat Linux 5.0.
Both Regis and MAGNET are primarily implemented in the C+-+ programming
language.

6.1.2 Adaptation of Regis

In order to use Regis to build a prototype of MAGNET, the system needed to be
extended to enable the interaction required by the resource management architec-
ture.

Firstly, as the communication between the Trader, Trees and components is
based on exchanging information in the form of tuples, support for an interaction
style type tuple was necessary (enabling, for example types Port<Tuple> sending
a tuple over a basic unsynchronized interaction style Port, etc.) A tuple is a C++
data structure, its implementation is discussed in section 6.3.

Secondly, a new interaction style Glue<operation, type> was added to the
set of Regis original interaction classes to enable pairs of operands to be sent over
a single communication channel. The semantics of the Glue interaction style is
derived from Port, and allows both operands to be sent separately or together
(such as, in the Trader.ipool Tree.all interaction, discussed in chapter 4).
This characteristic further extends the flexibility of interaction typing.

6.2 MAGNET Implementation in Regis

As an in-depth description of every aspect of the implementation is not essential,
we have focussed on the parts of the implementation that are significant to the
framework’s overall functionality. In this section we describe the implementation of
MAGNET’s components and interactions used by the binding process.

6.2.1 System Components

All MAGNET’s components, described in chapters 4 and 5, are implemented as Dar-
win components. As their static services are described using Darwin, the bindings
can be established in advance.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 80

The Darwin textual notion represents the bindings in the same way as the graph-
ical notion used throughout the thesis. Components (represented by rectangles in
the graphical notion) are defined by a keyword component followed by the name of
the component. Service provisions (represented by a black circle), is defined by a
keyword provide. Service requirement (represented by an empty circle) is defined
by a keyword require. The second argument stands for the interaction style (which
might be predefined using typedef), and the third argument represents the service
interface.

As an illustrating example, we define the Trader, server and client components

The Trader Component

typedef Glue<Oper,Tuple> gluelP;
typedef Port<Tuple> portT;

component trader {
provide portT _bind;
provide portT _advert;
provide portT _withdrawS;
provide portT _withdrawC;

require glueIP ipool[TupleMatchSize * TElmTypeNo];

Each of the four Trader functions is declared as provisions (_bind, _advert,
_withdrawS, _withdrawC). The array ipool represents requirements of service from
distributed Tree components. This feature (including the meaning of constants
defining the array boundary TupleMatchSize and TElmTypeNo) is described in sec-
tion 6.5.

A Server Component

typedef Port<Tuple> portT;

component server {
require portT cp;

}

A Client Component

typedef Port<Tuple> portT;

component client {
require portT cp;

}

Both components define a requirement cp, in accordance with the graphical rep-
resentation of clients and servers used throughout the thesis. The framework can
be initialized by a main component declaring these three components and estab-
lishing the first static bindings between server, client and the Trader. In Darwin,
components are declared by a keyword inst, followed by a component name and an
instance name, while a static binding is defined by a keyword bind and two dashes
connecting appropriate service interfaces.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 81

The Main Component

component main {
inst trader t;
inst server s;
inst client c;
bind c.cp -- t._bind;
bind s.cp -- t._advert;

The main component definition is only illustrative, to give the reader not familiar
with Darwin an idea about the language. In our prototype, in order to enable
new components to join the system at runtime, component-Trader bindings are
established using the Regis nameserver service provisions are exported into the
nameserver, while server requirements are imported, and the binding is established
at runtime. However, we do not provide a full discussion of the syntax of these
operations for reasons of readability.

A Regis code is generated from the Darwin definition, and the remaining task
is to define the actual component functionality in C++ as a body () function. Any
further communication can be performed by statically established bindings (in Dar-
win), or by bindings established at runtime. In order to to so, dynamically created
services must be defined in the components’ body () functions, and their interface
references passed over an existing binding at runtime.

Implementation of the MAGNET Architecture

For reasons of simplicity, we focus on the core elements of the architecture — those
involved in the binding process. As all other system components (the Monitor, the
Updater, etc) are implemented in a similar way, we would not gain any benefits
from presenting complete code listings and binding descriptions.

In Figure 6.1, we illustrate four Darwin components: the Trader, Trees, client
and server and their bindings. The subcomponents, the GlueFactory and the
Binders, are implemented as C++ objects declared within a particular Darwin
component. Again, bindings are numbered to illustrate the order in which they
take place. In addition to the interaction styles, the Figure also shows how public
service interfaces (bglue and bc) are advertised. As can be seen in the Figure 6.1,
interaction styles used for the following bindings are:

e the Trader component: interaction style Port<Tuple>
e the Trader Tree: interaction style Glue<Oper,Tuple>
e GlueFactory Server-Binder: interaction style Port<Tuple>

e Server-Binder Client-Binder: interaction style Port<G: :Reference> where
G is the final client-server communication protocol interaction style

e Server-Binder Client-Binder using the Admission protocol: interaction style
Glue<Entry<S,boolean>::Reference,G: :Reference> where S is the secu-
rity protocol (UID, PGP, etc.) and G is the final client-server communication
protocol interaction style

e Client — Server: application-defined interaction style G

CHAPTER 6. IMPLEMENTATION EXPERIENCE 82

GlueFactory

gluegen

bc

glueC
Client-Binder

Figure 6.1: Regis bindings used in the MAGNET architecture

6.3 Tuples

A required feature of the architecture is to provide extensibility of existing ser-
vices and data formats. Therefore, the implementation of the tuple format and the
matching process must feature flexibility enabling this requirement to be fulfilled.
Firstly, the tuple format must allow new data types to be added dynamically to
represent additional resource features and QoS description. Secondly, the match-
ing process must support user-customization enabling these new data types to be
incorporated into the matching process.

Tuple Format

The tuple, at MAGNET’s level (Def. 1), consists of tuple-elements which encapsulate
the real data types used by components to express their features. In C+-, this is
implemented as a high-level base-class (Tuple) comprising the tuple size, the tuple
matching size, and encapsulating tuple-elements. All standard and user-defined
tuple-element classes are inherited from a base tuple-element class TElm. Figure 6.2
represents the inner structure of the tuple class.

The Matching Process

The matching function is implemented as an overloaded member function of tuple-
element classes inherited from the base class TElm. A tuple-element type matches
only the same type, and the ‘equality’ of values can be re-defined according to the
type. The implementation of the QoS-based matching process is discussed in section
6.6.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 83

black&white

600dpi

Figure 6.2: Tuple representation

6.4 The Tree

Once a tuple is received by the Trader, it is forwarded to a particular Tree com-
ponent for processing. In this section we focus on the data structure of the Tree
components, the implementation of the Trader operations performed by the Trees
(ADVERT, BIND, WITHDRAWC, WITHDRAWS), and we will compute the complexity
of these operations.

6.4.1 The Tree Data Structure

In order to design a suitable data structure for representation of tuples in the
information pool, it is necessary to consider the character of operations it will
be particularly used for. Fundamentally, data structures are considered static or
dynamic.

Static data structures can be efficiently queried, but operations insert and delete
are expensive. However, once they are built, the structure is not expected to change
much, therefore, update performance is not a problem. For example, heap-type
structures, such as binomial heaps [77], are designed to support the search of the
minimum value (which can be performed in constant time), however, operations
insert and delete are expensive. In contrast, dynamic data structures [26] support
frequent changes (operations insert and delete) as well as ‘querying operations’. In
this case, the purpose of the structure and the probability of each operation deter-
mine whether insert and delete operations should be favored to search operations
or vice versa.

As components might insert and withdraw a tuple at runtime, the data structure
of the Tree component must be dynamic — it supports both insert and delete
operations, and the search operation — the matching function. As every insert
(ADVERT, BIND) and delete (WITHDRAWC, WITHDRAWS, or as a result of ADVERT
when client-tuples are satisfied) operations follow a sequence of matching operations,
the structure is designed to favour the matching to inserts and deletes. Here we
describe the structure; its complexity is calculated in section 6.4.3.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 84

The Design of the Tree Data Structure

In order to support the matching operations, the data structure of the information
pool is derived from a tree' data structure. Edges of the tree are implemented
as simple pointers, while vertexes are more complex and do not share the same
structure. We distinguish between three types of vertexes in the tree: the root, the
inner-vertexes and the leaves.

As one of the tuple-matching requirements is the equality of tuple ‘matching-
size’ (parameter m, see Def. 1), tuples of different ‘matching-sizes’ can be placed
in different subtrees. This feature is implemented by the root — it contains an
array pointing to subtrees of different tuple ‘matching-size’. To improve efficiency,
all inner-verteres are two layered: the first layer determined by the tuple-element
type and the second layer by the tuple-element value. Each pair of valid elements
connects this inner-vertex with an inner-vertex at the next layer, or with a leaf.
Unlike the inner-vertexes which are supportive, the leaves contain the actual tuples.
The design of the data structure implies that the leaves may contain only identical
tuples (parameters in the ‘matching part’ of a tuple).

The distinguished roles of client and server, required by the framework, are im-
plemented by separate trees for client-tuples (client-tree) and server-tuples (server-
tree). The Tree data structure representing the server-tree is illustrated in Figure 6.3
(client-tree is structurally identical). There are five hypothetical tuples inserted into
the tree: T'1 = (2,1, printer, bglue), T2 = (1,1, printer), T3 = (3,1, printer, a, b),
T4 = (2,1,55,bglue) and T5 = (2,2,123, memory). These tuples illustrate the us-
age of the data structure, rather than claim to represent any meaningful resources.

6.4.2 Implementation of the Trader Operations

As a tree is a recursive data structure, all operations are based on backtracking,
tracing the particular tree top-down, performing an overloaded matching function
on each tuple element, until either the matching fails (a tuple being searched for is
not present), or a tree leaf is reached. According to the definition of each particular
operation, one of the following actions takes place:

e operation WITHDRAWC searches only the client-tree, while WITHDRAWS searches
only the server-tree, looking for an exact match (the operation is not re-
stricted to the matching tuple elements, defined by tuple parameter m, but is
performed on all tuple elements n).

e operation ADVERT searches the client-tree using backtracking to find all wait-
ing client-tuples. The server-tuple is inserted into the server-tree, regardless
of the result of the search.

e operation BIND searches the server-tree to find the requested server-tuple.
The backtracking is interrupted when the first server-tuple is found. The
client-tuple is inserted into the client-tree only if the server-tuple has not
been found.

6.4.3 The Complexity of the Trader Operations

In this section we discuss the complexity of tree operations from the data structure
point of view. We do not consider the complexity of the implementation (which
includes processor and compiler dependencies such as memory allocation and deal-
location time, efficiency of a function call, etc.) They are assumed to be performed
in constant time O(1).

We are using the term tree (lower case t) for the tree-like data structure, in contrast to the
component called Tree (upper case T).

CHAPTER 6. IMPLEMENTATION EXPERIENCE

printer

bglue

printer

printer

printer

55

TEIm Type =TEImTypeNo

memory

m=TupleMatchSze

Figure 6.3: Tree data structure

85

CHAPTER 6. IMPLEMENTATION EXPERIENCE 86

Also, we do not consider the establishment of a binding performed by the Glue-
Factory and Binders. Firstly, it depends on the exact computing environment, and,
secondly, it is beyond the Tree data structure functionality. In addition, in this
section we do not compute the complexity of QoS-based operations, as they are
discussed in section 6.6.

