
Department of ComputingThe City UniversityLondon
MAGNET: A Dynamic Resource ManagementArchitecture

Patricie Kostková
July 1999

A thesis submitted in partial ful�llment of the requirements for the degree of Doctorof Philosophy in Computer Science at City University, London, UK.

i.

Copyright c
1999 Patricie Kostková

iiAbstractThis thesis proposes a new dynamic resource management architecture, Mag-net, to meet the requirements of users in �exible and adaptive systems. Computersystems no longer operate in centralized isolated static environments. Technologicaladvances, such as smaller and faster hardware, and higher reliability of networkshave resulted in the growth of mobility of computing and the need for run-timerecon�gurability. The dynamic management of this diversity of resources is thecentral issue addressed in this thesis. Applications in environments with frequentlychanging characteristics are required to participate in dynamic resource manage-ment, to adapt to ever-changing conditions, and to express their requirements interms of quality of service.Magnet enables dynamic trading of resources which can be requested indi-rectly by the type of service they o�er, rather than directly by their name. Adedicated component, the Trader, matches requests for services against demandsand establishes a component binding � resource allocation. In addition, the archi-tecture is extensible � it does not constrain the information on services and allowsuser-customization of the matching process. Consequently, this allows resource de�-nitions to be parametrized (to include QoS-based characteristics), and the matchingprocess to be user-customized (to preform QoS-based negotiation). In order to ful-�ll the requirements of users relying on ever-changing conditions, Magnet enablesruntime adaptation (dynamic rebinding) to changes in the environment, constantmonitoring of resources, and scalability of the architecture.The generality of the Magnet architecture is illustrated with several examplesof resource allocation in dynamic environments.

iiiAcknowledgementsOver the last three years, there were many people who have directly, or indirectly,intentionally or accidently contributed to this work having come to fruition. Theyare all owed my thanks.First of all, I would like to thank all my o�cial and uno�cial supervisors: TimWilkinson, Peter Osmon, Steve Crane, Julie McCann and Kevin Murray.Tim, the `father' of the component-based resource management idea, gave meexpert technical support in various aspects of this thesis, and desperately neededencouragement before public presentations at my �rst conferences.Peter Osmon gave me constant encouragement and support in his ever-optimisticstyle. His guidance and helpful comments, particularly during the writing-up phaseof my thesis, are much appreciated.Many thanks are due to Steve Crane, who appeared in my �nal year, just in timeto suggest Regis for my implementation environment. His perfectionist attitude,insight into the subject, and expert technical support helped me to improve, justify,and better formalize this work.My thanks are also due to Julie McCann for moral support during all threeyears, many stimulating discussions, and valuable comments on my research. Inparticular, I would like to thank her for proof-reading the �rst draft of this thesis,and her constructive feedback greatly in�uenced the �nal presentation of this work.I would like to thank Kevin Murray for many helpful suggestions during theinitial `shaping' of my thesis theme, and many constructive discussions.Further, Nick Plumb and Kim Harries were always ready to provide helpfulcomments, and corrections of Czech-English drafts of my papers. In addition, Nick,Kim, Andy Whitcroft, James Green, Peter Loh and Irena Arambasic were excellentfriends who put up with me over the last three years.Many thanks are due to Nomi Harris, who volunteered to do the �nal proof-reading of this thesis.Also, other PhD students and members of sta� who provided a stimulatingatmosphere in the o�ce or a relaxing time o�-site (or both) also contributed; notdirectly into my reseach, but signi�cantly into my understanding of English culture.In particular, they include: Paul Howlett, Sheun Olatunbosun, Akmal Chaudhri,Shim Young, Chris Marshall, Tony Valsamidis, Gary Mullen, Nick Williams, MaiaDimitrova, Michael Schroeder and Greg Law.Also, I owe thanks to my lectures from the Faculty of Mathematics and Physics,Charles University in Prague, where I received my Masters degree for preparing mefor my PhD research.Finally, many thanks go to my family and friends back in the Czech Republic.First of all, I have never been able to fully express my thanks to my parents, Danielaand Franti²ek, for their remote support and constant encouragement during all mylife. In addition, my great sister Jana who enjoyed with me many happy times, andsupported me when things were di�cult. My granny Josefa, with her inexhaustiblesource of energy and ability to battle against extreme adversity, has always beena source of inspiration for me. Finally, thanks for support from other friends, inparticular, Dafe �imonek, Markéta Starobová, Renata �kopková, Hynek Pikhart,Marek Zindulka and Eva �im²ová.Thank you all!

Contents
1 Introduction 11.1 Motivation . 11.1.1 Technological Advances . 11.1.2 Characteristics of Frequently-Changing Environments 21.1.3 Limitations of Traditional Operating Systems 21.1.4 A New Role of Resource Management 31.2 Requirements for a Resource ManagementArchitecture . 31.2.1 Dynamic Trading . 31.2.2 Extensibility . 41.2.3 QoS-based Management . 41.2.4 Dynamic Rebinding . 41.2.5 Information Monitoring . 51.2.6 Scalability . 51.3 Contributions . 51.3.1 Identifying a New Role of Resource Management 51.3.2 A Model of Dynamic Third-party Trading 51.3.3 MAGNET: A Dynamic Resource Management Architecture . 61.4 Thesis Structure . 62 Resource Management in Distributed Systems 72.1 Resource Management in Extensible Operating Systems 72.1.1 Exokernel . 72.1.2 SPIN . 82.1.3 Inferno . 82.1.4 Kea . 92.1.5 DEIMOS . 92.1.6 Nemesis . 102.1.7 Other Systems . 102.1.8 Discussion . 102.2 Other Trading and Recon�gurable Architectures 112.2.1 Tuplespace-based Architectures 112.2.2 ANSAware Distributed Systems Platform 132.2.3 CORBA . 132.2.4 DCOM . 132.2.5 Aster . 132.2.6 Matchmaking . 142.2.7 Other Systems . 142.2.8 Discussion . 152.3 QoS Architectures . 152.3.1 QoS-based Trading Architectures 162.3.2 Other QoS Architectures . 16iv

CONTENTS v2.3.3 Discussion . 172.4 Chapter Summary . 173 A Model of Dynamic Third-party Trading 193.1 Terms and De�nitions . 193.2 Assumptions . 213.3 The Binding Process . 233.3.1 Exporting Service De�nitions 233.3.2 Negotiating Service De�nitions 243.3.3 Establishing a Communication Channel 263.4 Rebinding . 273.4.1 The Rebinding Process . 273.4.2 Rebinding Situations . 283.5 Quality of Service Management . 313.5.1 Introduction . 313.5.2 QoS De�nition . 323.5.3 QoS Negotiation . 343.5.4 QoS Maintenance . 343.6 Chapter Summary . 354 A Resource Management Architecture 364.1 Requirements for Dynamic Resource Management 364.2 Using the Tuplespace Paradigm for the Trader 374.2.1 Overview of the Trader . 374.2.2 The Information Pool . 384.2.3 The Trader Operations . 384.2.4 The Tuple Matching . 404.2.5 Reasoning about the Trading Paradigm 404.3 Components for the MAGNET Architecture 424.3.1 The Trader . 434.3.2 The Tree . 444.3.3 Distribution Issues . 444.3.4 The Glue Factory . 444.3.5 Client and Server . 454.3.6 Binders . 454.4 The Binding Process . 454.4.1 Export Service De�nitions . 454.4.2 Negotiating Service De�nitions 474.4.3 Establishing a Communication Channel 474.5 Naming . 484.5.1 Tuple Naming . 484.5.2 Interface Reference Naming 484.5.3 Trader Naming . 484.6 Protection . 484.6.1 Trader Protection . 494.6.2 Tuple Protection . 494.6.3 Component Protection . 494.7 Chapter Summary . 50

CONTENTS vi5 Advanced Features of the Architecture 525.1 Information Monitoring . 525.1.1 Components for Monitoring 525.1.2 Monitoring . 535.1.3 Discussion . 545.2 Quality of Service Management . 555.2.1 QoS De�nition . 555.2.2 QoS Negotiation . 575.2.3 QoS Maintenance . 595.3 Rebinding . 605.3.1 Components for Rebinding 605.3.2 The Rebinding Process . 615.3.3 Rebinding Situations . 635.3.4 First-Party Renegotiated First-Party Rebinding 645.3.5 First-Party Renegotiated Third-Party Rebinding 645.3.6 Third-Party Renegotiated Third-Party Rebinding 655.3.7 No-Renegotiation Third-Party Rebinding 655.3.8 Other Issues . 655.4 Scalability . 675.4.1 Federations . 675.4.2 Dynamically Recon�gurable Domains 685.4.3 Scaling the Architecture . 715.5 Chapter Summary . 756 Implementation Experience 786.1 Regis Distributed Environment . 786.1.1 Overview of Regis . 786.1.2 Adaptation of Regis . 796.2 MAGNET Implementation in Regis 796.2.1 System Components . 796.3 Tuples . 826.4 The Tree . 836.4.1 The Tree Data Structure . 836.4.2 Implementation of the Trader Operations 846.4.3 The Complexity of the Trader Operations 846.5 The Trader . 876.5.1 Tree Distribution . 876.5.2 Tree Allocation on Processors 886.6 QoS Management . 906.6.1 QoS De�nition . 906.6.2 QoS Negotiation . 906.6.3 The Complexity of QoS-based Matching Operations 926.7 Limitations . 936.7.1 Large Number of Components 936.7.2 Large Number of Tuples . 936.8 Usability and Porting . 946.8.1 Usability . 946.8.2 Porting . 946.9 Chapter Summary . 94

CONTENTS vii7 Case Studies and Evaluation 967.1 System Components . 967.1.1 CPU . 967.1.2 Memory . 977.1.3 Disk . 977.1.4 Printer . 987.1.5 Discussion . 997.2 QoS-based Allocation . 997.3 Dynamic Network Connectivity . 1017.3.1 Disconnected Case . 1017.3.2 Weakly Connected Case . 1027.3.3 Fully Connected Case . 1047.4 Evaluation . 1057.4.1 Evaluation of Provided Features 1057.4.2 Discussion on Assumptions 1077.4.3 Comparison with Existing Architectures 1097.5 Chapter Summary . 1108 Conclusion 1118.1 Thesis Review . 1118.1.1 A New Role of Resource Management 1118.1.2 A Model of Dynamic Third-party Trading 1118.1.3 MAGNET: A Dynamic Resource Management Architecture . 1128.2 Future Work . 1138.2.1 The Resource Management 1138.3 Summary . 114

List of Figures3.1 Binding between Server and Client established by the Trader 223.2 A Trading System consisting of two Federations 253.3 Trading . 263.4 First-party Renegotiated First-party Rebinding 293.5 First-party Renegotiated Third-party Rebinding 303.6 Third-party Renegotiated Third-party Rebinding 313.7 No-Renegotiation Third-party Rebinding 324.1 The Trader Structure . 384.2 Magnet's architecture . 434.3 Binding establishment in Magnet 464.4 Admission Protocol . 505.1 The architecture with the Monitor and the Updater 545.2 Magnet with Components for Rebinding 625.3 First-Party Renegotiated First-Party Rebinding in Magnet 645.4 First-Party Renegotiated Third-Party Rebinding in Magnet 655.5 Third-Party Renegotiated Third-Party Rebinding in Magnet 665.6 No-Renegotiation Third-Party Rebinding 665.7 Operation Join . 705.8 Operation Leave . 725.9 Trading scheme based on ip addresses 745.10 Communication between Federations 766.1 Regis bindings used in the Magnet architecture 826.2 Tuple representation . 836.3 Tree data structure . 856.4 The Trader and distributed Tree components 896.5 Tree data structure incorporating QoS De�nition 917.1 Essential system server components 98

viii

List of Tables3.1 QoS-based De�nition of a printer and a CPU 335.1 Matching functions . 585.2 Results of QoS-rating match between tuples A,B, C and D 597.1 The Information Pool containing tuples A, B, and C. 1007.2 QoS-based allocation � matching between tuples A,B, C and D . . 1007.3 The Information Pool containing tuples A, B, C and F. 1017.4 The Portable Information Pool� the disconnected case 1027.5 The Portable Information Pool � the weakly connected case 1037.6 The O�ce-Based Information Pool 1037.7 The Portable Information Pool � the fully connected case 104

ix

Chapter 1IntroductionThe role of resource management has recently changed due to two factors: techno-logical improvements, resulting in a diversity of computing environments, and theinability of traditional operating systems to provide a �exible dynamically-adaptableplatform. This thesis addresses the design of a resource manager, Magnet, ful-�lling requirements of users in frequently-changing environments. In particular, wepresent a framework enabling user-customized dynamic resource allocation support-ing runtime adaptations, and quality of service-based resource description.Now we will discuss our motivations in greater detail (section 1.1), outline thehigh-level requirements for the resource management architecture (section 1.2) andthen summarize our contributions (section 1.3).1.1 MotivationIn the last decade we have witnessed signi�cant technological advances in the areasof wireless communication and hardware component design that have fundamen-tally changed the computing environment. It has become structurally diverse, withfrequently-changing characteristics of system components, such as availability of re-sources, degree of connectivity, and local site hardware con�guration. In addition,traditional operating systems (including microkernels) still su�er from high-levelcentralized resource management, and the inability to tailor resource abstractionsto application needs [13].1.1.1 Technological AdvancesTechnological improvements in reliability, speed and coverage of wireless communi-cation, and the rapidly-decreasing size and weight of mobile phones are major fac-tors enabling the current boom in mobile computing. Therefore, weakly-connectedsystems (e.g., Infra-red (ir) networks, cellular radio networks) no longer su�er fromsigni�cantly low bandwidth, high error-rates, throughput �uctuations, frequent dis-connections or limited coverage [21]. The a�ordability of mobile phones is anotherfactor that has contributed to the change in the computing environment.Other hardware technology advances have accelerated this process by enablingusers to become mobile. These include: the invention of the colour lcd display,small disks, lightweight batteries, track-ball and touch-pad. The overall size andweight of hardware components has also decreased while their capacity and perfor-mance has increased.The timely combination of these achievements has enabled the development oftwo types of transportable computers: Personal Digital Assistants (pdas) such as1

CHAPTER 1. INTRODUCTION 2Palm Pilots, and `portable' computers, such as laptops. pdas are small, lightweight,transportable hand-held computers designed for speci�c mobile applications runningunique software, for example an `on-line' tourist navigation program [17]. Portablesare transportable computers, typically running classical operating systems and ap-plications, and are commonly used when complex work-related tasks are expectedto be performed whilst on the move. Their use while in transit (e.g., on train orplane), or when movement is in the nature of the particular business (e.g., travellingsalesmen) has become commonplace.1.1.2 Characteristics of Frequently-Changing EnvironmentsHere we describe four issues illustrating the dynamic nature of frequently-changingcomputing platforms. Primarily, we address environments with course-grained fre-quency of changes, that is minutes and hours rather that seconds and milliseconds(e.g., a typical example is a roaming portable user requiring to adapt to local re-source con�gurations in o�ces where he arrives.) We further elaborate on assump-tion on our computing environment in chapter 3.The classical resource allocation problems caused by �uctuation in availabilityand other characteristics of traditional system resources (such as length of printerqueue, processor load, network throughput, disk usage) still remain. Resource allo-cation for mobile computers has to deal with restricted hard-disk space and limitedbattery life.Owing to the enormous growth in wireless communication, resource allocationalso has to re�ect changes in characteristics of additional resources such as networkconnectivity of mobile users � the degree of connectivity may vary from totallydisconnected, through weakly-connected (by wireless communication, such as, irnetworks, cellular radio networks), to fully-connected (by Ethernet or high-speedoptical-�bre networks such as fddi and atm) [21].Above all, the mobility of users results in the high volatility of location and time-dependent information, such as local time (related to the user current position,changing while on the move, e.g., on a plane), local site hardware con�guration(using local resources in o�ces where a portable computer is plugged in), and auseable Internet Service Provider (isp) (according to town, state where a portableuser is currently travelling).Finally, computing environments are no longer coarse-grained and monolithic.System elements at all levels (hardware, software, and data) are becoming �ner-grained [45] (for example, a word processor consists of independent components:editor, spell-checker, viewer, etc.). The structure of the computing environment,re�ecting this trend toward `componentisation' [47, 45], enables applications to tai-lor the selection and con�guration of required components, and allows compositionof customized computing environments.1.1.3 Limitations of Traditional Operating SystemsOperating systems form the interface between system resources and applications byproviding abstractions of hardware devices, protection of applications, and resourcemanagement.Classical operating systems (including microkernels) limit �exibility, perfor-mance and utilization of system resources by forcing applications to use inappro-priate high-level abstractions, uniform protection schemes and high-level static re-source management [13]. Unsatisfactory performance of both the operating systemand applications, together with a lack of �exibility and run-time con�gurability,are the result of forcing applications to use inappropriate system services. Also, ithas become clear that the requirements of all applications cannot be met by any

CHAPTER 1. INTRODUCTION 3operating system in advance [65]. Therefore, applications require a platform wherethey can implement their own abstractions, tailor existing servers to their needs,de�ne their own protection schemes, and customize resource management policies.In addition, applications in environments with frequently changing character-istics impose additional requirements on operating systems, such as the ability toparticipate in dynamic resource management, and to support adaptation to ever-changing conditions. Due to the trend towards �ner granulation [13] of systemservices (discussed in section 1.1.2), the resource manager's role, as the key compo-nent, has signi�cantly expanded.1.1.4 A New Role of Resource ManagementThe traditional resource manager operated within a set of pre-de�ned static policiesfor the allocation of resources to applications. Resources must have been connectedto the system and con�gured in advance (typically at boot time).Such resource strategies were su�cient for traditional computing environments,but recent technological improvements have extended the role of resource manage-ment. It now has to provide dynamic resource allocation strategies and support run-time adaptation to frequently-changing system conditions. In addition, the higheravailability of distributed resources together with �uctuation of their characteristicshave introduced a resource description specifying non-functional features, known asquality of service (QoS). Resource managers have to enable QoS-based resourcedescription and QoS-based allocation policies.In open systems, the requirement to enable requests for services to be describedby a type of service (e.g., a printer), rather than directly by a name (e.g., theprinter lwa) is a problem which is encountered by run-time resource allocators.This implies communication between system components which did not know theiridentity a priori. In addition, dynamic features such as the monitoring of selectedresource features, and the provision of location and time-dependent informationare also required. These features enable a resource manager to provide dynamicadaptation to variations in system environment.Besides classical resource allocation requests, there are other applications requir-ing dynamic resource management which rely on the availability of dynamically-updated location and time-dependent information. They include, for example,tourists running guide-like sightseeing information software on pdas [17] or portablemobile users requiring local resources while in transit and in di�erent company of-�ces [33] (e.g., a Web client running on a portable connected by a mobile phonewhile on the move needs to switch to the fast connection when the portable isplugged into the network in an o�ce). Dynamic resource management also makesit feasible for mobile or non-mobile systems to provide continuous operation whichrequires support for hardware upgrades and on-line software updates.1.2 Requirements for a Resource ManagementArchitectureIn order to design a dynamic resource manager, we need to identify the high-levelrequirements of typical applications utilizing the potential of frequently changingcomputing environments.1.2.1 Dynamic TradingThe primary role of the resource manager for dynamic and mobile applications is toenable extensible dynamic resource allocation. In contrast to requesting resources

CHAPTER 1. INTRODUCTION 4directly by name, they should be allocated by the type of service they o�er, such asa printer, a �le system, etc. Therefore, the system must provide a dedicated com-ponent, Trader, which collects information on services, and dynamically matchesrequests against demands. By doing this it can establish dynamic binding betweencomponents which did not need to know their identity in advance.1.2.2 ExtensibilityTo achieve full generality, the Trader should not constrain the format or the seman-tics of information on services and should allow the user to customize the matchingprocess. This permits extensibility in two areas: �rstly, existing services and dataformats can be extended (new resources, services and user requests can be de�nedat run-time). Secondly, the matching process, performed by the Trader, can alsobe dynamically rede�ned (resource allocation strategies can be user-customized).Applications can adapt their behaviour to changes in the environment, and cantherefore dynamically extend system functionality. However, this relies on the pres-ence of the Trader component providing a framework for these extensions.In addition, the framework should be designed not only for resource managementpurposes. It should enable potential utilization for any kind of applications requiringdynamic trading of up-to-date information.1.2.3 QoS-based ManagementThe Trader performs component coupling based on the type of service providedor required. However, the extensibility of the architecture enables applications todescribe system components in terms of non-functional characteristics of the service,the quality of service. For example, these might be static values (such as a printerresolution or speed), or dynamically changing characteristics (such as length of aprinter queue, current network throughput, location of a resource regarding thelocation of a mobile user, etc.)QoS-based resource description requires user-customization of the matching pro-cess, in order to enable applications to de�ne their preferences. Therefore, in addi-tion to basic exact matching which is su�cient if requirements are expressed exactly,the extensible Trader also supports user-customized matching requests against de-mands. This is necessary in situations where component characteristics include aQoS-based description, as components must express their preferences in order tode�ne semantics of their matching process.1.2.4 Dynamic RebindingIn order to support runtime adaptation to system environment changes, such as thecontinuous operation of a system during a hardware upgrade or a software update(such as version upgrade), changes to existing bindings must be possible.Therefore, in addition to the previously discussed dynamic binding of systemresources to applications, the framework should also support dynamic rebinding. Itcan be originated by components themselves (�rst-party rebinding), or performed bya managerial third-party with knowledge of overall application semantics (so-calledthird-party rebinding [15]). In addition, rebinding should also enable �rst-partyrenegotiating (leaving the selection of a new component on the unbound peer),or presenting the rebound component with an appropriate replacement � thatmight be found either in the Trader (third-party renegotiation), or obtained froman external entity (in this case no-renegotiation is necessary).Supporting dynamic rebinding introduces the problem of consistency. The se-mantics of this operation have to be de�ned; in particular, the circumstances under

CHAPTER 1. INTRODUCTION 5which an existing binding can be broken, and the de�nition of who is responsiblefor maintaining end-to-end consistency.1.2.5 Information MonitoringTo provide up-to-date information on changing system resources, a mechanism forautomated periodical monitoring of selected services is required, in addition to themanual update of information in the Trader. A manual alteration is a sequence ofoperations performed by components themselves. An automated update is carriedout by monitors independent of the actual components.1.2.6 ScalabilityTypical computing environments are open distributed systems consisting of interact-ing components � clients and servers which can join and leave without impairingsystem continuity [15].As our framework is designed for applications running in such open distributedsystems, it has to be scalable, in order to permit a larger physical area to be covered,to support mobility of users, and to allow a high number of users to dynamicallyjoin and leave the system.As the key role of the system is to ful�ll requirements of mobile users accessinglocal resources in various o�ces, it must support resource con�guration as a resultof frequent arrival and departure of system components.A design of open systems that enable the architecture to scale faces a trade-o� between response time and precision of provided information. Therefore, theframework has to de�ne constraints under which scaling becomes feasible, such asconstraints on the scale of the matching process.1.3 ContributionsContributions of this thesis lie in four areas:� mapping the �eld of resource management in current systems and identifyingits new role� a unifying model of a third-party trading, forming a basis for the design ofthe Magnet architecture� a design and speci�cation of Magnet, a dynamic resource manager1.3.1 Identifying a New Role of Resource ManagementWe have mapped the �eld of operating systems and resource management, and iden-ti�ed the new role of resource managers in dynamically changing adaptive systems.1.3.2 A Model of Dynamic Third-party TradingIn order to design Magnet, it was essential to identify entities involved in theresource management process, and specify features supported by the architecture.Therefore, we have elaborated a model of extensible service trading by a third-party, the Trader, enabling component coupling based on the description of a typeof service, in contrast to direct name-based requests. The extensibility of the modelenables user-customization of the service information and the matching process.The model forms a basis for our design of Magnet.

CHAPTER 1. INTRODUCTION 61.3.3 MAGNET: A Dynamic Resource Management Archi-tectureThe third contribution of this thesis is the design of Magnet, a framework for dy-namic resource management which aims to satisfy applications running in frequently-changing environments. Based on an information trading model, it provides a setof features which enable powerful dynamic resource management (dynamic trading,extensibility, QoS Management, dynamic rebinding, monitoring, and scalability).We have chosen the tuplespace paradigm for the design of the Trader, as it enablesdynamic component matching and extensibility.1.4 Thesis StructureIn this chapter we have discussed our motivations for research described in this thesisby identifying a new role of a resource manager in diverse computing environments.Based on our motivations, we have elaborated requirements for a dynamic resourcemanagement architecture and brie�y summarized contributions of this work.The second chapter analyzes various resource management architectures and ex-tensible operating systems projects, both from academia and industry, that addresssimilar problems.In the third chapter, we de�ne the terminology used in describing Magnetand formulate a model of dynamic trading. We present a discussion of the bindingprocess, then describe rebinding issues relevant to this thesis and present approachesto QoS management.Based on this model, in chapters four and �ve we describe the resource managerarchitecture, Magnet. The former presents the architecture, provides its speci�-cation and justi�cation of its components, and describes the binding process. Thelatter presents advanced features, such as monitoring, QoS management, scalabilityand the support for rebinding.Chapter six discusses implementation issues. We describe Regis, the computingenvironment used for implementing Magnet's prototype, and present the imple-mentation of key features of the architecture.In chapter seven we describe several examples of Magnet, as a resource man-ager, and illustrate how it provides support for dynamic resource allocation andruntime adaptation. In addition, we evaluate the framework by discussing featuresit provides, and providing comparison with existing architectures.Chapter eight summarizes contributions of this work, and presents directions forfuture research in this problem area followed by closing remarks.

Chapter 2Resource Management inDistributed SystemsBefore we discuss the design of the proposed resource manager, Magnet, we mustexamine existing resource management architectures in order to present the stateof the art in this area (from both academic and industrial environments). We focuson systems providing support for mobile users in frequently changing environments,according to the requirements outlined in chapter 1.As `resource management' is a very broad subject which can be addressed atdi�erent levels (hardware level, operating systems level, user level, object interac-tion level, etc.), we will focus on major projects shaping the state of knowledge inthis area. We consider resource management in the following three areas: extensibleoperating systems research (section 2.1), trading and recon�gurable architectures(section 2.2), and support for resource management in quality of service architec-tures (section 2.3). In addition, section 2.1 presents current trends in extensibleoperating systems as alternative approaches to the component-based architecture,Bits, proposed in this thesis.2.1 Resource Management in Extensible OperatingSystemsIn this section, we will outline current research in operating systems design focusingon extensible systems. We discuss major projects, putting extra emphasis on aspectsof resource management. However, a full description of the presented architecturesis beyond the scope of this work. AsMagnet provides support for dynamic bindingand adaptation to changes in computing environment, we will relate our discussionto these issues. We describe in greater detail extensible systems (Exokernel, spin,Inferno, Kea, deimos and Nemesis), as they are relevant to Bits, then brie�ymention other related architectures (section 2.1.7) and close this section with asummary (section 2.1.8).2.1.1 ExokernelExokernel [19, 31], developed at the mit Laboratory for Computer Science, is amajor extensible system. It demonstrates that the separation of resource protectionfrom management enables application-speci�c customization of traditional resourceabstractions without impacting e�ciency.By pushing the kernel interface closer to the hardware, Exokernel allows greater7

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 8�exibility and more e�cient user implementation of higher-level abstractions. Ex-okernel has proven that application-level virtual memory and interprocess commu-nication primitives (ipc) can be implemented in an order of magnitude faster thanstate-of-the-art implementations [19].Exokernel presents a �exible computing environment enabling users to buildcustomized applications from available system services.Resource ManagementExokernel presents an environment where resource management can be implementedat application level by untrusted servers. This is achieved by secure multiplexingof available hardware resources which are exported to library operating systemsimplementing desired high-level abstractions. Protection is achieved by trackingownership of resources, using secure binding of applications to machine resourcesand event handles, and by visible resource revocations.Exokernel achieves excellent performance by presenting applications raw hard-ware, and extensibility by enabling high-level libraries to be replaced or customized.However, its focus is more on `static' issues, rather then on `dynamic' features,such as adaptation to changes in system con�gurations, or runtime application-customized resource allocation.Exokernel is a good example of a platform for a dynamic resource manager, likeMagnet, proposed in this thesis.2.1.2 SPINThe spin [5, 59] project provides user-level extensions of traditional operating sys-tem services by downloading user code into the kernel (user extensions written ina type-safe language are compiled by the kernel compiler and linked to the kernel).Extensible procedure calls, called events [59], can be executed by multiple han-dlers in response to an event. This technique provides dynamic binding of eventsto handlers by extended procedure call semantics, such as conditional execution,multicast, and asynchrony.Although spin enables applications to write their own system calls (extensions),it does not allow them to implement their abstractions by accessing resourcesdirectly. This approach, together with a considerable additional cost of safety-guaranteeing code, impacts system performance [40].Resource managementAlthough spin addresses the problem of providing user-level extensions on top of atraditional operating system, its resource management is rather static. A level of�exibility is provided by dynamic binding of events to multiple handlers; however,their dynamic selection is not supported.2.1.3 InfernoInferno [18], an operating system developed at Lucent Technologies and Bell Labs,is a commercial project (a successor to Plan 9 [60]) contributing to the research ofdistributed services in network environments.Inferno is designed to support a wide diversity of network environments � suchas advanced telephones, hand-held devices, Internet computers, and above all, tradi-tional operating systems. It provides standard interfaces to access system services,and can run as an application on top of a host operation system or on bare hardware.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 9Inferno applications are developed in Limbo, a module-based concurrent lan-guage, which compiles into byte-code, and is interpreted by a virtual machine dis,enabling wide-range portability for applications and services.Resource ManagementAll resources in the Inferno system, both local and remote, are represented by ahierarchical �le system; users or processes assemble a private customized view ofthe system by constructing a �le system containing only required resources. Thisapproach provides uni�cation of all system resources, user-customization of thecomputing environment, and distribution transparency by applying a uniform com-munication protocol, Styx, to all local and remote resources. However, dynamicfeatures targeted by our architectures are not addressed.2.1.4 KeaThe operating system Kea [73, 74] provides an environment enabling dynamic bind-ing and runtime rebinding. Having inherited its design from the microkernel (alightweight abstraction of physical resources), it does not allow runtime extensionsand su�ers from e�ciency problems due to cross-domain procedure calls [73].Its abstraction is based on the notion of portals describing entry-points to do-mains (virtual address spaces) through which interprocess communication is achieved.Interactions, based on rpcs generated by the Kea kernel, permit the remapping ofa portal into a di�erent domain at runtime.Resource ManagementKea provides dynamic binding of applications to services, and enables runtime adap-tations � transparent rebinding to new services (so called, portal remapping). How-ever, application participation in dynamic resource allocation and other featuresrequired by users in dynamic environments are not addressed.2.1.5 DEIMOSdeimos [14], an extensible operating system developed at Lancaster University,addresses the problem of runtime dynamic extensibility and enables applicationsto build customized execution environments. Applications can load and unloadmodules on demand. A special module, the con�guration manager, although itselfsubject to being unloaded, is responsible for con�guration of system resources onapplication request (described as a system graph in terms of modules and bindings).Resource ManagementSystem resources, represented as modules, can implement abstractions and a rangeof protection schemes. The con�guration manager enables runtime bindings to beestablished between system modules on demand, supporting system con�gurationand on-the-�y recon�guration.Although dynamic binding mechanisms supported by deimos are very �exible,they cannot be parametrized. System scalability is limited as the communicationmanager has to maintain a system graph representing the con�guration of the cur-rent system.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 102.1.6 NemesisThe Nemesis [64, 39] single address space operating system, developed at the Uni-versity of Cambridge under the aegis of Pegasus and Pegasus II projects, aims tosupport time-sensitive applications requiring a consistent Quality of Service, suchas those which use multimedia. The Nemesis kernel consists of a scheduler and theNemesis Trusted Supervisor Code, which is used for Internet Domain Communi-cation and interaction with the scheduler. The kernel also handles memory faultsand other low-level processor features. It was driven by the idea of providing onlythe necessary functionality in the kernel, and leaving applications the �exibility tobuild customized environments on top of it.Resource ManagementThe design of Nemesis was driven by the aim to provide QoS support (which wediscuss in greater detail in the next section 2.3.2), which resulted in the designenabling applications to execute their code directly rather than via shared servers.Shared servers are used only for security or concurrency control.Nemesis provides dynamic allocation of resources to applications by the QoSManager which allocates applications a share of the processor and ensures thatshort term demands can be always met. Also, the QoS Manager uses algorithmsconsidering a long term view of the availability of resources, provides a consistentguaranteed resource to the application. In additional, users are expected to provideoverall control of resource allocation in terms of observation and by de�ning QoSspeci�cation.The approach to inter-domain communication supports implicit and explicitbindings. Supported name servers or traders performing interface reference match-ing provide clients with an interface reference to requested servers. However, user-customization and extensibility of the matching is not addressed.2.1.7 Other SystemsOther extensible system, such as Vino [71], or kernel protection by proof-carryingcode [54] address techniques for ensuring security of kernel extensions implementedby untrusted user-level code downloaded into the kernel.Also, the non-extensible network-based system Scout [49] provides `static' spe-cialization �by creating dedicated `paths' (multi-layered communication channels),it provides advanced application customization. Synthetix [62] also investigates in-cremental specialization of existing systems code. It focuses on reducing the lengthof `paths' in the kernel in order to provide kernel optimization which is done withoutapplication-speci�c requirements.qnxmicrokernel [27] o�ers a �exible environment, realtime support, and enablesupwards scalability for large, multiprocessor applications, as well as downward scal-ability for resource-constrained pda hardware. A customizable operating system,Arena [44], provides operating system-level resource management at user-level whereit is accessed by libraries. Hardware is presented through low-level abstraction; cus-tomization is enabled only at the user-level by instantiation resource managers forparticular policies.2.1.8 DiscussionIn recent years, research in operating systems has focussed on investigating issues ofextensibility enabling applications to implement their own abstraction by presentingthem raw hardware, or providing user extensions of existing system services.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 11Although research results have proven that this is a step in the right direction,the majority of existing systems (except Kea and deimos) still lack the supportfor dynamic recon�guration, enabling adaptation to changing conditions. In addi-tion, issues such as QoS-based resource allocation enabling application participation,parametrized resource selection (as opposed to name-based allocation) and issues ofscalability are still to be addressed. However, operating systems such as Exokernel,Nemesis, provide �exible environments where the required dynamic functionalitycan be provided by a resource manager running on top of them.2.2 Other Trading and Recon�gurable ArchitecturesIn this section we describe representative systems that support dynamic third-partybinding. We focus on systems supporting trading and recon�gurations. Firstly,we describe the tuplespace approach, as it was applied to Magnet, and discussseveral related projects (section 2.2.1). Then, we discuss other trading and dynamicarchitectures, ANSAware, corba, dcom, Aster and Matchmaking. In section 2.2.7we brie�y introduce other related architectures, and in section 2.2.8 we close witha discussion.2.2.1 Tuplespace-based ArchitecturesDistributed applications often need to establish communication without a prioriknowledge of their peer identity. In addition, in mobile environments it is desirableto enable services to be described dynamically by their parameters, rather than torefer to services directly by their names. Therefore, the tuplespace [22] ful�lling theserequirements represents a very successful distributed communication scheme. Inthis section, we will discuss the original tuplespace with the programming languageLinda, and several frameworks derived from this idea: Limbo1, Osprey, JavaSpaces,Jini, FT-Linda, and T Spaces.Tuplespace and LindaThe original tuplespace was designed by D. Gelernter at Yale University, with aset of operations (called Linda) enabling tuple manipulation [22]. The architectureenables communication by exchanging information in the form of tuples placed intoor withdrawn from the tuplespace. Applications can use the tuplespace for com-munication and synchronization purposes. Its features include free-naming (partiesneed not know each others' identity in order to communicate), time decoupling (par-ties need not exist at the same time) and space decoupling (parties from di�erentaddress spaces can communicate).Linda is discussed in greater detail in chapter 4, as it inspired the approachundertaken in this thesis.LimboLimbo, a QoS-based distributed system platform developed at Lancaster University[8] represents a successful attempt to utilize the tuplespace paradigm in a mobileenvironment. The framework extends the basic architecture by the notion of mul-tiple tuplespaces (specialized for application-speci�c requirements, e.g., security),an explicit tuple-type hierarchy supporting dynamic subtyping and QoS manage-ment. QoS is supported by providing QoS-aware tuplespaces; residing tuples are1The tuplespace-based architecture Limbo, disccussed here, should not be confused with theprogramming language Limbo designed for Inferno operating system, discussed in section 2.1.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 12enhanced with QoS attributes, such as expiration time, priority, etc. Changes insystem features are kept up-to-date by QoS monitoring agents acting as proxies toa service. Reacting to these changes, Limbo performs an adaptation implementedusing speci�c components such as �ltering agents and bridging agents.OspreyOsprey [10], designed at The City University in London, uses Linda for application-server coupling � resource allocation. Information about system services and theirrequests are exchanged in the form of tuples. It provides more �exibility thanthe traditional Linda, by adding additional semantics into the tuple format. Forexample, a result-based tuple naming scheme � a client describes the request byits result (e.g., Time, LocalTime), rather than by the name of the server itself. Byimplementing a hierarchy of tuplespaces, Osprey provides scalability and protection.The architecture provides higher �exibility, but it does not address issues of user-customized matching and extensibility. This project is still in its early stages,therefore we cannot provide a more detailed description of the Osprey architecture.JavaSpaces and JiniJavaSpaces, developed at Sun Microsystems, provide a tuplespace-like distributedenvironment manipulating objects rather than data tuples. It enables global scala-bility and forms a base for the Jini technology [75]. The Jini infrastructure providesautomated con�guration mechanisms for devices (such as desktop and portablecomputers, printers, scanners, Webcams, etc.) to join and leave the network �it establishes dynamically (without drivers) the communication, sharing, and ex-change of services between any hardware or software on a network.The key techniques used in Jini are: leasing (a grant of guaranteed access over atime period), transactions (two-phase commit-based service protocol encapsulatinga series of operations), events (enabling object-de�ned event handling) and lookupservice (�nding and resolving system services de�ned by their operational interface).Although the lookup service provides dynamic binding between clients andservers by passing over server proxies to clients, it is rather restrictive � neitherparametrized requests (such as describing services by their types and characteris-tics), nor user-customization of the interaction protocol are supported.FT-LindaThe communication framework FT-Linda [24], developed at the University of Ari-zona as a part of the x-kernel project [29], is based on a fault-tolerant versionof the Linda language. Its design techniques include: the notion of stable andvolatile tuplespace, shared and private tuplespace, failure detection and orderedatomic multicast. However, as the primary goal of the framework is to providefault tolerance, it addresses issues of reliability, stability and ordering, in contrastto the user-customization and dynamic �exibility required by the mobile users weare targeting. If our architecture was providing fault tolerance, approaches used inFT-Linda could have been adopted forMagnet, as it is also based on a tuplespaceframework, however, our platform does not aim to provide this functionality.T SpacesA Linda-based technology developed at IBM Almaden Research Center, T Spaces[76] is a network communication `bu�er' with database capabilities. In addition toLinda operations, T Spaces provide services (data indexing and query capability),

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 13and event noti�cation services and group communication services. Allowing applica-tions and services to describe their functionality in terms of tuples, T Space enablescommunication between applications and devices in a network of heterogeneouscomputers and operating systems. The architecture presents a rather universalhigh-level framework; it does not deal with support for particular requirements ofapplications in mobile environment.2.2.2 ANSAware Distributed Systems PlatformThe ANSAware software model [1], developed at APM Ltd., is based on a location-independent object model providing uniform interaction schemes between commu-nication objects � the model is based on the rm-odp architecture [66, 67]. Aspecial object, the trader, acts as a mediator for services wishing to advertise theirservices (by exporting operational interfaces), and clients requiring them (by im-porting operational interfaces). Clients are enabled to specify their requests in termsof attribute values. Interfaces in ANSAware are de�ned in an Interface De�nitionLanguage (idl), and the operations import, export, and interface implementationsare described by a second language, Distributed Processing Language (dpl). Ifmatching candidates are found by the trader, an implicit binding between the peersis created.Although attribute-based matching provided by the trader enables enhanced�exibility, there is no notion of runtime adaptation and user-customization.2.2.3 CORBAThe Common Object Request Broker Architecture (corba) [56] provides an ar-chitecture for communication in distributed object-based systems. Building ele-ments of the architecture, objects, written in di�erent programming languages, aredescribed by an idl. The architecture provides distribution transparency by im-plementing rpc-like remote object invocation which hides the physical location ofinteracting objects.Although corba is very popular architecture for distribution object interaction,from the `dynamic' point of view it is restrictive. Its naming service supportsparametrized nameservers, but unlikeMagnet, user-customized trading of objectsde�ned by their types is not supported. However, Magnet running with corbacould provide dynamic trading at an object level.2.2.4 DCOMDistributed Communication Object Model (dcom) [48], developed at Microsoft, isan application-level platform enabling objects on di�erent physical locations to com-municate through common protocols, including Internet and Web-based protocols.Objects, de�ned by strongly-typed multiple interfaces described by an interfacede�nition language, interact by an rpc-like communication enabling authenticationand security.As the architecture provides an environment for a distributed object communi-cation, it would be a suitable computing platform forMagnet which can enhance itwith the dynamic features, such as object trading and runtime user-customization.2.2.5 AsterThe Aster project [30], developed at Irisa/Inria, addresses middleware recon�gu-rations based on software speci�cation matching that selects the components of the

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 14middleware (such as orb), customized to the application needs. The Aster Envi-ronment provides three elements � Aster Type checker (implements type checkingof components described using the Aster language), Aster Selector (retrieves mid-dleware components that satisfy the interaction requirements), and Aster Genera-tor (responsible for interfacing the source code �les with the middleware objects).Non-functional properties, described in terms of formulas of the �rst order pred-icate calculus, are processed by the selector in the three-stage selection process:exact match selection, plug-in match selection (the selected component implementsbehaviour that satisfy the application, but does not match exactly the applica-tion's requirements), closest match selection (the selected middleware needs to becustomized through complementary components).Although Aster presents a powerful framework for parametrized component se-lection enabling automated customization, it does not address dynamic runtimeadaptations nor enable users to participate in the selection and customization pro-cess.2.2.6 MatchmakingTheMatchmaking framework [63], developed at the University of Wisconsin-Madisonis a part of project Condor [41]. The environment is based on components describingtheir requirements and provisions in classi�ed advertisements which are matched bya designated service � the Matchmaker. Classi�ed advertisements enable compo-nents to be described in terms of parameters enhanced with arithmetical and logicaloperators (e.g. Type = �Machine�, Activity = �Idle�, Arch = �INTEL�, Rank >=10,etc.) The Matchmaker compares relevant parameters of component advertisements,and noti�es components; then the client contacts the server using a claiming pro-tocol to establish a dynamic binding.Powerful parameter-based matching resource allocation provides the required�exibility, however it does not allow user-de�ned service selection from a group ofmatching ones, nor does it support decentralization and runtime adaptation.2.2.7 Other SystemsAs was mentioned above, in this section we will brie�y introduce other architecturessupporting dynamic binding, or some kind of recon�guration. However, as they arenot directly related to our research, we will not discuss them in detail.Regis [15, 42], an environment for constructing distributed systems, providesa uni�ed framework for dynamic binding and runtime rebinding of components indistributed systems. As this architecture was used for implementation of Magnet,the resource management framework presented in this thesis, we will describe Regisin greater detail in chapter 6.The problem of dynamic adaptation to an environmental change at low level(device-driver level) has been successfully addressed by the pc card (former pcm-cia). Popular ethernet cards can be added and removed from the system withoutpowering-o� or rebooting the computer. The Linux kernel daemon is another suc-cessful attempt, enabling operating system kernel adaptation by adding or removingmodules transparently on demand [70]. At an application level, a Java-based objectabstraction, JavaBeans, provides a dynamic platform for object communication.Zero downtime operating support for dynamic data objects communication hasbeen explored in `The information bus architecture' [57] which is based on prin-ciples such as self-describing, anonymous communications and minimal semanticscommunication protocol. Nevertheless, this name-based approach does not supportmore �exible parameter-based addressing.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 15Open bindings, implementing component interactions which are constructedfrom a chain of objects performing particular functions, were investigated by Fitz-patrick et al [20]. They support the inspection and adaptation of the communicationpaths required by mobile multimedia applications. However, the �exibility of openbindings is gained at the expense of performance. Also, we believe that incorpo-rating additional functionality into the complex communication path rather thaninto the communicating components themselves takes the control out of applica-tions, which contrasts to the approach undertaken in Magnet (enabling them toparticipate).Guarana' [58], an architecture based on meta-object protocols, presents a tool forstructuring and building fault-tolerant distributed programs. Meta-objects can becombined through composers that provide the glue code for them to work together,delegating control to them and resolving con�icts when they arise. It supports meta-level security policies and, by further composing composers, it enables constructionof a dynamic recon�gurable object hierarchy.2.2.8 DiscussionIn recent years, dynamic issues such as providing greater �exibility, supporing dy-namic runtime adaptations or designing loosely coupled communication schemeshave been successfully addressed by many research projects and commercial tech-nologies. However, these architectures typically target one issue, rather than pro-viding a uni�ed architecture and therefore are unable to support the requirementsof mobile applications (see chapter 1). Nevertheless, Magnet dynamic resourcearchitecture can be used for trading objects (such as corba objects, dcom objects,JavaBeans etc.) rather then resources. Then, platforms such as corba, dcom aresuitable for implementing the proposed architecture at an `object level'.2.3 QoS ArchitecturesA service provided by a resource is described as its functional behaviour. Addi-tional service characteristics such as timeouts, are described as the non-functionalbehaviour of the resource. Quality of service is a general term for an abstractioncovering aspects of the non-functional behaviour of a system. In particular, it in-cludes not only the speci�cation of non-functional service characteristics, but alsonecessary data models, operational constraints, and information about data mea-surement, monitoring and maintenance.In recent years, research into QoS has typically targeted the area of continuousdata transmission � multimedia: video and audio, and computer music. In thisclass of application, the aim is to provide acceptable quality in real-time2. Inthis case, the QoS manager must maintain agreed end-to-end service characteristicsthrough all layers of the communication channel. A brief description of architecturesproviding this kind of QoS support is given in section 2.3.2.However, our aim is to provide QoS-based trading (e.g., dynamic resource allo-cation, software upgrades, etc), as opposed to maintaining the QoS of the commu-nication channel. For our purposes, QoS-based resource description covers in par-ticular: guaranteed characteristics of system resources (such as monitor resolution,processor speed), consistency (de�ned in terms of `up-to-dateness' of informationon resources, accuracy, precision, as granularity of environment change), timeliness(described in terms of availability, delay), location-dependent information. Leadingarchitectures addressing this subset of QoS support are discussed in section 2.3.1(a general overview of services and mechanisms for QoS resource management is2Quality, in this context, means both accuracy of the timing and the accuracy of output values.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 16discussed in [53], and detailed review of the state of the art can be found in [2]). Insection 2.3.3 we summarize the discussed architectures.2.3.1 QoS-based Trading ArchitecturesThe Cactus project [28], developed at the University of Arizona, addresses �ne-graincustomization of QoS in distributed middleware. As the relationship between QoSattributes (such as consistency, correctness, timeliness, security) is a tradeo�, theability to customize QoS is especially important in resource-constrained systems(e.g., mobile computing). By adaptation of micro-protocols (collections of eventhandlers) that ensure di�erent QoS attributes and a con�guration protocol, a user-customized environment can be constructed.QoS-based resource management for distributed multimedia applications wasaddressed by the QoS Broker [51] developed at the University of Pennsylvania. It isbased on the notion of a duality of communicating system components: broker-buyers and broker-sellers. According to the component activating the process,the QoS Broker distinguishes between a sender-initiated brokerage, and receiver-initiated brokerage. The QoS Broker Protocol facilitates the negotiation of re-source characteristics, and runtime adaptation requiring a renegotiating process.QoS Brokers are a basis for the QualMan architecture [50] providing soft real-timeQoS guarantees to multimedia applications, such as video-on-demand and mpegplayers. In addition, QoS Brokers are also used in the Omega architecture [52] toensure end-point resource guarantees (such as responce time, etc.), presuming it iscoupled with networks which can make bandwidth and delay guarantees.In addition, several QoS-trading projects were discussed in section 2.2: Limbo[8], a tuplespace-based project provides quality of service, in particular monitoringand adaptation. Matchmaking [63], providing the coupling of applications to serversbased on classi�ed advertisements (equipped with arithmetical and logical opera-tors), also supports a level of QoS-based selection. Aster [30], a framework basedon software speci�cation matching, provides complex QoS-based resource selection.Nevertheless, none of these architectures supports a user-customization of the se-lection process which adds an extra �exibility over QoS-based resource de�nition.2.3.2 Other QoS ArchitecturesThe QoS-Architecture (QoS-A) [11], developed at University of Lancaster, addressesthe support for performance of multimedia applications over high-performance ATM-based networks. Kendra [46] is investigating adaptive techniques to improve theperformance of data delivery over the Internet. Speci�cally, runtime adaptationoccurs when network bandwidth falls or improves.The Nemesis project [64, 39] (discussed in section 2.1 in greater detail) pro-vides a probabilistic guarantee of resources and expects applications to monitortheir performance and to adapt when resource allocation changes. It is based ona QoS Manager providing QoS-based scheduling (discussed in section 2.1) and twotechniques: feedback for QoS Control supported by QoS Controller which de�nesthe policy to be followed and can be directly dictated by users, and QoS Crosstalkbetween time-related data streams in network protocol stacks.Formal approaches to QoS speci�cation, based on description of the resourcesin Z [61] language, has been investigated by Staehli et al [69]. Focusing on end-to-end service quarantees for continuous media, they distinguish between content, viewand quality speci�cation and de�ne the presentation quality in terms of a subjectiveerror interpretation. The error models extend the opportunity for optimization ofresource utilization.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 17Other architectures providing comprehensive end-to-end QoS support includethe cesame project [6], tina [55], the Heidelberg Transport System (HeiTS) [25]and an Extended Integrated Reference Model (xrm) [38].2.3.3 DiscussionIn recent years, support for QoS has been investigated at various system levels (suchas hardware, operating system, middleware, etc.) and targeted to di�erent classesof application (multimedia, resource allocation, adaptation, monitoring).Our approach focuses on QoS-based trading of resources, in contrast to ensur-ing agreed QoS of the underlying infrastructure. There are several successful at-tempts in providing parametrized QoS-based trading of applications requirementsand server o�ers (Matchmaking, Aster, QoS-Broker, ansa trader, QoS Broker, etc.).However, none of them provide user customization of the matching process, nor scal-ability of the architecture.2.4 Chapter SummaryIn this chapter we have presented existing architectures supporting dynamic re-source management. As it is a broad issue, we focussed on major projects in threefollowing areas: extensible operating systems, trading and recon�gurable architec-tures, and quality of service architectures.Extensible Operating SystemsResearch in operating systems has focussed on investigating issues of extensibil-ity enabling applications to implement their own abstraction by presenting themwith raw hardware (e.g., Exokernel), or providing user extensions of existing sys-tem services (e.g., spin, Vino). Although it is a step in the right direction, supportfor dynamic recon�guration enabling adaptation to changed conditions and user-customized parametrized resource allocation still need to be addressed. In addition,due to the diversity of hardware resources, changing degree of connectivity, and cur-rent technology improvements, the need for user-customization and runtime adap-tation has increased. But from the computing environment point of view, we haveidenti�ed that architectures, such as Exokernel and Nemesis, provide a su�cient�exibility for these features to be supported by a dynamic resource manager.Trading, Recon�gurable and QoS ArchitectureThere are many successful projects providing support for dynamic trading and re-con�guration: tuplespace-based architectures (such as Linda, FT-Linda, Jini, Os-prey, Limbo, etc.), and others (such as Aster, Matchmaking) enabling more �exiblecomponent coupling based on a parameter description.QoS support is investigated by many ongoing projects. Typically, it focuses onproviding a guaranteed QoS of the underlying infrastructure at runtime. However,as the primary goal of this work is a dynamic resource manager, we have discussedarchitectures providing QoS-based resource trading (such as QoS-Broker, Cactus,Limbo, Aster, etc.)All trading and QoS architectures provide a certain level of �exibility and adapt-ability, however, applications in mobile environments seek a uni�ed framework of-fering in addition user-customization of the trading process and extensibility.

CHAPTER 2. RESOURCE MANAGEMENT IN DISTRIBUTED SYSTEMS 18Thesis objectiveThis thesis seeks to develop a dynamic extensible resource management architecture,Magnet, enabling trading of resources based on requests for a type of a service,rather than for a service name. Extensibility of the architecture should enableusers to de�ne services and requests at runtime, and to user-customize the tradingprocess. This further allows QoS-based description of services to be implemented. Inaddition, runtime adaptation to changes in the computing environment, monitoringof information about services and scaling the architecture should be also supported.

Chapter 3A Model of DynamicThird-party TradingFrom an `abstract component interaction' point of view, the problems of dynamicresource management that Magnet attempts to solve are trading of informationabout services and dynamic third-party binding of components. In order to providethe required generality of the Magnet architecture, we will de�ne its frameworkin general `component-binding' terms. This chapter is devoted to formalizing thisarchitecture.We start by de�ning basic terms for a component environment (section 3.1),then we summarize our assumptions (section 3.2), and give an overview of phasesof a binding process, section 3.3. Next, in section 3.4, we focus on rebinding issuesrelevant to this thesis, and �nally, in section 3.5, we discuss several aspects of qualityof service management.3.1 Terms and De�nitionsIn this section we de�ne basic functional elements and relevant terms involved inservice trading (components and their service interfaces, interface references, ser-vice de�nitions, component bindings, binding idioms, the Trader, a matching pro-cess, communication channels, and communicational protocols). De�nitions of theseterms are derived from the rm-odp standards [66, 67, 68] tailored to the tradingapproach used in this work.ComponentsDistributed systems comprise basic functional units � components of varying gran-ularity that represent a wide range of system elements, such as hardware resources,abstraction servers (such as �le systems), and user-level programs. Also, compo-nents can represent any objects in terms of object-oriented languages and environ-ments (such as, C++ objects, corba objects, JavaBeans, etc.)The functionality of components is assumed to be mutually independent; anydependencies are expressed in terms of component interaction. Structure-wise, theycan be primitive or composed of other components.Service InterfacesComponents act as `black boxes' and their functional behaviour is fully describedby a service interface which de�nes services provided to, and services required from19

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 20other components in the system.Components requiring a service are called clients ; components o�ering a serviceare servers. These terms are de�ned for a particular service interface pair, therefore,a particular component can concurrently play both roles in di�erent interactions.Server-client interaction is de�ned as `one to many' (one server can communicatewith many clients over the same interface). In addition, clients are considered activeentities, while servers are passive (requiring an external third-party to manage them,as this approach simpli�es the semantics of rebinding, as will be discussed in section3.4.2).Unlike traditional objects, components can have multiple interfaces to meet theneed to express QoS requirements and describe various service characteristics whichcannot be attached to a single interface.Interface ReferencesEvery service interface can be located and accessed by its `name', called an interfacereference. The interface reference must be unambiguous within the system range,embodying su�cient information to allow the required interaction to be established.Service interfaces, together with corresponding interface references, can be createdduring component creation, or dynamically at runtime.Services De�nitionsIn addition to the `name' (an interface reference), services may also be describedby a type of service they o�er (such as a printer or a scanner), which need not beunambiguous, and by additional characteristics, such as a QoS description of therequired interaction (e.g., resolution, speed, etc.) This issue is covered in greaterdetail in section 3.5. A combination of an interface reference, a type of a serviceand its characteristics is called a service de�nition.Component BindingsIn order to enable interaction between distributed components, a binding1 betweentheir interfaces has to be established. A binding is a result of a process, calledthe binding process (de�ned in section 3.3), consisting of a sequence of actions tobe performed which result in the creation of a communication channel betweencomponent service interfaces.Binding IdiomsOnce corresponding interfaces and relevant interface references have been created,components can be bound by a �rst-party (so-called �rst-party binding), or by athird-party (so-called third-party binding) [15].First-party binding is established by a client component, and can be performedif the peer interface reference is known to the binding initiator, and therefore theservice interface can be accessed directly.Third-party binding is established by an intermediate component (neither servernor client), and is performed by a sequence of �rst-party bindings � a client anda server link to the intermediate component, requesting or o�ering a particularservice, then the third-party, with a knowledge of overall system behaviour, canestablish the resultant client-server binding.1This term su�ers from being `overloaded'. In addition to the resultant interaction (used as anoun), it can also mean the process of establishing it (used as a verb, to bind).

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 21The TraderCommunication between components in open systems can be based on an InterfaceDe�nition Language (Idl) which prede�nes the syntax of the interaction, like inCorba [56]. Another solution, o�ering higher �exibility, is a third-party component,called the Trader, which collects service de�nitions de�ned at runtime, performs amatching process, and establishes a resultant client-server binding.A Matching ProcessThe process of �nding corresponding requests (expressed in terms of service de�ni-tions) performed by the Trader is called a matching process.If service de�nitions are expressed exactly, the Trader �nds an exact match.However, matching of server characteristics which include additional constraints,such as QoS de�nitions, requires parameterization de�ning preferences of particularcomponents. As these are impossible to de�ne for all components a priori, theTrader supports user-customization of the matching process. It is described indetail in section 3.3.2.Communicational ChannelsA channel represents the actual communication path enabling a binding betweencomponents. It is obliged to satisfy requirements on the properties of the interaction,including maintaining the agreed QoS. It comprises objects such as stubs, protocols,and binders [66].Communication ProtocolsThe syntax and semantics of the established binding over a communication channelis de�ned by a communication protocol. It speci�es, typically a set of functions(called a functional interface) provided by the server to its clients, and their guar-antees (such as reliability).ExampleFigure 3.1 illustrates bindings between three components � the Trader, Client andServer. Darwin, an architecture-description language, provides a convenient nota-tion for specifying interactions in distributed systems [43]. We use its graphicalform throughout the thesis to represent interconnections between system elements.A rectangle represents a component, a circle stands for a service interface. A pro-vided service is represented by a �lled circle, a required service by an empty circle.A line between �lled and empty circles represents a binding implemented by a par-ticular communication channel.In Figure 1, Server and Client �nd corresponding interface references for theresultant communication using the Trader. Numbers by the lines represent phasesin which relevant bindings must be established. Firstly, Server and Client exporttheir service de�nitions by binding to the Trader (phase 1). These two steps can beperformed in any order. Secondly, when the required interface reference is discoveredby the matching process, the resultant end-to-end binding between Client and Servercan be established (phase 2).3.2 AssumptionsIn this section, we will de�ne the assumptions we made concerning our computingenvironment and system components' behaviour. The Magnet framework pro-

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 22
Server Client

Interaction

Service Interface

Trader

Component Component

Component

2

11

Figure 3.1: Binding between Server and Client established by the Traderposed in this thesis is feasible only in systems where these assumptions are valid. Inaddition, in order to keep the problem tractable, we left out support for applicationareas which are beyond this, such as those requiring the environment to change veryfrequently, real-time and fault-tolerant applications, etc. In chapter 7, we elaborateon the implications for the architecture if these assumptions were not the case. Theassumptions on which the framework is built include:1. Consistency. All system components are assumed to maintain overall con-sistency. That is: rebinding can be performed only when the system is ina safe state, unexpected component crash cannot happen, and a component�nishing its operation must leave the Magnet structures (the Trader) in aconsistent state and release the allocated resources.2. Protection. Components are responsible for ensuring the validity of informa-tion on their services. This prevents components from advertising misleadinginformation on non-existent resources.3. Synchronization. Components are responsible for synchronization. Thisincludes communication with the Magnet framework as well as component-to-component interaction.4. Security. The architecture supports a user-de�ned matching process. Thisis assumed to be secure in that control is returned back to the Trader whilenot altering other system data.5. Federation Scale. A domain-type unit in the architecture is called a fed-eration (discussed in detail later). We assume the number of components ina federations to be roughly tens, they can generate roughly tens to hundredsservice requests placed into the Trader, not more than ten at the same time.It implies that a federation can have roughly tens of processors, as they arealso components for our architecture.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 236. Frequency of Change. We assume each component in the environment tochange its features with frequency of minutes and hours, rather than secondsand milliseconds.7. Service Characteristics. We assume that that component requests ando�ers have not more than tens of elements. In addition, the system is moresuitable for processing requests and o�ers if they are equally distributed ac-cording to the number of elements in the request. In addition, we expect thenumber of types of service characteristics to be not more than tens. However,we do not constrain the semantics of the elements.8. Naming. The architecture uses the naming scheme of the environment whereit operates (e.g., the Internet with its ip addresses). We assume that thenames are unambiguous and are constructed in a way that they can forma hierarchical tree structure with a single root, and an unambiguous `path'in the tree (at the naming level) between two federations can be determined(however, nothing about the network topology at the implementation level isassumed.)3.3 The Binding ProcessA sequence of actions to be performed preceding the establishment of a componentinteraction is called the binding process. This can be achieved by linking to the peercomponent directly, if its reference is known to the initiator in advance, or establish-ing the binding indirectly, via a third party. In open systems due to their required�exibility, the latter case prevails. A trading of service de�nitions is performed bythe Trader in our model.In traditional systems, the binding process is typically implemented as an inte-gral action inhibiting component customization, and disabling the participation ofa third party (e.g., Unix system calls [3], rpc [7], corba [56], etc.) However, inopen distributed systems, the binding process requires clearly delimited phases [66]in order to achieve �exibility and provide user-customization.In our model, the binding process comprises the following phases:1. Exporting service de�nitions2. Negotiating service de�nitions3. Establishing a communication channelWhen a communication channel is established (the third phase is successfully per-formed), the required end-to-end binding takes place. Although this is the �nalgoal, it is not a part of the actual binding process. In this section we describe thesephases in greater detail.3.3.1 Exporting Service De�nitionsA service de�nition created for a service interface has to be passed to a compo-nent containing a complementary interface via the Trader which �nds the requestedmatch. A service export is a process of o�ering a service (defned by its service de�ni-tion) to the Trader. A complementary operation, service withdrawal, is a process ofremoving a service de�nition from the Trader. Although it is not necessary for thebinding process, service withdraw is an essential operation of the Trader. Figure 3.3illustrates service export, service withdraw and negotiation of service de�nitions.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 24PoliciesIn order to achieve an agreement between components exporting their service de�ni-tions, policies de�ning operation semantics must be formulated. An export policy isa set of rules controlling the service export to the Trader including, for example, anobligation for a speci�c format, permission rules, timeout, etc. The complementaryset of rules de�ning service withdrawal is called a withdrawal policy. In the case ofdistributed trading systems, these policies must de�ne the propagation of serviceexport between remote parts of the system.It is up to system designers to decide whether all three types of policy areenabled. In addition, each particular application should be able to de�ne and tailoravailable policies for its components.FederationIn scalable distributed systems Traders must be networked in order to cooperate onproviding remote information. One approach is to form a global trading system thatany Trader may dynamically join or leave. Although there are systems requiringglobal shared information (e.g., distributed database engines, Internet search en-gines), this approach encounters problems similar to designing a global nameserver[37].As components often interact on a local scale (such as resource managers withina particular domain), an alternative solution to the global trading system is a localtrading system. In this case inter-Trader communication must be supported toenable service export for components beyond the local domain. Trader domains withdomain-speci�c security and propagation policy information, internetworking withother Trader domains are called federations. Passing service de�nitions across thefederation boundary, consequently, must be handled by appropriate communicationchannels re�ecting the `beyond-federation' distribution and security issues [66].In Figure 3.2 a trading system consisting of two federations is illustrated.3.3.2 Negotiating Service De�nitionsA service de�nition (a type and characteristics of the requested binding togetherwith enough naming information to locate the interface, the interface reference) isexported via the Trader. These characteristics form the set of requirements, fromboth components involved in the communication, which must be met before thebinding can be established. A communication channel can only be established ifthe requested properties of both involved parties are satis�ed.RulesWhen all service de�nitions are exported into the trading system according to sys-tem policies, the actual matching process takes place. In the general case, it com-prises two phases � search and select, de�ned by the client and the Trader.Matching rules de�ne the search operation; they include [67]:� pre-conditions of the binding ensuring that the interaction can be technicallyestablished, e.g., interfaces must be of the same type, and complementaryroles (client, server).� a minimal set of requirements of both components (de�ned by the servicede�nitions and according to user-customizable matching process).