We consider the complexity of the following operations in the worst case. The
following variables are used:

m number of tuple matching elements
n number of all tuple elements

InnerSZ number of different values of a tuple type (the size of the second layer
of the inner-vertex)

LSz size of leaves

Match the maximum time to perform the matching function on a tuple element
of any type (as matching operation is user-customized, we consider the
most ‘expensive’ tuple element type, for this purpose. This does not
mean that the operation is time constrained by the MAGNET architec-
ture.)

The time complexity to locate the first inner-vertex from the root pointing to it is
a constant time O(1). There are two unrelated variables to compute the complexity
against: the length of tuples, and the time to perform the matching operation.

ADVERT and BIND

The complexity to search each inner-vertex is composed from the complexity to
search the first layer, and the complexity to search the second layer:

o) the first layer (the tuple element types), as this information is known

O(InnerSz * Match) the second layer (values of tuple elements), as this must be
searched

Therefore, the complexity of an inner-vertex is:

O(InnerSz * Match) + O(1) = O(InnerSz * Match).

Number of inner-vertexes is m, therefore, the complexity to search all of them is:
O(InnerSz = Match * m).

No matching functions need to be performed in the leaves, therefore, the complexity
to search a leaf is: O(LSz). If operation insert is required after the search has
been performed, the algorithm is repeated on the complementary tree (e.g., the
client-tuple searches the server-tree for binding, but it is inserted into the client-
tree, etc). Therefore, the obtained complexity value has to be multiplied by two.
Consequently, the overall complexity of operations ADVERT and BIND is linear in
the tuple matching size:

2% (O(InnerSz x Match xm) + O(ZSz)) = O(InnerSz x Match xm + ZSz).
For a particular tree of fixed variables InnerSz and ZSz, the complexity is:

O(Match * m).

CHAPTER 6. IMPLEMENTATION EXPERIENCE 87

WITHDRAWC and WITHDRAWS

The complexity to search the inner-vertexes of the tree is similar to the previous
case:

O(InnerSz = Match x m).

However, matching functions need to be performed in leaves on the remaining tuple
elements to find an exact match. Therefore, the complexity to search a leaf is:

O(LSz % (n —m)Match) = O(LSz *n * Match) asn > m.

As the tree on which to perform the operation on is known from the operation itself
(that is the reason why we distinguish between WITHDRAWS and WITHDRAWC)
the search of the second tree can be omitted, in contrast to ADVERT and BIND.

Therefore, the overall complexity of operations WITHDRAWS and WITHDRAWC
is also linear in the tuple size (for a particular size of tree):

3

O(InnerSz * Match * m) + O(ZSz *xn* Match) =
= O(Match xm) + O(n x Match) =
=2+ O0(n *x Match) = O(n x Match).

6.5 The Trader

The Trader acts as a central hub and high-level interface for all components using
MAGNET in a local federation. It contains distributed Tree components (semanti-
cally, not physically), and it is responsible for their distribution. In addition, the
Trader’s initiation procedure results in the allocation of Trees on the processors. In
this section we cover these issues.

6.5.1 Tree Distribution

In accordance with our assumptions, typical federations will consist of tens of com-
ponents, therefore, there is a need to support the parallelization in the matching
process to prevent one matching function blocking all other components. This sec-
tion discusses how the information pool (implemented as tree data structures) is
‘divided’ into separated Tree components which can be searched in parallel. Before
we describe the approach taken in MAGNET’s implementation prototype, we briefly
mention other solutions to the problem of the distribution of the information pool.

For very small federations (roughly ten components), the information pool could
have been centralized, and all operations (resulting in matching processes) would
be done sequentially. However, for federations with tens of components this would
not be feasible.

In contrast to the ‘visible’ distribution of the information pool implemented by
MAGNET using the Tree components, an alternative approach could be to use a
Distributed Shared Memory provided by MAGNET. We investigated this approach
in the early stages of our research [34], and concluded that release consistency
model would be adequate in terms of performance. However, as Regis was used for
our prototype, the simplicity of implementation of the distribution in Tree compo-
nents in Regis was the main reason for our approach. Further, Tree components
are implemented in an efficient way in Regis. However, both solutions are only
implementation features, not affecting the design of the MAGNET architecture.

Now we discuss our approach: the distribution of Trees follows the design of
their tree data structure. There are two levels of distribution.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 88

Firstly, the tuple matching-size defines the first layer of the client-tree and the
server-tree, therefore it is used for distribution of subtrees into different Tree com-
ponents. As tuples can only match complementary tuples of equal matching-size,
the matching process can succeed only within the same subtree, hence, the same
physical Tree component. Therefore, the root vertex sends tuples (according to
their matching-size) to appropriate Tree components over an established binding.

Secondly, in order to further improve the parallelization, the client-tree and the
server-tree are also physically distributed into different Tree components according
to the type of their first tuple element. Consequently, the first layer of inner-vertexes
will always contain only one tuple element type. This is feasible because Trees can
be searched in parallel as processes (Regis components), even if there is not enough
processors for physical distribution.

Therefore, the Trader is connected to a two-dimensional array of Tree com-
ponents, where one dimension is defined by the maximum tuple-matching size
(TupleMatchSize); the second dimension is defined by the number of tuple ele-
ments’ types (TElmTypeNo). These constants are illustrated in Figure 6.3. However,
as the latest version of Darwin does not support two-dimensional arrays, this was
simulated using a one-dimensional array.

These constants must be configured according to the computing environment
that uses MAGNET. Figure 6.4 illustrates the Trader and distributed Trees described
in this section.

6.5.2 Tree Allocation on Processors

The Trader interacts with all Tree components over a binding established at con-
figuration time. However, the level of distribution varies according to the processor
configuration. MAGNET running in a distributed environment which enable full dis-
tribution of Trees can allocate all Trees to physically distributed processors. MAG-
NET running in a distributed system allowing only partial distribution (number of
processors is smaller than the number of Trees), must allocate multiple instrances of
Trees on a single processor, while equal distribution over available nodes is ensured.
An extreme example of the partial distribution is a disconnected portable computer
consisting of a single processor where all Tree components must run on a single
CPU, therefore, no distribution is possible.
Assuming the following variables:

i is the index of the Tree component being allocated to a processor

CpuNo is the number of processors

The Trader (trader) ensures equal distribution by allocating Trees (treeComp) to
processors by the formula:

i% CpuNo determining the number of processor (% stands for MOD).

In Darwin, this is implemented as follows:

inst trader t;

forall i=0 to ((TupleMatchSize * TElmTypeNo) - 1) {
inst treeComp ip[i] @Node (i % Cpulo);
bind t.ipool[i] -- ip[i].all;

CHAPTER 6. IMPLEMENTATION EXPERIENCE

T
u
p
|
e
M
a
t
c
h
s
i
z
e

TEImTypeNo

Trader

rimerl bglue

printer

pnmerl a | b

printer

server-tree

MatzhSize=1
TEImType= 1

Tree [1][1] client-tree

CPU | bglue

CPU

55 | bglue

55 | bglue

MatchSize=1
TEIm Type= 2
ader [1]]

bglue

memory

[123 [memory|

server-tree

MatchSize=2
TEImType= 2
Trader [2][2]

33|abc | 55

client-tree

33| memory

Figure 6.4: The Trader and distributed Tree components

89

CHAPTER 6. IMPLEMENTATION EXPERIENCE 90

6.6 QoS Management

In this section, we discuss interesting implementation issues concerning QoS Man-
agement. In particular, we discuss the implementation of QoS Definition (allowing
the components to request tuples using QoS operators), and QoS Negotiation which
covers the QoS-based matching process. We also compute the time complexity of
the QoS operations ADVERT and BIND.

6.6.1 QoS Definition

In addition to actual values, QoS Definition allows tuple elements to express more
complex requirements defined by a set of QoS operators (Def. 7). Consequently,
QoS-match (Def. 8) allows operator-enhanced tuple elements to match, according
to their definition.

Each of these operators is implemented as a derived class of the tuple element-
type class which the operator is applied to. This approach allows us to implement
the QoS-match simply by overloading the matching function in the derived ‘opera-
tor’ class. As all the operator-derived classes share the tuple element type with their
base class, the tree data structure need not be modified. Inner-vertexes consists of
the same number of tuple element types in their first layer, and can gain different
values in the second layer, as illustrated in Figure 6.5. There is one server-tuple in
the pool T'1 and there are five client-tuples (7'2,7'3,74,T5,76) which QoS-match

T1=(3,2,12,a, bglue)
T2 = (2,2,12,a — d)
T3 =(3,2,12,a — d, 55)
T4 = (3,2,12,~w,a)
T5=(2,2,%,alb)

T6 = (3,2,%,alb,11).

All tuples are inserted into the Tree component [2][2] — holding tuples with two
‘matchable’ elements and whose first tuple element is of the second type according
to the table of existing types (in our example, integer).

6.6.2 QoS Negotiation

The QoS Negotiation process allows the matching function to express a rating on
every tuple element match (Def. 9), and a combination of these rates, QoS-rating
match (Def. 8), defining component preferences.

In MAGNET, the rating is implemented as a return value of the overloaded
matching functions (both original tuple element types, as well as the operator-
enhanced types) gaining integer values in addition to ‘true’ and ‘false’. The return
values are summed, and a tuple-defined threshold function returning the threshold
value X (Def. 10) is called to decide whether this combination is accepted (this
implements the select operation).

The implementation does not require a different tuple matching process to be
undertaken. That is the matching function (for the tuple class) is the same regard-
less of whether there are QoS attributes in the tuple or not. As was defined in
section 6.3, in order to decide whether two tuples match, matching functions for ev-
ery tuple element are called. However, in this case an overloaded QoS tuple element
matching might be performed insted of the basic exact tuple element match. As
exact matching is a special case of QoS-based matching, the default setting favours
it: tuple element type functions returns ‘true’ or ‘false’, and the threshold checks
for equality to my by default (a number of matching elements) a successful exact
matching process returns ‘true’ by every tuple element, the result is always m;).

CHAPTER 6. IMPLEMENTATION EXPERIENCE

12 |al)glue

server-tree

client-tree

MatchSize=2
TEImType= 2

Trader [2][2]

Figure 6.5: Tree data structure incorporating QoS Definition

91

CHAPTER 6. IMPLEMENTATION EXPERIENCE 92

Tuples performing exact matching, simply do not overload these functions, however
components which require the extended flexibility have got the means to express
complex requirements.

Although, the implementation of Trader functions need not be modified, the
complexity might change significantly.

6.6.3 The Complexity of QoS-based Matching Operations

As operations WITHDRAWS and WITHDRAWC require an exact match, the number
of inner-vertexes to search does not change, therefore, the complexity is equal to
the exact matching case: O(n x Match).

However, the complexity of operations BIND and ADVERT can be significantly
worse.

ADVERT and BIND

The complexity to search each inner-vertex is the same as in the ‘exact’ search
the tuple-element type is known, therefore, the first layer search can be performed
in O(1). The second layer takes O(InnerSz* Match) as it is irrelevant for the worst
case if tuple elements contain QoS operator-enhanced values or only actual values.
Therefore, the complexity to search an inner-vertex is:

O(InnerSz * Match).

However, the number of inner-vertexes to search rapidly increases. Allowing QoS
operator-enhanced values to be used as tuple elements results in the possibility of
matching more than one value in each inner-vertex. That does not change the
complexity of searching the actual inner-vertex, but changes the number of inner-
vertexes to be searched from m to an exponential dependency:

O(InnerSz™).
The complexity to search all inner-vertexes, in the worst case, is:

O(InnerSz * Match) * O(InnerSz™) = O(InnerSz « Match x InnerSz™).

Again, no matching functions need to be performed in leaves, therefore, the com-
plexity of searching a leaf is: O(LSz). However, in cases of operations ADVERT
and unsatisfied BIND, an operation insert needs to be performed after the search
nevertheless, only one tuple in each inner-vertex can match, which leads into the
same situation as the non-QoS matching; the complexity was calculated in section
6.4.3:

O(InnerSz « Match *m + ZSz).

Therefore, the overall complexity of QoS-based operations ADVERT and BIND is a
sum of the search and insert, which is exponential in the tuple matching size (again,
the final equation takes tree variables (ZSz, InnerSz,) as constants):

O(InnerSz * Match * InnerSz™) + O(ZSz)) + O(InnerSz x Match*m + ZSz) =

2 % (O(InnerSz x Match x (InnerSz™ +m) + ZSz)) = O(Match * InnerSz™).

Application designers have to examine the tradeoff between flexibility and efficiency:
linear exact matching is fast, but QoS-based matching offers advanced flexibility.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 93

6.7 Limitations

In this section we discuss limitations of the tuplespace design. Firstly, we focus
on implications for the architecture where it has to cope with a high number of
components. Secondly, we discuss issues concerning data structure congestion as a
result of a large number of tuples in the pool.

6.7.1 Large Number of Components

According to our assumptions, we expect a federation to consist of about tens of
components handled by a single Trader. However, if this number reaches many
hundreds of components, the Trader could become a bottleneck in the system. To
overcome this problem, the federation would have to be divided into several, with
tens of components in each, and interconnected using Locators. Therefore, match-
ing would be performed in a fraction of the original information pool. Alterna-
tively, clients would have to specify other Traders and use the Locators to perform
the inter-federation communication. This solution brings additional complexity on
clients by forcing them to call each particular Trader ‘manually’; using inter-Trader
communication. A more appropriate solution for federations of this size would be
to implement the tuplespace in distributed shared memory which is accessed by
multiple Traders, as discussed in section 6.5.1.

A similar problem would appear if our assumption concerning the number of
components accessing the Trader at a given time was no longer true. That is, we
expected not more than ten components to access the Trader at the same time,
however higher numbers of components would also cause the Trader to become a
bottleneck in the system. Similar solutions as those discussed in the former case
could be undertaken to improve the Trader throughput.

6.7.2 Large Number of Tuples

We assume that tens of component can generate roughly tens to hundreds tuples.
Also, we expect that for this number of components, tens of types of tuple elements
would be sufficient (as it defines the size of the tree data structure). If these as-
sumptions are not the case, the information pool fills up. This results in the Trader
being unable to handle new components. Therefore, they would have to try again
when the pool is less full. Here we discuss the implications for the data structure
and possible solutions to this problem.

The prototype of the architecture, implemented in Regis, was tested for small
number of tuples (tens), for which this the performance was sufficient (matching in
the Trader and binding establishment in Regis were performed in a few seconds.)

Higher numbers of tuples (hundreds) would still give good performance, if they
were distributed equally according to their matching size and the type of the first
tuple element (these two tuple features define the Tree component in which the
tuple will be matched, as described above). Therefore, equal distribution of tuples
into the Tree components, where they can be processed in parallel, would result in
roughly tens of tuples being matched at the same Tree. We tested this, and the
performance was also sufficient.

However, non equal distribution of tuples in the pool according to the type
matching size (e.g., where some matching sizes are significantly larger than others)
would result in the particular Tree component filling up. Overcoming this problem
by configuring the tree data structure to keep large number of tuples (hundreds
instead of tens), would probably result in non-acceptable responce time. If non-
equal distribution of tuples is characteristic of a particular application running
MAGNET, the distribution algorithm can be adjusted to allow more Tree components

CHAPTER 6. IMPLEMENTATION EXPERIENCE 94

for the larger matching sizes. This does not influence the structure of the overall
framework, only the Tree distribution algorithm needs to be reconfigured.

Finally, very large number of tuples (thousands and more) would have the same
affect all Tree components fills. To solve this problem, either the federation would
have to be divided, each having a separated Trader, interconnected together using
Locators, or the distribution of the information pool would have to be organized
differently.

6.8 Usability and Porting

In this section, we assess how easy it was to implement MAGNET in Regis, and
discuss the implications when it is implemented on another platform.

6.8.1 Usability

Having implemented the prototype in Regis, we can claim that the framework is
fairly usable for ‘programmers’. Writing applications in MAGNET requires writing
the appropriate code representing component functionality in C++ (the body ()
function). This includes declaration of tuples representing offered or required ser-
vices, and calling particular Regis communication functions for sending tuples to
the Trader.

However, in order to make the framework more user-friendly, a Gul could have
been built to allow non-programmers to define their components. Avoiding pro-
gramming the component functionality, users would have to only select and config-
ure components from a group of pre-defined ones.

6.8.2 Porting

For reasons of flexibility, and implementation simplicity, we have chosen Regis to
be the platform for our prototype. However, the framework can be ported to other
existing systems supporting the notion of independent components defined by their
services, providing distributed communication between entities (objects, compo-
nents, etc.) and enabling runtime binding. For example, MAGNET can trade system
resources in system like Exokernel or Nemesis, or it can deal with application level
object, for example in CORBA or DCOM.
Porting our framework consists of two tasks:

e system compounent ‘wrappers’ (Trader, server, client) have to be defined as
entities of the particular environment (we have used Darwin, from which Regis
code was generated), and

e communication between system components (the Trader, clients, servers) en-
abling tuple transmission has to be implemented using the particular commu-
nication protocols (e.g., in Regis we have used the interaction style Port<Tuple>) .

The remaining functionality of the architecture (tree data structure, tuple classes,
etc.) could remain and be called from the ported ‘wrapper’ components.

6.9 Chapter Summary

In this chapter we discussed the implementation issues of the MAGNET framework.
Its prototype is based on the Regis distributed environment which was slightly
adapted to provide the bindings required by MAGNET.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 95

Detailed discussion of every aspect of the implementation is unnecessary, and
we focused on describing the system core and interesting implementation features.

MAGNET components are implemented as Regis components, defined by the
Darwin configuration language. As MAGNET is designed for open dynamic systems,
the dynamic binding in Regis was used extensively. Tuples are implemented as
high-level containers enabling tuple elements to be user-defined and their matching
operation customized.

Trees contain tree data structures supporting linear search (matching) for non-
parametrized requests. The complexity of the Trader operations was calculated and
was found to be linear in the number of tuple matching elements.

The Trader, acting as a hub for all components, is responsible for distributing the
tree data structure over Tree components. Also, the algorithm of equal allocation
of Tree components on the available processors in the system was described.

QoS Definition and QoS Negotiation are supported by overloading basic tuple
element classes, their matching functions, and tuple rating functions. Although
this feature allows components to express their requests with further flexibility, the
efficiency of QoS-based ADVERT and BIND is ezponential in the tuple matching size.

We have discussed the limitations of the architecture in terms of the number
of components and the number of tuples, and briefly covered issues concerning
usability and porting of the framework.

The last three chapters have presented a complete design of the MAGNET ar-
chitecture. In the next chapter, based on the complete description of the MAGNET
framework (provided in chapters 4, 5 and 6), we present several applications using
MAGNET for allocation of their resources and provide an evaluation of the architec-
ture.

Chapter 7

Case Studies and Evaluation

In this chapter we demonstrate the utility of MAGNET using several examples.
Having implemented the prototype (in the Regis distributed environment), these
examples provide a proof of concept. We will demonstrate that MAGNET meets the
initial requirements (dynamic trading, extensibility, QoS Management, dynamic
rebinding, information monitoring, and scalability) for several resource allocation
problems. Firstly, we will simulate several system resources and user applications,
in section 7.1. Based on this, in section 7.2, we will demonstrate quality of service
allocation by simulating an application requesting resources described in terms of
quality of service. Then, in section 7.3, we focus on dynamic issues of the architec-
ture. We demonstrate dynamically changing network connectivity which illustrates
the advanced system features such as monitoring, dynamic rebinding and scalabil-
ity. Finally, in section 7.4, we evaluate of the architecture by discussing the features
it provides, and the implications of the assumptions we have made by comparison
with existing architectures.

7.1 System Components

In order to present examples of applications using MAGNET, we have to simulate
essential system resources — CPU, memory, disk and printer. In this section, we
define the functional interface of the components, offering services accessed by ap-
plications. In addition, we describe the relevant tuples representing services placed
into the Trader. Figure 7.1 illustrates components described in this section con-
nected to the Trader.

As the low-level design of the system components is beyond the scope of this
thesis, we focus on presenting the functional interface — the component ‘wrapper’,
rather than realistic hardware representation. For our examples, we assume that
all components are running on processors connected to the Internet, are assigned
1P addresses (forming the naming scheme), have network protocols (1P, TCP, UDP)
installed and have running network daemons, such as inetd processing incoming
packets, as usual.

7.1.1 CPU

Virtual cpU’s functional interface consists of two fundamental functions:

PID=cpu::alloc() allocates an application to the processor by adding it to its
priority-queue. Adds the application into the list of active clients kept
by the Server-Rebinder, if appropriate. Returns process number PID.

96

CHAPTER 7. CASE STUDIES AND EVALUATION 97

RET=cpu::leave (PID) deallocates process PID from the processors. Deletes the
record in the Server-Rebinder, if appropriate. An exit status (RET) is
returned.

Internal schemes, such as an applied scheduling algorithm (implemented by a sched-
uler process), necessary network daemons (such as inetd) are run by privileged
processes not accessible by the clients.

A typical processor, without attached devices, is described by a server-tuple:
CPU = (4,3,CPU,manufacture, speed, ref), where ref is the reference to access
the processor. It can be implemented, for example, as the processor’s 1P address
and a socket number opened by the scheduler process. Other tuple parameters are
self-explanatory.

7.1.2 Memory

In order to ensure that memory is allocated with its processor, they form a single
component. Therefore, memory does not offer the functions alloc() and leave()
as a part of the functional interface, because they are provided by the processor.
However, Virtual memory’s functional interface consists of two fundamental func-
tions:

RET=memory: :write (ADD,buff) writes a byte from a buffer buff to an address
ADD. Function returns a status, RET.

*buff=memory: :read (ADD) reads a byte from address ADD into buffer *buff.

Memory and attached processor is described by a server-tuple:

CPU — MEM = (6,5,CPU,manufacture, speed, memory, size,ref), where
ref is the reference for accessing the processor, can be implemented as described in
the previous section 7.1.1. Other tuple parameters are self-explanatory.

7.1.3 Disk

A disk should also form a single component with its processor, in order to ensure
they are allocated together. For the same reason as memory, disk does not offer
functions alloc() and leave() as a part of the its functional interface, because
they are provided by the processor. However, its functional interface consists of two
fundamental functions: write() and read() .

In order to provide enhanced flexibility for applications like pDBMS, the disk
function interface incorporates a paratemer (No) determining the number of blocks
to be read from the address ADD. The default value is 1, however, applications can
take the advantage of implementing ‘grouping’ write and read operations, as moving
the disk arm (seek times) are expensive.

RET=disk: :write(ADD,No,block) writes a number of blocks No from a buffer
buff to an address ADD. A status RET is returned.

*block=disk: :read (ADD,No) reads a number of blocks No from address ADD into
a buffer *block.

A disk with attached processor, is described by a server-tuple: CPU — DISK =
(6,5, CPU, manufacture, speed, disk, size,ref), where ref is the reference for ac-
cessing the processor can be implemented as described in the previous case. Again,
other tuple parameters are self-explanatory.