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 25

Client

Trader

Server

Client

Server

Trader

Client

Server

Trading System

Federation 1

Federation 2

Inter-federation
Interaction

Figure 3.2: A Trading System consisting of two Federations

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 26

Server Client

Trader

Matching process Service Withdraw

Export policy

Matching Rules --- SEARCH
Preference Rules --- SELECT

Withrdaw Policy

Service Export

Figure 3.3: TradingMatching rules can be formulated exactly, or component requirements can be pa-rameterized (user-customized matching process) enabling a set of di�erent servicede�nitions to match the requirement.Preference rules de�ne the operation select that extracts one service from a setof service de�nitions ful�lling the matching rules.Service characteristics expressed in terms of parameters typically cannot be lin-early ordered (e.g., �Is speed better than resolution?�) without preferences expressedby components themselves. Therefore, components using a trading system support-ing this level of negotiation are obliged to express their preferences in terms ofpreference rules when exporting service de�nitions into the trading system, per-formed as a user-customized matching process. Otherwise, the select operationmust be performed non-deterministically (e.g., �rst-�t strategy).In the case of a federation, additional rules and protection checks de�ning thepropagation of exported service de�nitions may be de�ned, such as re�ecting thedomain scope, and de�ning constraints under which a search or select operationmay take place beyond federation boundaries.Figure 3.3 illustrates the negotiation phase of the binding process.3.3.3 Establishing a Communication ChannelA special component attached to every functional component responsible for cre-ating a communication channel is called a binder. When the required componentpair has been found by the Trader (service de�nitions have matched), client andserver binders are invoked to create the requested communication channel. If thistask is successfully performed, the required binding is established and componentsmay start communicating.Communication channels implementing an actual binding may use primitivesof varying complexity, from simple message-passing primitives, procedure calls,through dispatchers marshaling functions and parameters, to network protocols.They can be primitive (represented by one functional unit), or composed (featur-ing a sequence of functional units cooperating on the task � for example, network

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 27protocols). Bindings might operate locally, remotely within a domain, or betweenfederations.If the interaction comprises service characteristics, such as QoS constraints, itis the channel's responsibility to maintain the agreed level of service characteristicsby constant monitoring of relevant features [46].3.4 RebindingAs we focus on computing environments which change characteristics frequently,adaptations to new conditions must be possible. In addition, the support for mobileusers dependent on location and time-aware information also necessitates adapta-tion. Breaking an existing component binding in order to establish a di�erent oneis called dynamic rebinding2.We distinguish between fault management � handling the breaking of a bindingas a result of a component failure or a communication channel failure without pre-vious agreement of both parties, and change management � breaking interactionafter both components have reached a safe state. Fault management is not an issueof the architecture outlined in this thesis; more detailed discussion of related prob-lems, such as failure discovery and dealing with inconsistency can be found in [36].However, as we have taken the black-box approach, we assume that all componentsin the system are able to decide when they can be rebound. In addition, our modelis based on the assumption that the component initiating the operation in cooper-ation with other components involved in rebinding, is responsible for maintainingoverall system consistency. If a third party is involved it needs to cooperate withboth of the components which are to be rebound.3.4.1 The Rebinding ProcessIn section 3.3 we de�ned three phases of the binding process: exporting service def-initions, negotiating service de�nitions, and establishing a communication channel.The rebinding process comprises four phases, semantically similar to those of thebinding process:1. Exporting service de�nitions2. Renegotiating service de�nitions3. Destroying a binding4. Reestablishing a communication channel.In the case of rebinding, ordering of the phases is not strict � destroying a bindingmay precede renegotiating service de�nitions in cases when a client performs thedestruction, and then searches for a better service.Exporting Service De�nitionsIn section 3.3.1 we discussed issues of the framework for exporting service de�nitionsinto the Trader. This is used for both binding and rebinding purposes, as this isthe only repository of service de�nitions in the system.2Strictly speaking, every rebinding is dynamic as it is performed as a result of changes in thesystem. Non-dynamic (`a priori') rebinding can only take place when the purpose of the originalinteraction was accomplished, therefore, it could be described as a sequence of two independentinteractions. For this reason, we will use the terms rebinding and dynamic rebinding interchange-ably.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 28In addition to manual modi�cation of relevant information in the Trader, anautomated monitor continuously checking the status of service exports assists withkeeping service de�nitions up-to-date. Monitors are separate components runningat the application level cooperating with the monitored servers and clients.Renegotiating Service De�nitionsSemantically renegotiating service de�nitions follows the matching process per-formed in the Trader, de�ned for the negotiation phase. It involves �nding a newpeer according to matching and preference rules, discussed in section 3.3.2.In the binding process, this phase was performed by components themselves,exporting their service de�nitions into the Trader. However, the renegotiation phaseleads into three di�erent cases according to the component responsible for selectionof a new peer. The unbound peer might be left to perform the renegotiation itself(�rst-party renegotiation), or it is presented with an appropriate replacement (third -party renegotiation, or no-renegotiation � in cases when an external entity presentscomponents with a replacement without contacting the Trader).Destroying a BindingThere are two semantically-di�erent situations leading to the destruction of aninteraction. Firstly, it is performed when the initial purpose of the communicationhas been satis�ed. Secondly, destruction is required as a �rst step before a rebindingis performed, as it is the case here.As components are represented as black boxes, it is impossible to reveal theirsemantics. Therefore, the third party component can only request the destructionwhich is then performed by both involved peers. This functionality can be built into the communication protocol as a speci�c function, or it can be performed by adedicated component attached to both client and server. Component themselveshave to transfer the state of the binding, if appropriate, enabling them to continueoperation with a new peer.Reestablishing a Communication ChannelOnce the previous interaction has been destroyed, and a new peer component hasbeen found, the reestablishment of a communication channel may take place. Se-mantically, this phase does not di�er from the establishing a channel phase describedin section 3.3.3.3.4.2 Rebinding SituationsWe have described the rebinding process. Now we look at possible situations inwhich the system transforms if di�erent components initiate the rebinding or rene-gotiate the new peer (the second phase of the process).Rebinding can be initiated from within the component as a result of changedrequirements (�rst-party rebinding), or by an external third-party, either humanor automated, providing an overall application strategy (third-party rebinding). Inaddition to �rst-party and third-party rebinding distinguishing between the roleof the initiator of the rebinding process, we also have considered which componentperforms the renegotiation of service de�nitions, because trading requests is the pri-mary goal of the architecture. As was outlined above in section 3.4.1, we distinguishbetween �rst-party renegotiation, third -party renegotiation, and no-renegotiation.Therefore, there are four rebinding situations which the adapting system might use:� �rst-party renegotiated �rst-party rebinding

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 29

Client1

Trader

New Interaction

Client2

Server2

Server1

Destroyed
Interaction

1

2

3Figure 3.4: First-party Renegotiated First-party Rebinding� �rst-party renegotiated third-party rebinding� third-party renegotiated third-party rebinding� no-renegotiation, third-party rebinding.Remaining combinations for the �rst-party rebinding (third-party renegotiated, andno-renegotiation) are not valid, as the former one would not lead to a di�erent sit-uation from `third-party renegotiated third-party rebinding', and there will be norebinding performed in the latter case. These four situations have to be consid-ered separately as they di�er in several points, in addition to di�erent componentsinvolved:1. phases of the rebinding process are performed in di�erent order2. the number of components rebound in a single action vary (from one to many)as a result of the asymmetrical binding between clients and servers.3. unbound clients originally attached to the same server might be all reboundto a single new peer, or left to �nd new servers themselves. This might resultin di�erent overall system con�gurations.First-party Renegotiated First-party RebindingA component (client) initiates a rebinding if it requires an adaptation to changes inthe computing environment. As a client is considered an active entity, we assume itcan decide whether and when it needs to adapt (e.g., to change to a faster connectionwhen a portable is connected to the Internet). As for the order of rebinding phases,the destruction of a binding might precede renegotiation of a new service, or viceversa. Other interactions between the original server and its remaining clients arenot a�ected.Figure 3.4 illustrates the situation where Client1 initiated a rebinding, destroysthe original binding, performs a renegotiation, and links to a Server2. However,other bindings (between Server1 and Client2) remains una�ected.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 30

Client1 New Interaction

Server1

Client2

Server2

Server3New Interaction

Destroyed Interaction

Trader

3

3

1
2

2

Third Party

Destroyed Interaction

1

Figure 3.5: First-party Renegotiated Third-party RebindingFirst-party Renegotiated Third-party RebindingA server, as a passive component, is disconnected from the system by an externalthird-party. Renegotiation is carried out independently by all client componentswhich might result in them �nding di�erent servers. A typical example of this caseis a server shutdown.This situation is illustrated in Figure 3.5 where Server1's bindings are destroyedby a third-party (the third party initiates the operation which is performed incooperation with the servers). As renegotiation is left to the unbound Client1and Client2, the �gure illustrates that di�erent servers (Server2 and Server3) havereplaced Server1.Third-party Renegotiated Third-party RebindingIn this case, a Third-party has renegotiated a new peer in the Trader. Now, it facesa tradeo� between the better o�er on one side, and the `phase' of the operation andan overhead of the rebinding on the other side. However, its external knowledgeof system behaviour enables the Third-party to decide whether the rebinding isbene�cial. A typical example is an adaptation as a result of changes to systemstate, resource availability and quality of service.This case is illustrated in Figure 3.6. Client1 is rebound from Server1 to Server2,found by the Third-party. Remaining bindings (between Server1 and Client2) arepreserved.No-Renegotiation Third-party RebindingIn this case, the operation is initiated by an external Third-party replacing a compo-nent, e.g., a server upgrade. The third-party ensures the `upgrading' of all necessarystructures in cooperation with the original component and announces the interfacereference of the replacement to all connected clients. Therefore, no trading in theTrader has to be undertaken. Consistency, which in this case might be nontrivial,must be handled by the upgrading server or by the manager which initiated theupgrade.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 31

Client2

Trader

New Interaction

Server1

Client1

Server2

Third-Party

Destroyed
Interaction

2
3

1

Figure 3.6: Third-party Renegotiated Third-party RebindingIn Figure 3.7, Server1's bindings are destroyed by the Third-party. Both clients(Client1 and Client2) are bound to the replacing server (Server2).3.5 Quality of Service ManagementAs was de�ned above, a service interface describes the functional behaviour of acomponent, either provision or requirement, and is accessed by a service interface.Also, it is desirable to enable the service to be requested by the type of service itprovides and its characteristics. We termed this a service de�nition.Service characteristics, including features such as timeouts, and service charac-teristics under which the particular service is provided, describe the non-functionalbehaviour of the component. As was introduced in chapter 2, a unifying term forvarious aspects of the non-functional behaviour is quality of service.As QoS is a quickly evolving research area, we describe these terms in greaterdetail, in order to clearly de�ne the angle from which we approach this problem.As in section 3.3 (discussing the binding process), we base our term de�nitions onthe rm-odp standard [68].3.5.1 IntroductionQoS aspects span a wide spectrum of non-functional requirements. `Static' sys-tems, at one end of the scale, consider QoS characteristics during system designand con�guration (such as OS structure, task priorities, static resource allocation,etc.) At the other end of the scale, fully `dynamic' systems manage QoS characteris-tics at runtime (using techniques such as monitoring, routing, �ltering, applicationadaptation, etc.).

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 32

Client1

Trader

New Interaction

Server1

Client2

Server2

Third-Party

Destroyed
Interaction

New Interaction

Destroyed
Interaction

1

2 3

2 3

Figure 3.7: No-Renegotiation Third-party RebindingAs Magnet is primarily designed for resource allocation, we focus on the QoSof system resources, not necessarily changing at runtime (e.g., a printer resolution).The aim is to provide a QoS-based trading (e.g., resource allocation, software up-grades, etc), as opposed to maintaining QoS of the communication channel. There-fore, it can be said that our approach is closer to the `static' end of the scale.However, resource allocation is never fully static. Characteristics of classical re-sources, such as length of a printer queue, or processor load, have never been staticand predictable. In addition, we target our design to open systems where com-ponents may join and leave at runtime which precludes their characteristics frombeing known in advance. The design of our QoS framework re�ects the needs of themobile applications.As component lifetime (based on binding of its services) is a dynamic process,QoS Management must re�ect the needs of components at di�erent phases of execu-tion. Therefore, we distinguish a sequence of three phases performed in this order:QoS De�nition, QoS Negotiation, and QoS Maintenance.3.5.2 QoS De�nitionThe QoS De�nition comprises QoS characteristics known a priori, static or dynam-ically changing at runtime. In addition, high-level system requirements de�ningsystem policies � for example, dedication or reservation of particular resources �might also be expressed in terms of their QoS De�nition.The QoS De�nition covers a wide range of non-functional resource features.In our resource management framework, it covers, in particular: guaranteed char-acteristics of system resources (such as monitor resolution, processor speed, net-work throughput), timeliness (described in terms of availability, delay, or responsetime), consistency (for example, `freshness' or `up-to-dateness', accuracy, precision,as granularity of information expressed) and possibly failure-related behaviour.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 33Level Printer CPUCharacteristics B&W, laser, 600dpi, queue=3, �oor=5 Pentium, 200MHz, 4MBCacheService laserWITH queue < 5 PentiumWITH 200 MHzApplication laser printer with queue < 5 AND CPU Pentium, 200 MHzDistribution laser, queue < 5 on �oor 5 Pentium, 200 MHz, anywhereTable 3.1: QoS-based De�nition of a printer and a CPUComponents in open distributed systems can contain subcomponents, each ofthem providing and requiring services. The QoS De�nition framework must providea mechanism for expressing QoS-based service characteristics at all levels of compo-nent hierarchy, as well as their combination priorities. We consider service featuresat four levels, bottom-up: characteristics level, service level, application level, anddistribution level where each one forms the basis for the ones above:1. Characteristics level : represents values of potential resource characteristics(e.g., printer resolution, printer speed, colour versus black-and-white printing,printing technology � matrix, laser, ink-jet, etc.) They can have relevantdiscrete values, intervals, limits (max, min), or thresholds.2. Service level : service de�nitions may comprise service characteristics applica-ble for a particular service at higher granularity (e.g., printer service: a colourprinter, 600dpi with no queue).3. Application level : expresses a combination of components with certain QoScharacteristics (e.g., a processor and a memory� Pentium running on 200MHzwith 32MB ram memory)4. Distribution level : components are distributed spatially; location and time-dependent information must be able to re�ect the mutual distance and timedi�erence between components in order to ensure realistic estimation of location-dependent parameters (e.g., delay, `nearest' resource, time-based operationscheduling, location-dependent time: server time, client time, or `absolute'which can be, for example, `o�ce time').ExampleTable 3.1 illustrates a hypothetical QoS-based resource allocation requirement. Forsimplicity, it consideres only two servers � a printer and a CPU. Characteristicsof both resources with assigned values are described at the Characteristics level(e.g., black-and-white, laser, 600dpi, queue length=3, �oor=5). Their combinationde�nes the resource characteristics. However, they can be requested by clientsde�ning their QoS requirements not exactly. At the Service level, a combinationof values represents a particular resource which is to be satis�ed (e.g., laser, queuelength<5).At the application level, a combination of both resources is requested (e.g., laserprinter with queue length<5 and cpu Pentium, 200 MHz). There are resourcesthat might be allocated separately, but often it is necessary to reserve a group ofresources at the same time in order to be able to use them, for example cpu andmemory.The Distribution level features represent location-dependent information. In ourexample, it is the �oor on which the printer should be located. This issue is essentialfor mobile users changing location while requesting services.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 343.5.3 QoS NegotiationThe QoS Negotiation phase covers the negotiation of the service de�nitions ac-cording to matching rules (de�ned in section 3.3.2) that are extended to expressa QoS-based matching process, in particular QoS-based operations search and se-lect. They de�ne the semantics of the matching process for service characteristics(search), and component priorities `ordering' matching services. For example, arequest for a printer could be de�ned as: search for printers with resolution over600dpi, and select the one with the shorter queue.As the negotiation process takes place in realtime, its time complexity alsocontributes to the QoS characteristics being negotiated. Therefore, the traditional`best-e�ort' strategies are often disappointing. This is an additional reason forenabling the negotiating process to be component-de�ned and customized.3.5.4 QoS MaintenanceDuring component binding, QoS characteristics may change due to a user movingphysically from one location to another, changes in the environment, or explicitindications (e.g., the number of processes on a processor, or a number of jobs in aprinter queue) from any of the involved components.QoS characteristics may change in both directions � improvement or degrada-tion � both requiring appropriate actions to be undertaken according to componentrequirements.There are two fundamental strategies for dealing with �uctuation in QoS: re-source management and application adaptation [68].1. Resource management attempts to ful�ll the QoS requirements originallyagreed by allocating additional resources, or, by extending the service pro-vided by existing resources (e.g., requesting more disk and memory space,extra cpu-cycles). However, where QoS is improved, allocated resources canbe released.2. Application adaptation deals with resource degradation or improvement byproviding a service of a di�erent quality within an accepted range (e.g., pre-senting lower quality video and audio, switching into text mode instead ofproviding a full-graphics interface.)Considering these two strategies for the binding model, resource management canbe implemented by a �rst-party or a third-party rebinding of the client to a di�erentserver providing the required service; application adaptation keeps the establishedbinding, but changes appropriate communication protocols within the communica-tion channel.Not every change in system resources can be adapted to. There might be caseswhen changes in QoS characteristics are so drastic that none of these strategiescan provide a su�cient adaptation; then an external component (e.g., a systemadministrator) must interfere in the rebinding process, or a binding cannot continue.QoS MonitoringQoS adaptation strategies are performed as a result of a change in QoS character-istics. In order to achieve this, the current level of QoS must be kept up-to-date atall times (according to a `accuracy-grain' provided by the Trader. Therefore, QoSMonitoring must be supported as an essential part of QoS Maintenance. It usescomponent-dependent techniques to obtain QoS values (depending on a particularresource) that are actually achieved by a particular binding.

CHAPTER 3. A MODEL OF DYNAMIC THIRD-PARTY TRADING 35As in our model we treat components as black-boxes, services are obliged toprovide monitor components which, by directly interacting with the component,keep the information about varying QoS characteristics up-to-date in the Trader.3.6 Chapter SummaryIn this chapter we have de�ned a unifying model for third-party trading basedon a resource description by a type and characteristics of a service. The modelis appropriate for our primary purpose � dynamic resource management � butits generality makes it suitable for any architecture requiring a dynamic tradingarchitecture.We have set the scene by de�ning terms and summarising our assumptions.Then, we have de�ned the binding process as a sequence of actions that must beperformed in order to establish an interaction. It comprises the following phases:exporting service de�nitions, negotiating service de�nitions, and establishing a com-munication channel.Rebinding of interacting components enables system adaptation to changed con-ditions. This is performed as a sequence of four steps: exporting service de�nitions,renegotiating service de�nitions, destroying a binding, and reestablishing a com-munication channel. We have distinguished four rebinding situations according towhich component initializes the process, and which performs the renegotiation of anew peer.QoS Management, dealing with non-functional behaviour of a component, is anessential part of support for applications in open dynamic systems. In our model, itconsists of three phases performed in sequence during a component's lifetime: QoSDe�nition, QoS Negotiation, and QoS Maintenance.Every proposed framework must be based on well-de�ned and well-known re-search terminology � we have derived our terminology from rm-odp standards[66, 67, 68]. It is important to clarify the di�erence between these approaches.The concepts de�ned in the rm-odp standards such as the trader and qualityof service management are described independently and in very broad terms. Ourapproach,Magnet, attempts to unify the relevant concepts and tailor the rm-odpframework to its primary purpose � dynamic resource management. Our de�nitionof the Trader does not follow the rm-odp standard [67], which distinguishes betweentwo operations: service export and service import. Also, unlike the rm-odp stan-dard, our rebinding approach emphasizes issues concerning the renegotiating phase.Also our approach to QoS Management signi�cantly di�ers from the rm-odp stan-dard [68]. In particular, it emphasizes the negotiation phase and moves the targetof the problem from maintaining agreed QoS to providing a QoS-based negotiationand selection.Having de�ned an abstract model for trading, in the next chapter we can focuson a design of an actual architecture implementing the trading functionality.

Chapter 4A Resource ManagementArchitectureIn this chapter we present the design of Magnet � an architecture for third-partydynamic trading of service provisions and requirements in open distributed systemswith frequently changing characteristics. The model and terminology for this archi-tecture were described in chapter 3, here we focus on the design of Magnet. Forreasons of clarity and readability we have split the description of the architectureinto two chapters, 4 and 5.This chapter describes the design of the core of the Magnet framework. Ad-vanced features, such as information monitoring, QoS Management, dynamic re-binding and scalability, are discussed in chapter 5.Firstly, we summarize the requirements of the architecture outlined in chapter1. In section 4.2 we discuss our reasoning for the chosen infrastructure model.Then, in section 4.3 we de�ne functional semantics of system elements, and describethe binding process established using Magnet (section 4.4). Finally, we focus onnaming and protection issues, in sections 4.5 and 4.6.4.1 Requirements for Dynamic Resource Manage-mentFundamental changes in computing environments have a�ected the role of resourcemanagement. Here, we summarize the requirements of dynamic resource manage-ment, as discussed in chapter 1, to refresh the main goals Magnet attempts toachieve.Dynamic TradingThe primary role of the resource manager is to enable resource allocation� dynamicbinding performing component coupling based on information on the type of service.Therefore, the system must provide a third-party component, the Trader, collectinginformation on services and matching requests against demands.ExtensibilityThe architecture should not constrain the format nor semantics of its data, andshould enable user-customization of the matching process.36

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 37QoS-based ManagementUnconstrained description of services and user-customization of the matching pro-cess enables support for QoS-based management. This provides QoS-based resourcedescription and parametrized QoS-based matching process.Dynamic RebindingIn order to support runtime adaptations to changes of system environment, Mag-net should support dynamic rebinding of both types � �rst-party rebinding (ini-tiated by component itself) and third-party rebinding performed by a managerialthird-party with knowledge of overall application semantics. In addition, rebindingshould also enable �rst-party renegotiating (leaving the selection of a new compo-nent on the unbound peer), or presenting the rebound component with appropriatereplacement which can be found either in the Trader (third-party renegotiation), orobtained from an external entity (no-renegotiation is required).Information MonitoringMonitoring resource characteristics is a crucial requirement of dynamic resourcemanagement, enabling varying system features and time-dependent information tobe kept up-to-date in the Trader.ScalabilityScalability is an essential feature of all open distributed systems. The frameworkmust enable mobile users dynamically joining and leaving the system to use its fullpotential in a local scale, and also provide support for scaling.4.2 Using the Tuplespace Paradigm for the TraderAs was de�ned in chapter 3, in the Magnet architecture, the key component inthird-party role performing the service coupling is called the Trader. In order toprovide an information infrastructure for trading service properties, the Tradermust contain a shared data repository available to all components (however, it isnot directly accessible). We call this data structure, derived from the tuplespaceparadigm1 [22], an information pool. Structured data items placed into the infor-mation pool are tuples. In this section we describe the design of the Trader and theinformation pool, and discuss our reasons for choosing this paradigm.4.2.1 Overview of the TraderThe Trader is the key component of the Magnet architecture available to all com-ponents, such as system services, hardware resources, and mobile users, for estab-lishing dynamic bindings. The Trader consists of three distinctive elements:1. The information pool (a tuplespace-like data structure),2. The Trader operations on tuples for their manipulation, and3. The tuple matching function (an operation providing the actual communica-tion).Figure 4.1 illustrates the structure of the Trader, and its three components.1Speaking strictly about the data structure, the information pool is actually a tuplespace. How-ever, the term `tuplespace' is often associated with the Linda distributed programming language[22]; therefore, we decided to call our data structure `information pool' to avoid confusion.

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 38
Advert

Trader

WithdrawSWithdrawC

Bind

Information Pool

Server Tuple

Tuple Matching

Client Tuple

Figure 4.1: The Trader Structure4.2.2 The Information PoolThe information pool is a distributed data structure accessible by all componentsusing Magnet. As was mentioned above, the information pool design was in�u-enced by the notion of a distributed tuplespace [22]. Data items (tuples) can beinserted in, or withdrawn from, the tuplespace by a set of clearly de�ned opera-tions. The internal organization of the structure is not de�ned, and is irrelevant forthe framework semantics.Tuples describing requirements and provisions for resource management oftencontain additional `non-matching' information, such as interface references for ac-cessing o�ered services, or requirements on the establishment of the communicationchannel. For clarity of the framework, it is desirable to express this informationin the form of tuple elements. Therefore, the tuple (de�ned below in Def. 1)distinguishes between the number of all tuple elements n and the number of match-ing elements m. Traditional tuples containing only matching elements simply setn = m; neither the semantics of the structure nor the matching process have to bemodi�ed.A tuple, a structured data item, is de�ned below (N is the set of natural num-bers).De�nition 1. A tuple T is an ordered set of (n+2) elements T = (n;m; p1; p2; :::; pn),n � m where n 2 N is the number of tuple elements, m 2 N is number of `match-able' tuple elements, and pi 2 Pi are values of tuple elements, all actual parameters.4.2.3 The Trader OperationsThe information pool must be equipped with the Trader operations de�ning thesemantics of manipulation of tuples, such as insert and delete. Linda [22] is a well-known distributed programming language de�ning the original set of operations ontuples built around the traditional tuplespace (In, Out, Read).Although Magnet's Trader is based on the tuplespace paradigm, the opera-tions and their semantics were rede�ned and extended to better meet requirementsof users in dynamic environments. Operations o�ered by the Trader include: Bind,Advert (implementing service export), and WithdrawC, WithdrawS (imple-menting service withdraw).

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 39Semantics of the OperationsThe crucial feature of Linda, which the Trader has inherited, is that it does nottreat communicating components equally, but distinguishes between the roles ofclient and server. Therefore, the Trader operations also express this `duality' ofcharacter by providing client-operations (Bind, WithdrawC) used to manipu-late client-tuples, and server-operations (Advert, WithdrawS) for manipulat-ing server-tuples. Tuples themselves are syntactically identical (following Def. 1);client-tuples and server-tuples are identi�ed by the operation used to insert theminto the pool. In order to ensure the matching operation is performed only oncomplementary-type tuples, information about tuple type must be preserved. Insection 4.2.5 we will argue for this feature in greater detail, here we de�ne thesemantics of the four fundamental operations provided by the Trader.De�nition 2. Operation Bind (T), where T is a client-tuple (Def. 1), searchesthe information pool for a complementary-type matching tuple (Def. 6). If such atuple is found, T is returned to the server component (which inserted the matchingtuple) without being withdrawn from the pool. If no such tuple exists, the operationresults in inserting tuple T into the information pool until one becomes available.De�nition 3. Operation Advert (T), where T is a server-tuple (Def. 1),results in inserting the tuple into the information pool. It also searches the pool forall complementary-type matching tuples (Def. 6). If such tuples are found, theyare removed from the pool, and returned to the calling server component.De�nition 4. Operation WithdrawC (T), where T is a client-tuple (Def. 1),results in removing tuple T from the information pool.De�nition 5. OperationWithdrawS (T), where T is a server-tuple (Def. 1),results in removing tuple T from the information pool.OperationsWithdrawC and WithdrawS do not perform the matching oper-ation (Def. 6) restricted to a subset of the tuple elements, but �nd an equal one(all tuple elements are checked).Like in Linda, all these operations are performed atomically and selection frommore than one matching tuple currently available in the information pool is per-formed non-deterministically, unless de�ned by components themselves in terms ofpreference rules.DiscussionIn order to allow user-customization, blocking the calling component is not per-formed by the Trader, but left to components themselves. According to the natureof the application, a component can block itself immediately, or after a sequence of`insert' operations.Operations WithdrawC, WithdrawS are semantically identical. The onlyreason why we did not de�ne oneWithdraw operation for both clients and serversis performance. As the information pool is typically very large, it would be ine�cientto search all tuples (client and server ones) when it is clear which tuple type is beingsearched for. As we de�ne the actual operations used by components, there is notany `lower' layer at which this information could have been passed into the pool.The stateless character of tuples in the pool (discussed in greater detail in section4.2.5) enables the Trader not to worry about the state of possible ongoing bindingswhile performing WithdrawS and WithdrawC operations. This information is

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 40maintained by the communicating components themselves, and is usually ensuredby their communication protocol.4.2.4 The Tuple MatchingThe primary purpose of the framework is not to store information, but to providetrading of data placed into the repository. This communication model is known asgenerative, because a tuple generated by a component has an independent existencein the tuplespace until explicitly withdrawn by any component [22].Tuple matching2 is a concrete implementation of the matching process discussedin chapter 3 which enables actual communication between components in the formof exchanging information in tuples. In the classical tuplespace, exact matchingonly was supported [22]. De�nition 6 de�nes the matching process in the Magnetframework which, in addition, enables matching to be performed on a subset oftuple elements.De�nition 6. A client-tuple T1 = (n1;m1; p1; p2; :::; pn), n1 � m1, where n1;m1 2N , pi 2 Pi and a server-tuple T2 = (n2;m2; q1; q2; :::; qn), n2 � m2, where n2;m2 2N , and qi 2 Qi match i� m1 = m2 & (Pi = Qi & pi = qi) for 8i 2 f1;m1g.As incorporating non-matching information into tuples is optional, and maydi�er between a client-tuple and a server-tuple, the equality of tuple size (n1 = n2)is not a required matching condition.The matching operation, as it is de�ned, is not a symmetrical operation �it does assume client and server roles for the matching tuples. Here we discussthe basic (exact) matching process. User-customization of the matching process iscovered in chapter 5.4.2.5 Reasoning about the Trading ParadigmIn order to justify the tuplespace framework chosen for our information pool design,we have to discuss key characteristics of the paradigm; in particular, the necessityof distinct roles for client and server. Finally, we compare our approach to Lindaand a traditional namespace and clarify their di�erences.Key CharacteristicsLike a tuplespace, the information pool supports the following communication fea-tures: multi-party asynchronous communication, stateless character of tuples, anddecoupling of the communication parties permitting free-naming. More generalasynchronous communication prevents applications from forced undesired synchro-nization. The stateless nature of tuples saves the Trader from having to provide astate-maintenance scheme; for example, checkpointing or recovery procedures. Inaddition, it improves the generality of the system. If state is required, it can beincorporated as a parameter of tuples. Decoupling the server from the client bythe Trader permits communication to proceed anonymously, therefore servers canproduce tuples of interest to any client. Consequently, this feature enables free-naming � communication can be established without previous knowledge of theother party's identity. Similarly to the states of tuples, names can be expressedas parameters of tuples if required. All these features provide additional �exibilityover traditional direct one-to-one communication schemes.2Tuple matching is also called the Matching Function or the Matching Operation.

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 41The Necessity of Distinct Roles of Client and ServerAs was said above, distinct roles of client and server assigned to interacting compo-nents is one of the crucial feature of the Trader. Why is this sacri�ce of generalitynecessary?The primary purpose of the Trader is to enable an information exchange forestablishment of component bindings. A component binding, as de�ned in chapter3, is an interaction between two parties � client and server, not equal systemelements. In order to tailor our framework to this model of binding, the rolesof client and server must be incorporated into the Trader semantics. Therefore,the operations provided by the Trader � Bind, Advert for service export, andWithdrawC, WithdrawS for service withdraw � re�ect the duality of clientand server roles by providing `built-in duality'. This corresponds to Linda's view oftuples represented by operations In and Out [22].In contrast with this dual approach, general data structures (such as `heap')treat all data items equally by providing operations with no additional semantics(such as Insert and Delete).Therefore, the built-in semantics approach outweighs the loss of full generality.As the contents of tuples are not prede�ned and the matching process can be user-customized (see chapter 5), distinguished roles do not constrain the extensibility ofthe Trader.The Trader Operation Set versus LindaAs the Trader was motivated by the Linda programming language, it is desirableto compare these two approaches. In order to clarify our discussion, we brie�ysummarize Linda's operations below (details can be found in [22]):Out(N;P2; :::; Pj), where P2; :::; Pj are parameters (actual or formal) and N isan actual parameter of type name, results in inserting of the tuple(N;P2; :::; Pj) into the tuplespace; the process (which called the op-eration) continues immediately.In(N;P2; :::; Pj) where P2; :::; Pj are parameters (actual or formal) and N is anactual parameter of type name. If a type-consonant tuple whose �rstcomponent in N exists in the tuplespace, the tuple is withdrawn, thevalues of its actuals are assigned to the In()-statement's formals, andthe process executing the In()-statement continues. If no matching tupleis available, In() suspends until one is available and then proceeds asabove.Read(N;P2; :::; Pj) is identical to the In()-statement except that, when a match-ing tuple is found, assignment of actuals to formals is made as beforebut the tuple remains in the tuplespace.The key similarity was discussed in the previous section � both Linda and theTrader enforce components to become client or server, by providing a set of dualoperations (e.g., In and Out in Linda; Bind and Advert in theMagnet Trader).However, there are also many signi�cant di�erences between these two ap-proaches. Here we highlight several fundamental ones. Firstly, there is the dif-ferences in semantics of the operations. For example, Advert matches all tuplesinserted by Bind waiting in the pool, while Out matches only one waiting tupleinserted by In; a tuple inserted by Out can be removed from the pool by anyother component calling In, while in the Trader clients calling Bind have no rightto remove a server tuple inserted by Advert. (Semantically, operation Bind isequivalent to operation Read).