CHAPTER 7. CASE STUDIES AND EVALUATION 98

CPU::alloc()
CPU::alloc() CPU::I eave(_)
CPU::leave() memory::write()

memory::read()
Server-Binder Server -Binder

Cp CPU-Memory

CPU::alloc()
CPU::leave()
isk: :wri CPU::leave()
disk::write() U leave

disk::read() printer: .PI‘I nt()
Server-Binder Server-Binder

CPU::alloc()

CPU-Disk CPU-Printer

Figure 7.1: Essential system server components

7.1.4 Printer

A printer is a character device attached to a processor. For simplicity, we do not
consider internal printer buffers. Like the memory and disk, a printer does not offer
functions alloc() and leave() . PID numbers allocated by the processor function
alloc() are used by the Virtual printer for protection of one application against
another. The functional interface consists of one function: print ().

RET=printer: :print (PID,byte) if the identification of the ‘printing’ application
is PID, byte is printed out. Function returns RET, an exit status.

Advanced schemes, such as spooling are not considered in this example. There-
fore, starvation cannot be avoided — applications allocated to the printer are only
successful if the printer is currently idle — their call must be the first one after a
previous application has detached from the component by calling leave().

A printer with an attached processor, is described by a server-tuple:

CPU — PRINTER = (8,7,CPU, manufacture, speed, printer, technology,
resolution, speed, ref) where technology defined a printing technology (such as,
laser, matrix, ink-jet, etc.) and ref is the reference for accessing the processor,
discussed in previous sections. Again, other tuple parameters are self-explanatory.

Figure 7.1 represents components described in this section: a processor, memory-
processor, disk-processor and printer-processor. Interaction with the Trader en-
abling components to insert their advert-tuples into the pool is also illustrated.
The reference to the Trader is obtained from a place known a priori, and this op-
eration is performed by a parent process or by a human administrator inserting
components into the system.

CHAPTER 7. CASE STUDIES AND EVALUATION 99

7.1.5 Discussion

As can be seen on examples discussed in this section, components representing
services often rely on subcomponents offering additional ‘subservices’. There are
two ways for approaching this: encapsulating services, and forming service chains.

Firstly, encapsulation of services which rely on each other, is formed in ad-
vance (e.g., a printer encapsulates a processor, etc.) The composite component can
be described by one tuple, and one matching process is sufficient to establish the
binding with a client. However, a physical resource can form several components,
each offering different functionality (e.g., the processor components in our previous
example).

Secondly, services can be treated independently, each described by a tuple placed
into the pool. When a client requests a service, the server generates a further
client tuple requesting a particular subservice until the necessary chain of services
is established, and the communication can be achieved. In this case, there are more
tuples placed in the pool, and a single client-server communication might require
several matching processes to be performed.

The framework supports both approaches this is purely an administrator de-
sign decision. The former approach is less flexible, but more efficient in establishing
the client-server binding, while the latter is more flexible, yet can cause additional
problems with consistency or deadlock. In cases, when the chain of services cannot
be established due to one server being unavailable, all components already bound
are blocked. This can be prevented by introducing timeouts to tuples (this is dis-
cussed in section 7.4.2). In addition, rebinding of servers in a chain requires a
third-party maintaining the overall consistency of all other relevant components in
the chain.

7.2 QoS-based Allocation

This example demonstrates a quality of service based resource allocation. The
situation was briefly described in chapter 5, here we will elaborate on it in greater
detail. We discuss several client requests demonstrating various QoS requirements
and different results of the matching process.

There are three server components in the system consisting of two subcompo-
nents: Pentium processors, each of different speed and RAM memories of different
size. They offer functions described in previous section, and are defined by following
server-tuples:

ProcessorA 200 MHz with 32 MB RAM memory described by a server-tuple A:
A = (6,5, CPU, Pentium, 200, memory, 32, ref)

ProcessorB 200 MHz with 16 MB RAM memory described by a server-tuple B:
B = (6,5,CPU, Pentium, 200, memory, 16, ref)

ProcessorC 300 MHz with 4 MB RAM memory described by a server-tuple C:
C = (6,5,CPU, Pentium, 300, memory, 4, ref)

In accordance with the tuple definition (Def. 1), definition ranges for all three tuples
are P = Py = P, = N and P; = P; = S where N is the set of natural numbers
and S is the set of all words constructed from letters from English alphabet.

There are three applications in the system requesting processor and memory.
An Application D expresses its request using QoS-rating operators, and the QoS-
rating match, while Application E uses only QoS-rating operators to define its
requirement, Finally, an Application F' described its requests by the basic exact
match.

CHAPTER 7. CASE STUDIES AND EVALUATION 100

| Server-Tuples | Client-Tuples |
C = (6,5,CPU, Pentium, 300, memnory, 4, ref)
B = (6,5, CPU, Pentium, 200, memory, 16, ref)
A = (6,5,CPU, Pentium, 200, memory, 32, ref)

Table 7.1: The Information Pool containing tuples A, B, and C.

QoS-rating mi1 = meo P, = Q, &pi € fl (ql) Z?:l ki >5 result
match Vie {1,mi}
tuples: C D 9=5 fori=15: donot
4¢16—64= no match
tuples: B D 5=5 yes 1+41+14+141= match
=525 ALLOCATED
tuples: A D not tested

Table 7.2: QoS-based allocation = matching between tuples A;B, C and D

Table 7.1 illustrates the information pool for the described system is configura-
tion. The table illustrates a schematic view of the information pool, rather than
a realistic representation reflecting implementation issues (Trees components, etc.)
Components join the system in the order of ProcessorC, ProcessorB, ProcessorA
and Application D, Application E, and Application F. All server-tuples A, B, and
C representing processors are inserted into the server part of the pool.

Application D

The Application D requires the fastest available Pentium processor running at least
on 200MHz with at least 16 MB memory. The request is defined by a tuple D:
D = (6,5,CPU, Pentium, 200 — 300, memory, 16 — 64, ref).

The rating values are:

CPU Q(CPU) =1 (exact match)

Pentium Q(Pentium) = 1 (exact match)

200-300 Q(—(200)) =1, ©(—(300)) = 2

memory Q(memory) = 1 (exact match)

16-64 Q(—(16)) = 1, Q(—(20)) = 2, Q(—(32)) = 3, Q(—(64)) = 4
X 5 (threshhold)

When an operation BIND is called on the tuple D, a match is found, and requested
binding can be established, therefore, the tuple D is not inserted into the information
pool (in accordance with operation BIND).

Table 7.1 illustrates the matching process resulting in the application being
allocated the component described by tuple B. Although tuple A would fulfill client’s
requirements better (1+1+1+1+2 =6 > 5), it is not tested because tuple B was
already allocated to the application. The example shows how, from the component’s
point of view, non-deterministic placement of tuples into the pool determines the
resultant allocation.

CHAPTER 7. CASE STUDIES AND EVALUATION 101

| Server-Tuples | Client-Tuples

= (6,5, CPU, Pentium, 300, memory,4,ref) | F = (6,5, CPU, Pentium, 300, memory,2, ref)

C
B = (6,5,CPU, Pentium, 200, memory, 16, ref)
A = (6,5, CPU, Pentium, 200, memory, 32, ref)

Table 7.3: The Information Pool containing tuples A, B, C and F.

Application E

The Application E requires a Pentium processor running on 300MHz with any
amount of memory. The request is defined by a tuple E:
E = (6,5, CPU, Pentiumn, 300, memory, x, ref).

When an operation BIND is called on the tuple E, it matches against the tuple C,
and binding can be established. Also in this case, the client tuple E is not inserted
into the information pool in accordance with operation BIND.

Application F

Finally, the Application F requires a Pentium processor running on 300MHz with
2MB memory. (This requests illustrates the features of the matching process, and
does not claim to be a realistic resource requirement.) It is defined by a tuple F:
F = (6,5, CPU, Pentium, 300, memory, 2, ref).

An operation BIND is called on the tuple F, however, it does not match any
server tuples currently present in the pool, evenhough the tuple C would provide
the required resources. Therefore, without this exact match no binding can be es-
tablished, the tuple F is inserted into the client part of the pool, and the Application
F is waiting. Table 7.3 illustrates the information pool after the tuple F has been
inserted.

This final example illustrates the drawback of using an exact matching (Applica-
tion F remains waiting in spite of the fact that ProcessorC would provide adequate
resources). This further highlights the advantage and flexibility of QoS definitions
supported by the architecture.

7.3 Dynamic Network Connectivity

In this example we will demonstrate dynamic issues of the Magnet architecture
in terms of scalability, dynamic rebinding and monitoring, in addition to dynamic
binding and QoS-based matching. Dynamic network connectivity is a good example
of an application requiring adaptation. That is the system must be able to adapt
from disconnected operation, through weakly connected, to fully connected. We
will illustrate adaptation of the system to changes in connectivity on two typical
applications — a word-processor and a Web client.

7.3.1 Disconnected Case

In a disconnected situation, there are two applications running on a disconnected
portable computer a word-processor and a Web client. As there is a MAGNET
system installed, both applications are represented as components. In this instance,
the word-processor requests a printer and the Web client requests a Web server.
Therefore, client-tuples (PRINT, and WebClient) are inserted into the Trader to
represent these requests:

CHAPTER 7. CASE STUDIES AND EVALUATION 102

| Server-Tuples | Client-Tuples |
PRINT = (8,7, CPU, %, %, printer, laser, 600, x, re f)
WebClient = (3,2, WebS, modem, ref)

Table 7.4: The Portable Information Pool— the disconnected case

Printer a request for a laser printer with resolution of 600dpi, any speed, at-
tached to any processor:
PRINT = (8,7, CPU, %, *, printer, laser, 600, x, ref)

WebClient Web client requests a Web server, as this is an abstraction server, spec-
ification of hardware (such as a processor), are not necessary.
WebServer = (3,2, WebS, modem,ref).

The fourth element, modem, represents the required hardware device
connecting the Web client with the Web server. This feature will be
discussed in detail bellow.

At this point, their requirements cannot be fullfilled, as there is no printer compo-
nent nor Web server connected to the system (which is disconnected).

Table 7.4 illustrates the information pool for the described system configuration.
Again, the table is schematic, implementation issues are omitted. Also, for reasons
of simplicity, only components featuring in this example are illustrated.

7.3.2 Weakly Connected Case

In this example, the portable is weakly connected by a modem, below we describe
an establishment of a binding between the Web Client and the Web Server.

Inserting Required Information

Applications which want to take the advantage of the portable being connected to
the Internet later on, have to insert the ‘joining’ and ‘leaving’ tuples into the pool.
In addition to the PRINT tuple, the word processor also inserts following two tuples:

PRINT?2 = (12,2, join, network,8,7, C PU, %, x, printer, laser, 600, x, ref)
PRINT3 = (12,2, leave, network,8, 7, C PU, x, x, printer, laser, 600, x, ref)

In order to distinguish the hardware device and consequently the type of link con-
necting the computers, the fourth tuple element (network) expresses this informa-
tion (other option would be modem, etc.)

The Web Client also wants to take the advantage of the portable being connected
to the network, but it can operate over modem, therefore it inserts following two
tuples:

WebClient2 = (7,2, join, modem, 3,2, WebS, modem, ref)
WebClient3 = (7,2,leave, modem, 3,2, WebS, modem, ref)

Unlike the word-processor, the Web Client can be connected to the server by any
network hardware. Transmitting Web pages over a mobile line is feasible, however,
printing a job at a printer in a remote office is not desired. Therefore, the printer
tuple does not express options of network connections.