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 42Secondly, tuples in the information pool can be `signed' for identi�cation pur-poses. This does not constrain the tuple format, as the `name' can be expressed asone of the non-matching tuple elements (Def. 1), nor does it restrict the free-namingfeature (that is requesting a service by its type) because the matching process canbe restricted to a subset of the tuple elements, excluding the `name' (Linda doesnot support this feature).Also, a particular tuple can be withdrawn from the pool by operations With-drawC and WithdrawS which can identify it by searching for an equal tuple. InLinda, designed primarily for decoupled communication, any component can with-draw any tuple by calling an appropriate complementary operation (In removesOut tuple; and Out removes In and Read tuples), without paying attention toan exact tuple identity.In addition, the Trader does not support substitution of formal parameters be-cause there is no need for this kind of communication in the binding process.The Information Pool versus a NamespaceA nameservice `maps a name for an entity (an individual, organization or facility)into a set of labeled properties3, each of which is a string. It is the basis for resourcelocation, mail addressing, and authentication in distributed computing systems'[37]. A nameservice is based on a data structure (a repository of addresses) calleda namespace.The primary di�erence between the Trader and a nameservice lies in the distin-guished roles of client and server discussed above. A namespace keeps equal dataitems, while the information pool consists of server-tuples and client-tuples. In ad-dition to this fundamental di�erence, there are several other important semanticnuances.Firstly, data items in the namespace can be considered as a static `pair' (nameand address), while in the information pool, client-tuples are independent of comple-mentary server-tuples, and only the matching operation joins them into a dynamic`pair'. Secondly, name�address mapping can be classi�ed as one-to-one mapping,unlike client-tuple�server-tuple matching which is de�ned as one-to-many. Thirdly,name and address are semantically nondetachable in the namespace (an address withno name does not have a valuable meaning and vice versa), while client-tuples andserver-tuples have an independent existence in the pool.In addition there are three more minor di�erences: a nameservice requires uniquenaming, supports only simple name mapping and considers global scalability an im-portant issue. The Trader, in contrast, supports optional names expressed as tupleelements, enables parametrized QoS-based matching, and is primarily designed fora local scale, a federation.4.3 Components for the MAGNET ArchitectureHaving described in detail the core approach undertaken in Magnet's architecture(the Trader based on the tuplespace paradigm), now we present an overview of theframework, and describe individual system components.Figure 4.2 illustrates the structure of the Magnet architecture distributed overa single federation. The system consists of four classes of component: the Trader,Client, Server and Tree (components performing the matching process). There isonly a single instance of the Trader component, in contrast to multiple instancesof Client, Server and Tree. In addition to these four high-level components, thereare two types of subcomponent performing dedicated functions: these are a pair3often called `addresses'

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 43

Trader

bindadvertwithdrawC

Tree 3

withdrawS

ipool 1

ipool 2

ipool n

cp

all

Server 1

Tree 2

Client nServer n Client 1

cp cp cp

Tree n

ipool 3

allallall

GlueFactory GlueFactoryGlueFactoryGlueFactory

gluegen gluegengluegen gluegen

bglue bgluebs bs

glueS glueS

bcbc

glueCglueC
Client-BinderClient-BinderServer-Binder Server-Binder

Tree 1

Figure 4.2: Magnet's architectureof Binders (the Client-Binder and the Server-Binder) present in all Clients andServers; and the GlueFactory included in all Trees. Binders in cooperation with theGlueFactory establish the resultant client-server binding.In addition to the static components, Figure 4.2 also illustrates the intercon-nections between them. In this section we will describe the functionality of everyindividual component, while in section 4.4 we will focus on their mutual interactionthat realizes the primary goal of the framework � the binding process.4.3.1 The TraderThe Trader is the key system component o�ering four fundamental operations(Bind, Advert, WithdrawC, WithdrawS) used by clients and servers request-ing to establish dynamic bindings. As the framework is primarily designed forresource management purposes, it is desirable to have one centralized Trader com-ponent within a federation keeping information of the available resources. This issu�cient as resource allocation is mainly performed within a given domain (however,distribution of the information pool preventing the Trader becoming a bottleneckin the system is discussed below).Other option would be running the Trader component on every system processorand `escalating' (forwarding) tuples which do not match locally to other Traders.However, this would cause consistency problems (e.g., what happens if a singletuple is matched in more than one Traders? What is the topology of Trader inter-comection and how is it dynamically adapted?) As resource allocation is primarilydomain-scale problem (e.g., most of requests for resources are ful�lled in a localInternet domain), we have chosen the federation to be the smallest architecture en-

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 44tity. However, scalability of the framework in terms of inter-Trader communicationis also supported. We discuss these issues in the next chapter.In order to prevent the Trader being a bottleneck in the system, the four op-erations are actually implemented in distributed Tree components. The Traderforms a single interface to all components calling its operations, while multiplephysically distributed Tree components actually implement these operations. TheTrader forwards the request (the operation and the tuple) into the appropriate Treefor processing. The inner structure of Trees ensures that there is only one Treecomponent able to ful�ll the request.However, the con�guration of Trees and the type of tuples they hold is deter-mined by the Trader, therefore they cannot be accessed directly by components.From the semantic point of view, distributed Tree components form the infor-mation pool, and are an indispensable part of the Trader functionality. For thisreason, in the previous section 4.2.5 we considered the Trader as a single compo-nent. However, structure-wise, the information pool is physically distributed intoTrees, therefore in this section, as we are dealing with the system structure, we treatthe Trees as independent system components. Figure 4.2 illustrates the relationshipbetween the Trader and Trees.4.3.2 The TreeAs was said above, Trees provide the actual functionality by implementing theTrader operations, yet are not accessible by components directly. As was outlinedin section 4.2.5, the information pool distinguishes between client and server tuples,therefore this feature must be also provided by every Tree component in order to en-sure the matching process will be performed between complementary tuples. Treesperform the requested operation forwarded from the Trader and, if the matchingprocess is successful, initialize the last phase of the binding process � establish-ment of a communication channel � implemented by a dedicated subcomponent,the Glue Factory.4.3.3 Distribution IssuesThe Trader acts as an interface �lter for all components involved in resource man-agement and is responsible for distribution of Tree components. The initializationof the Trader in a particular domain performs an instantiation of Tree componentswhich are physically distributed over available processors. The number of proces-sors, given by a system administrator initializing the Trader, determines the wayTrees are distributed. These issues are discussed in section 6.5.4.3.4 The Glue FactoryIf the matching process called by the operations Advert and Bind �nds a match,client and server components must be informed about each other in order to estab-lish a binding, which is the �nal goal of this procedure. A dedicated componentresponsible for informing components of matching tuples is the Glue Factory, asubcomponent of every Tree.When the Glue Factory is given a matching tuple pair (a result of a successfulmatching process), it establishes a communication with the Server-Binder (the in-terface reference is obtained from the server-tuple), and is responsible for passingover the client-tuple.Information about the established server-client pair is not kept by the GlueFac-tory, nor the Tree, in order to ensure the stateless nature of the Trader. As saidabove, this functionality belongs to the scope of components' responsibility.

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 454.3.5 Client and ServerEvery component using Magnet must interact with the Trader as a client whichrequests the four Trader's functions. Therefore, every component is equipped withan additional service interface (cp) through which it calls the Trader's operations� advertises or binds its tuples.In Figure 4.2 the client's service interface is labeled glueC, while the server'sservice interface is glueS. In addition, both client and server must also contain adedicated subcomponent � the Binders � responsible for establishing the binding.4.3.6 BindersThe primary purpose of Binders is to perform the last phase of the binding process� the establishment of a communication channel. On this task, Binders cooperatewith the underlying computing environment whereMagnet operates: Binders formtheMagnet environment-independent interface, while the resultant binding at thelow-level is established by a communication mechanism available in the system (suchas a message passing, etc.)From the semantic point of view, there are two classes of Binder � Server-Binders and Client-Binders. The service interface to the Server-Binder (bglue) isinserted into the tuple sent to the Trader by an operation Advert. When matchingof service de�nitions is achieved, the Server-Binder is provided with the matchingclient-tuple containing an service interface to the Client-Binder (bc) of the clientcomponent. Then a binder-to-binder interaction can be established to exchangerequired information to enable the �nal end-to-end client-server binding to takeplace. The actual protocol and semantics of Binders is application dependent, andfor Magnet's purposes irrelevant.If components do not trust each other, Binders might also contain a built-inadmission protocol, providing protection for servers from untrustworthy clients.This feature is discussed in section 4.6.4.4 The Binding ProcessHaving discussed the functionality of Magnet's components, we focus on theirinteraction resulting in dynamic binding. In chapter 3, we de�ned three phases ofthe binding process: export service de�nitions, negotiating service de�nitions, andestablishing a communication channel. In this section we will discuss these threephases as they are performed by the Magnet framework.In this chapter we discuss a local trading system; federations, as a solution tothe problem of scaling, are covered in chapter 5.Figure 4.3 illustrates a simple binding con�guration consisting of a server (thePrinter), a client (the Application), the Trader and the Tree component into whichthe Printer's and the Application's tuples are forwarded for processing. For simplic-ity, remaining distributed Tree components are omitted, as they are irrelevant tothis particular instance of the binding process. We de�ne and illustrate each phaseof the binding process in this example. Detailed description of each particular phase(in this example) is given at the end of each section de�ning the phase.4.4.1 Export Service De�nitionsThe goal of the �rst phase of the binding process � export service de�nitions � isto place services into the Trader where they are negotiated. In our framework, theTrader o�ers four functions (Bind, Advert, WithdrawC, WithdrawS). In order

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 46
Trader

bind advert

withdrawC

withdrawS
ipool

cp

all

Server - PrinterClient - Application

cp

Tree

GlueFactory

gluegen

bgluebs

glueS

bc

glueC
Client-Binder Server-Binder

1

2

3

4

5

1

Figure 4.3: Binding establishment in Magnetto call them (they are represented as services provided by the Trader), componentsneed to bind to the Trader component. However, in this `�rst case', it cannot bethe Trader, which establishes the binding, as it is itself being bound. Therefore,a nameserver resident at a well-known address provides components with interfacereferences to the Trader's functions so that the component-Trader bindings can beestablished. The Trader forwards incoming tuples into the appropriate Tree wherethe required operations are performed.ExampleIn our example, the Application describes its requests by a tuple:T1 = (4; 3; printer; laser; 600dpi; bc)(4 determines the tuple size, 3 sets the number of elements which have to match).The application exports service by calling the Trader's operation Bind(T1). ThePrinter describes its o�er by a tuple:T2 = (4; 3; printer; laser; 600dpi; bglue)(again, 4 determines the tuple size, 3 sets the number of `matching' elements, there-fore service interfaces bc and bglue used for locating components are omitted atthe matching process). It exports service by calling the Trader's operation Ad-vert(T2). Performing operations in this order results in forwarding tuples T1 andT2 into the Tree, where the next phase, the matching process, takes place.

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 474.4.2 Negotiating Service De�nitionsThe goal of this second phase is to perform the matching process that searchesthe information pool (the particular Tree) for a matching tuple. Magnet's exportpolicy consists of operations Advert and Bind; the withdraw policy consists ofWithdrawS andWithdrawC. In addition, the tuple format (Def. 1) for accessingthe Trader's operations is enforced.The matching process consists of two phases � operations search and select. Thematching function (Def. 6) de�ning the matching rules can be user-customized. Foreach pair of tuples an equality of the `matching size' m (Def. 1) is checked (3=3,in our example); then for each tuple element, the type of the element and the valueare compared (value comparison can be user-customized, therefore strict mathe-matical equality is not required). In our example, three comparisons are performed(printer=printer, laser=laser, 600dpi=600dpi). If this procedure succeeds for alltuple matching elements, the two tuples are said to match, and are forwarded tothe GlueFactory.Removing or inserting matching tuples into the pool is performed in accordancewith the particular operation de�nition (e.g., a matching Advert tuple is insertedinto, or left in, the pool, while a Bind tuple is not inserted, or is withdrawn fromit, etc.)ExampleIn our example, tuples T1 and T2 match, therefore, they are passed into the Glue-Factory; the server tuple T2 remains in the Tree, while the application tuple T1 iswithdrawn as its request is satis�ed.Here we have discussed basic exact matching. Advanced QoS-negotiation whichenables the user to further customize the matching rules and de�ne the preferencerules is discussed in chapter 5.4.4.3 Establishing a Communication ChannelThe establishment of an end-to-end binding is performed by the particular Glue-Factory in cooperation with both Binders, the Client-Binder and the Server-Binder.The GlueFactory passes over the client-tuple to the Server-Binder via a binding es-tablished temporarily for this purpose. The interface reference of the Server-Binder,necessary for establishment of this temporary binding, is obtained from the server-tuple.Then, the Server-Binder invokes the Client-Binder (the interface reference isobtained from the client-tuple), and performs the binder-to-binder protocol, passingover the required server interface reference, so the client can bind to it, the resultantcommunication channel is established; and components can start interacting.ExampleIn our example, the gluegen request service is bound to the bglue provision service,and via this temporary binding, the tuple T1 is sent to the Server-Binder. Then,the Server-Binder's service reference bs is bound to the Client-Binder's reference bc,over which the resultant communication channel between server provision referenceglueS and the client request reference glueC is established.

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 484.5 NamingNaming is an important issue in open distributed scalable systems. In Magnet'sframework, there are three levels at which naming must be considered: tuple nam-ing, interface reference naming, and Trader naming.4.5.1 Tuple NamingAs the Trader provides an environment for generative programming (discussed insection 4.2.4), tuples are considered anonymous. Therefore, the tuple de�nition(Def. 1) does not enforce any names. As was discussed above, this feature en-ables free-naming � accessing a peer component without previous knowledge ofits identity. An identi�cation which is necessary for accessing services (interfacereferences) is expressed as a tuple element, invisible to the high-level Magnetframework. Therefore, no dedicated naming scheme for tuples is necessary.4.5.2 Interface Reference NamingIn order to establish a binding between service interfaces of two components, theymust be identi�ed by interface references. As components o�er or require uniqueservices, naming of their interface references must be unambiguous. The designof such a naming scheme depends on the particular computing environment andidenti�cation scheme used within it, and can vary between di�erent applicationsusing the same Trader.For example, the typical computing environment where Magnet can operateis the Internet. Therefore, `names' of interface references can be composed as acombination of an ip address, a process number (pid), and an internal process(component) reference which enable unambiguous scalability. The chosen interfacereference naming scheme, and its mapping derived from a particular computingenvironment, are irrelevant for Magnet's design.4.5.3 Trader NamingThe third level at which naming is an issue in Magnet is the Trader level. Thereare two di�erent `scales' to consider � the local domain consisting of one Trader,and federations enabling scaling of the architecture.Firstly, a local domain (as assumed throughout this chapter) consists of only oneTrader serving distributed Trees. The Trader is contacted via a shared nameserverresident at an address known in advance. Therefore, in the local domain Tradernaming is not an issue.Secondly, in order to enable scaling of the architecture, Traders are internet-worked to connect federations. There must be a naming scheme enforced to allowcomponents to identify Traders in remote domains, in order to enable Trader-to-Trader communication. Issues related to scalability and the actual design of feder-ations, including naming of federated Traders, are covered in chapter 5.4.6 ProtectionProtection in open distributed systems is always a complex issue. Magnet's protec-tion scheme targets the following crucial areas: Trader protection, tuple protection,and components protection.

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 494.6.1 Trader ProtectionIn order to allow the Trader to distribute Tree components across the domaintransparently, Trees are not directly accessible by components. Therefore, Treeservice interfaces (all) are hidden by the public Trader's operations (service inter-faces: advert, bind, withdrawC, withdrawS).4.6.2 Tuple ProtectionIn order to enable free-naming, tuples are considered anonymous. This featureallows any client to insert a type-complementary tuple that matches any servertuple in the information pool. The matching process does not include any protectionchecks.Frequently, additional protection is necessary, as components using Magnet donot necessarily trust each other. Therefore, a tuple can be protected by a `password'expressed as one of its elements. Trustworthy components know the password (fromsystem designers, or administrators) and are able to produce a matching tuple,while untrusted components cannot. As a result of this, the distributed systemcan be shared by groups of components (possibly overlapping) able to produce onlymutually matching tuples and gain access to services only within their groups.Also, capabilities could be expressed as tuple elements, if this way of protectionis required by system administrators or applications using Magnet. Nevertheless,the universality of the architecture is preserved.As the protection of tuples using signatures or capabilities is user-de�ned, itdoes not require altering the high-level design of the framework, nor the matchingprocess.4.6.3 Component ProtectionIn order to prevent service references from being directly passed to untrustworthycomponents, bypassing the signature-matching process, components are equippedwith two additional means for their self-protection. Firstly, interface references canbe protected by Binders; secondly, an admission protocol carried out by Binderscan result in refusing service to untrusted components.Interface Reference ProtectionAll bindings are established using the pair of Binders (Client-Binder and Server-Binder). In addition to this primary purpose, Binders prevent interface referencesfrom being advertised, and therefore exposed for misuse. Therefore, Binders' serviceinterfaces (bglue in Server-Binder and bc in Client-Binder, as illustrated in Figure4.3) are inserted into tuples which are placed into the information pool. Serviceinterfaces of the actual services provision (glueS) and requirement (glueC) arenever advertised, and can only be accessed by trusted Binders.Admission ProtocolProtecting interface references from being misused by untrusted components byhiding them behind the Binders can only have the desired e�ect if the Binders havethe right to refuse to establish a binding. As Binders' interface reference can bepassed over to any untrusted component, an admission protocol between Client-Binder and Server-Binder is required.When the Server-Binder obtains the client-tuple containing the reference to theClient-Binder, it performs a protection checking procedure of varying complexity.That is, the admission can be based on simple user identi�cation (uid), public key

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 50
cp

Server Client

cp

bglue

bs

glueS

bc

glueC

Client-Binder Server-Binder
4

5

32

1

secureInt secureInt

secureInt ::Reference glueS::Reference

UID yes/no

Figure 4.4: Admission Protocol(pgp), or any other common or proprietary protocol. Only when the admissionprotocol is successful is the access to the service is gained, and the required end-to-end client-server binding is established.Figure 4.4 illustrates an admission protocol between Binders based on classicaluid protection.4.7 Chapter SummaryBased on the model de�ned in chapter 3, we have described the core of Magnet'sdesign, leaving its advanced features to chapter 5.Magnet provides a framework for establishment of dynamic binding usingthird-party trading. Based on a tuplespace paradigm, the Trader consists of threecomponents: the information pool (a tuple-space like data structure), the Traderoperations on tuples for their manipulation, and the tuple matching operation.The information pool is a distributed data repository for structured data items� tuples consisting of an ordered set of items. The set of operations provided by theTrader consists of: Bind, Advert, WithdrawC, and WithdrawS. In this chap-ter we have provided de�nitions of these operations and of the matching process.The key characteristics of the chosen paradigm include multi-party asynchronouscommunication, stateless character of tuples, and decoupling of the communicationparties permitting free-naming. In other words, communication can be establishedwithout previous knowledge of the peer identity. We have also argued why it is nec-essary to distinguish between the roles of client and server, and we have comparedthe Trader to Linda, and the information pool to a namespace.Magnet consists of four classes of components: the Trader, Client, Server, Treeand two types of dedicated subcomponent: a pair of Binders (Client-Binder andServer-Binder), and the GlueFactory. The Trader is the key system componentproviding an interface to the four operations on tuples. According to a local sitecon�guration, the Trader initializes distributed Trees where the actual operationsare performed. As they belong to an internal structure of the Trader, for pro-tection reasons, they are not accessible by components directly. If the matchingprocess, implemented by the Trees, is successful, the GlueFactory subcomponent(present in every Tree, dedicated to the establishment of a binding) cooperateswith Binders (present in every component) in order to establish the binding. Thenthe Client-Binder and the Server-Binder perform the �nal phase of the binding pro-cess, resulting in the establishment of a communication channel between client andserver.Having discussed the semantics of all these components separately, we have

CHAPTER 4. A RESOURCE MANAGEMENT ARCHITECTURE 51described their interaction which performs the actual binding process: exportingservice de�nitions, negotiating service de�nitions, and establishing a communica-tion channel. We illustrated each particular phase of the binding process using anexample of a Printer and an Application components.Naming in Magnet is considered at three levels: tuple naming, interface refer-ence naming, and Trader naming. As tuples are considered anonymous, no namesare enforced at the high-level. Interface reference naming requires an unambigu-ous scalable naming scheme and depends on the actual computing environmentwhere Magnet is being used. Naming of Traders, interconnected into federations,was mentioned in this chapter, and will be discussed in chapter 5, together withscalability issues.Protection is another indispensable requirement of open distributed systems. InMagnet, we provide protection at three levels: Trader protection (hiding the Treecomponents from users by the public interface provided by the Trader), tuple pro-tection (enabling components to incorporate `signatures' into their tuples in orderto prevent them from being misused by untrusted components), and componentprotection (hiding the actual service interace reference behind publically advertisedBinder references, enabling an admission protocol to be performed by the Binders).This chapter has covered the design of the core system elements and their func-tionality. The next chapter discusses the design of Magnet's advanced features,including information monitoring, QoS Management, rebinding and scalability is-sues.

Chapter 5Advanced Features of theArchitectureBesides the basic functionality (described in chapter 4), Magnet must supportadditional features permitting adaptation to the requirements of changing environ-ments. Based on the fundamental system elements (de�ned in chapter 4), here wepresent the advanced features of the architecture: information monitoring, QoS-based Management, dynamic rebinding, and scalability. Information monitoring,an indispensable requirement of users in changing computing environments, is dis-cussed in section 5.1. Section 5.2 covers issues of QoS Management, section 5.3provides a description of Magnet's support for dynamic rebinding. Finally, sec-tion 5.4 presents issues related to scalability of the architecture.5.1 Information MonitoringIn order to enable adaptation to changes in system characteristics, service de�ni-tions which are placed in the Trader must be kept up-to-date. Therefore, Magnetmust monitor resource characteristics. For this reason, the framework presentedin this thesis is equipped with two additional components providing monitoring:the Monitor (monitoring server provisions), and the Updater (monitoring changingclient requirements). In this section, we will describe the semantics of these twocomponents and the actual monitoring process.5.1.1 Components for MonitoringAs the Magnet framework distinguishes between the roles of client and server, itis necessary to approach their monitoring di�erently. Therefore, Magnet has twomonitoring components providing this functionality � theMonitor and the Updater� both application-level components are attached to server or client respectively.They are created together with the components they serve, and are instructed bythem to provide component-tailored functionality. Here we discuss their interfaceto Magnet and expected functionality.The MonitorThe task of the Monitor component is to observe changing characteristics of theserver it is attached to, and keep the server tuple up-to-date. Figure 5.1 illustratesthe structure of the framework with the Monitor.52

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 53Tight cooperation with the server enables the Monitor to be informed aboutcurrent service characteristics, so that it can periodically update relevant tuples inthe pool (by removing them and replacing with updated ones). The granularity ofthis operation depends on the server strategy, in particular on the actual featurebeing updated, and on the overall character of an application (for example, real-time applications rely on �ner-grained updates). However, in accordance with ourassumptions, we expect the monitoring to be performed with frequency of minutes,rather than seconds and milliseconds.The UpdaterAs there are not many clients requiring rebinding after having found a requestedservice, the monitoring of client requirements is less crucial. Also, client-tuples donot reside in the pool (if a match was found), and therefore there is no need tokeep them up-to-date. However, clients in systems with frequently changing char-acteristics may rely on a guaranteed level of service (e.g., a network throughput).For those, adaptation to change in conditions are unavoidable (e.g., switching tolower-quality audio and video, etc.) For these reasons, the framework must alsoprovide equivalent support for monitoring clients.The Updater is a dedicated component instructed by the client it is attachedto. It searches the pool for a tuple meeting the client's current requirements morepresisely, or looks for a di�erent tuple if the client's requirements have changed(e.g., mobile users on the move need to update a requirement for the nearest server,etc.).The monitoring of the information pool is not the only function of the Updater.As changes might result in rebinding the client to a new server, the primary func-tionality of the Updater is to assist in third-party rebinding. Here we focus on themonitoring issues, while in section 5.3 we discuss the role of the Updater in theclient rebinding process.5.1.2 MonitoringIn this section we describe the monitoring process, as provided by the dedicatedcomponents: the server-attached Monitor, and the client-attached Updater. Figure5.1 illustrates the bindings discussed below. Server-Monitor and client-Updaterinteractions are established statically in advance by a system administrator, notusing Magnet.Monitoring Server ProvisionsThe Monitor component is attached to the server by a binding established betweenservice interfaces dataS and dataM. The server keeps the Monitor informed aboutrelevant changes. Then, according to the granularity of update (how often it is per-formed), and the `out-of-dateness' accepted (how much can a tuple in the pool di�erfrom current characteristics), the Monitor decides when to perform the operationsWithdrawS and Advert. That is, the actual update in the pool (through serviceinterfaces cp and wp). From the Trader's point of view, monitoring is performedtransparently, indistinguishable from a sequence of operations WithdrawS andAdvert performed by the server itself.Monitoring Client RequirementsThe Updater component is instructed by a client about service requirements itshould search for. These two components communicate through a statically es-tablished binding between service interfaces new and rebindC. In this case, the

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 54

Trader

bindadvert withdrawC

Tree 3

withdrawS

ipool 1

ipool 2

ipool n

cp

all

Monitor

Tree 2

UpdaterServer Client

cp cp

cp

Tree n

ipool 3

allallall

GlueFactory GlueFactoryGlueFactoryGlueFactory

gluegen gluegengluegen gluegen

bglue bs

dataM
glueS

wp

bc new

glueC

Client-BinderServer-Binder

Tree 1

dataS

cpwp

rebindC

Figure 5.1: The architecture with the Monitor and the Updaterinitiative is on the Updater component, in contrast to the Monitor that acts onlywhen invoked by the server.The Updater calls the operation Bind on a tuple with higher requirements(through service interface cp), or performsWithdrawC and Bind operations whenthe requirements of the client have changed. The bind-tuple, inserted by the Up-dater, waits in the pool until it �nds a match. According to the Updater protocoland the `stage' of client interaction, the Updater decides if rebinding is bene�cial(rebinding of a client close to �nishing might not be bene�cial, taking the overheadof the rebinding process into account). Therefore, the new server tuple can be ig-nored, or client rebinding can be performed. Rebinding issues are discussed in thesection 5.3.5.1.3 DiscussionThere are two important issues related to monitoring that deserve further investiga-tion. Firstly, we discuss issues related to monitoring of the communication channelin contrast to monitoring of component characteristics. Secondly, we brie�y discussthe e�ciency of the monitoring operation.Component Characteristics versus a Communication ChannelMonitoring of system characteristic changes ensures the maintenance of an agreedlevel of service provided by the communication channel, as investigated for examplein [16]. However, the primary focus of Magnet is to present an environment for

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 55resource allocation based on up-to-date information, rather than maintaining theagreed quality of a resultant binding.Applications requiring the monitoring of a service provided by the communi-cation channel can describe the channel as an additional component. This can beequipped with a Monitor that keeps channel tuples in the pool updated.E�ciencyData monitoring e�ciency is an important issue. For applications requiring onlycourse-grained monitoring strategies (with frequency of minutes), tuple updatesperformed by a withdrawal and reinsert (as discussed in this section) are su�cient.However, for applications requiring �ner-grained updates of their data in the pool(with frequency of seconds and milliseconds), the complexity of the Trader opera-tions must be added to the complexity of the update operation (the complexity ofthe operations will be discussed in chapter 6).In order to improve e�ciency, speci�c trusted Monitors and Updaters might beauthorized to have direct access to the Tree holding their tuples. However, thissolution fundamentally violates protection of the information pool (encapsulatingTrees behind the public Trader's operations). For the reason of protection of otherdata in the pool, and protection of Trees that might be misused by untrustworthyMonitors, this approach is not a part of the framework design.5.2 Quality of Service ManagementQuality of service describes the non-functional behavior of the system components� characteristics under which service is provided. Magnet's approach addressesQoS-based selection, targeting resource allocation, software upgrades, and dealingwith dynamic characteristics of system resources, such as length of a printer queue,processor load etc.According to the model de�ned in chapter 3, QoSManagement is de�ned at threelevels: QoS De�nition, QoS Negotiation, and QoS Maintenance. In this section, wedescribe how Magnet supports QoS Management, following the model discussedin chapter 3.5.2.1 QoS De�nitionThe QoS De�nition covers a wide range of system characteristics and their com-binations. In our model, the QoS De�nition comprises four levels: characteristicslevel, service level, application level, and distribution level.A common formal approach to de�ning the QoS is the Z notation [61]. However,our approach, derived from Regular Expressions [3], extended with an `evaluation'function expressing combination priorities (section 5.2.2), better suits the require-ments of the QoS-based matching function.In this section we discuss Magnet's support for QoS De�nition and illustrateits utility with simple examples.Characteristics LevelBased on the tuple de�nition T = (n;m; p1; p2; :::; pn), n � m where n;m 2 N ,pi 2 Pi (Def. 1), resource parameters are represented as tuple elements pi 2 Pi.Typically, pi gains discrete actual values within the de�nition range Pi.However, in order to enable advanced QoS description, Magnet also de�nes aset of QoS operators enabling parameterized description of service characteristics:

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 56De�nition 7. The set of QoS operators de�ned on tuple parameters pi 2 Piconsists of:1. operator interval pi� pj , where pi; pj 2 Pi, and Pi is a linearly ordered set,gains any value pk 2 < pi; pj >.2. operator negation :pi where pi 2 Pi gains any value pk 2 Pi & pk 6= pi andoperation equality = can be de�ned according to the relation on the de�nitionrange Pi.3. operator or pi| pj where pi; pj 2 Pi gains either value pi or value pj .4. operator all * gains any value pk 2 Pi.5. additional user-de�ned operators.As part of enabling user-customization of the tuple format, the framework allowscustomization of the set of QoS operators. The four operators have been prede�ned,as they are typical for QoS requests. Additional user-de�ned operators may be, forexample < x (values smaller than x), or > x (values greater than x). The followingtuples illustrate the usage of QoS operators:X1 = (3; 2; a� d; 555; ref)X2 = (2; 2; a; �)X3 = (3; 2; ajb;:66; ref).Service LevelAs tuple elements (gaining operator-enhanced values, according to Def. 7), representonly partial information, the aim is to form a combination of parameters (formingthe tuple) that de�nes the �nal service de�nition. It is necessary to extend thematching function in order to allow user-customized matching according to the setof operators on tuple elements:De�nition 8. Let T1 and T2 be tuples de�ned: T1 = (n1;m1; p1; p2; :::; pn), n1 �m1, where n1;m1 2 N , pi 2 Pi and T2 = (n2;m2; f1(q1); f2(q2); :::; fn(qn)), n2 �m2, where n2;m2 2 N , qi 2 Qi, and fi(qi) is one of the QoS operators or gains avalue qi1.T1 and T2 QoS-match i� m1 = m2 & (Pi = Qi & pi 2 fi(qi)) for 8i 2 f1;m1g.The tuples X1, X2 andX3 that were de�ned above also illustrate QoS-matchingprocess. Assume there is a server-tuple S = (3; 2; a; 555; ref). It QoS-matches withall tuples X1,X2 and X3.Application LevelResources that must be allocated together (such as a processor and its operationalmemory) form a compound component consisting of two or more subcomponents.However, for the trading system, such a component is described by one tuplecomposing characteristics of both subcomponents. The complementary clients-tuplemust also express the requirement for the combination of components. Therefore,1QoS operators are optional, clients can express their requests by tuple elements gaining onlyexact values, or as a combination of operators and exact values. Therefore, is it necessary toexpress the option of elements gaining an `exact value' (qi) in the de�nition.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 57the matching process follows the de�nition above, as at the Trader level it is irrele-vant how many services the tuple actually describes. The binder-to-binder commu-nication, performing the establishment of a binding, ensures that all subcomponentsare connected as requested.As an illustrative example we consider a tuple describing a cpu Pentium 200MHzwith 32MB ram memory:CM = (6; 5; CPU; Pentium; 200;memory; 32; ref).Distribution LevelTime and location-based information can be expressed in the form of ordinary tupleelements that match by the QoS-matching function (Def. 8). The monitoring com-ponents (Monitor and Updater) ensure that tuples containing this kind of elementare kept updated at all times. The matching function is performed as usual.5.2.2 QoS NegotiationThe Matching rules, including the QoS-based operations search and select, are per-formed in the QoS Negotiation phase. In Magnet, the operation search is per-formed by the QoS-based matching function (Def. 8) enabling components to de-�ne service de�nitions in more �exible way by the QoS operators (Def. 7). Thetuple model is universal and extensible by supporting user-de�ned types and theuser-de�ned semantics of matching. Other models, such as typed objects, taggedtrees, etc. do not provide the level of universality, we wish to support.The exact matching results in a single tuple or a set of identical tuples matchingthe request. In the latter case the selection is performed non-deterministically(the �rst one is returned). However, a result of a user-customized matching canbe a set of di�erent tuples. Therefore, the QoS Negotiation process necessitatesdi�erent semantics which enable clients to `order' matching tuples which expresstheir preferences. All tuple elements in an exact matching are required to matchequally; however, tuple elements in a QoS-matching can deviate from an `ideal'value. Therefore, they can be assigned `rating' values expressing their deviationaccording to the requirements of a particular component.De�nition 9. Let T = (n;m; f1(q1); f2(q2); :::; fn(qn)), where n � m, n;m 2 Nbe a client-tuple. The tuple element rating is a function
(fi(qi)) = ki for8i 2 f1;mg de�ned on the matching tuple elements, where fi(qi) is one of the QoSoperators or gain a value qi, and ki2 N is the rating value for tuple element qi.De�nition 10. Value X 2 N is the threshold value attached to a tuple T =(n;m; f1(q1); f2(q2); :::; fn(qn)), where n � m, n;m 2 N .By default, all tuple elements gain an equal rating value ki = 1 for 8i 2 f1;mgand X = m.Table 5.1 illustrates a use of rating values. Having de�ned the rating value ki toexpress the deviation of every tuple element from the ideal value, and the thresholdvalue X , we have to de�ne the combination of these partial rates to express theoverall component preferences � the QoS rating matching function.De�nition 11. Let T1 = (n1;m1; p1; p2; :::; pn), where n1 � m1, n1;m1 2 N ,pi 2 Pi be a server-tuple, and T2 = (n2;m2; f1(q1); f2(q2); :::; fn(qn)), a client-tuplewhere n2 � m2, n2;m2 2 N , qi 2 Qi and fi(qi) is one of the QoS operators, orgains a value qi.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 58matching condition tuple elements rating threshold valuem1 = m2&&Pi = Qi8i 2 f1; m1g 8i 2 f1; m1gfi(qi) = qi)
(fi(qi)) = 1) X = m1)match)pi = qi)ki = 1)Pm1i=1 1 = m1 � m1
(fi(qi)) = 1) X = m1)QoS-match pi 2 fi(qi))ki = 1)Pm1i=1 1 = m1 � m1QoS-ratingmatch pi 2 fi(qi)
(fi(qi)) = ki Pm1i=1 ki � XTable 5.1: Matching functionsLet
(fi(qi)) = ki for 8i 2 f1;m2g be the tuple element rating function and X 2 Nthe threshold value attached to T2.Tuples T1 and T2 QoS-rating match i� m1 = m2 & (Pi = Qi & pi 2 fi(qi)) for8i 2 f1;m1g and Pm1i=1 ki � X .Also, if there are more tuples ful�lling the QoS-rating matching condition (Pm1i=1 ki� X), the �rst one non-deterministically found is presented to the client. For ef-�ciency reasons, a best-�t strategy is inappropriate. However, clients have the�exibility in setting the threshold value X in such a way as to narrow the gap be-tween the `worst-accepted' tuple and the `ideal' one. Exact matching is an extremecase accepting only ideal tuples.In addition, the three matching functions were designed in such a way that theexact matching function (Def. 6) is a special case of QoS-match (Def. 8) which isa special case of the QoS-rating match (Def. 11). Table 5.1 illustrates the relationsbetween all matching functions. The �rst column compares the condition performedon tuple elements, the second column de�nes the tuple element rating, and the thirdcolumn compares the sum of the partial rates compared to the threshold value.ExampleTo illustrate the usage of QoS De�nition and QoS Negotiation de�ned in this section,we elaborate a simple example of a processor-printer component. There are threePentium processors in the system of di�erent speeds with ram memories of di�erentsizes:ProcessorA 200 MHz with 32 MB ram memory described by a server-tuple A:A = (6; 5; CPU; Pentium; 200;memory; 32; ref)ProcessorB 200 MHz with 16 MB ram memory described by a server-tuple B:B = (6; 5; CPU; Pentium; 200;memory; 16; ref)ProcessorC 300 MHz with 4 MB ram memory described by a server-tuple C:C = (6; 5; CPU; Pentium; 300;memory; 4; ref)De�nition ranges for all three tuples are P1 = P2 = P4 = N and P3 = P5 = S whereN is the set of natural numbers and S is the set of all words from English alphabet(see tuple de�nition, Def. 1).A client requires the fastest available Pentium processor running at least at200MHz with at least 16MB memory (numbers are hypothetical, chosen to illustrateQoS-based matching, rather than to demonstrate realistic resources). The clientrequest is de�ned by a tuple D:

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 59QoS-rating m1 = m2 Pi = Qi &pi 2 fi(qi) P5i=1 ki � 5 resultmatch 8i 2 f1; m1gtuples: A D 5 = 5 yes 1 + 1 + 1 + 1 + 2 = match= 6 � 5tuples: B D 5 = 5 yes 1 + 1 + 1 + 1 + 1 = match= 5 � 5tuples: C D 5 = 5 for i = 5 : do not4 =2 16� 64) no matchTable 5.2: Results of QoS-rating match between tuples A,B, C and DD = (6; 5; CPU; Pentium; 200� 300;memory; 16� 64; ref).The rating values are:CPU
(CPU) = 1 (exact match)Pentium
(Pentium) = 1 (exact match)200-300
(�(200)) = 1,
(�(300)) = 2memory
(memory) = 1 (exact match)16-64
(�(16)) = 1,
(�(20)) = 2,
(�(32)) = 3,
(�(64)) = 4X 5 (threshold)From Table 5.2 it is seen that tuple D does not match because there is oneelement (i=5) which does not ful�ll the �rst condition pi 2 fi(qi). Therefore, theresult of the sum of rating values is irrelevant even though it would ful�ll the secondcondition (1 + 1 + 2 + 1 + 0 = 5 � 5). The decision between matching tuples A andB is performed non-deterministically � the �rst one tested is o�ered to the client.5.2.3 QoS MaintenanceAfter the QoS Negotiation process has successfully �nished (the appropriate server-tuple has been found), the binding can be established. However, QoS characteristicsmight change due to user physical migration, or other changes in the computingenvironment.In computing systems where change is frequent, QoS Monitoring must be sup-ported in order to keep service information in the Trader up-to-date. When achange is discovered, an appropriate action re�ecting new system conditions mustbe undertaken. In this section we discuss Magnet's support for QoS Monitoringand Adaptation to change.QoS MonitoringQoS Monitoring does not di�er from information monitoring, described in section5.1. Therefore, the monitoring components � the Monitor on the server side andthe Updater on the client side � perform this task in the same way they did thenon-QoS monitoring (section 5.1).Adaptation to ChangeService changed characteristics are expressed in terms of di�erent tuples beingplaced into the pool by the Monitor, the Updater or by the client and server them-selves. This might result in an adaptation to new conditions. According to the

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 60model de�ned in chapter 3, we distinguish between two fundamental adaptationstrategies: resource management and application adaptation.Resource management, primarily client-initiated, attempts to obtain additionalor di�erent resources to ful�ll the original client's requirements. In Magnet, thisis performed by the client-instructed Updater seaching the pool for a better match,and initiating a rebinding. The details of rebinding are provided in section 5.3.6.Unlike resource management, application adaptation is a result of a server beingunable to provide agreed service. InMagnet, the server cooperating with the third-party Administrator has to be replaced and a new tuple is o�ered to all attachedclients. The new service can be provided by the same physical component, or by areplacement. Details of this operation are described in section 5.3.7.5.3 RebindingThe rebinding process, as de�ned in chapter 3, comprises four phases: export-ing service de�nitions, renegotiating service de�nitions, destroying a binding, andreestablishing a communication channel. According to the component initiatingthe operation, we distinguish between �rst-party rebinding and third-party rebind-ing. In addition, a situation where an unbound component is left to �nd a newpeer is called �rst-party renegotiation, while if it is presented with a replacement,this is called third-party renegotiation, or no-renegotiation (if it is obtained from anexternal administrator).In this section we describe Magnet's additional components involved in re-binding, then we describe the rebinding process, and �nally di�erent situations intowhich the system transfers.5.3.1 Components for RebindingThird-party rebinding and renegotiating requires the assistance of a dedicated com-ponent, attached to the client (Updater) or the server (Administrator). Both clientsand servers involved in rebinding contain `extended' Binder subcomponents � theRebinders. The Server-Rebinder is present in the server component, while theClient-Rebinder is contained in the client component. All these components areillustrated in Figure 5.2.RebindersThe Server-Rebinder and the Client-Rebinder constitute a pair of subcomponentscontained in all clients and servers requiring rebinding. They extend the function-ality of classical Binders, described in chapter 4.In addition to the establishment of a binding, the Server-Rebinder provides anadditional service interface (rebindS) through which the Administrator performsthe rebinding operation. Symmetrically, in addition to Client-Binder functionality,the Client-Rebinder provides an service interface rebindC through which the clientis informed about rebinding. In addition, the Server-Rebinder keeps a list of clientscurrently attached to the server in form of their rebindC references. Via a dy-namically established binding between service interfaces rebindC (on clients side)and forwardS (on the server side), clients are informed about charges in currentlyprovided service, such as a server upgrade.As all rebinding operations are performed in cooperation with Rebinders, theyensure that the rebinding takes place when components are ready to do so.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 61The AdministratorThe key operation of the Administrator component is a server upgrade. The op-eration (performed by a human administrator or automated) consists of switchingto the new server and upgrading server `structures', if required. The procedure ofupgrading server structures falls into one of the following three categories:1. Resources o�ering a time-constrained service. Interacting clients are allowedto �nish on the current server to avoid the upgrading procedure, while newclients are assigned to the new server. For example, in a printer upgrade, cur-rent jobs in a printer queue are allowed to �nish, while new jobs are allocatedthe new printer.2. Resources necessitating runtime rebinding but no state has to be maintainedand therefore no additional data structures need to be upgraded; for example,switching between di�erent levels of network connectivity does not requireany additional operations (such as copying), in contrast to a disk upgrade, seepoint 3. In this case, the Administrator's task is to initiate the operation andprovide a reference to the server replacement.3. Resources necessitating an upgrade of server data structures, for example adisk upgrade. The Administrator, in cooperation with both servers (currentone and the replacement), provides the upgrade and ensures that consistencyis maintained.The UpdaterAnother component involved in the rebinding process, instructed by the client, isthe Updater. It keeps monitoring server-tuples in the information pool and, ifappropriate, initiates rebinding. Its monitoring procedure was described in section5.1.5.3.2 The Rebinding ProcessIn chapter 3, we identi�ed four phases of the rebinding process: exporting servicede�nitions, renegotiating setvice de�nitions, destroying a binding, and reestablish-ing a communication channel. In this section, we describe how these phases areimplemented in Magnet.Exporting Service De�nitionsEvery new component arriving into the system must export its service into theTrader, as usual. However, in case of rebinding three cases need to be described.Firsly, two tuples need to be inserted into the Trader structures by Advert� the classical service tuple (contains service interface bglue) and a `rebinding'tuple (with a service interace rebindS), see Figure 5.2. All servers in the systemparticipating in the rebinding process are responsible for inserting these two tuplesinto the Trader.Secondly, the Administrator, as a third-party, performs a replacement of a server.From an insertion of a new server's tuple by Advert, the new server is available toclients. However, the Administrator must perform the upgrade operation: it obtainsthe rebindS reference of the current server from the Trader by Bind (a bindingis established between the service interface destroy and rebindS), and hands overthe reference (bglue) to the `new' server and provides required upgrades serverdata structures.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 62

Trader

bindadvert withdrawC

Tree 3

withdrawS

ipool 1

ipool 2

ipool n

cp

all

Administrator

Tree 2

UpdaterClient

cp cp cp

Tree n

ipool 3

allallall

GlueFactory GlueFactoryGlueFactoryGlueFactory

gluegen gluegengluegen gluegen

bglue bs

destroy
glueS

wp
bc

new

glueC

Client-RebinderServer-Rebinder

Tree 1

cp

rebindC
forwardS

rebindS
upgradeC

List of attached
clients

Server sendRef
getRef

glueC

Client-Rebinder

rebindC
upgradeC

bc

Figure 5.2: Magnet with Components for Rebinding

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 63Thirdly, Updater calls the operation Bind with a higher requirements (closerto the ideal resource) than the server currently serving the client and waits until amatching server-tuple arrives.Renegotiating Service De�nitionsRenegotiation service de�nitions might be performed before or after the currentbinding is destroyed. Semantically, this does not di�er from the negotiation in thebinding process. However, according to which component performs it, there arethree cases:Unbound clients (�rst-party rebinding) renegotiate a new server-tuple by callingBind as a result of being unbound, yet not given a new peer. This will result inthe client �nding di�erent servers, as client's requirements might have changed dueto QoS requirements.Updater, a third-party, renegotiates a new server, then it performs an additionalcheck (rebinding of a client close to termination might not be worth it, because ofan overhead of the rebinding operation). However, if it decides that rebinding isbene�cial, it noti�es the client.No-renegotiation needs to take place if all clients are presented with a new serverreplacement obtained from an external administrator.Destroying a BindingFirstly, according to our assumptions, it is the responsibility of every componentto keep its tuples in the information pool up-to-date, therefore, all tuples must beremoved by calling the operation WithdrawS (servers only; clients do not keeptuples in the pool) before destroying themselves.The server informs all clients about its shutdown, which results in destroyingthe communication channel (by establishing a binding between service interfacesforwardS on the server side and rebindC on the client side). Clients use a built-infunction in the communication channel, to inform the server of its departure, sothat the Server-Rebinder can keep the list of clients up-to-date.Reestablishing a Communication ChannelFirstly, the Server-Rebinder needs to receive the new client tuple (from a client,or from the Updater via upgradeC and bglue), initiate the Rebinder-to-Rebindercommunication protocol (between bc and bs) which performs the �nal stage ofthe rebinding process, to establish the new end-to-end communication channel.Again, this phase does not di�er from the classical establishment of a communicationchannel. It performs the admission protocol, if required.Transparency of the rebinding is achieved � it is impossible for the server todistinguish between classical cases (tuples passed over from the Trader), and rebind-ing components (tuples passed over via a third-party). Finally, a new client-serverbinding is established.5.3.3 Rebinding SituationsHere we will investigate the four rebinding situations described in chapter 3:� �rst-party renegotiated �rst-party rebinding� �rst-party renegotiated third-party rebinding� third-party renegotiated third-party rebinding

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 64
bind

withdrawC withdrawS

cp

Server2Client1

cp
bglue

bs

glueS

bc

glueC
Client-Rebinder Server-Rebinder

1 2

3

4
rebindS

forwardS

Trader

New Interaction

Destroyed
Interaction

rebindC

bglue
bs

glueSrebindS

forwardS

cpServer1

Server-Rebinder

advert

Figure 5.3: First-Party Renegotiated First-Party Rebinding in Magnet� no-renegotiation third-party rebinding.All situations are illustrated with simple examples. However, for reasons of sim-plicity we represent rebinding of only one component (di�erences in number ofcomponent rebound we described in chapter 3). Further, all �gures are equippedwith numbers representing the order in which each binding is established. There-fore, we will not describe in words each rebinding phase for each situation. Also,for reasons of clarity, we decided to omit the Tree components and present onlyinteractions with the Trader. Nevertheless, the matching process does take place inTree components, as described in chapter 4.5.3.4 First-Party Renegotiated First-Party RebindingIn this case, it is the client component which requires a new service. Therefore, itdestroys the current binding with the server and renegotiates a new server in theTrader. Figure 5.3 illustrates this rebinding situation with a simple example.5.3.5 First-Party Renegotiated Third-Party RebindingIn this case, a server (as a passive component) is disconnected by a third-party,the Administer. It announces shutdown to all attached clients kept in the list inthe Rebinder. Clients are left to renegotiate a new peer themselves. Figure 5.4illustrates this rebinding case.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 65

bind

withdrawC withdrawS

cp

Server2Client1

cp

bglue
bs

glueS

bc
glueC

Client-Rebinder Server-Rebinder

2

rebindS

forwardS

Trader

New Interaction

Destroyed
Interaction

rebindC

bglue

bsglueS

rebindS

forwardS

cp

Server1
Server-Rebinder

advert
forwardS

3

4

Administer

cp

destroy
getRef

1

Figure 5.4: First-Party Renegotiated Third-Party Rebinding in Magnet5.3.6 Third-Party Renegotiated Third-Party RebindingIn this case, the Updater performs a rebinding of a client to a server that meetsthe client's requirements more accurately (informed via a binding between new andrebindC). This feature is highly desirable in environments with systems whose char-acteristics frequently change. In this situation, phases `destroying a binding' and`renegotiating service de�nitions' are performed in the opposite order, as it bettersuits the character of the described situation.Figure 5.5 illustrates a simple example.5.3.7 No-Renegotiation Third-Party RebindingIn the �nal situation, a third-party, Administrator, performs a server replacement.Clients are informed about their new peer in the form of the upgradeC interfaceservice. No renegotiation is required, as the third-party has external knowledgeabout system charge (such as a system administrator). Figure 5.6 illustrates Server1being upgraded to Server2.5.3.8 Other IssuesIn this section we brie�y describe three important issues related to rebinding �consistency, protection and bu�ering.ConsistencyAs Magnet treats components as black boxes it cannot be responsible for main-taining consistency, as we assume throughout this thesis. This concerns both their

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 66

withdrawCwithdrawS

cp

Server2Client

cp

glueC
Client-Rebinder Server-Rebinder

1

2 3

4

rebindS

forwardS

Updater

cp

Trader

New Interaction

rebindC

bglue

bs

glueS

rebindS

forwardS

cpServer1

Server-Rebinder

advert

bc

bind

upgradeC

new

Destroyed
Interaction

8

7

6
5

wp

glueC

Client-Rebinder

bc

upgradeC

glueS

bglue
bs

rebindC

Figure 5.5: Third-Party Renegotiated Third-Party Rebinding in Magnet

withdrawCwithdrawS

cp

Server2Client

cp

bglue
bs
glueSglueC

Client-Rebinder Server-Rebinder

1

2

3

4

rebindS

forwardS

Administrator

destory

cp

Trader

New Interaction

rebindC

bglue

bs

glueS

rebindS

forwardS

cpServer1

Server-Rebinder

advert

wp

bc

bind

upgradeC

sendRef

getRef

Destroyed
Interaction

8

7

6

5

Figure 5.6: No-Renegotiation Third-Party Rebinding

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 67bindings and updating the tuples kept in the information pool.In addition, client components are expected to inform servers about the termi-nation of the binding (by the appropriated operation built-in the communicationchannel) in order to allow servers to keep the list of current clients updated forrebinding purposes.ProtectionAccording to our assumptions, the framework cannot ensure the validity of infor-mation placed into the pool. However, at the component level, no binding can beestablished without a Rebinder-to-Rebinder protocol performing the required pro-tection checks. Therefore, the protection of rebinding operations is ensured in thesame way as the protection of the binding process, discussed in chapter 4.The only exception can be no-renegotiation third-party rebinding. Speci�c ap-plications can decide to skip the admission protocol, as the client has already beenchecked by the original server. If this option is supported, the new server's Server-Rebinder must provide an additional service interface for upgrading clients, withsimpli�ed semantics concerning the establishment of a communication channel. Al-though this operation adds complexity to the server and disables the transparencyof the reestablishment phase, it might be desirable for particular applications as itimproves the e�ciency of the rebinding process.Bu�eringClient-server binding having a character of a `batch processing' (as opposed tointeractive processing) can be performed even when the requested resource is notavailable at the moment of the request. Instead of leaving the client waiting untilthe server is available, its requests are `bu�ered' in a bu�er-server (special Updatercomponent) which allows the client to continue its operation. The bu�er-servers,substituting the real servers while they are unavailable, ensure that the operation isperformed when the requested server is connected. This can be performed withoutinterference from the originating client, even after its completion.A typical example of such an application is a mobile user `printing' from aportable while on move. The jobs are bu�ered allowing the application which origi-nated the operation to �nish. All bu�ered tasks are printed out transparently whenthe portable is connected to a network with a printer. When the real resource be-comes available (e.g., the portable is connected to the network), the bu�er-serverestablishes an binding with the real server and the service can be performed.5.4 ScalabilityThe majority of computing systems are based on scalable, connected `domain-size'units � such as the Internet with its domains, cellular phone network dividedinto cells, etc. Therefore Magnet, designed to support the topology of existingcomputing systems, consists of connected domain-like units � federations. In thissection, we de�ne the federations, describe their dynamic recon�guration enablingcomputers to join and leave the system at runtime, and discuss issues concerningthe scalability of the architecture.5.4.1 FederationsMagnet's primarily goal � dynamic resource management � is targeted to besmall (for example an application requesting to print is usually not interested ina printer on another continent). Consequently, Magnet's `local-scale domains' �

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 68federations (illustrated in Figure 3.2) � are the basic entity of the architecture,because it re�ects the topology of typical resource allocation problem (e.g., most ofresources are allocated in a local Internet domain). However, the architecture mustalso support scaling in order to enable a larger physical area to be covered. Achievingthis by extending a single federation would result in maintaining and seaching aworld-scale global information pool. This would be not only very ine�cient, butalso, for reasons of locality of resource management, also pointless.Therefore, the framework supports the interconnection of Traders enabling inter-federation communication within the computing environment. All system featuresdiscussed so far assumed the existence of a single federation. As Magnet's typicalcomputing environment will use the Internet, the federation size is derived from thesize of Internet subdomains. The algorithm for the con�guration of a federation(distribution of Tree components over available processors) is discussed in chapter6.5.4.2 Dynamically Recon�gurable DomainsBefore we describe scaling of the architecture (in the next section), we discuss thesituation of mobile users temporarily joining a local federation where they arrive.This operation needs a special type of support as users need not know the identity ofthe Trader they want to connect to. Magnet provides this support by operationsJoin and Leave. The semantics of these operations is targeted to users joining alocal site temporarily (e.g., mobile users) in order to use its services (such as printer,scanner, �le system, etc.). This presumption leads into three design decisions� operations Join and Leave cannot be transparent (therefore, each portableclient waiting for a resource has got the right to decide whether it is able toaccept a resource from an o�ce-based site. This is necessary to avoid mis-allocations, such as a disk space allocated in the o�ce-based computer will beuseless when the portable is disconnected).� Consequently, clients and servers do not act symmetrically � portable clientsmight use the advantage of the portable being temporarily on-line by usingthe o�ce-based services (this is the main goal of the operation), while portableservers will not o�er their provisions to an o�ce-based clients for two reasons.Firstly, the connection is assumed to be temporary, and secondly, the portablecomputer resources are typically very limited to be o�ered to other clients.Therefore, the operation Join is designed as `one-way' � the o�ce-basedresources are o�ered to the portable clients, but not vice-versa.� As client components are responsible for deciding on the usage of o�ce-basedresources, they are also responsible for a maintaining consistent state whenthe portable is disconnected from the o�ce-based site. Consequently, everyportable component using the o�ce-based Trader, is responsible for with-drawing all inserted tuples in order to leave the o�ce-based information poolup-to-date and consistent.We assume that the communication channel can be established between the portablecomputer and the o�ce-based domain in the same way as within a single federa-tion. It is the responsibility of the portable applications and the o�ce-based siteadministrator to ensure that the inter-federation interconnections can be physicallyachieved. As the join is only temporary, full Trader connection necessitating themerging of information pools is not required.Now we de�ne operations Join and Leave � we assume two local tradingsystems, a portable and an o�ce-based domain, each consisting of one Trader.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 69Trader ConnectionIn order to perform the operation Join, an identi�cation of the local Trader is notnecessary as it is not known in advance which site the portable will be plugged into.The Trader component can also participate in resource management providedby Magnet. In order to be able to take part in dynamic binding, it must containthe Trader-Binder subcomponent (although, its functionality slightly di�ers fromtraditional Binders). To perform the Join operation, the o�ce-based Trader o�ersits information pool to the portable Trader by calling an operation Advert insert-ing a tuple T1 = (2; 1; join; bglue) into the portable information pool. The onlymatching element in this speci�c tuple is the third element, `join'. As Traders arebeing connected, this primary binding is established statically by a system admin-istrator (human or automated, such as support for plug&play Ethernet cards), notusing Magnet.Operation JOINA portable client requesting a service which might be ful�lled by o�ce-based siteservers when the portable is temporarily connected, inserts three bind tuples intothe portable pool � the classical bind tuple C1 de�ning the request, the secondtuple of the form: C2 = (n; 1; join; C1) encapsulating the actual tuple C1 tuple,and the third one C3 = (n; 1; leave; C1) which will be used for disconnection.When the portable is connected to an o�ce-based domain by inserting the o�ce-based Trader tuple T1 = (2; 1; join; bglue) into the portable information pool bythe system administrator, a matching between T1 and C2 can be achieved.As tuple matching between T1 and C2 does not di�er from any other client-server tuple matching, the operation is performed as usual � the particular Glue-Factory binds to the o�ce-based Trader and passes C2 tuple to the o�ce-basedTrader-Binder. Nevertheless, the operational semantics of the Trade-Binder di�ers:instead of establishing a binding between the o�ce-based Trader and the client, itretrieves the tuple C1 from the received tuple C2 and reinserts it into its informa-tion pool by calling operation Bind. This operation features a recursion. The clienttuple is handled as an ordinary local tuple in the o�ce-based information pool �if a matching server-tuple is available, an inter-federation binding is established.Figure 5.7 illustrates operation Join, for reasons of simplicity, we omit the Treecomponents. However, the binding is established in cooperation with Trees, asde�ned in chapter 4.Trader DisconnectionDisconnecting the portable from the o�ce-based site must return the system to aconsistent state. Firstly, the `connecting' o�ce-based Trader's tuple T1 is with-drawn from the portable's information pool by operation WithdrawS called bythe administrator. Client tuples waiting to be served in the o�ce-based informa-tion pool must be also removed. As the local Trader cannot distinguish between ano�ce-based client-tuple and a portable client-tuple, the client components them-selves must perform the withdrawal. In order to inform them that their tuplesshould be removed from the o�ce-based pool, another local Trader advert-tuple isinserted into the portable information pool: T2 = (2; 1; leave; bglue2).Operation LEAVEInserted T2 tuple matches with waiting client tuple C3 = (n; 1; leave; C1) whichis passed to the o�ce-based Trader-Binder over an binding established betweenparticular Glue Factory and bglue2 service interface, tuple C1 is extracted from

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 70

Trader

bind

advert

withdrawC

withdrawS

C1
C2 = (n,1,join,C1)
C3 = (n,1,leave,C1)

cp

Server Client

cp

bgluebs

glueS

bc

glueC
Client-Binder Server-Binder

1

2

3

5

1

Trader

bind advert

withdrawC

withdrawS

Trader-Binder Trader-Binder

cp

cp

S1

T1=(2,1,.join.bglue)

T1 match C2

bglue

BIND (C1)
S1 match C1

4

6

Inter-federation
interaction

Portable Federation Office-based Federation

Figure 5.7: Operation Join

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 71C3, and operation WithdrawC on C1 is performed. If it does not succeed �it means the client is already being served by an o�ce-based server. However, allclients must be informed about the disconnection, therefore the o�ce-based Trader-Binder establishes a binding with them (between bs and bc obtained from the tupleC1) and noti�es them. Client-Binders participating in inter-federation binding (inparticular, the service interface bc) must handle this additional functionality. Thatis the `noti�cation' about disconnection results in: the termination of the client-server binding (if the client was bound to an o�ce-based server), or the reinsertionof tuples C2 and C3 into the portable information pool (if the client was still waitingto be served).Portable client components having �nished their communication with local servershave already removed all their tuples, therefore no tuples can be left behind.Figure 5.8 illustrates this operation. There are two clients (Client1 and Client2)using the option of the portable being temporarily connected to an o�ce-basedsite. Client1 (described by tuples C1, C2 and C3) is being served by an o�ce-based server (Server), while Client2 (described by tuples X1, X2 and X3) is stillwaiting. The noti�cation about disconnection from the o�ce-based Trader resultsin di�erent actions: Client1 must terminate its binding with Server, while Client2just reinserts its `connecting' tuples X2 and X3.DiscussionIn order to enable portable servers to o�er their provisions to other federations,the Trader-Binder must be equipped with four service interfaces: bglue (perform-ing Bind), bglue2 (performing WithdrawC), bglue3 (performing Advert), andbglue4 (performingWithdrawS). Also, two `join tuples' would have to be insertedinto the portable pool:T1 = (2; 1; join; bglue)T3 = (2; 1; joinS; bglue3),and two more tuples to disconnect the Traders:T2 = (2; 1; leave; bglue2)T4 = (2; 1; leaveS; bglue4),and all server would call operation Bind. However for reasons listed above, itis not supported by the architecture primarily, but can be added to the framework,as outlined in this section.5.4.3 Scaling the ArchitectureIn order to enable the architecture to scale, the Traders must be `identi�able'.Therefore, a method of unambiguous Trader addressing must be enforced to operateat a world level. However, any application using Magnet will be running in aparticular computing environment which, if scalable, must have some unambiguouscpu naming scheme incorporated in order to identify its processors. Running ontop of an existing computing environment, Magnet's Traders can use the existingnaming scheme for their identi�cation. Therefore, we can claim that the actualdesign and assignment of addresses is irrelevant to the inter-Trader communication.However, in order to design Trader-to-Trader binding, there are two featureswe must assume about the cpu naming scheme that will be used for the Traderidenti�cation:� names are unambiguous in the bounds of the computing environment� names are constructed by a way that they can form a hierarchical tree struc-ture with a single root, and a unambiguous path in the tree (at the naming

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 72

Trader

bind

advert

withdrawC

withdrawS

cp

Server Client1

cp

bgluebs

glueS

bc

glueC
Client-Binder Server-Binder

2

3

5

1

Trader

bind advert

withdrawC

withdrawS

Trader-Binder

cp

cp

T2=(2,1,.join.bglue2)

bglue

6 X2 = (n,1,join,X1)
X3 = (n,1,leave,X1)

Client2

cp

bc

glueC

Client-Binder

Trader-Binder

T1

wp

T2 match C3
T2 match X3

bglue2bs

bs

WITHDRAWC(C1)
WITHDRAWC(X1)

4

5

6

Portable Federation

Office-based Federation

Figure 5.8: Operation Leave

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 73level) between two Traders can be determined (however, nothing about thenetwork topology at the implementation level is assumed.)There are many examples of existing communication infrastructures based on nam-ing ful�lling these requirements, such as the Internet based on ip addresses (eachbyte represents a tree naming layer, nothing about physical topology is assumed),the world telephone network (country code, city code, etc. represent tree layers),etc. It is irrelevant whether the Magnet trading system is constructed from the`top' (the `root' Traders is created �rst, other Traders can be immediately connectedto the tree, therefore the trading system is never disjoint), or whether it evolves fromthe `bottom' by joining local Traders together (in this case, the trading system isdisjoint, and connects on demand).Having discussed our presumption on the Trader naming system, we will de�neTrader-to-Trader communication enabling bindings between components in di�erentfederations.The Support for ScalabilityFor operations Join and Leave the actual identity of the local site Trader wasirrelevant. However, for components requiring a server from a particular federation,support for addressing and locating is essential. We assume that Traders reside onunambiguous addresses forming a tree hierarchy which is derived from the namingscheme used in the computing environment where Magnet operates. The Tradersare equipped with dedicated location components, Locators which are attached toall Traders and form a tree hierarchy according to Traders' addresses. Figure 5.9illustrates a fraction of a global trading system consisting of federations using ipaddresses as their naming scheme. Locators reside at addresses forming the treehierarchy which subtracted from ip addresses as illustrated in Figure 5.9.Communication between FederationsClients which require a tuple C1 to be inserted into an information pool on aparticular address have to incorporate it into a new tuple of the format C =(n; 1; up; address; operation; C1). These tuple elements have following meaning:`up' is a key word � the only matching tuple element, `address' is the address ofthe Trader where tuple C1 is to be served, and `operation' is one of the four Traderoperations. Then, tuple C is inserted into the pool by operation Bind. It matcheswith special server tuple T1 = (n; 1; up; locglue) (described below) inserted into thepool by the Locators. As usual, the client matching tuple is passed over to theserver. However in this case, instead of the Server-Binder, it is processed by theLocater. Their algorithm, described bellow, ensures that the tuple subsequentlyreaches the Trader on the `address'. Here, the tuple C1 is extracted and insertedinto the pool by the `operation', which is also extracted from the tuple C1. If thereis a matching tuple available, an end-to-end binding between federations can beenestablished.The remaining problem is to locate the Trader on a particular address � thetask of Locators.LocatorsThe Locators are attached to all Traders and perform two following actions: formthe tree by establishing bindings between appropriate Traders, and passing overtuples addressed for other federations.Firstly, by inserting a server-tuple T1 = (n; 1; up; locglue) to every informationpool in the tree layer below, binding with all Traders on that level is established.

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 74

TraderTrader Trader

Trader Trader

Trader

Trader

. . . .

. . . .

. . . .