CHAPTER 7. CASE STUDIES AND EVALUATION 103

| Server-Tuples | Client-Tuples

T1 = (3,2, join, modem, bglue) PRINT = (8,7, CPU, %, x, printer, laser, 600, x, re f)

WebClient = (3,2, WebS, modem, ref)

PRINT?2 = (12, 2, join, network,8,7, CPU, x, , printer, laser, 600, *, re f)

PRINT3 = (12,2, leave, network,8,7, CPU, %, %, printer, laser, 600, x, re f)

WebClient2 = (7,2, join, modem, 3,2, WebS, modem, ref)

WebClient3 = (7, 2,leave, modem, 3,2, WebS, modem, ref)

Table 7.5: The Portable Information Pool — the weakly connected case

| Server-Tuples | Client-Tuples |

PRINTER = (8,7,CPU, Pentium, 300, printer,laser, 600,40, ref)
WebServerl = (3,2, WebS, network,ref)
WebServer2 = (3,2, WebS, modem, ref)

Table 7.6: The Office-Based Information Pool

Trader Connection

The portable, being equipped with a mobile phone and a modem, can be weakly-
connected to an office-based server. In order to enable portable applications to use
resources from the office-based server, operation JOIN must be performed. There-
fore, a ‘joining’ tuple T'1 = (3,2, join, modem, bglue) representing a reference to
the office-based Trader is inserted into the portable Trader. Table 7.5 illustrates
the information pool with all the client tuples and the ‘joining’ tuple T1 inserted.
Again, the table is schematic, implementation issues are omitted.

Before we describe the remaining steps of the operation JOIN, we have to define
resources available in the office-based information pool. For reasons of clarity, we
consider only the resource requested in our example: a laser printer and a Web
server.

The laser printer component with resolution 600dpi and speed of printing 40pages
per minute is described by a server-tuple

PRINTER = (8,7,CPU, Pentium, 300, printer, laser, 600,40, ref).

The processor running the Web Server can communicate by two network links —
it can use a modem port or a LAN adaptor connected to the Internet. Therefore,
the Web Server component offers two service interfaces according to the network
medium. They are described by server-tuples, WebServerl and WebServer2:

WebServerl = (3,2, WebS, network, ref)
WebServer2 = (3,2, WebS, modem,ref)

Table 7.6 illustrates the configuration of the office-based information pool before
the portable computer dialled in.

Operation JOIN

Next, we can return to the remaining steps of the JOIN operation — in the portable
information pool, the sever-tuple T'1 matches with a client-tuple WebClient2, the
office-based Trader-Binder obtains the client-tuple, removes the encapsulated tuple
WebClient = (3,2, WebS, modem, ref) and reinserts it into the office-based infor-

mation pool. It matches with the Web server tuple WebServer2 = (3,2, WebS, modemn,ref)

and a resultant binding between the Web Client and Web Server over a modem can
be established. However, the second application, the word processor, remains wait-
ing.

CHAPTER 7. CASE STUDIES AND EVALUATION 104

| Server-Tuples | Client-Tuples
T1 = (3,2, join, modem, bglue) PRINT = (8,7, CPU, x, x, printer, laser, 600, x, re f)
T2 = (3,2, join, network, bglue) WebClient = (3,2, WebS, modem, ref)

PRINT?2 = (12,2, join, network,8,7, CPU, x, x, printer, laser, 600, x, re f)

PRINT3 = (12, 2, leave, network,8,7, CPU, %, x, printer, laser, 600, *, ref)

WebClientd = (7,2, join, network, 3,2, WebS, network, re fU)

WebClient3 = (7,2,leave, modem, 3,2, WebS, modem, ref)

WebClients = (7,2, leave, network, 3,2, WebS, network, re fU)

Table 7.7: The Portable Information Pool the fully connected case

7.3.3 Fully Connected Case

In this section, we illustrate an establishment of new bindings which take place as
a result of the portable being plugged into the network.

Inserting the Required Information

The Web Client is currently communicating with the Web Server by a modem. If
the portable is connected to a network by a LAN adaptor, the Client requires to be
rebound in order to take advantage of the faster connection. A dedicated Updater
component instructed by the Web Client is inserted into the system to perform
this task — to monitor the pool and perform a third-party renegotiated third-party
rebinding. The Updater inserts following two tuples into the portable information
pool:

WebClientd = (7,2, join, network, 3, 2, WebS, network, re fU)
WebClientb = (7,2,leave, network, 3,2, WebS, network, refU)

These tuples refer to an service interface of the Updater component (refU), in
contrast to the original Web Client reference (ref), as it acts as a third-party in
the rebinding process.

Trader Connection

When the portable arrives into the office, it is plugged into the network by its
ethernet card. A connecting tuple T2 = (3, 2, join, network, bglue) is inserted into
the portable information pool to enable portable applications to use all available
office-based resources. At this stage, the portable information pool (illustrated
in tabale 7.7) contains two joining server-tuples, all original client-tuples except
the tuple WebClient2 which has been removed when the Web Client was weakly
connected to the Web Server. In addition, two tuples from the Updater WebClientd
and WebClient5 for ‘join’ and ‘leave’ have been inserted.

Operation JOIN

The server-tuple 72 matches two client-tuples: PRINT2 and WebClient4d. Both
tuples are sent to the office-based Trader-Binder which retrieves the original printer
tuple: PRINT = (8,7, CPU, %, x, printer,laser, 600, x, ref) and the Updater tuple
(3,2, WebS, network,refU) which does not represent a request, as it is used for
searching for better service for rebinding (as described in chapter 5). Both tuples
are reinserted into the office-based information pool (see table 7.6) by the operation
BIND.

CHAPTER 7. CASE STUDIES AND EVALUATION 105

The printer tuple is matched against the waiting server-tuple, PRINTER, so it
is not inserted into the pool, but an inter-federation binding is established between
the word-processor and the printer (which is accessed by the functional interface
defined in section 7.1). As a result of this, the word-processor job can be printed.

The Updater tuple case is more complex: extracted tuple (3,2, WebS, network, refU)
matches waiting server-tuple WebServerl (see table 7.6). However, when the bind-
ing between the Web Server (by the network port) and the Updater is established,
the Updater performs all steps necessary for the third-party renegotiated third-
party rebinding to take place, as described in section 5.3.6. Finally, the resultant
binding between the Web Client and Web Server takes place over the network.

Discussion

As MAGNET requirements were defined in terms of requirements, we needed to
demonstrate how they were met by using MAGNET in applications requiring this
support. Dynamic resource allocations, discussed above, demonstrated that MAG-
NET achieves its goals — providing QoS-based user-customized adaptable resource
management of diverse resources.

7.4 Evaluation

In this section, we will evaluate the architecture by discussing the features it pro-
vides, elaborating on the implications of the assumptions we have made, and com-
paring it with other trading frameworks.

7.4.1 Evaluation of Provided Features

The MAGNET architecture proposed in this thesis was specified in terms of the fea-
tures it should provide in order to meet the requirements of applications in dynamic
and mobile environments. These features include: dynamic trading, extensibility,
QoS-based management, dynamic rebinding, information monitoring, and scalabil-
ity.

There are three fundamental ways to evaluate features provided by an archi-
tecture, such as MAGNET a theoretical proof, experimental measurements, and
a case study together with an informal discussion. As these six features were not
specified in terms of formal mathematical definitions, no theoretical proof could be
presented to demonstrate that they have met the original requirements.

Also, the framework could not have been evaluated in terms of performance
measurements for two reasons. Firstly, the architecture defined by the six features
addresses flexible and dynamic issues, in contrast to performance results (e.g., claim-
ing that the framework is extensible cannot be measured in seconds). Secondly, any
performance results measuring the time required to match tuples and to establish
a dynamic binding would be imprecise and non-representative as the framework
relies on multi-variable computing environment which consists of the processor (its
speed), network (its connectivity and current traffic), operating system (efficiency
of system calls), Regis (efficiency of its implementation), etc.) For these reasons,
we believe that performance measurements are not useful.

Therefore, we have to evaluate the architecture by case studies and an informal
discussion. We have illustrated the usage of MAGNET on two examples: QoS-based
resource allocation (section 7.2), and dynamic network connectivity (section 7.3).
Here, we discuss what is supported, and what is not supported for each of the six
features, with respect to specifications defined in chapter 1.

CHAPTER 7. CASE STUDIES AND EVALUATION 106

¢ Dynamic Trading. Dynamic trading was defined as a third-party matching
of service requests against demands described by a type of service, not directly
by a name. The Trader, based on a tuplespace paradigm, provides this func-
tionality by matching tuple elements defining features of service provisions
and requirements, and establishing a binding.

e Extensibility. Extensibility was defined at two levels. Firstly, existing ser-

vices and data formats should be extended (new resources, services and user
requests can be defined at run-time). This is enabled by deriving new tuple el-
ement classes. Secondly, the matching process performed by the Trader could
also be dynamically redefined (resource allocation strategies could be user-
customized). This is supported by allowing users to overload the matching
function for each tuple element class. As there are no restrictions on semantics
of tuple elements, the framework can be used for any applications requiring
third-party trading, beyond the scope of resource management.
However, we assume that the extending matching functions are secure in terms
of returning control back while not modifying data of other tuple elements
(they are expected to be ‘well-behaved’). We have chosen full generality and
full extensibility (in terms of user-defined matching functions) compromising
security rather than providing secure, yet restricted extensions. We believe
that the power of full user-customization overweighs the risk of potential prob-
lems. We further elaborate on problems caused by insecure matching functions
in section 7.4.2.

¢ QoS-based Management. Extensibility and flexibility of the architecture
enables QoS Management which we defined as QoS-based selection of services.
This is addressed by enabling users to enhance service definitions by QoS op-
erators (which can be user-customized), and by enabling the QoS Negotiation
(by QoS-rating operators and the QoS-rating match function). Apart from
QoS-based selection, QoS Maintenance, enabling two adaptation strategies
(resource management and application adaptation) is also supported.
However, we did not fully address dynamic and continuously changing fea-
tures, such as network traffic, throughput etc. as the framework is not suitable
for applications requiring very fine grain updates (seconds and milliseconds)
due to rebinding and matching overhead.

e Dynamic Rebinding. Based on the core of the framework providing dy-

namic trading and binding, MAGNET (in cooperation with application level
components, Rebinders, Updater and Administrator) also supports all the
required types of rebinding and renegotiating first-party rebinding, third-
party rebinding, first-party renegotiating, third-party renegotiating, and no-
renegotiating.
However, consistency is assumed to be maintained by the components them-
selves during all rebinding actions. MAGNET does not support recovery from
inconsistent states, such as a component crash, rebinding components when
they were not safe to do so. We further discuss issues concerning consistency
in section 7.4.2.

e Information Monitoring. In addition to a manual update, monitoring
of all service features (‘classical’ and QoS-based) is supported by user-level
components, Updaters, and Monitors.

As was discussed above regarding QoS, the framework is not suitable for
real-time applications, or those requiring very fine grain updates (in terms of
seconds and milliseconds).

CHAPTER 7. CASE STUDIES AND EVALUATION 107

e Scalability. All provided features are supported within a federation. Scal-
ability of the architecture is defined at two levels: firstly, dynamic recon-
figuration of domains (supported by operations JOIN and LEAVE) which do
not assume the users need to know the identity of the Trader they want to
join. The second case, scaling the architecture within the limits of the com-
puting environment, faces a tradeoff between response time and ‘precision’
of provided information (such as, finding all matching tuples). Therefore,
the framework enables a tuple to be passed over to a particular Trader for
processing (using Locators). However, in this case, the user must know the
remote Trader identity in advance. We supported these two cases, as they are
typical in mobile and adaptive systems. Examples are, a user with a portable
computer roaming around and using resources in various offices is an example
of the first case. An example where a user requires to print a job at a printer
in a remote office where he will travel to later, illustrates the need for an
inter-Trader communication.