1.1.3.4

1.1.1.4

1.1.1.3 1.1.2.3

1.1.1.1 1.1.1.2 1.1.2.1 1.1.2.2

Locator
1.1.1

1.1.1.2 1.1.2.1

1.1.2

1.1.1.1 1.1.2.2

1.1

1
Locator

Locator

Locator

LocatorLocatorLocatorLocator

Trader

Figure 5.9: Trading scheme based on ip addresses

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 75Consequently, a tuple of this format is inserted into every information pool bythe Locator on the layer above. The Locator in tree leaves (de�ned by the treehierarchical structure) Traders skip this step.In addition, every Locator (including those in leaves) insert a server-tuple T2 =(n; 1; down; locglue) to the information pool of their Trader. The service interfacelocglue represents the service of the Locater which inserted the tuple. This taskis performed by the Magnet administrator con�guring the system.Secondly, when a client tuple C = (n; 1; up; address; operation; C1) is insertedand matches with T1, it is sent to the Locator on the layer above for furtherprocessing. The Locator algorithm is recursive and is repeated by all Locatorshanding over the tuple. One step leads into three cases investigated in this order:1. the `address' in the obtained tuple is the one of the attached Trader � thetuple reached its �nal destination. The actual tuple C1 is extracted from thetuple C, and inserted into the local information pool by extracted `operation'(the third tuple element).2. the component with the `address' belongs to the subtree connected to thisLocator. Then, the tuple can be forwarded `down' towards its destination.Firstly, matching �eld `up' is replaced with `down' :C = (n; 1; down; address; operation; C1), secondly, operation Bind on thenew tuple C is called. In the Trader below it is inserted into the pool, matcheswith tuple T2, is received by the Locator, and the algorithm performs anotherrecursion.3. the tuple belongs to another subtree; it is inserted unchanged into the localinformation pool by the operation Bind where it matches the tuple T1 =(n; 1; up; locglue) from the Locator above, is forwarded to to the Locatorabove, and the algorithm performs another recursion.Figure 5.10 illustrates an establishment of binding between remote federations usingLocators.5.5 Chapter SummaryIn this chapter we have described Magnet's advanced featres � information mon-itoring, quality of service management, rebinding, and scalability. This chaptertogether with chapter 4 covers the design of all features provided within the Mag-net framework.Firstly, we have discussed information monitoring as an essential system featureallowing data in the shared information pool to be kept up-to-date. There are twodedicated components for monitoring � the Monitor responsible for monitoringserver provisions, and the Updater informing clients about changes in the computingenvironment.Quality of service management is another indispensable feature of computingenvironments supporting users working with resources with frequently changingcharacteristics. Following our model of QoS Management de�ned in chapter 3,there are three tasks to be performed: QoS De�nition, QoS Negotiation, and QoSMaintenance.QoS De�nition is considered at four levels. Firstly, at the characteristics level,components de�ne values of their service characteristics, equipped with QoS oper-ators (such as �,:,|,* specifying operations interval, negation, or, and all, in thisorder, in addition user-de�ned operators can be added). Secondly, at the servicelevel, QoS-match is de�ned to enable matching of tuples extended of the QoS op-erators. Thirdly, tuples might represent combinations of components to prevent

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 76

Trader Trader

Trader 1.1.1.3

1.1.1.1 1.1.1.2

Locator

1.1.1

1.1.1.1

Locator

T1=(2,1,up,locglue of 1.1.1)

T2=(2,1,down,locglue of 1.1.1.2)

T2=(2,1,down,locglue of 1.1.1.3)

advert

bind

withdrawSwithdrawC

bind

bind

advert

advert

withdrawS

withdrawS

withdrawC

withdrawC

1.1.1.2
Locator

locglue locglue

locglue

T1=(2,1,up,locglue of 1.1)

Client

Client-Binder

Server

Server-Binder

glueS
bglue

glueC

cpcp

bsbc

B1.1.1.1

A1.1.1.1

B1.1.1.2

A1.1.1.2

1

3

10

C=(n,1,up,1.1.1.2,Bind,C1)

T1 1T1

T2

T1=(2,1,up,locglue of 1.1.1)

T2=(2,1,down,locglue of 1.1.1.1)

cp
cp

2

2 T2

2T2
cp

3

S1

 ‘up’ replaced with ‘down’ in C
BIND(C)

5

T2 match C
C passwd to Locator 1.1.1.2

6

T1 match C
C passwd to Locator 1.1.1

4

C1 Bind extracted
BIND(C1)

7

C1 match S1
8

9

Federation 1 Federation 2

Federation 3

Figure 5.10: Communication between Federations

CHAPTER 5. ADVANCED FEATURES OF THE ARCHITECTURE 77non-nondetachable resources from being allocated separately (e.g., a processor andattached devices). And �nally, tuples might contain time and location dependentinformation to take into account a user's physical location.QoS Negotiation introduces the QoS-rating operators, and QoS rating matchoperation allowing clients to de�ne the requirements with further �exibility basedon the evaluation of each tuple element, and to select those above a threshold limit.QoS Maintenance comprises QoS Monitoring of QoS-based resource descrip-tions, and adaptation to change covering two strategies: resource management andapplication adaptation.Rebinding is an essential feature of any dynamic system enabling operations likerun-time server upgrades, or client adaptation to changed system con�guration. Therebinding process comprises at four phases: exporting service de�nitions, renegoti-ating service de�nitions, destroying a binding and reestablishing a communicationchannel. Magnet's component enabling the rebindsing operations are called theRebinders, the Administrator (attached to a server) and the Updater (attached to aclient). According to the component initiating the operating, we distinguish between�rst-party rebinding, and third-party rebinding. In addition, components might beleft unbound to renegotiate a new peer themselves (�rst-party renegotiation), or arepresented with a replacement (third-party renegotiation, or no-renegotiation). Fourrebinding situations outlined in chapter 3 have been discussed.Scalability is another indispensable requirement of mobile users. We have de-�ned `local' units comprising one Trader component � federations. The frameworkprovides dynamic recon�guration of federations by operations Join and Leave inorder to support mobile users requiring to join and leave a local site which dy-namically. As Traders follow the naming scheme of the computing environmentwhere Magnet operates, scaling the architecture is feasible. Special dedicatedcomponents, Locators, attached to all Traders, enable a tuple to be passed over to aparticular Trader on a component request. If the computing environment enables along-distance communication channels to be established, distributed Magnet mayassits in establishing bindings in world-scale physical distances.Last two chapter have covered Magnet's design. The next chapter focuses inits implementation issues.

Chapter 6Implementation ExperienceIn this chapter we discuss implementation issues of theMagnet architecture. Regis,an environment for constructing distributed systems [42], was chosen as a base forthe implementation of a prototype of Magnet because it o�ers an infrastructurewell-suited to Magnet's purposes.In section 6.1, we start by a brief overview of Regis' key features in order tointroduce the computing environment. Then we present how Regis was adapted forMagnet. In section 6.2, we discuss Regis-dependent implementation features �the components of the framework and the support for the binding process.The rest of the chapter covers the following issues: tuple implementation and thematching process (section 6.3), the data structure of the Tree components (section6.4), the Trader and the distribution of Trees (section 6.5), QoS Management issues(section 6.6), discussion on limitations and usability of the architecture, sections 6.7and 6.8, respectably.6.1 Regis Distributed EnvironmentMagnet, as a resource trading architecture, relies on the computing environmentwhere it operates. We have chosen Regis, an environment for constructing dis-tributed systems, for building Magnet's prototype. Although other platformscould have been used (we discuss this issue in section 6.8), Regis provides a verysuitable framework matching our notion of components and services. De�ning re-sources as Darwin components in terms of services they o�er or provide (fromwhich Regis code can be generated), simpli�es the implementation e�ort. In ad-dition, Regis, enabling communication between local or remote components whichneed not be aware of their location, also supports run-time binding establishmentnecessary for Magnet architecture.In this section, we give an overview of Regis, and discuss how it was adapted tobetter suit Magnet's purposes.6.1.1 Overview of RegisRegis [42], developed at the Department of Computing at Imperial College in Lon-don, is a computing environment for building complex distributed systems. It isbased on a model de�ning programs in terms of components (acting as black-boxes),interconnected by typed interaction styles which represent primarily one-way com-munication between server and client.The components are de�ned by service interfaces, either provision or require-ment, which is described by an interface reference, and by its type � an interaction78

CHAPTER 6. IMPLEMENTATION EXPERIENCE 79style. Each component can be either primitive or composed of other components.Communication is achieved by binding components together either staticallyusing Darwin, a structure con�guration language [43], or dynamically at runtime.As open distributed systems enable components to join and leave the system atruntime, support for dynamic binding is essential. Regis supports this feature byenabling an interface reference to be passed from server to client over an existingbinding, and by providing a binding operation (bind) which, called by the client,establishes a new communication channel.Regis also enables physical distribution of its components over existing proces-sors, a set of typed interaction styles from which complex bindings can be built. Inaddition, Regis supports four types of binders providing both fundamental bindingoperations: �rst-party binding, and third-party binding, and derivative operations� import and export binding � used for dynamic o�ers and requests for serviceinterfaces.In addition, Regis' interface reference naming is unambiguous and ensures scal-ing of the architecture [15]. Communication channels may be composed from astack of protocols which can be loaded on-demand in order to enable adaptationto new system conditions. Consequently, the framework enables run-time programmanagement featuring initial con�guration, programmed evolution, and runtime re-con�guration. Additional features and details of the architecture can be found in[15]. For our prototype we used Regis version 0.5.8 ported to RedHat Linux 5.0.Both Regis and Magnet are primarily implemented in the C++ programminglanguage.6.1.2 Adaptation of RegisIn order to use Regis to build a prototype of Magnet, the system needed to beextended to enable the interaction required by the resource management architec-ture.Firstly, as the communication between the Trader, Trees and components isbased on exchanging information in the form of tuples, support for an interactionstyle type tuple was necessary (enabling, for example types Port<Tuple> sendinga tuple over a basic unsynchronized interaction style Port, etc.) A tuple is a C++data structure, its implementation is discussed in section 6.3.Secondly, a new interaction style Glue<operation, type> was added to theset of Regis original interaction classes to enable pairs of operands to be sent overa single communication channel. The semantics of the Glue interaction style isderived from Port, and allows both operands to be sent separately or together(such as, in the Trader.ipool � Tree.all interaction, discussed in chapter 4).This characteristic further extends the �exibility of interaction typing.6.2 MAGNET Implementation in RegisAs an in-depth description of every aspect of the implementation is not essential,we have focussed on the parts of the implementation that are signi�cant to theframework's overall functionality. In this section we describe the implementation ofMagnet's components and interactions used by the binding process.6.2.1 System ComponentsAllMagnet's components, described in chapters 4 and 5, are implemented as Dar-win components. As their static services are described using Darwin, the bindingscan be established in advance.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 80The Darwin textual notion represents the bindings in the same way as the graph-ical notion used throughout the thesis. Components (represented by rectangles inthe graphical notion) are de�ned by a keyword component followed by the name ofthe component. Service provisions (represented by a black circle), is de�ned by akeyword provide. Service requirement (represented by an empty circle) is de�nedby a keyword require.The second argument stands for the interaction style (whichmight be prede�ned using typedef), and the third argument represents the serviceinterface.As an illustrating example, we de�ne the Trader, server and client componentsThe Trader Componenttypedef Glue<Oper,Tuple> glueIP;typedef Port<Tuple> portT;component trader {provide portT _bind;provide portT _advert;provide portT _withdrawS;provide portT _withdrawC;require glueIP ipool[TupleMatchSize * TElmTypeNo];} Each of the four Trader functions is declared as provisions (_bind, _advert,_withdrawS, _withdrawC). The array ipool represents requirements of service fromdistributed Tree components. This feature (including the meaning of constantsde�ning the array boundary TupleMatchSize and TElmTypeNo) is described in sec-tion 6.5.A Server Componenttypedef Port<Tuple> portT;component server {require portT cp;}A Client Componenttypedef Port<Tuple> portT;component client {require portT cp;} Both components de�ne a requirement cp, in accordance with the graphical rep-resentation of clients and servers used throughout the thesis. The framework canbe initialized by a main component declaring these three components and estab-lishing the �rst static bindings between server, client and the Trader. In Darwin,components are declared by a keyword inst, followed by a component name and aninstance name, while a static binding is de�ned by a keyword bind and two dashesconnecting appropriate service interfaces.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 81The Main Componentcomponent main {inst trader t;inst server s;inst client c;bind c.cp -- t._bind;bind s.cp -- t._advert;} The main component de�nition is only illustrative, to give the reader not familiarwith Darwin an idea about the language. In our prototype, in order to enablenew components to join the system at runtime, component-Trader bindings areestablished using the Regis nameserver � service provisions are exported into thenameserver, while server requirements are imported, and the binding is establishedat runtime. However, we do not provide a full discussion of the syntax of theseoperations for reasons of readability.A Regis code is generated from the Darwin de�nition, and the remaining taskis to de�ne the actual component functionality in C++ as a body() function. Anyfurther communication can be performed by statically established bindings (in Dar-win), or by bindings established at runtime. In order to to so, dynamically createdservices must be de�ned in the components' body() functions, and their interfacereferences passed over an existing binding at runtime.Implementation of the MAGNET ArchitectureFor reasons of simplicity, we focus on the core elements of the architecture � thoseinvolved in the binding process. As all other system components (the Monitor, theUpdater, etc) are implemented in a similar way, we would not gain any bene�tsfrom presenting complete code listings and binding descriptions.In Figure 6.1, we illustrate four Darwin components: the Trader, Trees, clientand server and their bindings. The subcomponents, the GlueFactory and theBinders, are implemented as C++ objects declared within a particular Darwincomponent. Again, bindings are numbered to illustrate the order in which theytake place. In addition to the interaction styles, the Figure also shows how publicservice interfaces (bglue and bc) are advertised. As can be seen in the Figure 6.1,interaction styles used for the following bindings are:� the Trader � component: interaction style Port<Tuple>� the Trader � Tree: interaction style Glue<Oper,Tuple>� GlueFactory � Server-Binder: interaction style Port<Tuple>� Server-Binder � Client-Binder: interaction style Port<G::Reference>whereG is the �nal client-server communication protocol interaction style� Server-Binder� Client-Binder using the Admission protocol: interaction styleGlue<Entry<S,boolean>::Reference,G::Reference> where S is the secu-rity protocol (uid, pgp, etc.) and G is the �nal client-server communicationprotocol interaction style� Client � Server: application-de�ned interaction style G

CHAPTER 6. IMPLEMENTATION EXPERIENCE 82
Trader

bind advert

withdrawC

withdrawS
ipool

cp

all

Server Client

cp

Tree

GlueFactory

gluegen

bgluebs

glueS

bc

glueC
Client-Binder Server-Binder

1
Port<Tuple>

2
Glue<Oper,Tuple>

3
Port<Tuple>

4
Port<G::Reference>

5
G

1
Port<Tuple>

contains: bglue::Referencecontains: bc::Reference

Figure 6.1: Regis bindings used in the Magnet architecture6.3 TuplesA required feature of the architecture is to provide extensibility of existing ser-vices and data formats. Therefore, the implementation of the tuple format and thematching process must feature �exibility enabling this requirement to be ful�lled.Firstly, the tuple format must allow new data types to be added dynamically torepresent additional resource features and QoS description. Secondly, the match-ing process must support user-customization enabling these new data types to beincorporated into the matching process.Tuple FormatThe tuple, atMagnet's level (Def. 1), consists of tuple-elements which encapsulatethe real data types used by components to express their features. In C++, this isimplemented as a high-level base-class (Tuple) comprising the tuple size, the tuplematching size, and encapsulating tuple-elements. All standard and user-de�nedtuple-element classes are inherited from a base tuple-element class TElm. Figure 6.2represents the inner structure of the tuple class.The Matching ProcessThe matching function is implemented as an overloaded member function of tuple-element classes inherited from the base class TElm. A tuple-element type matchesonly the same type, and the `equality' of values can be re-de�ned according to thetype. The implementation of the QoS-based matching process is discussed in section6.6.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 83
4

3

printer

black&white

laser

600dpi

queue:5Figure 6.2: Tuple representation6.4 The TreeOnce a tuple is received by the Trader, it is forwarded to a particular Tree com-ponent for processing. In this section we focus on the data structure of the Treecomponents, the implementation of the Trader operations performed by the Trees(Advert, Bind,WithdrawC,WithdrawS), and we will compute the complexityof these operations.6.4.1 The Tree Data StructureIn order to design a suitable data structure for representation of tuples in theinformation pool, it is necessary to consider the character of operations it willbe particularly used for. Fundamentally, data structures are considered static ordynamic.Static data structures can be e�ciently queried, but operations insert and deleteare expensive. However, once they are built, the structure is not expected to changemuch, therefore, update performance is not a problem. For example, heap-typestructures, such as binomial heaps [77], are designed to support the search of theminimum value (which can be performed in constant time), however, operationsinsert and delete are expensive. In contrast, dynamic data structures [26] supportfrequent changes (operations insert and delete) as well as `querying operations'. Inthis case, the purpose of the structure and the probability of each operation deter-mine whether insert and delete operations should be favored to search operationsor vice versa.As components might insert and withdraw a tuple at runtime, the data structureof the Tree component must be dynamic � it supports both insert and deleteoperations, and the search operation � the matching function. As every insert(Advert, Bind) and delete (WithdrawC,WithdrawS, or as a result of Advertwhen client-tuples are satis�ed) operations follow a sequence of matching operations,the structure is designed to favour the matching to inserts and deletes. Here wedescribe the structure; its complexity is calculated in section 6.4.3.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 84The Design of the Tree Data StructureIn order to support the matching operations, the data structure of the informationpool is derived from a tree1 data structure. Edges of the tree are implementedas simple pointers, while vertexes are more complex and do not share the samestructure. We distinguish between three types of vertexes in the tree: the root, theinner-vertexes and the leaves.As one of the tuple-matching requirements is the equality of tuple `matching-size' (parameter m, see Def. 1), tuples of di�erent `matching-sizes' can be placedin di�erent subtrees. This feature is implemented by the root � it contains anarray pointing to subtrees of di�erent tuple `matching-size'. To improve e�ciency,all inner-vertexes are two layered: the �rst layer determined by the tuple-elementtype and the second layer by the tuple-element value. Each pair of valid elementsconnects this inner-vertex with an inner-vertex at the next layer, or with a leaf.Unlike the inner-vertexes which are supportive, the leaves contain the actual tuples.The design of the data structure implies that the leaves may contain only identicaltuples (parameters in the `matching part' of a tuple).The distinguished roles of client and server, required by the framework, are im-plemented by separate trees for client-tuples (client-tree) and server-tuples (server-tree). The Tree data structure representing the server-tree is illustrated in Figure 6.3(client-tree is structurally identical). There are �ve hypothetical tuples inserted intothe tree: T1 = (2; 1; printer; bglue), T2 = (1; 1; printer), T3 = (3; 1; printer; a; b),T4 = (2; 1; 55; bglue) and T5 = (2; 2; 123;memory). These tuples illustrate the us-age of the data structure, rather than claim to represent any meaningful resources.6.4.2 Implementation of the Trader OperationsAs a tree is a recursive data structure, all operations are based on backtracking,tracing the particular tree top-down, performing an overloaded matching functionon each tuple element, until either the matching fails (a tuple being searched for isnot present), or a tree leaf is reached. According to the de�nition of each particularoperation, one of the following actions takes place:� operationWithdrawC searches only the client-tree, whileWithdrawS searchesonly the server-tree, looking for an exact match (the operation is not re-stricted to the matching tuple elements, de�ned by tuple parameter m, but isperformed on all tuple elements n).� operation Advert searches the client-tree using backtracking to �nd all wait-ing client-tuples. The server-tuple is inserted into the server-tree, regardlessof the result of the search.� operation Bind searches the server-tree to �nd the requested server-tuple.The backtracking is interrupted when the �rst server-tuple is found. Theclient-tuple is inserted into the client-tree only if the server-tuple has notbeen found.6.4.3 The Complexity of the Trader OperationsIn this section we discuss the complexity of tree operations from the data structurepoint of view. We do not consider the complexity of the implementation (whichincludes processor and compiler dependencies such as memory allocation and deal-location time, e�ciency of a function call, etc.) They are assumed to be performedin constant time O(1):1We are using the term tree (lower case t) for the tree-like data structure, in contrast to thecomponent called Tree (upper case T).

CHAPTER 6. IMPLEMENTATION EXPERIENCE 85

.

.

.

printer

bglue

m =1

TElm Type = 2

TElm Type = 1

TElm Type =TElmTypeNo

m =2

m =TupleMatchSize

123

.

.

.

m =3

2 1 printer

1 1 printer

3 1 baprinter

55

bglue2 1 55

memory

leaf

2 123 memory2

root

inner-vertex

server-tree

Figure 6.3: Tree data structure

CHAPTER 6. IMPLEMENTATION EXPERIENCE 86Also, we do not consider the establishment of a binding performed by the Glue-Factory and Binders. Firstly, it depends on the exact computing environment, and,secondly, it is beyond the Tree data structure functionality. In addition, in thissection we do not compute the complexity of QoS-based operations, as they arediscussed in section 6.6.We consider the complexity of the following operations in the worst case. Thefollowing variables are used:m number of tuple matching elementsn number of all tuple elementsInnerSZ number of di�erent values of a tuple type (the size of the second layerof the inner-vertex)LSz size of leavesMatch the maximum time to perform the matching function on a tuple elementof any type (as matching operation is user-customized, we consider themost `expensive' tuple element type, for this purpose. This does notmean that the operation is time constrained by the Magnet architec-ture.)The time complexity to locate the �rst inner-vertex from the root pointing to it isa constant time O(1): There are two unrelated variables to compute the complexityagainst: the length of tuples, and the time to perform the matching operation.ADVERT and BINDThe complexity to search each inner-vertex is composed from the complexity tosearch the �rst layer, and the complexity to search the second layer:O(1) the �rst layer (the tuple element types), as this information is knownO(InnerSz �Match) the second layer (values of tuple elements), as this must besearchedTherefore, the complexity of an inner-vertex is:O(InnerSz �Match) +O(1) = O(InnerSz �Match).Number of inner-vertexes is m, therefore, the complexity to search all of them is:O(InnerSz �Match �m).No matching functions need to be performed in the leaves, therefore, the complexityto search a leaf is: O(LSz). If operation insert is required after the search hasbeen performed, the algorithm is repeated on the complementary tree (e.g., theclient-tuple searches the server-tree for binding, but it is inserted into the client-tree, etc). Therefore, the obtained complexity value has to be multiplied by two.Consequently, the overall complexity of operations Advert and Bind is linear inthe tuple matching size:2 � (O(InnerSz �Match �m) +O(ZSz)) = O(InnerSz �Match �m+ ZSz).For a particular tree of �xed variables InnerSz and ZSz, the complexity is:O(Match �m):

CHAPTER 6. IMPLEMENTATION EXPERIENCE 87WITHDRAWC and WITHDRAWSThe complexity to search the inner-vertexes of the tree is similar to the previouscase:O(InnerSz �Match �m).However, matching functions need to be performed in leaves on the remaining tupleelements to �nd an exact match. Therefore, the complexity to search a leaf is:O(LSz � (n�m)Match) = O(LSz � n �Match) as n � m:As the tree on which to perform the operation on is known from the operation itself(that is the reason why we distinguish between WithdrawS and WithdrawC),the search of the second tree can be omitted, in contrast to Advert and Bind.Therefore, the overall complexity of operationsWithdrawS and WithdrawCis also linear in the tuple size (for a particular size of tree):O(InnerSz �Match �m) +O(ZSz � n �Match) == O(Match �m) +O(n �Match) == 2 �O(n �Match) = O(n �Match):6.5 The TraderThe Trader acts as a central hub and high-level interface for all components usingMagnet in a local federation. It contains distributed Tree components (semanti-cally, not physically), and it is responsible for their distribution. In addition, theTrader's initiation procedure results in the allocation of Trees on the processors. Inthis section we cover these issues.6.5.1 Tree DistributionIn accordance with our assumptions, typical federations will consist of tens of com-ponents, therefore, there is a need to support the parallelization in the matchingprocess to prevent one matching function blocking all other components. This sec-tion discusses how the information pool (implemented as tree data structures) is`divided' into separated Tree components which can be searched in parallel. Beforewe describe the approach taken in Magnet's implementation prototype, we brie�ymention other solutions to the problem of the distribution of the information pool.For very small federations (roughly ten components), the information pool couldhave been centralized, and all operations (resulting in matching processes) wouldbe done sequentially. However, for federations with tens of components this wouldnot be feasible.In contrast to the `visible' distribution of the information pool implemented byMagnet using the Tree components, an alternative approach could be to use aDistributed Shared Memory provided by Magnet. We investigated this approachin the early stages of our research [34], and concluded that release consistencymodel would be adequate in terms of performance. However, as Regis was used forour prototype, the simplicity of implementation of the distribution in Tree compo-nents in Regis was the main reason for our approach. Further, Tree componentsare implemented in an e�cient way in Regis. However, both solutions are onlyimplementation features, not a�ecting the design of the Magnet architecture.Now we discuss our approach: the distribution of Trees follows the design oftheir tree data structure. There are two levels of distribution.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 88Firstly, the tuple matching-size de�nes the �rst layer of the client-tree and theserver-tree, therefore it is used for distribution of subtrees into di�erent Tree com-ponents. As tuples can only match complementary tuples of equal matching-size,the matching process can succeed only within the same subtree, hence, the samephysical Tree component. Therefore, the root vertex sends tuples (according totheir matching-size) to appropriate Tree components over an established binding.Secondly, in order to further improve the parallelization, the client-tree and theserver-tree are also physically distributed into di�erent Tree components accordingto the type of their �rst tuple element. Consequently, the �rst layer of inner-vertexeswill always contain only one tuple element type. This is feasible because Trees canbe searched in parallel as processes (Regis components), even if there is not enoughprocessors for physical distribution.Therefore, the Trader is connected to a two-dimensional array of Tree com-ponents, where one dimension is de�ned by the maximum tuple-matching size(TupleMatchSize); the second dimension is de�ned by the number of tuple ele-ments' types (TElmTypeNo). These constants are illustrated in Figure 6.3. However,as the latest version of Darwin does not support two-dimensional arrays, this wassimulated using a one-dimensional array.These constants must be con�gured according to the computing environmentthat usesMagnet. Figure 6.4 illustrates the Trader and distributed Trees describedin this section.6.5.2 Tree Allocation on ProcessorsThe Trader interacts with all Tree components over a binding established at con-�guration time. However, the level of distribution varies according to the processorcon�guration. Magnet running in a distributed environment which enable full dis-tribution of Trees can allocate all Trees to physically distributed processors. Mag-net running in a distributed system allowing only partial distribution (number ofprocessors is smaller than the number of Trees), must allocate multiple instrances ofTrees on a single processor, while equal distribution over available nodes is ensured.An extreme example of the partial distribution is a disconnected portable computerconsisting of a single processor where all Tree components must run on a singlecpu, therefore, no distribution is possible.Assuming the following variables:i is the index of the Tree component being allocated to a processorCpuNo is the number of processorsThe Trader (trader) ensures equal distribution by allocating Trees (treeComp) toprocessors by the formula:i%CpuNo determining the number of processor (% stands for MOD).In Darwin, this is implemented as follows:inst trader t;forall i=0 to ((TupleMatchSize * TElmTypeNo) - 1) {inst treeComp ip[i] @Node (i % CpuNo);bind t.ipool[i] -- ip[i].all;}

CHAPTER 6. IMPLEMENTATION EXPERIENCE 89

bglue

ipool[][]

MatzhSize=1
TElm Type = 1

TElmTypeNo

T
u
p
l
e
M
a
t
c
h
S
i
z
e

2 1 printer

1 1 printer

3 1 baprinter

Trader

server-tree

CPU

bglue2 1 CPU

1 1 CPU

client-tree

MatchSize=1
TElm Type = 2

bglue2 1 55

server-tree

44

bglue2 1 44

client-tree

33

bglue2 1 55

printer

Trader [1][2]

Tree [1][1]

all

all

MatchSize=2
TElm Type = 2

memory2 2 123

server-tree client-tree

abc

2

55

Trader [2][2]

all memory
2 2 33

memory

33

abc

2 33 abc3

332 memory

123

55

Figure 6.4: The Trader and distributed Tree components

CHAPTER 6. IMPLEMENTATION EXPERIENCE 906.6 QoS ManagementIn this section, we discuss interesting implementation issues concerning QoS Man-agement. In particular, we discuss the implementation of QoS De�nition (allowingthe components to request tuples using QoS operators), and QoS Negotiation whichcovers the QoS-based matching process. We also compute the time complexity ofthe QoS operations Advert and Bind.6.6.1 QoS De�nitionIn addition to actual values, QoS De�nition allows tuple elements to express morecomplex requirements de�ned by a set of QoS operators (Def. 7). Consequently,QoS-match (Def. 8) allows operator-enhanced tuple elements to match, accordingto their de�nition.Each of these operators is implemented as a derived class of the tuple element-type class which the operator is applied to. This approach allows us to implementthe QoS-match simply by overloading the matching function in the derived `opera-tor' class. As all the operator-derived classes share the tuple element type with theirbase class, the tree data structure need not be modi�ed. Inner-vertexes consists ofthe same number of tuple element types in their �rst layer, and can gain di�erentvalues in the second layer, as illustrated in Figure 6.5. There is one server-tuple inthe pool T1 and there are �ve client-tuples (T2; T3; T4; T5; T6) which QoS-matchtuple T1:T1 = (3; 2; 12; a; bglue)T2 = (2; 2; 12; a� d)T3 = (3; 2; 12; a� d; 55)T4 = (3; 2; 12;:w; a)T5 = (2; 2; �; ajb)T6 = (3; 2; �; ajb; 11).All tuples are inserted into the Tree component [2][2] � holding tuples with two`matchable' elements and whose �rst tuple element is of the second type accordingto the table of existing types (in our example, integer).6.6.2 QoS NegotiationThe QoS Negotiation process allows the matching function to express a rating onevery tuple element match (Def. 9), and a combination of these rates, QoS-ratingmatch (Def. 8), de�ning component preferences.In Magnet, the rating is implemented as a return value of the overloadedmatching functions (both original tuple element types, as well as the operator-enhanced types) gaining integer values in addition to `true' and `false'. The returnvalues are summed, and a tuple-de�ned threshold function returning the thresholdvalue X (Def. 10) is called to decide whether this combination is accepted (thisimplements the select operation).The implementation does not require a di�erent tuple matching process to beundertaken. That is the matching function (for the tuple class) is the same regard-less of whether there are QoS attributes in the tuple or not. As was de�ned insection 6.3, in order to decide whether two tuples match, matching functions for ev-ery tuple element are called. However, in this case an overloaded QoS tuple elementmatching might be performed insted of the basic exact tuple element match. Asexact matching is a special case of QoS-based matching, the default setting favoursit: tuple element type functions returns `true' or `false', and the threshold checksfor equality to m1 by default (a number of matching elements) � a successful exactmatching process returns `true' by every tuple element, the result is always m1).

CHAPTER 6. IMPLEMENTATION EXPERIENCE 91

MatchSize=2
TElm Type = 2

a3 2 12

server-tree

client-tree

a-d

55

Trader [2][2]

all

12

a

2 2 12

12

a-d

2 123

122*

bglue

¬w a3

¬w

11

2 2

23

*

*

a|b a|b

a-d

a|b

Figure 6.5: Tree data structure incorporating QoS De�nition

CHAPTER 6. IMPLEMENTATION EXPERIENCE 92Tuples performing exact matching, simply do not overload these functions, howevercomponents which require the extended �exibility have got the means to expresscomplex requirements.Although, the implementation of Trader functions need not be modi�ed, thecomplexity might change signi�cantly.6.6.3 The Complexity of QoS-based Matching OperationsAs operationsWithdrawS and WithdrawC require an exact match, the numberof inner-vertexes to search does not change, therefore, the complexity is equal tothe exact matching case: O(n �Match):However, the complexity of operations Bind and Advert can be signi�cantlyworse.ADVERT and BINDThe complexity to search each inner-vertex is the same as in the `exact' search �the tuple-element type is known, therefore, the �rst layer search can be performedin O(1). The second layer takes O(InnerSz�Match) as it is irrelevant for the worstcase if tuple elements contain QoS operator-enhanced values or only actual values.Therefore, the complexity to search an inner-vertex is:O(InnerSz �Match).However, the number of inner-vertexes to search rapidly increases. Allowing QoSoperator-enhanced values to be used as tuple elements results in the possibility ofmatching more than one value in each inner-vertex. That does not change thecomplexity of searching the actual inner-vertex, but changes the number of inner-vertexes to be searched from m to an exponential dependency:O(InnerSzm).The complexity to search all inner-vertexes, in the worst case, is:O(InnerSz �Match) �O(InnerSzm) = O(InnerSz �Match � InnerSzm).Again, no matching functions need to be performed in leaves, therefore, the com-plexity of searching a leaf is: O(LSz). However, in cases of operations Advertand unsatis�ed bind, an operation insert needs to be performed after the search �nevertheless, only one tuple in each inner-vertex can match, which leads into thesame situation as the non-QoS matching; the complexity was calculated in section6.4.3:O(InnerSz �Match �m+ ZSz).Therefore, the overall complexity of QoS-based operations Advert and Bind is asum of the search and insert, which is exponential in the tuple matching size (again,the �nal equation takes tree variables (ZSz; InnerSz;) as constants):O(InnerSz �Match � InnerSzm) +O(ZSz)) +O(InnerSz �Match �m+ ZSz) =2 � (O(InnerSz �Match � (InnerSzm +m) + ZSz)) = O(Match � InnerSzm).Application designers have to examine the tradeo� between �exibility and e�ciency:linear exact matching is fast, but QoS-based matching o�ers advanced �exibility.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 936.7 LimitationsIn this section we discuss limitations of the tuplespace design. Firstly, we focuson implications for the architecture where it has to cope with a high number ofcomponents. Secondly, we discuss issues concerning data structure congestion as aresult of a large number of tuples in the pool.6.7.1 Large Number of ComponentsAccording to our assumptions, we expect a federation to consist of about tens ofcomponents handled by a single Trader. However, if this number reaches manyhundreds of components, the Trader could become a bottleneck in the system. Toovercome this problem, the federation would have to be divided into several, withtens of components in each, and interconnected using Locators. Therefore, match-ing would be performed in a fraction of the original information pool. Alterna-tively, clients would have to specify other Traders and use the Locators to performthe inter-federation communication. This solution brings additional complexity onclients by forcing them to call each particular Trader `manually', using inter-Tradercommunication. A more appropriate solution for federations of this size would beto implement the tuplespace in distributed shared memory which is accessed bymultiple Traders, as discussed in section 6.5.1.A similar problem would appear if our assumption concerning the number ofcomponents accessing the Trader at a given time was no longer true. That is, weexpected not more than ten components to access the Trader at the same time,however higher numbers of components would also cause the Trader to become abottleneck in the system. Similar solutions as those discussed in the former casecould be undertaken to improve the Trader throughput.6.7.2 Large Number of TuplesWe assume that tens of component can generate roughly tens to hundreds tuples.Also, we expect that for this number of components, tens of types of tuple elementswould be su�cient (as it de�nes the size of the tree data structure). If these as-sumptions are not the case, the information pool �lls up. This results in the Traderbeing unable to handle new components. Therefore, they would have to try againwhen the pool is less full. Here we discuss the implications for the data structureand possible solutions to this problem.The prototype of the architecture, implemented in Regis, was tested for smallnumber of tuples (tens), for which this the performance was su�cient (matching inthe Trader and binding establishment in Regis were performed in a few seconds.)Higher numbers of tuples (hundreds) would still give good performance, if theywere distributed equally according to their matching size and the type of the �rsttuple element (these two tuple features de�ne the Tree component in which thetuple will be matched, as described above). Therefore, equal distribution of tuplesinto the Tree components, where they can be processed in parallel, would result inroughly tens of tuples being matched at the same Tree. We tested this, and theperformance was also su�cient.However, non equal distribution of tuples in the pool according to the typematching size (e.g., where some matching sizes are signi�cantly larger than others)would result in the particular Tree component �lling up. Overcoming this problemby con�guring the tree data structure to keep large number of tuples (hundredsinstead of tens), would probably result in non-acceptable responce time. If non-equal distribution of tuples is characteristic of a particular application runningMagnet, the distribution algorithm can be adjusted to allowmore Tree components

CHAPTER 6. IMPLEMENTATION EXPERIENCE 94for the larger matching sizes. This does not in�uence the structure of the overallframework, only the Tree distribution algorithm needs to be recon�gured.Finally, very large number of tuples (thousands and more) would have the samea�ect � all Tree components �lls. To solve this problem, either the federation wouldhave to be divided, each having a separated Trader, interconnected together usingLocators, or the distribution of the information pool would have to be organizeddi�erently.6.8 Usability and PortingIn this section, we assess how easy it was to implement Magnet in Regis, anddiscuss the implications when it is implemented on another platform.6.8.1 UsabilityHaving implemented the prototype in Regis, we can claim that the framework isfairly usable for `programmers'. Writing applications in Magnet requires writingthe appropriate code representing component functionality in C++ (the body()function). This includes declaration of tuples representing o�ered or required ser-vices, and calling particular Regis communication functions for sending tuples tothe Trader.However, in order to make the framework more user-friendly, a gui could havebeen built to allow non-programmers to de�ne their components. Avoiding pro-gramming the component functionality, users would have to only select and con�g-ure components from a group of pre-de�ned ones.6.8.2 PortingFor reasons of �exibility, and implementation simplicity, we have chosen Regis tobe the platform for our prototype. However, the framework can be ported to otherexisting systems supporting the notion of independent components de�ned by theirservices, providing distributed communication between entities (objects, compo-nents, etc.) and enabling runtime binding. For example,Magnet can trade systemresources in system like Exokernel or Nemesis, or it can deal with application levelobject, for example in corba or dcom.Porting our framework consists of two tasks:� system component `wrappers' (Trader, server, client) have to be de�ned asentities of the particular environment (we have used Darwin, from which Regiscode was generated), and� communication between system components (the Trader, clients, servers) en-abling tuple transmission has to be implemented using the particular commu-nication protocols (e.g., in Regis we have used the interaction style Port<Tuple>).The remaining functionality of the architecture (tree data structure, tuple classes,etc.) could remain and be called from the ported `wrapper' components.6.9 Chapter SummaryIn this chapter we discussed the implementation issues of the Magnet framework.Its prototype is based on the Regis distributed environment which was slightlyadapted to provide the bindings required by Magnet.