However, ‘world-wide’ scalability (performing tuple matching in all informa-
tion pools) is not feasible in MAGNET due to unacceptable response time.
A different approach would have to be undertaken, in order to provide this
functionality.

7.4.2 Discussion on Assumptions

In chapter 3, we have defined assumptions for the design of the MAGNET architec-
ture. Here we summarize them, and discuss the implications for the architecture if
these assumptions were not the case. In addition, we propose a solution to possible
problems caused by the assumptions being invalid.

1. Consistency. All system components are assumed to maintain consistency.

That is we assume that: rebinding can be performed only when the system is
in a safe state, an unexpected component crash cannot happen, and a com-
ponent when finished its operation must leave MAGNET in a consistent state
(all tuples from the pool must be withdrawn, and all allocated resources must
be released).
Dealing with inconsistency caused by an unsafe rebinding or unexpected com-
ponent crash from the component point of view would need a powerful fault
tolerant framework (featuring transactions, replications, rollbacks, etc.) This
is beyond the scope of this thesis. However, from the Trader point of view,
the problem can result in out-of-date tuples being left in the pool. In order to
prevent this, the Trader can periodically clean the pool performing garbage
collection. However, in order to find out whether components are still alive,
they would be obliged to provide a ‘still alive’ function which would be called
by the Trader before removing the tuple. Another solution for clients would
be to equip their tuples with timeouts limiting how long their tuples are to
wait in the pool, before they can be garbage collected. In addition, in or-
der to prevent components from leaving tuples in the pool when they finish
the operation, a special subcomponent (present in every component) could
automatically withdraw all inserted tuples. However, this solution requires
cooperation with the component, in terms of initialization of the operations,
so it is not fully automated.

2. Protection. By protection we mean that all components, servers and clients,
are responsible for ensuring the validity of the tuples.
As the architecture does not restrict the semantics of contents of the tuples,

CHAPTER 7. CASE STUDIES AND EVALUATION 108

there is no means to check the validity of the information. Placing a tuple
with a non-existent request or offer in the pool can result in an attempt to
establish a binding between non-existing components, or incompatible ser-
vices. In order to prevent this, the framework can authorize components to
call the Trader functions, or introduce capabilities (as tuple elements) to im-
prove the component protection. In addition, garbage collection, or the ‘still
alive’ function can be used, as discussed in the previous paragraph.

3. Synchronization. Components are responsible for synchronization. This

includes communication with the MAGNET framework as well as component-
to-component interaction.
The architecture can provide an additional function for client components
(operation BINDRET) which would perform the same matching process as
operation BIND, and return ‘no’ instead of blocking the component if the
requested server has not been found in the pool. There is no need for an
equivalent operation to be provided for server components, as they offer ser-
vice regardless the interest of clients. As for the component-to-component
interaction, there is no reason for MAGNET to interfere in synchronization of
components themselves.

4. Security. The user-defined matching functions are assumed to be secure in
terms of returning control back to the Trader, while not altering other system
data. The implementation of the matching functions as overloaded C++
functions does not allow the matching function to alter the protected data of
other tuple elements, however this does not provide full hardware protection.
Furthermore, the architecture cannot check if the function will return the
control back to the Trader, as this is the halting problem. This might result
in the Trader getting blocked by a ‘non-secure’ function. A solution to this
problem, not restricting the extensibility we are aiming for, would be to finish
any matching function by force after a timeout period.

5. Federation Scale. We assumed the number of components in a federation

to be roughly tens, they could generate tens to hundreds tuples placed into
the information pool. In addition, more than ten components accessing the
Trader at the same time would result in non-acceptable responce time.
A high number of components can result in the Trader becoming a bottleneck
in the system. The same affect would be observed if more than ten components
were accessing the Trader at the same time. We have dealt with this problem
in section 6.7.1 discussing possible solutions, for example distributed shared
memory. Problems of congestion due to a large number of tuples placed in
the pool were discussed in section 6.7.2.

6. Frequency of Change. The framework is designed for components that

will change their features with a frequency of minutes and hours, rather than
seconds and milliseconds. Therefore the proposed support for monitoring and
rebinding as a result of a change is adequate.
The support for applications requiring finer grained updates (with frequency
of seconds and milliseconds) would not be viable. This can be improved by
enabling a direct access to the Tree components for trusted Monitors and
Updaters, as suggested in section 5.1.3. However, for environments with very
frequent changes, or those which rely on real-time response, our framework is
not suitable.

7. Service Characteristics. We assumed that tuples have not more than tens
of elements, and are equally distributed according to the number of elements
(tuple matching size). In addition, we expected the number of types of tuple

CHAPTER 7. CASE STUDIES AND EVALUATION 109

elements to be not more than tens.

Exceeding the number of tuple elements, the number of tuple element types,
or non-equal distribution of tuples according to the tuple matching size might
lead to the problem of congestion of the tuplespace or a particular Tree. We
have discussed implications and solutions to this problem in section 6.7.2.

8. Naming. Naming of the computing environment used for Trader naming is

assumed to provide unambiguous names in the scale of the environment. In
addition, names are constructed in a way that they can form a hierarchical
tree structure with a single root, and a unambiguous path in the tree between
two Traders can be determined.
If the computing environment does not provide naming which meets these
requirements, there must be an additional Trader naming scheme defined.
However, it can be derived from common naming schemes, such as 1P ad-
dresses.

7.4.3 Comparison with Existing Architectures

In this section, we briefly compare MAGNET with other trading architectures which
were introduced in chapter 2. Then, we give examples of platforms suitable for
porting MAGNET to, and those which do not provide the required flexibility.

Architectures providing service matching based on a special ‘matching’ compo-
nent, such as Matchmaking (the Matchmaker Component), or Aster (the Aster Se-
lector) also perform dynamic service coupling. However, we believe that the ‘match-
ing’ component (the Trader in MAGNET) should be universal and user-customizable.
In contrast to this, the discussed platforms rely on a ‘knowledgeable’ component
which decides on component coupling, but can perform only a non-customizable
matching function.

Other tuplespace-based architectires (such as Limbo, Osprey, Jini, etc.) also
do not provide extensibility in terms of matching function customization. In ad-
dition, Limbo and Osprey implement tuple-typing in contrast to the universality
of our approach, which we aimed for. As for the typing, we believe that the sys-
tem components are of different types, however, they can describe their service
characteristics in a universal, clean format, as a collection of features the tuple.

Further, we distinguish between two levels of approaching the problems: ‘compo-
nent (or object) level’ where typing is desirable, and ‘component description level’
which can provide universality. For this reason, we did not adopt tuple typing,
nor did we use other models which require typing (e.g., C++ objects, tagged trees
such as XML). Another approach, Cardelli’s Ambient Calculus [12], was devised to
match characteristics of wide-area networks and systems composed of objects com-
municating among themselves through reliable and transparently accessible object
interfaces. Similarly, this was not adopted as it addresses the typed ‘component
level’ rather then the universal ‘component description’ level.

MAGNET can trade entities of varying granularity due to the universality of the
framework. It can be used for resource allocation, at an operating system level in
flexible component-based systems, such as Exokernel, Nemesis, DEIMOS, etc. On
the other hand, it can also trade objects in user-level applications, for example
JavaBeans, CORBA objects, DCOM objects, etc. If applications in these systems
followed the assumptions on our famework (regarding the number of components,
cousistency, etc.), MAGNET would provide a powerful and flexible trading function-
ality. Unsuitable platforms for this type of trading are for example Unix, or SPIN
due to their monolithic nature.

CHAPTER 7. CASE STUDIES AND EVALUATION 110

7.5 Chapter Summary

In this chapter we have demonstrated the utility of the MAGNET architecture on
several examples. Based on the prototype of the MAGNET framework (described
in chapter 6), we have built a simple resource allocation system demonstrating
particular features of the architecture.

Firstly, we have used an example of the operating system’s basic resources to
show how MAGNET can be used in an extensible operating systems. We modeled a
processor, memory, disk, and printer by defining their functional interface and
the tuples describing their services. We demonstrated QoS based resource allocation
on a client requesting a processor and memory. Then, we focused on dealing with
dynamic changes in the system — dynamic network connectivity. We described
the allocation of a printer and a Web Server to clients running on a portable com-
puter in three situations disconnected, weakly connected and, fully connected.
Advanced features, such as monitoring, rebinding, scalability were illustrated in
this example. Finally, we have also evaluated the architecture by discussing fea-
tures it provides, elaborating on implications of assumptions we have made, and by
comparing MAGNET with other existing architectures.

This chapter concluded our study of the resources management architecture,
MAGNET, by demonstrating its flexibility, universality and feasibility in particular
examples and by providing evaluation of the framework.

Chapter 8

Conclusion

As a result of recent changes in computing environments, there has been an increas-
ing need for dynamic resource management providing trading resources defined in
terms of the type of service they offer. Additional requirements posed by users in dy-
namic environments include QoS-based description of resources, user-customization
of allocation strategies, and runtime adaptation to changes in computing environ-
ments. This thesis has described a dynamic resource management architecture,
MAGNET, meeting these requirements.

MAGNET provides component-customized QoS-based trading of server defini-
tions resulting in establishment of a requested component binding — resource allo-
cation.

This chapter reviews this thesis by summarizing the goals and achievements
of the MAGNET architecture (section 8.1), presenting possible directions for future
research (section 8.2), and concluding the work by final remarks (section 8.3).

8.1 Thesis Review

This thesis has argued that the role of resource management has significantly
changed due to two factors: recent technological improvements which resulted in
an increasing diversity of computing environment and the boom in mobile com-
puting, and the inability of traditional operating systems to provide a flexible user-
customized platform where implementation of dynamic resource allocation strate-
gies is feasible.

In this section we recapitulate four major areas this thesis has addressed: identi-
fying a new role of resource management, the model of dynamic third-party trading
applied to MAGNET, the dynamic resource management architecture, and BiTs, the
component-based architecture.

8.1.1 A New Role of Resource Management

Resource managers in dynamically changing systems must fulfill requirements for
user-customization, extensibility and adaptability. We have mapped the field of
operating systems and resource management, and identified the new role of and
requirements for resource managers.

8.1.2 A Model of Dynamic Third-party Trading

The design of MAGNET is based on a model of dynamic third-party trading of
resources based on requests for the type of service. Although the model is primarily

111

CHAPTER 8. CONCLUSION 112

designed for dynamic resource management, its generality makes it suitable for any
system requiring trader-based dynamic binding.

The model enables MAGNET to meet the initially identified requirements for
dynamic resource management:

e Dynamic Trading. Resource coupling by a component in a third-party
role, the Trader, is based on requesting services by their types, rather than
by names. Component export services to the Trader which performs a match-
ing process resulting in an establishment of a dynamic binding. This binding
process is performed through cooperation of components and the Trader, and
comprises three phases: exporting service definition, negotiating service defi-
nitions, and establishing a communication channel.

e Extensibility. Extensibility of the architecture is provided at two levels:
services definitions exported into the Trader can be user-defined, and conse-
quently, the matching process can be user-customized.

e QoS-based Management. The extensibility of the model enables QoS-
based management. In particular it allows the resource definitions to be
parametrized by QoS-based characteristics. In addition, user-customized QoS-
based matching processes can be incorporated. QoS Management, dealing
with all aspects of non-functional behaviour of components, consists of three
phases performed in sequence: QoS Definition, QoS Negotiation and QoS
Maintenance.

¢ Dynamic Rebinding. Dynamic rebinding is defined by the rebinding pro-
cess. Performing adaptation to changes in system conditions, it follows the
semantics of the binding process. This consists of four phases: exporting ser-
vice definition, renegotiating service definitions, destroying a communication
channel, and reestablishing a communication channel.
According to the role of component initiating the process, the model distin-
guishes between two types of rebinding: first-party rebinding, and third-party
rebinding. Also, the model defines two more cases considering the component
responsible for renegotiation of the replacement: first-party renegotiation (un-
bound components are left to find a new component themselves), or they are
given a new peer. Semantically, this can be found in the Trader (third-party
renegotiation), or obtained from an external third-party (no-renegotiation is
performed).
Components, treated as black-boxes, are responsible for maintaining system
consistency, therefore the model does not handle inconsistent states.

¢ Information Monitoring. Monitoring is implemented by monitors ensuring
service information kept in the Trader is up-to-date. It was provided by the
extensibility of the model, therefore, there is no need for a dedicated support
at the model level.

e Scalability. Scalability of the framework is supported by defining a notion of
federation, a local scale distributed system with one Trader. Internetworking
between federations provides scaling of the architecture.

8.1.3 MAGNET: A Dynamic Resource Management Archi-
tecture
Based on the framework discussed above, MAGNET provides trading of service defi-

nitions based on a tuplespace paradigm. Here, we summarize how MAGNET actually
supports the initial requirements for the defined trading model.

CHAPTER 8. CONCLUSION 113

e Dynamic Trading. The Trader, based on a tuplespace paradigm, consists of
three components: the information pool, Trader operations on tuples, and the
matching operation. Dynamic trading is performed by enabling components
to define their services in terms of tuples placed into the information pool
(by operations ADVERT, and BIND), performing a matching operation and
establishing a resultant binding. Tuples can be withdrawn from the Trader by
complementary operations, (WITHDRAWC and WITHDRAWS). Components
involved in the binding process (Binders, GlueFactory, Tree) were also defined.

e Extensibility. By enabling users to redefine tuple formats and user-customize
the matching function, MAGNET supports extensibility.

¢ QoS-based Management. Extensibility and flexibility of the architecture
enables QoS Management. Firstly, QoS Definition introduces QoS operators
(which can be user-customized). In addition, within the QoS Negotiation
phase, components can formulate their preferences by QoS-rating operators
and QoS-rating match in order to select the best tuple among a group of
matching tuples. QoS Maintenance, based on QoS Monitoring, enables two
adaptation strategies to be implemented: resource management and applica-
tion adaptation.

e Dynamic Rebinding. Tuplespace-based implementation of four phases of
the rebinding process was described. In addition, we have discussed all com-
ponents involved in the process (Rebinders, Updater, Administrator) as well
as different situations into which the system may transforms (as a result of
different components performing the initiation and renegotiation).

e Information Monitoring. Components for monitoring (Updater, Monitor)
of service definitions placed into the information pool (for both parties —
clients and servers) ensure that component tuples are up-to-date at all times.

e Scalability. MAGNET supports operations JOIN and LEAVE to enable mobile
users to use local resources transparently in a site where they have arrived.
In addition, the architecture also supports scaling by enabling a tuple to be
passed over the trading system to a particular Trader for processing using
special components, Locators.

8.2 Future Work

This section identifies areas of future research, discussing problems beyond the
scope of this thesis, or identifying potential alternative design decisions to those
undertaken in MAGNET.

8.2.1 The Resource Management

In this section we identify alternative design approaches to those implemented in
MAGNET.

¢ Distribution of the Information Pool. In contrast to the ‘visible’ dis-
tribution of the information pool implemented by MAGNET using the Tree
components, an alternative approach uses a Distributed Shared Memory, as
discussed in chapter 6. We investigated this approach in the early stages of
our research [34].

CHAPTER 8. CONCLUSION 114

¢ Protection of the Information Pool. MAGNET assumes that all tuples
placed into the pool represent the services of existing components. There is
no notion of protecting applications against misleading components inserting
tuples which represent non-existing services. An additional protection scheme
might be implemented, such as an authorization of components to call the
Trader operations.

e Comnsistency of the Information Pool. According to our assumption,

MAGNET cannot be responsible for consistency of the information pool. An
alternative approach, MAGNET’s responsibility over tuples in the pool, leads
to investigation of garbage collection of out-of-date tuples left in the pool, as
discussed in chapter 7.
Within the black-box approach, the only way to find out whether the compo-
nent which inserted the tuple into the pool still exists is to call a dedicated
operation ‘still alive’ provided by the component itself, or by introducing
timeouts. Implications for system performance are worth investigation, in
particular in the case of operations JOIN and LEAVE.

e Diverse Applications of the Framework. The utility of the MAGNET
framework was illustrated in several operating system-based examples, in
chapter 7. As the architecture was designed to be suitable for any applications
requiring trader-based dynamic binding and rebinding, there are more diverse
applications that can use the potential of the architecture. An example of
dynamic taxi-controlling system, based on MAGNET, was investigated during
our research [35].

8.3 Summary

This chapter has presented general conclusions and also areas of possible future
research. We have summarized this work by recapitulating initial requirements
(dynamic trading, extensibility, QoS-based management, dynamic rebinding, infor-
mation monitoring, and scalability) and presenting how they were met, at the model
level and at the MAGNET architecture level.

Our research on MAGNET has demonstrated the feasibility of dynamic resource
management which provides flexible QoS-based description, negotiation of services,
user-customization of allocation strategies, and runtime adaptation to changes in
computing environment.

Bibliography

[1] A.P.M. Ltd. The ANSA Reference Manual Release 01.00. APM Cambridge Lim-
ited, UK, March 1989.

[2] C. Aurrecoechea, A. Campbell, L. Hauw. A Review of Quality of Service Archi-
tectures. ACM Multimedia Systems Journal, Internal report number MPG-95-10,
November 1995.

[3] M. J. Bach. The Design of the Uniz Operating System. Prentice Hall Interna-
tional, Inc., 1986.

[4] A. Benerjea, B. Mah. The Real-Time Channel Administration Protocol. In Pro-
ceedings of the Second International Workshop on Network and Operating System
Support for Digital Audio and Video, IBM ENC, Heidelberg, Germany, 1991.

[5] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,
C. Chambers, S. Eggers. FExtensibility, Safety and Performance in the SPIN Oper-
ating System. In Proceedings of the 15th ACM Symposium on Operating Systems
Principles, pages 267-284, Colorado, USA, December 1995.

[6] L. Besse, L. Dairaine, L. Fedacui, W. Tawbi, K. Thai. Towards an Architecture
for Distributed Multimedia Application Support. In Proceedings of the Interna-
tional Conference on Multimedia Computing and Systems, Boston, USA, May
1994.

[7] A. Birrell and B. Nelson. Implementing Remote Procedure Calls. ACM Trans-
actions on Computer Systems, 27(4), pages 349-350, April 1984.

[8] G. S. Blair, N. Davies, A. Friday and S. P. Wade. Quality of service support in
mobile environments: an approach based on tuple spaces. In Proceedings of the
5th IFIP International Workshop on Quality of Service, New York, USA, May
1997.

[9] G. S. Blair, G. Coulson, N. Davies, P. Robin, T. Fitzpatrick. Adaptive Middle-
ware for Mobile Multimedia Applications. In Proceedings of the 7th International
Workshop on Network and Operating System Support for Digital Audio and
Video (NOSSDAYV '97), St. Louis, MI, USA, May 1997.

[10] D. Bolton, D. Gilbert, K. Murray, P. Osmon, A. Whitcroft, T. Wilkinson, N.
Williams. A Question based approach to Open systems: OSPREY. Internal TR,
SARC, City University, London. March 1993.

[11] A. Campbell, G. Coulson, D. Hutchison. A Quality of Service Architecture.
Computer Communication Review, 1(2), pages 6-27, April 1994.

[12] L. Cardelli. Foundations for Wide-Area Systems.Paolo Ciancarini, Alessandro
Fantechi and Roberto Gorrieri, Editors. Formal Methods for Open Object-Based

115

BIBLIOGRAPHY 116

Distributed Systems, IFIP TC6/WG6.1 Third International Conference on For-
mal Methods for Open Object-Based Distributed Systems (FMOODS), February
15-18, 1999, Florence, Italy. pages 349-349, Kluwer Academic Publishers, 1999.

[13] W. H. Cheung, A. H. Loong. Ezploring Issues of Operating Systems Structur-
ing: from Microkernel to Extensible Systems. Operating Systems Review, 29(4)
pages 4-16, October 1995.

3

[14] M. Clarke, G. Coulson. An Architecture for Dynamic Extensible Operating Sys-
tems. In Proceedings of the 4th International Conference on Configurable Dis-
tributed Systems, pages 145-155, Annapolis, Maryland, USA, May 1998.

[15] J. S. Crane. Dynamic Binding for Distributed Systems. PhD thesis, University
of London, Department of Computing, Imperial College of Science, Technology
and Medicine, 180 Queen’s Gate, London SW7 2BZ, UK, 1997.

[16] N. Davies, G. S. Blair, K. Cheverst and A. Friday. Supporting Adaptive Services
in a Heterogeneous Mobile Environment. In Proceedings of the 1st Workshop on
Mobile Computing Systems and Applications, Santa Cruz, CA, USA, December
1994.

[17] Distributed = Multimedia Research ~ Group. @ ABTA: The Ac-
tive Badge Tourist Application. Computing Department, Lan-
caster University, Lancaster, UK. Electronic document available at
http://www.comp.lancs.ac.uk/computing/research /mpg/most/abta project.html

[18] S. M. Dorward, R. Pike, D. L. Presotto, D. M. Ritchie, H. W. Trickey, P.
Winterbottom. The Inferno Operating System. Bell Labs Technical Journal, 2(1),
pages 5-18, Winter 1997.

[19] D. R. Engler, M. F. Kaashoek, J. W. O’Toole Jr. Exokernel: An Operating
System Architecture for Application-Level Resource Management. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles, pages 251-266,
Colorado, USA, December 1995.

[20] T. Fitzpatrick, G. S. Blair, G. Coulson, N. Davies, P. Robin. Supporting Adap-
tive Multimedia Applications through Open Bindings. In Proceedings of the 4th
International Conference on Configurable Distributed Systems, pages 128-135,
Annapolis, Maryland, USA, May 1998.

[21] G. H. Forman, J. Zahorjan. The Challenges of Mobile Computing. IEEE Com-
puter, 27(4), pages 38-47, April 1994.

[22] D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1), pages 80-112, January 1985.

[23] A.S. Grimshaw, W. A. Wulf. The Legion Vision of a Worldwide Virtual Com-
puter. Communications of the ACM, 40(1), January 1997.

[24] D. O. Guedes, D. E. Bakken, N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting.
A Customized Communication Subsystem for FT-Linda. In Proceedings of the
13th Brazilian Symposium on Computer Networks, pages 319-338, May 1995.

[25] D. B. Hehmann, R. G. Herrtwich, W. Schultz, T. Schuett, R. Steinmetz. Imple-
menting HeiTS: Architecture and Implementation strategy of the Heidelberg High
Speed Transport System. In Proceedings of the Second International Workshop
on Network and Operating System Support for Digital Audio and Video, IBM
ENC, Heidelberg, Germany, 1991.

BIBLIOGRAPHY 117

[26] M. Henzinger, V. King. Fully Dynamic 2-edge Connectivity Algorithm in Poly-
logaritmic Time per Operation. Technical Note 1997-004, Digital Equipment Cor-
poration, Systems Research Center, Palo Alto, CA, USA, June 1997.