CHAPTER 6. IMPLEMENTATION EXPERIENCE 95Detailed discussion of every aspect of the implementation is unnecessary, andwe focused on describing the system core and interesting implementation features.Magnet components are implemented as Regis components, de�ned by theDarwin con�guration language. AsMagnet is designed for open dynamic systems,the dynamic binding in Regis was used extensively. Tuples are implemented ashigh-level containers enabling tuple elements to be user-de�ned and their matchingoperation customized.Trees contain tree data structures supporting linear search (matching) for non-parametrized requests. The complexity of the Trader operations was calculated andwas found to be linear in the number of tuple matching elements.The Trader, acting as a hub for all components, is responsible for distributing thetree data structure over Tree components. Also, the algorithm of equal allocationof Tree components on the available processors in the system was described.QoS De�nition and QoS Negotiation are supported by overloading basic tupleelement classes, their matching functions, and tuple rating functions. Althoughthis feature allows components to express their requests with further �exibility, thee�ciency of QoS-based Advert and Bind is exponential in the tuple matching size.We have discussed the limitations of the architecture in terms of the numberof components and the number of tuples, and brie�y covered issues concerningusability and porting of the framework.The last three chapters have presented a complete design of the Magnet ar-chitecture. In the next chapter, based on the complete description of the Magnetframework (provided in chapters 4, 5 and 6), we present several applications usingMagnet for allocation of their resources and provide an evaluation of the architec-ture.

Chapter 7Case Studies and EvaluationIn this chapter we demonstrate the utility of Magnet using several examples.Having implemented the prototype (in the Regis distributed environment), theseexamples provide a proof of concept. We will demonstrate thatMagnet meets theinitial requirements (dynamic trading, extensibility, QoS Management, dynamicrebinding, information monitoring, and scalability) for several resource allocationproblems. Firstly, we will simulate several system resources and user applications,in section 7.1. Based on this, in section 7.2, we will demonstrate quality of serviceallocation by simulating an application requesting resources described in terms ofquality of service. Then, in section 7.3, we focus on dynamic issues of the architec-ture. We demonstrate dynamically changing network connectivity which illustratesthe advanced system features such as monitoring, dynamic rebinding and scalabil-ity. Finally, in section 7.4, we evaluate of the architecture by discussing the featuresit provides, and the implications of the assumptions we have made by comparisonwith existing architectures.7.1 System ComponentsIn order to present examples of applications using Magnet, we have to simulateessential system resources � cpu, memory, disk and printer. In this section, wede�ne the functional interface of the components, o�ering services accessed by ap-plications. In addition, we describe the relevant tuples representing services placedinto the Trader. Figure 7.1 illustrates components described in this section con-nected to the Trader.As the low-level design of the system components is beyond the scope of thisthesis, we focus on presenting the functional interface � the component `wrapper',rather than realistic hardware representation. For our examples, we assume thatall components are running on processors connected to the Internet, are assignedip addresses (forming the naming scheme), have network protocols (ip, tcp, udp)installed and have running network daemons, such as inetd processing incomingpackets, as usual.7.1.1 CPUVirtual cpu's functional interface consists of two fundamental functions:PID=cpu::alloc() allocates an application to the processor by adding it to itspriority-queue. Adds the application into the list of active clients keptby the Server-Rebinder, if appropriate. Returns process number PID.96

CHAPTER 7. CASE STUDIES AND EVALUATION 97RET=cpu::leave(PID) deallocates process PID from the processors. Deletes therecord in the Server-Rebinder, if appropriate. An exit status (RET) isreturned.Internal schemes, such as an applied scheduling algorithm (implemented by a sched-uler process), necessary network daemons (such as inetd) are run by privilegedprocesses not accessible by the clients.A typical processor, without attached devices, is described by a server-tuple:CPU = (4; 3; CPU;manufacture; speed; ref), where ref is the reference to accessthe processor. It can be implemented, for example, as the processor's ip addressand a socket number opened by the scheduler process. Other tuple parameters areself-explanatory.7.1.2 MemoryIn order to ensure that memory is allocated with its processor, they form a singlecomponent. Therefore, memory does not o�er the functions alloc() and leave()as a part of the functional interface, because they are provided by the processor.However, Virtual memory's functional interface consists of two fundamental func-tions:RET=memory::write(ADD,buff) writes a byte from a bu�er buff to an addressADD. Function returns a status, RET.*buff=memory::read(ADD) reads a byte from address ADD into bu�er *buff.Memory and attached processor is described by a server-tuple:CPU � MEM = (6; 5; CPU;manufacture; speed;memory; size; ref), whereref is the reference for accessing the processor, can be implemented as described inthe previous section 7.1.1. Other tuple parameters are self-explanatory.7.1.3 DiskA disk should also form a single component with its processor, in order to ensurethey are allocated together. For the same reason as memory, disk does not o�erfunctions alloc() and leave() as a part of the its functional interface, becausethey are provided by the processor. However, its functional interface consists of twofundamental functions: write() and read().In order to provide enhanced �exibility for applications like dbms, the diskfunction interface incorporates a paratemer (No) determining the number of blocksto be read from the address ADD. The default value is 1, however, applications cantake the advantage of implementing `grouping' write and read operations, as movingthe disk arm (seek times) are expensive.RET=disk::write(ADD,No,block) writes a number of blocks No from a bu�erbuff to an address ADD. A status RET is returned.*block=disk::read(ADD,No) reads a number of blocks No from address ADD intoa bu�er *block.A disk with attached processor, is described by a server-tuple: CPU � DISK =(6; 5; CPU;manufacture; speed; disk; size; ref), where ref is the reference for ac-cessing the processor can be implemented as described in the previous case. Again,other tuple parameters are self-explanatory.

CHAPTER 7. CASE STUDIES AND EVALUATION 98

bind

withdrawC

withdrawS

cp

CPU-PrinterCPU-Disk

cp

Server-Binder Server-Binder

CPU-Memory

glueS

Server-Binder

cp

Trader

glueS

cpCPU

Server-Binder

advert

CPU::alloc()
CPU::leave()

CPU::alloc()
CPU::leave()
memory::write()
memory::read()

glueS glueS

CPU::alloc()
CPU::leave()
disk::write()
disk::read()

CPU::alloc()
CPU::leave()
printer::print()

ADVERT(8,7,CPU,manufacture,speed,printer,technology,resolution,speed,ref)ADVERT(6,5,CPU,manufacture,speed,disk,size,ref)

ADVERT(6,5,CPU,manufacture,speed,memory,size,ref)ADVERT(4,3,CPU,manufacture,speed,ref)

Figure 7.1: Essential system server components7.1.4 PrinterA printer is a character device attached to a processor. For simplicity, we do notconsider internal printer bu�ers. Like the memory and disk, a printer does not o�erfunctions alloc() and leave(). PID numbers allocated by the processor functionalloc() are used by the Virtual printer for protection of one application againstanother. The functional interface consists of one function: print().RET=printer::print(PID,byte) if the identi�cation of the `printing' applicationis PID, byte is printed out. Function returns RET, an exit status.Advanced schemes, such as spooling are not considered in this example. There-fore, starvation cannot be avoided � applications allocated to the printer are onlysuccessful if the printer is currently idle � their call must be the �rst one after aprevious application has detached from the component by calling leave().A printer with an attached processor, is described by a server-tuple:CPU � PRINTER = (8; 7; CPU; manufacture; speed; printer; technology;resolution; speed; ref) where technology de�ned a printing technology (such as,laser, matrix, ink-jet, etc.) and ref is the reference for accessing the processor,discussed in previous sections. Again, other tuple parameters are self-explanatory.Figure 7.1 represents components described in this section: a processor, memory-processor, disk-processor and printer-processor. Interaction with the Trader en-abling components to insert their advert-tuples into the pool is also illustrated.The reference to the Trader is obtained from a place known a priori, and this op-eration is performed by a parent process or by a human administrator insertingcomponents into the system.

CHAPTER 7. CASE STUDIES AND EVALUATION 997.1.5 DiscussionAs can be seen on examples discussed in this section, components representingservices often rely on subcomponents o�ering additional `subservices'. There aretwo ways for approaching this: encapsulating services, and forming service chains.Firstly, encapsulation of services which rely on each other, is formed in ad-vance (e.g., a printer encapsulates a processor, etc.) The composite component canbe described by one tuple, and one matching process is su�cient to establish thebinding with a client. However, a physical resource can form several components,each o�ering di�erent functionality (e.g., the processor components in our previousexample).Secondly, services can be treated independently, each described by a tuple placedinto the pool. When a client requests a service, the server generates a furtherclient tuple requesting a particular subservice until the necessary chain of servicesis established, and the communication can be achieved. In this case, there are moretuples placed in the pool, and a single client-server communication might requireseveral matching processes to be performed.The framework supports both approaches � this is purely an administrator de-sign decision. The former approach is less �exible, but more e�cient in establishingthe client-server binding, while the latter is more �exible, yet can cause additionalproblems with consistency or deadlock. In cases, when the chain of services cannotbe established due to one server being unavailable, all components already boundare blocked. This can be prevented by introducing timeouts to tuples (this is dis-cussed in section 7.4.2). In addition, rebinding of servers in a chain requires athird-party maintaining the overall consistency of all other relevant components inthe chain.7.2 QoS-based AllocationThis example demonstrates a quality of service based resource allocation. Thesituation was brie�y described in chapter 5, here we will elaborate on it in greaterdetail. We discuss several client requests demonstrating various QoS requirementsand di�erent results of the matching process.There are three server components in the system consisting of two subcompo-nents: Pentium processors, each of di�erent speed and ram memories of di�erentsize. They o�er functions described in previous section, and are de�ned by followingserver-tuples:ProcessorA 200 MHz with 32 MB ram memory described by a server-tuple A:A = (6; 5; CPU; Pentium; 200;memory; 32; ref)ProcessorB 200 MHz with 16 MB ram memory described by a server-tuple B:B = (6; 5; CPU; Pentium; 200;memory; 16; ref)ProcessorC 300 MHz with 4 MB ram memory described by a server-tuple C:C = (6; 5; CPU; Pentium; 300;memory; 4; ref)In accordance with the tuple de�nition (Def. 1), de�nition ranges for all three tuplesare P1 = P2 = P4 = N and P3 = P5 = S where N is the set of natural numbersand S is the set of all words constructed from letters from English alphabet.There are three applications in the system requesting processor and memory.An Application D expresses its request using QoS-rating operators, and the QoS-rating match, while Application E uses only QoS-rating operators to de�ne itsrequirement, Finally, an Application F described its requests by the basic exactmatch.

CHAPTER 7. CASE STUDIES AND EVALUATION 100Server-Tuples Client-TuplesC = (6; 5; CPU; Pentium; 300;memory; 4; ref)B = (6; 5; CPU; Pentium; 200;memory; 16; ref)A = (6; 5; CPU; Pentium; 200;memory; 32; ref)Table 7.1: The Information Pool containing tuples A, B, and C.QoS-rating m1 = m2 Pi = Qi &pi 2 fi(qi) P5i=1 ki � 5 resultmatch 8i 2 f1; m1gtuples: C D 5 = 5 for i = 5 : do not4 =2 16� 64) no matchtuples: B D 5 = 5 yes 1 + 1 + 1 + 1 + 1 = match= 5 � 5 ALLOCATEDtuples: A D not testedTable 7.2: QoS-based allocation � matching between tuples A,B, C and DTable 7.1 illustrates the information pool for the described system is con�gura-tion. The table illustrates a schematic view of the information pool, rather thana realistic representation re�ecting implementation issues (Trees components, etc.)Components join the system in the order of ProcessorC, ProcessorB, ProcessorAand Application D, Application E, and Application F. All server-tuples A, B, andC representing processors are inserted into the server part of the pool.Application DThe Application D requires the fastest available Pentium processor running at leaston 200MHz with at least 16MB memory. The request is de�ned by a tuple D:D = (6; 5; CPU; Pentium; 200� 300;memory; 16� 64; ref).The rating values are:CPU
(CPU) = 1 (exact match)Pentium
(Pentium) = 1 (exact match)200-300
(�(200)) = 1,
(�(300)) = 2memory
(memory) = 1 (exact match)16-64
(�(16)) = 1,
(�(20)) = 2,
(�(32)) = 3,
(�(64)) = 4X 5 (threshhold)When an operation Bind is called on the tuple D, a match is found, and requestedbinding can be established, therefore, the tuple D is not inserted into the informationpool (in accordance with operation Bind).Table 7.1 illustrates the matching process resulting in the application beingallocated the component described by tuple B. Although tuple A would ful�ll client'srequirements better (1 + 1 + 1 + 1 + 2 = 6 � 5), it is not tested because tuple B wasalready allocated to the application. The example shows how, from the component'spoint of view, non-deterministic placement of tuples into the pool determines theresultant allocation.

CHAPTER 7. CASE STUDIES AND EVALUATION 101Server-Tuples Client-TuplesC = (6; 5; CPU; Pentium; 300;memory; 4; ref) F = (6; 5; CPU; Pentium; 300;memory; 2; ref)B = (6; 5; CPU; Pentium; 200;memory; 16; ref)A = (6; 5; CPU; Pentium; 200;memory; 32; ref)Table 7.3: The Information Pool containing tuples A, B, C and F.Application EThe Application E requires a Pentium processor running on 300MHz with anyamount of memory. The request is de�ned by a tuple E:E = (6; 5; CPU; Pentium; 300;memory; �; ref).When an operation bind is called on the tuple E, it matches against the tuple C,and binding can be established. Also in this case, the client tuple E is not insertedinto the information pool in accordance with operation bind.Application FFinally, the Application F requires a Pentium processor running on 300MHz with2MB memory. (This requests illustrates the features of the matching process, anddoes not claim to be a realistic resource requirement.) It is de�ned by a tuple F:F = (6; 5; CPU; Pentium; 300;memory; 2; ref).An operation bind is called on the tuple F, however, it does not match anyserver tuples currently present in the pool, evenhough the tuple C would providethe required resources. Therefore, without this exact match no binding can be es-tablished, the tuple F is inserted into the client part of the pool, and the ApplicationF is waiting. Table 7.3 illustrates the information pool after the tuple F has beeninserted.This �nal example illustrates the drawback of using an exact matching (Applica-tion F remains waiting in spite of the fact that ProcessorC would provide adequateresources). This further highlights the advantage and �exibility of QoS de�nitionssupported by the architecture.7.3 Dynamic Network ConnectivityIn this example we will demonstrate dynamic issues of the Magnet architecturein terms of scalability, dynamic rebinding and monitoring, in addition to dynamicbinding and QoS-based matching. Dynamic network connectivity is a good exampleof an application requiring adaptation. That is the system must be able to adaptfrom disconnected operation, through weakly connected, to fully connected. Wewill illustrate adaptation of the system to changes in connectivity on two typicalapplications � a word-processor and a Web client.7.3.1 Disconnected CaseIn a disconnected situation, there are two applications running on a disconnectedportable computer � a word-processor and a Web client. As there is a Magnetsystem installed, both applications are represented as components. In this instance,the word-processor requests a printer and the Web client requests a Web server.Therefore, client-tuples (print, and WebClient) are inserted into the Trader torepresent these requests:

CHAPTER 7. CASE STUDIES AND EVALUATION 102Server-Tuples Client-TuplesPRINT = (8; 7; CPU; �; �; printer; laser; 600; �; ref)WebClient = (3; 2;WebS;modem; ref)Table 7.4: The Portable Information Pool� the disconnected casePrinter a request for a laser printer with resolution of 600dpi, any speed, at-tached to any processor:PRINT = (8; 7; CPU; �; �; printer, laser; 600; �; ref)WebClient Web client requests a Web server, as this is an abstraction server, spec-i�cation of hardware (such as a processor), are not necessary.WebServer = (3; 2;WebS;modem; ref).The fourth element, modem, represents the required hardware deviceconnecting the Web client with the Web server. This feature will bediscussed in detail bellow.At this point, their requirements cannot be full�lled, as there is no printer compo-nent nor Web server connected to the system (which is disconnected).Table 7.4 illustrates the information pool for the described system con�guration.Again, the table is schematic, implementation issues are omitted. Also, for reasonsof simplicity, only components featuring in this example are illustrated.7.3.2 Weakly Connected CaseIn this example, the portable is weakly connected by a modem, below we describean establishment of a binding between the Web Client and the Web Server.Inserting Required InformationApplications which want to take the advantage of the portable being connected tothe Internet later on, have to insert the `joining' and `leaving' tuples into the pool.In addition to the print tuple, the word processor also inserts following two tuples:PRINT2 = (12; 2; join; network;8; 7; CPU; �; �; printer; laser; 600; �; ref)PRINT3 = (12; 2; leave; network;8; 7; CPU; �; �; printer; laser; 600; �; ref)In order to distinguish the hardware device and consequently the type of link con-necting the computers, the fourth tuple element (network) expresses this informa-tion (other option would be modem, etc.)The Web Client also wants to take the advantage of the portable being connectedto the network, but it can operate over modem, therefore it inserts following twotuples:WebClient2 = (7; 2; join;modem; 3; 2;WebS;modem; ref)WebClient3 = (7; 2; leave;modem; 3; 2;WebS;modem; ref)Unlike the word-processor, the Web Client can be connected to the server by anynetwork hardware. Transmitting Web pages over a mobile line is feasible, however,printing a job at a printer in a remote o�ce is not desired. Therefore, the printertuple does not express options of network connections.

CHAPTER 7. CASE STUDIES AND EVALUATION 103Server-Tuples Client-TuplesT1 = (3; 2; join;modem; bglue) PRINT = (8; 7; CPU; �; �; printer; laser; 600; �; ref)WebClient = (3; 2;WebS;modem; ref)PRINT2 = (12; 2; join; network;8; 7; CPU; �; �; printer; laser; 600; �; ref)PRINT3 = (12; 2; leave; network;8; 7; CPU; �; �; printer; laser; 600; �; ref)WebClient2 = (7; 2; join;modem; 3; 2;WebS;modem; ref)WebClient3 = (7; 2; leave; modem; 3; 2;WebS;modem; ref)Table 7.5: The Portable Information Pool � the weakly connected caseServer-Tuples Client-TuplesPRINTER = (8; 7; CPU;Pentium; 300; printer; laser; 600; 40; ref)WebServer1 = (3; 2;WebS; network; ref)WebServer2 = (3; 2;WebS;modem; ref)Table 7.6: The O�ce-Based Information PoolTrader ConnectionThe portable, being equipped with a mobile phone and a modem, can be weakly-connected to an o�ce-based server. In order to enable portable applications to useresources from the o�ce-based server, operation Join must be performed. There-fore, a `joining' tuple T1 = (3; 2; join;modem; bglue) representing a reference tothe o�ce-based Trader is inserted into the portable Trader. Table 7.5 illustratesthe information pool with all the client tuples and the `joining' tuple T1 inserted.Again, the table is schematic, implementation issues are omitted.Before we describe the remaining steps of the operation Join, we have to de�neresources available in the o�ce-based information pool. For reasons of clarity, weconsider only the resource requested in our example: a laser printer and a Webserver.The laser printer component with resolution 600dpi and speed of printing 40pagesper minute is described by a server-tuplePRINTER = (8; 7; CPU; Pentium; 300; printer; laser; 600; 40; ref).The processor running the Web Server can communicate by two network links �it can use a modem port or a lan adaptor connected to the Internet. Therefore,the Web Server component o�ers two service interfaces according to the networkmedium. They are described by server-tuples, WebServer1 and WebServer2:WebServer1 = (3; 2;WebS; network; ref)WebServer2 = (3; 2;WebS;modem; ref)Table 7.6 illustrates the con�guration of the o�ce-based information pool beforethe portable computer dialled in.Operation JOINNext, we can return to the remaining steps of the Join operation � in the portableinformation pool, the sever-tuple T1 matches with a client-tuple WebClient2, theo�ce-based Trader-Binder obtains the client-tuple, removes the encapsulated tupleWebClient = (3; 2;WebS;modem; ref) and reinserts it into the o�ce-based infor-mation pool. It matches with the Web server tupleWebServer2 = (3; 2;WebS;modem,ref)and a resultant binding between the Web Client and Web Server over a modem canbe established. However, the second application, the word processor, remains wait-ing.

CHAPTER 7. CASE STUDIES AND EVALUATION 104Server-Tuples Client-TuplesT1 = (3; 2; join; modem; bglue) PRINT = (8; 7; CPU; �; �; printer; laser; 600; �; ref)T2 = (3; 2; join; network; bglue) WebClient = (3; 2;WebS;modem; ref)PRINT2 = (12; 2; join; network;8; 7; CPU; �; �; printer; laser; 600; �; ref)PRINT3 = (12; 2; leave; network;8; 7; CPU; �; �; printer; laser; 600; �; ref)WebClient4 = (7; 2; join; network; 3; 2;WebS; network; refU)WebClient3 = (7; 2; leave;modem; 3; 2;WebS;modem; ref)WebClient5 = (7; 2; leave; network; 3; 2;WebS; network; refU)Table 7.7: The Portable Information Pool � the fully connected case7.3.3 Fully Connected CaseIn this section, we illustrate an establishment of new bindings which take place asa result of the portable being plugged into the network.Inserting the Required InformationThe Web Client is currently communicating with the Web Server by a modem. Ifthe portable is connected to a network by a lan adaptor, the Client requires to berebound in order to take advantage of the faster connection. A dedicated Updatercomponent instructed by the Web Client is inserted into the system to performthis task � to monitor the pool and perform a third-party renegotiated third-partyrebinding. The Updater inserts following two tuples into the portable informationpool:WebClient4 = (7; 2; join; network; 3; 2;WebS; network; refU)WebClient5 = (7; 2; leave; network; 3; 2;WebS; network; refU)These tuples refer to an service interface of the Updater component (refU), incontrast to the original Web Client reference (ref), as it acts as a third-party inthe rebinding process.Trader ConnectionWhen the portable arrives into the o�ce, it is plugged into the network by itsethernet card. A connecting tuple T2 = (3; 2; join; network; bglue) is inserted intothe portable information pool to enable portable applications to use all availableo�ce-based resources. At this stage, the portable information pool (illustratedin tabale 7.7) contains two joining server-tuples, all original client-tuples exceptthe tuple WebClient2 which has been removed when the Web Client was weaklyconnected to the Web Server. In addition, two tuples from the UpdaterWebClient4and WebClient5 for `join' and `leave' have been inserted.Operation JOINThe server-tuple T2 matches two client-tuples: PRINT2 and WebClient4. Bothtuples are sent to the o�ce-based Trader-Binder which retrieves the original printertuple: PRINT = (8; 7; CPU; �; �; printer; laser; 600; �; ref) and the Updater tuple(3; 2;WebS; network; refU) which does not represent a request, as it is used forsearching for better service for rebinding (as described in chapter 5). Both tuplesare reinserted into the o�ce-based information pool (see table 7.6) by the operationBind.

CHAPTER 7. CASE STUDIES AND EVALUATION 105The printer tuple is matched against the waiting server-tuple, PRINTER; so itis not inserted into the pool, but an inter-federation binding is established betweenthe word-processor and the printer (which is accessed by the functional interfacede�ned in section 7.1). As a result of this, the word-processor job can be printed.The Updater tuple case is more complex: extracted tuple (3; 2;WebS; network; refU)matches waiting server-tupleWebServer1 (see table 7.6). However, when the bind-ing between the Web Server (by the network port) and the Updater is established,the Updater performs all steps necessary for the third-party renegotiated third-party rebinding to take place, as described in section 5.3.6. Finally, the resultantbinding between the Web Client and Web Server takes place over the network.DiscussionAs Magnet requirements were de�ned in terms of requirements, we needed todemonstrate how they were met by using Magnet in applications requiring thissupport. Dynamic resource allocations, discussed above, demonstrated that Mag-net achieves its goals � providing QoS-based user-customized adaptable resourcemanagement of diverse resources.7.4 EvaluationIn this section, we will evaluate the architecture by discussing the features it pro-vides, elaborating on the implications of the assumptions we have made, and com-paring it with other trading frameworks.7.4.1 Evaluation of Provided FeaturesThe Magnet architecture proposed in this thesis was speci�ed in terms of the fea-tures it should provide in order to meet the requirements of applications in dynamicand mobile environments. These features include: dynamic trading, extensibility,QoS-based management, dynamic rebinding, information monitoring, and scalabil-ity.There are three fundamental ways to evaluate features provided by an archi-tecture, such as Magnet � a theoretical proof, experimental measurements, anda case study together with an informal discussion. As these six features were notspeci�ed in terms of formal mathematical de�nitions, no theoretical proof could bepresented to demonstrate that they have met the original requirements.Also, the framework could not have been evaluated in terms of performancemeasurements for two reasons. Firstly, the architecture de�ned by the six featuresaddresses �exible and dynamic issues, in contrast to performance results (e.g., claim-ing that the framework is extensible cannot be measured in seconds). Secondly, anyperformance results measuring the time required to match tuples and to establisha dynamic binding would be imprecise and non-representative as the frameworkrelies on multi-variable computing environment which consists of the processor (itsspeed), network (its connectivity and current tra�c), operating system (e�ciencyof system calls), Regis (e�ciency of its implementation), etc.) For these reasons,we believe that performance measurements are not useful.Therefore, we have to evaluate the architecture by case studies and an informaldiscussion. We have illustrated the usage of Magnet on two examples: QoS-basedresource allocation (section 7.2), and dynamic network connectivity (section 7.3).Here, we discuss what is supported, and what is not supported for each of the sixfeatures, with respect to speci�cations de�ned in chapter 1.

CHAPTER 7. CASE STUDIES AND EVALUATION 106� Dynamic Trading. Dynamic trading was de�ned as a third-party matchingof service requests against demands described by a type of service, not directlyby a name. The Trader, based on a tuplespace paradigm, provides this func-tionality by matching tuple elements de�ning features of service provisionsand requirements, and establishing a binding.� Extensibility. Extensibility was de�ned at two levels. Firstly, existing ser-vices and data formats should be extended (new resources, services and userrequests can be de�ned at run-time). This is enabled by deriving new tuple el-ement classes. Secondly, the matching process performed by the Trader couldalso be dynamically rede�ned (resource allocation strategies could be user-customized). This is supported by allowing users to overload the matchingfunction for each tuple element class. As there are no restrictions on semanticsof tuple elements, the framework can be used for any applications requiringthird-party trading, beyond the scope of resource management.However, we assume that the extending matching functions are secure in termsof returning control back while not modifying data of other tuple elements(they are expected to be `well-behaved'). We have chosen full generality andfull extensibility (in terms of user-de�ned matching functions) compromisingsecurity rather than providing secure, yet restricted extensions. We believethat the power of full user-customization overweighs the risk of potential prob-lems. We further elaborate on problems caused by insecure matching functionsin section 7.4.2.� QoS-based Management. Extensibility and �exibility of the architectureenables QoS Management which we de�ned as QoS-based selection of services.This is addressed by enabling users to enhance service de�nitions by QoS op-erators (which can be user-customized), and by enabling the QoS Negotiation(by QoS-rating operators and the QoS-rating match function). Apart fromQoS-based selection, QoS Maintenance, enabling two adaptation strategies(resource management and application adaptation) is also supported.However, we did not fully address dynamic and continuously changing fea-tures, such as network tra�c, throughput etc. as the framework is not suitablefor applications requiring very �ne grain updates (seconds and milliseconds)due to rebinding and matching overhead.� Dynamic Rebinding. Based on the core of the framework providing dy-namic trading and binding, Magnet (in cooperation with application levelcomponents, Rebinders, Updater and Administrator) also supports all therequired types of rebinding and renegotiating � �rst-party rebinding, third-party rebinding, �rst-party renegotiating, third-party renegotiating, and no-renegotiating.However, consistency is assumed to be maintained by the components them-selves during all rebinding actions. Magnet does not support recovery frominconsistent states, such as a component crash, rebinding components whenthey were not safe to do so. We further discuss issues concerning consistencyin section 7.4.2.� Information Monitoring. In addition to a manual update, monitoringof all service features (`classical' and QoS-based) is supported by user-levelcomponents, Updaters, and Monitors.As was discussed above regarding QoS, the framework is not suitable forreal-time applications, or those requiring very �ne grain updates (in terms ofseconds and milliseconds).