[27] D. Hildebrand. QNX: Microkernel Technology for Open Systems Handheld
Computing. The Pen & Portable Computing Conference and Exposition, Boston,
USA, May 1994.

[28] M. A. Hiltunen, R. D. Schlichting. Fine-Grain QoS customization in
Distributed Middleware Services. Department of Computer Science, Uni-
versity of Arizona, Tuscon, AZ, USA. Electronic document available at
ftp://ftp.cs.arizona.edu/ftol /papers/iwqos.ps

[29] N. Hutchinson, L. Peterson. The z-kernel: An Architecture for Implementing
Network Protocols. IEEE Transactions on Software Engineering, 17(1), pages 64-
76, January 1991.

[30] V. Issarny, C. Bidan, T. Saridakis. Achieving Middleware Customization in a
Configuration-Based Development. In Proceedings of the 4th International Con-
ference on Configurable Distributed Systems, pages 207-214, Annapolis, Mary-
land, USA, May 1998.

[31] M. F. Kaashoek, D. R. Engler, G. R. Ganger. Application Performance and
Flexibility on Ezokernel Systems. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles, pages 52-65, Saint-Malo, France, October 1997.

[32] P. Kostkova, K. Murray, T. Wilkinson. Component Based Operating Sys-
tem. Second Symposium on Operating Systems Design and Implementation,
WIP session, Seattle, USA, October 1996. Electronic document available at
http://www.usenix.org/publications/library /proceedings/0sdi96 /wip.html

[33] P. Kostkova, J. S. Crane, J. A. McCann, T. Wilkinson. MAGNET: QoS-
based Dynamic Adaptation in a Changing Environment. Internal TR, HiPeX,
Department of Computer Science, City University, London, UK, February
1998. Electronic document available at ftp://ftp.cs.city.ac.uk/users/patty/qos-
abstract.html

[34] P. Kostkova, T. Wilkinson: MAGNET: A Virtual Shared Tuplespace Resource
Manager. International Journal on Parallel and Distributed Computing, Special
Issue on Parallel and Distributed Computing Practices, Ed. M. Paprzycki, NOVA
Science Books, Commack, New York, 1(3), September 1998.

[35] P. Kostkova, J. S. Crane, T. Wilkinson: MAGNET: A Dynamic Information
Broker for Mobile Environments. Internal TR, HiPeX, Department of Computer
Science, City University, London, UK, March 1998. Electronic document available
at ftp://ftp.cs.city.ac.uk /users/patty /broker-abstract.html

[36] J. Kramer, J. Magee, A. Young. Towards Unifying Fault and Change Manage-
ment. In Proceedings of IEEE International Workshop on Distributed Computing
Systems in the 90°; pages 57-63, Cairo, Egypt, 1990.

[37] B. W. Lampson. Designing a Global Name Service. In Proceedings of the 5th
Annual ACM Symposium on Principles of Distributed Computing (PODC 86”)
Calgary, Canada, August 1986. ACM New York, pages 1-10, 1986.

3

[38] A. A. Lazar. Challenges in Multimedia Networking. In Proceedings of the In-
ternational Hi-Tech Forum, Osaka, Japan, February 1994.

BIBLIOGRAPHY 118

[39] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns,
E. Hyden. The Design and Implementation of an Operating System to Support
Distributed Multimedia Applications. University of Cambridge, Computer Labo-
ratory. Cambridge, UK, June 1997.

[40] J. Liedtke. On micro-kernel construction. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles, Copper Mountain Resort, Col-
orado, USA, pages 237-250, December 1995.

[41] M. J. Litzkow, M. Livny, M. W. Mutka. Condor — A Hunter for Idle Work-
stations. In Proceedings of the 8th International Conference on Distributed Com-
puting systems, pages 104-111, 1998.

[42] J. Magee, J. Kramer, M. Sloman, N. Dulay. A Constructive Development Envi-
ronment for Parallel and Distributed Programs. Distributed Systems Engineering
Journal, Special Issue on Configurable Distributed Systems,1(5), pages 304-312,
September 1994.

[43] J. Magee, N. Dulay, S. Eisenbach, J. Kramer. Specifying Distributed Soft-
ware Architectures. Fifth European Software Engineering Conference, Barcelona,
September 1995.

[44] K. R. Mayes, J. Bridgland. Arena a Run-Time Operating System for Par-
allel Applications. In Proceedings of Euromicro '97, Workshop on Parallel and
Distributed Processing, pages 253-258, 1997.

[45] J. A. McCann, P. Kostkova. Advances in Operating Systems and their Im-
plications for DBMS. Internal TR, HiPeX, Department of Computer Science,
City University, London, UK, August 1997. Electronic document available at
ftp://ftp.cs.city.ac.uk/users/patty /dbms-abstract.html

[46] J. A. McCann, J. S. Crane. Kendra: Internet Distribution & Delivery Sys-
tem an introductory paper. In Proceedings of SCS EuroMedia Conference,
Leicester, UK. Ed. Verbraeck A., Al-Akaidi M., Society for Computer Simulation
International, pages 134-140, January 1998.

[47] A. Messer, T. Wilkinson. Components for Operation System Design. In Pro-
ceedings of the 5th IEEE Internation Workshop on Object-Orientation in Oper-
ating Systems (IWOOOS ’96), Seattle, USA, October 1996.

[48] Microsoft Corporation. DCOM Technical Overview. Electronic document avail-
able at http://www.microsoft.com/com/dcom.asp

[49] D. Mosberger, L. L. Peterson. Making Paths Explicit in the Scout Operating
System. In Proceedings of the Second Symposium on Operating Systems Design
and Implementation, Seattle, USA, pages 153-167, October 1996.

[50] K. Nahrstedt. Middleware Support for Quality of Service Support. In Proceed-
ings of the Grace Hopper Celebration for Women in Computing, San Jose, USA,
pages 65-68, September 1997.

[51] K. Nahrstedt, J. Smith. The QoS Broker. IEEE Multimedia, 2(1), pages 53-67,
Spring 1995.

[52] K. Nahrstedt, J. Smith. Design, Implementation and Experience of the
OMEGA End-Point Architecture. IEEE Journal on Selected Areas in Commu-
nications, 14(7), pages 1263-1279, September 1996.

BIBLIOGRAPHY 119

[53] K. Nahrstedt, R. Steinmetz. Resource Management in Networked Multimedia
Systems. IEEE Computer 28(5), pages 52-64, May 1995.

[54] G. C. Necula, P. Lee. Safe Kernel Extensions Without Run-Time Checking. In
Proceedings of the second Symposium on Operating Systems Design and Imple-
mentation, Seattle, USA, pages 229-243, October 1996.

[55] G. Nilisoin, F. Dupuy, Chapman. An Querview of the Telecommunications In-
formation Networking Architecture. In Proceedings of TINA 95, Melbourne, Aus-
tralia, February 1995.

[56] The Object Management Group, OMG Headquarters, 492 Old Connecticut
Path, Framington, MA 01701, USA. The Common Object Request Broker: Ar-
chitecture and Specification, July 1995. Version 2.0.

[57] B. Oki, M. Pfluegl, A. Siegel, D. Skeen. The Information Bus. In Proceedings
of the 14th ACM Symposium on Operating Systems Principles (SIGOPS ’93)
Asheville, North Carolina, USA, pages 58-68, December 1993.

3

[58] A. Oliva, L. E. Buzato. The Design and Implementation of Guarana’. Submit-
ted to the 5th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS ’99), San Diego, USA, May 1999.

[59] P. Pardyak, B. Bershad. Dynamic Binding for an Eztensible System. In Pro-
ceedings of the second Symposium on Operating Systems Design and Implemen-
tation, Seattle, USA, pages 201-212, October 1996.

[60] R. Pike, D. L. Presto, S. M. Doward, B. Flandrena, K. Thompson, H. W.
Trickey, P. Winterbottom. Plan 9 from Bell Labs. Journal of Computing Systems,
8(3), pages 221-254, Summer 1995.

[61] B. Potter, J. Sinclair, D. Till. An Introduction to Formal Specification and Z.
Prentice Hall International, second edition, 1996.

[62] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J.
Walpole, K. Zhang. Optimistic Incremental Specialization: Streamlining a Com-
mercial Operating System. In Proceedings of the 15th ACM Symposium on Op-
erating Systems Principles, pages 314-324, Colorado, USA, December 1995.

[63] R. Raman, M. Livny, M. Solomon. Matchmaking: Distributed Resource Man-
agement for High Throughput Computing. In Proceedings of the 7th IEEE Inter-
national Symposium on High Performance Distributed Computing, Chicago, 1L,
USA, July 1998.

[64] D. Reed, R. Fairbairns. Nemesis: the kernel. Overview. University of Cam-
bridge, Computer Laboratory. Cambridge, UK, May 1997.

[65] S. Savage, B. Bershad. Some Issues in the Design of an Extensible Operating
System. In Proceedings of the First Symposium on Operating Systems Design and
Implementation, Panel session, Monterey, California, USA, page 196, November
1994.

[66] Secretariat: ISO/IEC JTC1/SC33. Standards Association of Australia, PO
Box 1055, Strathfield, NSW, Australia 2135. Open Distributed Processing — In-
terface References and Binding. January 1998. Document ISO/IEC JTC1/SC33
N119, ITU-T Draft Recommendation X.930 (1998).

BIBLIOGRAPHY 120

[67] Secretariat: ISO/IEC JTC1/SC21. Standards Association of Australia, PO
Box 1055, Strathfield, NSW, Australia 2135. Information technology Open
Distributed Processing Trading Function. June 1995. Document ITU-T Rec.9tr
ISO/IEC JTC1/SC21 DIS 13235.

[68] Secretariat: ISO/TEC JTC1/SC Working Draft for Open Distributed Processing
— Reference Model — Quality of Service. January 1998. Document ISO/IEC
JTC1/SC21 N10979 Ed 6.4.

[69] R.Staehli, J. Walpole, D. Maier. Quality of Service Specification for Multimedia
Presentations. Multimedia Systems, 3(5/6), November 1995.

[70] H. Storner. Linux kerneld mini-HOWTO. Electronic document available at
http://www.image.dk/“storner /kerneld-mini-HOWTO.html, version 1.7, July
19, 1997.

[71] M. I. Seltzer, Y. Endo, C. Small, K. A. Smith. Dealing With Disaster: Sur-
viving Misbehaved Kernel Extensions. In Proceedings of the second Symposium
on Operating Systems Design and Implementation, Seattle, USA, pages 213-227,
October 1996.

[72] A.S. Tanenbaum. Distributed Operating Systems. Prentice Hall International,
Inc. 1995.

[73] A. Veitch, N. Hutchinson. Kea A Dynamically Extensible and Configurable
Operating System Kernel. In Proceedings of the Third International Conference
on Configurable Distributed Systems, pages 236-242, Annapolis, Maryland, USA,
May 1996.

[74] A. Veitch, N. Hutchinson. Dynamic Service Reconfiguration and Migration in
the Kea Kernel. In Proceedings of the 4th International Conference on Con-
figurable Distributed Systems, pages 156-163, Annapolis, Maryland, USA, May
1998.

[75] J. Waldo. Jini Architecture Overview. Electronic document available at
http://www.javasoft.com/products/jini/whitepapers/architectureoverview.pdf,
Sun Microsystems, Inc., 1998.

[76] Web Technologies Department of Computer Science, IBM Almaden Re-
search Center, San Jose, CA, USA, Electronic document available at
http://www.almaden.ibm.com/cs/TSpaces.

[77] Niklaus Wirth. Algorithm + Data Structures = Programs. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1975.