CHAPTER 7. CASE STUDIES AND EVALUATION 107� Scalability. All provided features are supported within a federation. Scal-ability of the architecture is de�ned at two levels: �rstly, dynamic recon-�guration of domains (supported by operations Join and Leave) which donot assume the users need to know the identity of the Trader they want tojoin. The second case, scaling the architecture within the limits of the com-puting environment, faces a tradeo� between response time and `precision'of provided information (such as, �nding all matching tuples). Therefore,the framework enables a tuple to be passed over to a particular Trader forprocessing (using Locators). However, in this case, the user must know theremote Trader identity in advance. We supported these two cases, as they aretypical in mobile and adaptive systems. Examples are, a user with a portablecomputer roaming around and using resources in various o�ces is an exampleof the �rst case. An example where a user requires to print a job at a printerin a remote o�ce where he will travel to later, illustrates the need for aninter-Trader communication.However, `world-wide' scalability (performing tuple matching in all informa-tion pools) is not feasible in Magnet due to unacceptable response time.A di�erent approach would have to be undertaken, in order to provide thisfunctionality.7.4.2 Discussion on AssumptionsIn chapter 3, we have de�ned assumptions for the design of the Magnet architec-ture. Here we summarize them, and discuss the implications for the architecture ifthese assumptions were not the case. In addition, we propose a solution to possibleproblems caused by the assumptions being invalid.1. Consistency. All system components are assumed to maintain consistency.That is we assume that: rebinding can be performed only when the system isin a safe state, an unexpected component crash cannot happen, and a com-ponent when �nished its operation must leave Magnet in a consistent state(all tuples from the pool must be withdrawn, and all allocated resources mustbe released).Dealing with inconsistency caused by an unsafe rebinding or unexpected com-ponent crash from the component point of view would need a powerful faulttolerant framework (featuring transactions, replications, rollbacks, etc.) Thisis beyond the scope of this thesis. However, from the Trader point of view,the problem can result in out-of-date tuples being left in the pool. In order toprevent this, the Trader can periodically clean the pool performing garbagecollection. However, in order to �nd out whether components are still alive,they would be obliged to provide a `still alive' function which would be calledby the Trader before removing the tuple. Another solution for clients wouldbe to equip their tuples with timeouts limiting how long their tuples are towait in the pool, before they can be garbage collected. In addition, in or-der to prevent components from leaving tuples in the pool when they �nishthe operation, a special subcomponent (present in every component) couldautomatically withdraw all inserted tuples. However, this solution requirescooperation with the component, in terms of initialization of the operations,so it is not fully automated.2. Protection. By protection we mean that all components, servers and clients,are responsible for ensuring the validity of the tuples.As the architecture does not restrict the semantics of contents of the tuples,

CHAPTER 7. CASE STUDIES AND EVALUATION 108there is no means to check the validity of the information. Placing a tuplewith a non-existent request or o�er in the pool can result in an attempt toestablish a binding between non-existing components, or incompatible ser-vices. In order to prevent this, the framework can authorize components tocall the Trader functions, or introduce capabilities (as tuple elements) to im-prove the component protection. In addition, garbage collection, or the `stillalive' function can be used, as discussed in the previous paragraph.3. Synchronization. Components are responsible for synchronization. Thisincludes communication with the Magnet framework as well as component-to-component interaction.The architecture can provide an additional function for client components(operation BindRet) which would perform the same matching process asoperation Bind, and return `no' instead of blocking the component if therequested server has not been found in the pool. There is no need for anequivalent operation to be provided for server components, as they o�er ser-vice regardless the interest of clients. As for the component-to-componentinteraction, there is no reason for Magnet to interfere in synchronization ofcomponents themselves.4. Security. The user-de�ned matching functions are assumed to be secure interms of returning control back to the Trader, while not altering other systemdata. The implementation of the matching functions as overloaded C++functions does not allow the matching function to alter the protected data ofother tuple elements, however this does not provide full hardware protection.Furthermore, the architecture cannot check if the function will return thecontrol back to the Trader, as this is the halting problem. This might resultin the Trader getting blocked by a `non-secure' function. A solution to thisproblem, not restricting the extensibility we are aiming for, would be to �nishany matching function by force after a timeout period.5. Federation Scale. We assumed the number of components in a federationto be roughly tens, they could generate tens to hundreds tuples placed intothe information pool. In addition, more than ten components accessing theTrader at the same time would result in non-acceptable responce time.A high number of components can result in the Trader becoming a bottleneckin the system. The same a�ect would be observed if more than ten componentswere accessing the Trader at the same time. We have dealt with this problemin section 6.7.1 discussing possible solutions, for example distributed sharedmemory. Problems of congestion due to a large number of tuples placed inthe pool were discussed in section 6.7.2.6. Frequency of Change. The framework is designed for components thatwill change their features with a frequency of minutes and hours, rather thanseconds and milliseconds. Therefore the proposed support for monitoring andrebinding as a result of a change is adequate.The support for applications requiring �ner grained updates (with frequencyof seconds and milliseconds) would not be viable. This can be improved byenabling a direct access to the Tree components for trusted Monitors andUpdaters, as suggested in section 5.1.3. However, for environments with veryfrequent changes, or those which rely on real-time response, our framework isnot suitable.7. Service Characteristics. We assumed that tuples have not more than tensof elements, and are equally distributed according to the number of elements(tuple matching size). In addition, we expected the number of types of tuple

CHAPTER 7. CASE STUDIES AND EVALUATION 109elements to be not more than tens.Exceeding the number of tuple elements, the number of tuple element types,or non-equal distribution of tuples according to the tuple matching size mightlead to the problem of congestion of the tuplespace or a particular Tree. Wehave discussed implications and solutions to this problem in section 6.7.2.8. Naming. Naming of the computing environment used for Trader naming isassumed to provide unambiguous names in the scale of the environment. Inaddition, names are constructed in a way that they can form a hierarchicaltree structure with a single root, and a unambiguous path in the tree betweentwo Traders can be determined.If the computing environment does not provide naming which meets theserequirements, there must be an additional Trader naming scheme de�ned.However, it can be derived from common naming schemes, such as ip ad-dresses.7.4.3 Comparison with Existing ArchitecturesIn this section, we brie�y compareMagnet with other trading architectures whichwere introduced in chapter 2. Then, we give examples of platforms suitable forporting Magnet to, and those which do not provide the required �exibility.Architectures providing service matching based on a special `matching' compo-nent, such as Matchmaking (the Matchmaker Component), or Aster (the Aster Se-lector) also perform dynamic service coupling. However, we believe that the `match-ing' component (the Trader inMagnet) should be universal and user-customizable.In contrast to this, the discussed platforms rely on a `knowledgeable' componentwhich decides on component coupling, but can perform only a non-customizablematching function.Other tuplespace-based architectires (such as Limbo, Osprey, Jini, etc.) alsodo not provide extensibility in terms of matching function customization. In ad-dition, Limbo and Osprey implement tuple-typing in contrast to the universalityof our approach, which we aimed for. As for the typing, we believe that the sys-tem components are of di�erent types, however, they can describe their servicecharacteristics in a universal, clean format, as a collection of features � the tuple.Further, we distinguish between two levels of approaching the problems: `compo-nent (or object) level' where typing is desirable, and `component description level'which can provide universality. For this reason, we did not adopt tuple typing,nor did we use other models which require typing (e.g., C++ objects, tagged treessuch as xml). Another approach, Cardelli's Ambient Calculus [12], was devised tomatch characteristics of wide-area networks and systems composed of objects com-municating among themselves through reliable and transparently accessible objectinterfaces. Similarly, this was not adopted as it addresses the typed `componentlevel' rather then the universal `component description' level.Magnet can trade entities of varying granularity due to the universality of theframework. It can be used for resource allocation, at an operating system level in�exible component-based systems, such as Exokernel, Nemesis, Deimos, etc. Onthe other hand, it can also trade objects in user-level applications, for exampleJavaBeans, corba objects, dcom objects, etc. If applications in these systemsfollowed the assumptions on our famework (regarding the number of components,consistency, etc.), Magnet would provide a powerful and �exible trading function-ality. Unsuitable platforms for this type of trading are for example Unix, or spindue to their monolithic nature.

CHAPTER 7. CASE STUDIES AND EVALUATION 1107.5 Chapter SummaryIn this chapter we have demonstrated the utility of the Magnet architecture onseveral examples. Based on the prototype of the Magnet framework (describedin chapter 6), we have built a simple resource allocation system demonstratingparticular features of the architecture.Firstly, we have used an example of the operating system's basic resources toshow how Magnet can be used in an extensible operating systems. We modeled aprocessor, memory, disk, and printer � by de�ning their functional interface andthe tuples describing their services. We demonstrated QoS based resource allocationon a client requesting a processor and memory. Then, we focused on dealing withdynamic changes in the system � dynamic network connectivity. We describedthe allocation of a printer and a Web Server to clients running on a portable com-puter in three situations � disconnected, weakly connected and, fully connected.Advanced features, such as monitoring, rebinding, scalability were illustrated inthis example. Finally, we have also evaluated the architecture by discussing fea-tures it provides, elaborating on implications of assumptions we have made, and bycomparing Magnet with other existing architectures.This chapter concluded our study of the resources management architecture,Magnet, by demonstrating its �exibility, universality and feasibility in particularexamples and by providing evaluation of the framework.

Chapter 8ConclusionAs a result of recent changes in computing environments, there has been an increas-ing need for dynamic resource management providing trading resources de�ned interms of the type of service they o�er. Additional requirements posed by users in dy-namic environments include QoS-based description of resources, user-customizationof allocation strategies, and runtime adaptation to changes in computing environ-ments. This thesis has described a dynamic resource management architecture,Magnet, meeting these requirements.Magnet provides component-customized QoS-based trading of server de�ni-tions resulting in establishment of a requested component binding � resource allo-cation.This chapter reviews this thesis by summarizing the goals and achievementsof the Magnet architecture (section 8.1), presenting possible directions for futureresearch (section 8.2), and concluding the work by �nal remarks (section 8.3).8.1 Thesis ReviewThis thesis has argued that the role of resource management has signi�cantlychanged due to two factors: recent technological improvements which resulted inan increasing diversity of computing environment and the boom in mobile com-puting, and the inability of traditional operating systems to provide a �exible user-customized platform where implementation of dynamic resource allocation strate-gies is feasible.In this section we recapitulate four major areas this thesis has addressed: identi-fying a new role of resource management, the model of dynamic third-party tradingapplied toMagnet, the dynamic resource management architecture, and Bits, thecomponent-based architecture.8.1.1 A New Role of Resource ManagementResource managers in dynamically changing systems must ful�ll requirements foruser-customization, extensibility and adaptability. We have mapped the �eld ofoperating systems and resource management, and identi�ed the new role of andrequirements for resource managers.8.1.2 A Model of Dynamic Third-party TradingThe design of Magnet is based on a model of dynamic third-party trading ofresources based on requests for the type of service. Although the model is primarily111

CHAPTER 8. CONCLUSION 112designed for dynamic resource management, its generality makes it suitable for anysystem requiring trader-based dynamic binding.The model enables Magnet to meet the initially identi�ed requirements fordynamic resource management:� Dynamic Trading. Resource coupling by a component in a third-partyrole, the Trader, is based on requesting services by their types, rather thanby names. Component export services to the Trader which performs a match-ing process resulting in an establishment of a dynamic binding. This bindingprocess is performed through cooperation of components and the Trader, andcomprises three phases: exporting service de�nition, negotiating service de�-nitions, and establishing a communication channel.� Extensibility. Extensibility of the architecture is provided at two levels:services de�nitions exported into the Trader can be user-de�ned, and conse-quently, the matching process can be user-customized.� QoS-based Management. The extensibility of the model enables QoS-based management. In particular it allows the resource de�nitions to beparametrized by QoS-based characteristics. In addition, user-customized QoS-based matching processes can be incorporated. QoS Management, dealingwith all aspects of non-functional behaviour of components, consists of threephases performed in sequence: QoS De�nition, QoS Negotiation and QoSMaintenance.� Dynamic Rebinding. Dynamic rebinding is de�ned by the rebinding pro-cess. Performing adaptation to changes in system conditions, it follows thesemantics of the binding process. This consists of four phases: exporting ser-vice de�nition, renegotiating service de�nitions, destroying a communicationchannel, and reestablishing a communication channel.According to the role of component initiating the process, the model distin-guishes between two types of rebinding: �rst-party rebinding, and third-partyrebinding. Also, the model de�nes two more cases considering the componentresponsible for renegotiation of the replacement: �rst-party renegotiation (un-bound components are left to �nd a new component themselves), or they aregiven a new peer. Semantically, this can be found in the Trader (third-partyrenegotiation), or obtained from an external third-party (no-renegotiation isperformed).Components, treated as black-boxes, are responsible for maintaining systemconsistency, therefore the model does not handle inconsistent states.� Information Monitoring. Monitoring is implemented bymonitors ensuringservice information kept in the Trader is up-to-date. It was provided by theextensibility of the model, therefore, there is no need for a dedicated supportat the model level.� Scalability. Scalability of the framework is supported by de�ning a notion offederation, a local scale distributed system with one Trader. Internetworkingbetween federations provides scaling of the architecture.8.1.3 MAGNET: A Dynamic Resource Management Archi-tectureBased on the framework discussed above,Magnet provides trading of service de�-nitions based on a tuplespace paradigm. Here, we summarize howMagnet actuallysupports the initial requirements for the de�ned trading model.

CHAPTER 8. CONCLUSION 113� Dynamic Trading. The Trader, based on a tuplespace paradigm, consists ofthree components: the information pool, Trader operations on tuples, and thematching operation. Dynamic trading is performed by enabling componentsto de�ne their services in terms of tuples placed into the information pool(by operations Advert, and Bind), performing a matching operation andestablishing a resultant binding. Tuples can be withdrawn from the Trader bycomplementary operations, (WithdrawC and WithdrawS). Componentsinvolved in the binding process (Binders, GlueFactory, Tree) were also de�ned.� Extensibility. By enabling users to rede�ne tuple formats and user-customizethe matching function, Magnet supports extensibility.� QoS-based Management. Extensibility and �exibility of the architectureenables QoS Management. Firstly, QoS De�nition introduces QoS operators(which can be user-customized). In addition, within the QoS Negotiationphase, components can formulate their preferences by QoS-rating operatorsand QoS-rating match in order to select the best tuple among a group ofmatching tuples. QoS Maintenance, based on QoS Monitoring, enables twoadaptation strategies to be implemented: resource management and applica-tion adaptation.� Dynamic Rebinding. Tuplespace-based implementation of four phases ofthe rebinding process was described. In addition, we have discussed all com-ponents involved in the process (Rebinders, Updater, Administrator) as wellas di�erent situations into which the system may transforms (as a result ofdi�erent components performing the initiation and renegotiation).� Information Monitoring. Components for monitoring (Updater, Monitor)of service de�nitions placed into the information pool (for both parties �clients and servers) ensure that component tuples are up-to-date at all times.� Scalability. Magnet supports operations Join and Leave to enable mobileusers to use local resources transparently in a site where they have arrived.In addition, the architecture also supports scaling by enabling a tuple to bepassed over the trading system to a particular Trader for processing usingspecial components, Locators.8.2 Future WorkThis section identi�es areas of future research, discussing problems beyond thescope of this thesis, or identifying potential alternative design decisions to thoseundertaken in Magnet.8.2.1 The Resource ManagementIn this section we identify alternative design approaches to those implemented inMagnet.� Distribution of the Information Pool. In contrast to the `visible' dis-tribution of the information pool implemented by Magnet using the Treecomponents, an alternative approach uses a Distributed Shared Memory, asdiscussed in chapter 6. We investigated this approach in the early stages ofour research [34].

CHAPTER 8. CONCLUSION 114� Protection of the Information Pool. Magnet assumes that all tuplesplaced into the pool represent the services of existing components. There isno notion of protecting applications against misleading components insertingtuples which represent non-existing services. An additional protection schememight be implemented, such as an authorization of components to call theTrader operations.� Consistency of the Information Pool. According to our assumption,Magnet cannot be responsible for consistency of the information pool. Analternative approach, Magnet's responsibility over tuples in the pool, leadsto investigation of garbage collection of out-of-date tuples left in the pool, asdiscussed in chapter 7.Within the black-box approach, the only way to �nd out whether the compo-nent which inserted the tuple into the pool still exists is to call a dedicatedoperation `still alive' provided by the component itself, or by introducingtimeouts. Implications for system performance are worth investigation, inparticular in the case of operations Join and Leave.� Diverse Applications of the Framework. The utility of the Magnetframework was illustrated in several operating system-based examples, inchapter 7. As the architecture was designed to be suitable for any applicationsrequiring trader-based dynamic binding and rebinding, there are more diverseapplications that can use the potential of the architecture. An example ofdynamic taxi-controlling system, based on magnet, was investigated duringour research [35].8.3 SummaryThis chapter has presented general conclusions and also areas of possible futureresearch. We have summarized this work by recapitulating initial requirements(dynamic trading, extensibility, QoS-based management, dynamic rebinding, infor-mation monitoring, and scalability) and presenting how they were met, at the modellevel and at the Magnet architecture level.Our research on Magnet has demonstrated the feasibility of dynamic resourcemanagement which provides �exible QoS-based description, negotiation of services,user-customization of allocation strategies, and runtime adaptation to changes incomputing environment.

Bibliography[1] A.P.M. Ltd. The ANSA Reference Manual Release 01.00. APM Cambridge Lim-ited, UK, March 1989.[2] C. Aurrecoechea, A. Campbell, L. Hauw. A Review of Quality of Service Archi-tectures. ACM Multimedia Systems Journal, Internal report number MPG-95-10,November 1995.[3] M. J. Bach. The Design of the Unix Operating System. Prentice Hall Interna-tional, Inc., 1986.[4] A. Benerjea, B. Mah. The Real-Time Channel Administration Protocol. In Pro-ceedings of the Second International Workshop on Network and Operating SystemSupport for Digital Audio and Video, IBM ENC, Heidelberg, Germany, 1991.[5] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,C. Chambers, S. Eggers. Extensibility, Safety and Performance in the SPIN Oper-ating System. In Proceedings of the 15th ACM Symposium on Operating SystemsPrinciples, pages 267-284, Colorado, USA, December 1995.[6] L. Besse, L. Dairaine, L. Fedacui, W. Tawbi, K. Thai. Towards an Architecturefor Distributed Multimedia Application Support. In Proceedings of the Interna-tional Conference on Multimedia Computing and Systems, Boston, USA, May1994.[7] A. Birrell and B. Nelson. Implementing Remote Procedure Calls. ACM Trans-actions on Computer Systems, 27(4), pages 349-350, April 1984.[8] G. S. Blair, N. Davies, A. Friday and S. P. Wade. Quality of service support inmobile environments: an approach based on tuple spaces. In Proceedings of the5th IFIP International Workshop on Quality of Service, New York, USA, May1997.[9] G. S. Blair, G. Coulson, N. Davies, P. Robin, T. Fitzpatrick. Adaptive Middle-ware for Mobile Multimedia Applications. In Proceedings of the 7th InternationalWorkshop on Network and Operating System Support for Digital Audio andVideo (NOSSDAV '97), St. Louis, MI, USA, May 1997.[10] D. Bolton, D. Gilbert, K. Murray, P. Osmon, A. Whitcroft, T. Wilkinson, N.Williams. A Question based approach to Open systems: OSPREY. Internal TR,SARC, City University, London. March 1993.[11] A. Campbell, G. Coulson, D. Hutchison. A Quality of Service Architecture.Computer Communication Review, 1(2), pages 6-27, April 1994.[12] L. Cardelli. Foundations for Wide-Area Systems.Paolo Ciancarini, AlessandroFantechi and Roberto Gorrieri, Editors. Formal Methods for Open Object-Based115

BIBLIOGRAPHY 116Distributed Systems, IFIP TC6/WG6.1 Third International Conference on For-mal Methods for Open Object-Based Distributed Systems (FMOODS), February15-18, 1999, Florence, Italy. pages 349-349, Kluwer Academic Publishers, 1999.[13] W. H. Cheung, A. H. Loong. Exploring Issues of Operating Systems Structur-ing: from Microkernel to Extensible Systems. Operating Systems Review, 29(4),pages 4-16, October 1995.[14] M. Clarke, G. Coulson. An Architecture for Dynamic Extensible Operating Sys-tems. In Proceedings of the 4th International Conference on Con�gurable Dis-tributed Systems, pages 145-155, Annapolis, Maryland, USA, May 1998.[15] J. S. Crane. Dynamic Binding for Distributed Systems. PhD thesis, Universityof London, Department of Computing, Imperial College of Science, Technologyand Medicine, 180 Queen's Gate, London SW7 2BZ, UK, 1997.[16] N. Davies, G. S. Blair, K. Cheverst and A. Friday. Supporting Adaptive Servicesin a Heterogeneous Mobile Environment. In Proceedings of the 1st Workshop onMobile Computing Systems and Applications, Santa Cruz, CA, USA, December1994.[17] Distributed Multimedia Research Group. ABTA: The Ac-tive Badge Tourist Application. Computing Department, Lan-caster University, Lancaster, UK. Electronic document available athttp://www.comp.lancs.ac.uk/computing/research/mpg/most/abta_project.html[18] S. M. Dorward, R. Pike, D. L. Presotto, D. M. Ritchie, H. W. Trickey, P.Winterbottom. The Inferno Operating System. Bell Labs Technical Journal, 2(1),pages 5-18, Winter 1997.[19] D. R. Engler, M. F. Kaashoek, J. W. O'Toole Jr. Exokernel: An OperatingSystem Architecture for Application-Level Resource Management. In Proceedingsof the 15th ACM Symposium on Operating Systems Principles, pages 251-266,Colorado, USA, December 1995.[20] T. Fitzpatrick, G. S. Blair, G. Coulson, N. Davies, P. Robin. Supporting Adap-tive Multimedia Applications through Open Bindings. In Proceedings of the 4thInternational Conference on Con�gurable Distributed Systems, pages 128-135,Annapolis, Maryland, USA, May 1998.[21] G. H. Forman, J. Zahorjan. The Challenges of Mobile Computing. IEEE Com-puter, 27(4), pages 38-47, April 1994.[22] D. Gelernter. Generative Communication in Linda. ACM Transactions on Pro-gramming Languages and Systems, 7(1), pages 80-112, January 1985.[23] A. S. Grimshaw, W. A. Wulf. The Legion Vision of a Worldwide Virtual Com-puter. Communications of the ACM, 40(1), January 1997.[24] D. O. Guedes, D. E. Bakken, N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting.A Customized Communication Subsystem for FT-Linda. In Proceedings of the13th Brazilian Symposium on Computer Networks, pages 319-338, May 1995.[25] D. B. Hehmann, R. G. Herrtwich, W. Schultz, T. Schuett, R. Steinmetz. Imple-menting HeiTS: Architecture and Implementation strategy of the Heidelberg HighSpeed Transport System. In Proceedings of the Second International Workshopon Network and Operating System Support for Digital Audio and Video, IBMENC, Heidelberg, Germany, 1991.

BIBLIOGRAPHY 117[26] M. Henzinger, V. King. Fully Dynamic 2-edge Connectivity Algorithm in Poly-logaritmic Time per Operation. Technical Note 1997-004, Digital Equipment Cor-poration, Systems Research Center, Palo Alto, CA, USA, June 1997.[27] D. Hildebrand. QNX: Microkernel Technology for Open Systems HandheldComputing. The Pen & Portable Computing Conference and Exposition, Boston,USA, May 1994.[28] M. A. Hiltunen, R. D. Schlichting. Fine-Grain QoS customization inDistributed Middleware Services. Department of Computer Science, Uni-versity of Arizona, Tuscon, AZ, USA. Electronic document available atftp://ftp.cs.arizona.edu/ftol/papers/iwqos.ps[29] N. Hutchinson, L. Peterson. The x-kernel: An Architecture for ImplementingNetwork Protocols. IEEE Transactions on Software Engineering, 17(1), pages 64-76, January 1991.[30] V. Issarny, C. Bidan, T. Saridakis. Achieving Middleware Customization in aCon�guration-Based Development. In Proceedings of the 4th International Con-ference on Con�gurable Distributed Systems, pages 207-214, Annapolis, Mary-land, USA, May 1998.[31] M. F. Kaashoek, D. R. Engler, G. R. Ganger. Application Performance andFlexibility on Exokernel Systems. In Proceedings of the 16th ACM Symposiumon Operating Systems Principles, pages 52-65, Saint-Malo, France, October 1997.[32] P. Kostkova, K. Murray, T. Wilkinson. Component Based Operating Sys-tem. Second Symposium on Operating Systems Design and Implementation,WIP session, Seattle, USA, October 1996. Electronic document available athttp://www.usenix.org/publications/library/proceedings/osdi96/wip.html[33] P. Kostkova, J. S. Crane, J. A. McCann, T. Wilkinson. MAGNET: QoS-based Dynamic Adaptation in a Changing Environment. Internal TR, HiPeX,Department of Computer Science, City University, London, UK, February1998. Electronic document available at ftp://ftp.cs.city.ac.uk/users/patty/qos-abstract.html[34] P. Kostkova, T. Wilkinson: MAGNET: A Virtual Shared Tuplespace ResourceManager. International Journal on Parallel and Distributed Computing, SpecialIssue on Parallel and Distributed Computing Practices, Ed. M. Paprzycki, NOVAScience Books, Commack, New York, 1(3), September 1998.[35] P. Kostkova, J. S. Crane, T. Wilkinson: MAGNET: A Dynamic InformationBroker for Mobile Environments. Internal TR, HiPeX, Department of ComputerScience, City University, London, UK, March 1998. Electronic document availableat ftp://ftp.cs.city.ac.uk/users/patty/broker-abstract.html[36] J. Kramer, J. Magee, A. Young. Towards Unifying Fault and Change Manage-ment. In Proceedings of IEEE International Workshop on Distributed ComputingSystems in the 90', pages 57-63, Cairo, Egypt, 1990.[37] B. W. Lampson. Designing a Global Name Service. In Proceedings of the 5thAnnual ACM Symposium on Principles of Distributed Computing (PODC 86'),Calgary, Canada, August 1986. ACM New York, pages 1-10, 1986.[38] A. A. Lazar. Challenges in Multimedia Networking. In Proceedings of the In-ternational Hi-Tech Forum, Osaka, Japan, February 1994.

BIBLIOGRAPHY 118[39] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fairbairns,E. Hyden. The Design and Implementation of an Operating System to SupportDistributed Multimedia Applications. University of Cambridge, Computer Labo-ratory. Cambridge, UK, June 1997.[40] J. Liedtke. On micro-kernel construction. In Proceedings of the 15th ACMSymposium on Operating Systems Principles, Copper Mountain Resort, Col-orado, USA, pages 237-250, December 1995.[41] M. J. Litzkow, M. Livny, M. W. Mutka. Condor � A Hunter for Idle Work-stations. In Proceedings of the 8th International Conference on Distributed Com-puting systems, pages 104-111, 1998.[42] J. Magee, J. Kramer, M. Sloman, N. Dulay. A Constructive Development Envi-ronment for Parallel and Distributed Programs. Distributed Systems EngineeringJournal, Special Issue on Con�gurable Distributed Systems,1(5), pages 304-312,September 1994.[43] J. Magee, N. Dulay, S. Eisenbach, J. Kramer. Specifying Distributed Soft-ware Architectures. Fifth European Software Engineering Conference, Barcelona,September 1995.[44] K. R. Mayes, J. Bridgland. Arena � a Run-Time Operating System for Par-allel Applications. In Proceedings of Euromicro '97, Workshop on Parallel andDistributed Processing, pages 253-258, 1997.[45] J. A. McCann, P. Kostkova. Advances in Operating Systems and their Im-plications for DBMS. Internal TR, HiPeX, Department of Computer Science,City University, London, UK, August 1997. Electronic document available atftp://ftp.cs.city.ac.uk/users/patty/dbms-abstract.html[46] J. A. McCann, J. S. Crane. Kendra: Internet Distribution & Delivery Sys-tem � an introductory paper. In Proceedings of SCS EuroMedia Conference,Leicester, UK. Ed. Verbraeck A., Al-Akaidi M., Society for Computer SimulationInternational, pages 134-140, January 1998.[47] A. Messer, T. Wilkinson. Components for Operation System Design. In Pro-ceedings of the 5th IEEE Internation Workshop on Object-Orientation in Oper-ating Systems (IWOOOS '96), Seattle, USA, October 1996.[48] Microsoft Corporation. DCOM Technical Overview. Electronic document avail-able at http://www.microsoft.com/com/dcom.asp[49] D. Mosberger, L. L. Peterson. Making Paths Explicit in the Scout OperatingSystem. In Proceedings of the Second Symposium on Operating Systems Designand Implementation, Seattle, USA, pages 153-167, October 1996.[50] K. Nahrstedt. Middleware Support for Quality of Service Support. In Proceed-ings of the Grace Hopper Celebration for Women in Computing, San Jose, USA,pages 65-68, September 1997.[51] K. Nahrstedt, J. Smith. The QoS Broker. IEEE Multimedia, 2(1), pages 53-67,Spring 1995.[52] K. Nahrstedt, J. Smith. Design, Implementation and Experience of theOMEGA End-Point Architecture. IEEE Journal on Selected Areas in Commu-nications, 14(7), pages 1263-1279, September 1996.

BIBLIOGRAPHY 119[53] K. Nahrstedt, R. Steinmetz. Resource Management in Networked MultimediaSystems. IEEE Computer 28(5), pages 52-64, May 1995.[54] G. C. Necula, P. Lee. Safe Kernel Extensions Without Run-Time Checking. InProceedings of the second Symposium on Operating Systems Design and Imple-mentation, Seattle, USA, pages 229-243, October 1996.[55] G. Nilisoin, F. Dupuy, Chapman. An Overview of the Telecommunications In-formation Networking Architecture. In Proceedings of TINA 95, Melbourne, Aus-tralia, February 1995.[56] The Object Management Group, OMG Headquarters, 492 Old ConnecticutPath, Framington, MA 01701, USA. The Common Object Request Broker: Ar-chitecture and Speci�cation, July 1995. Version 2.0.[57] B. Oki, M. P�uegl, A. Siegel, D. Skeen. The Information Bus. In Proceedingsof the 14th ACM Symposium on Operating Systems Principles (SIGOPS '93),Asheville, North Carolina, USA, pages 58-68, December 1993.[58] A. Oliva, L. E. Buzato. The Design and Implementation of Guarana'. Submit-ted to the 5th USENIX Conference on Object-Oriented Technologies and Systems(COOTS '99), San Diego, USA, May 1999.[59] P. Pardyak, B. Bershad. Dynamic Binding for an Extensible System. In Pro-ceedings of the second Symposium on Operating Systems Design and Implemen-tation, Seattle, USA, pages 201-212, October 1996.[60] R. Pike, D. L. Presto, S. M. Doward, B. Flandrena, K. Thompson, H. W.Trickey, P. Winterbottom. Plan 9 from Bell Labs. Journal of Computing Systems,8(3), pages 221-254, Summer 1995.[61] B. Potter, J. Sinclair, D. Till. An Introduction to Formal Speci�cation and Z.Prentice Hall International, second edition, 1996.[62] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J.Walpole, K. Zhang. Optimistic Incremental Specialization: Streamlining a Com-mercial Operating System. In Proceedings of the 15th ACM Symposium on Op-erating Systems Principles, pages 314-324, Colorado, USA, December 1995.[63] R. Raman, M. Livny, M. Solomon. Matchmaking: Distributed Resource Man-agement for High Throughput Computing. In Proceedings of the 7th IEEE Inter-national Symposium on High Performance Distributed Computing, Chicago, IL,USA, July 1998.[64] D. Reed, R. Fairbairns. Nemesis: the kernel. Overview. University of Cam-bridge, Computer Laboratory. Cambridge, UK, May 1997.[65] S. Savage, B. Bershad. Some Issues in the Design of an Extensible OperatingSystem. In Proceedings of the First Symposium on Operating Systems Design andImplementation, Panel session, Monterey, California, USA, page 196, November1994.[66] Secretariat: ISO/IEC JTC1/SC33. Standards Association of Australia, POBox 1055, Strath�eld, NSW, Australia 2135. Open Distributed Processing � In-terface References and Binding. January 1998. Document ISO/IEC JTC1/SC33N119, ITU-T Draft Recommendation X.930 (1998).

BIBLIOGRAPHY 120[67] Secretariat: ISO/IEC JTC1/SC21. Standards Association of Australia, POBox 1055, Strath�eld, NSW, Australia 2135. Information technology � OpenDistributed Processing � Trading Function. June 1995. Document ITU-T Rec.9trISO/IEC JTC1/SC21 DIS 13235.[68] Secretariat: ISO/IEC JTC1/SCWorking Draft for Open Distributed Processing� Reference Model � Quality of Service. January 1998. Document ISO/IECJTC1/SC21 N10979 Ed 6.4.[69] R. Staehli, J. Walpole, D. Maier.Quality of Service Speci�cation for MultimediaPresentations. Multimedia Systems, 3(5/6), November 1995.[70] H. Storner. Linux kerneld mini-HOWTO. Electronic document available athttp://www.image.dk/�storner/kerneld-mini-HOWTO.html, version 1.7, July19, 1997.[71] M. I. Seltzer, Y. Endo, C. Small, K. A. Smith. Dealing With Disaster: Sur-viving Misbehaved Kernel Extensions. In Proceedings of the second Symposiumon Operating Systems Design and Implementation, Seattle, USA, pages 213-227,October 1996.[72] A. S. Tanenbaum. Distributed Operating Systems. Prentice Hall International,Inc. 1995.[73] A. Veitch, N. Hutchinson. Kea � A Dynamically Extensible and Con�gurableOperating System Kernel. In Proceedings of the Third International Conferenceon Con�gurable Distributed Systems, pages 236-242, Annapolis, Maryland, USA,May 1996.[74] A. Veitch, N. Hutchinson. Dynamic Service Recon�guration and Migration inthe Kea Kernel. In Proceedings of the 4th International Conference on Con-�gurable Distributed Systems, pages 156-163, Annapolis, Maryland, USA, May1998.[75] J. Waldo. Jini Architecture Overview. Electronic document available athttp://www.javasoft.com/products/jini/whitepapers/architectureoverview.pdf,Sun Microsystems, Inc., 1998.[76] Web Technologies Department of Computer Science, IBM Almaden Re-search Center, San Jose, CA, USA, Electronic document available athttp://www.almaden.ibm.com/cs/TSpaces.[77] Niklaus Wirth. Algorithm + Data Structures = Programs. Prentice-Hall, Inc.,Englewood Cli�s, New Jersey, 1975.

