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Abstract 

Lentiviral vectors (LV) are often pseudotyped with the envelope G protein from 

vesicular stomatitis virus Indiana strain (VSVind.G). However, VSVind.G 

based continuous LV producer cell lines have not been reported; it has been 

assumed that VSVind.G is fusogenic and cytotoxic. To find alternative G 

proteins for LV production, we investigated other vesiculovirus G proteins 

(VesG) from VSV New Jersey strain (VSVnj), Cocal virus (COCV), Piry virus 

(PIRYV), VSV Alagoas virus (VSVala), and Maraba virus (MARAV). All these 

VesG envelopes were used in transient transfection to produce infectious 

particles that were robust during concentration and freeze-thawing. We then 

found, surprisingly, that VSVind.G and all the other VesG proteins could be 

constitutively expressed in 293T cells, and showed no cytotoxicity when 

compared to a retroviral Env protein. These VesG expressing cells could 

support LV production when other components were transiently supplied. 

However, we showed that VesG expressing cells do not show receptor 

interference hence LV can superinfect their producer cells, resulting in vector 

genome accumulation and possible toxicity. We attempted to knock-out the 

low- density lipoprotein receptor (LDLR) gene on producer cells, which was 

reported to be the primary cell entry receptor for VSVind.G. However, only a 

slight reduction in LV transduction was observed in LDLR-KO cells. Hence, 

other methods such as using anti-retroviral drugs to block superinfection may 

be necessary to allow construction of stable producer cell lines. 
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Impact Statement 

Lentiviral vectors (LVs) are usually pseudotyped with the G protein of vesicular 

stomatitis virus Indiana strain (VSVind.G) due to its high physical stability. 

However, this G protein has been believed to be toxic when expressed 

constitutively in cells owing to its high fusogenicity. Therefore, well-studied 

alternative G proteins can provide crucial insights related to their use in clinical 

grade LV production. In this study, I demonstrate that other tested 

vesiculovirus G proteins are as stable, both physically and thermally, as the 

gold standard VSVind.G. Also, I show that all tested G proteins, including 

VSVind.G, show similar cytotoxicity to that of the negative control. Also, I 

demonstrate that, against the commonly accepted concept that VSVind.G 

cannot be expressed in cells continuously, this G protein could be expressed 

stably in cells for up to five months. 

Moreover, these stable VSVind.G expressing cells supported LV production 

when were supplemented with other vector components transiently in this 

period. Similarly, other tested G proteins could also be stably expressed in 

cells for at least five months and generated transient LVs during this time. 

These G proteins can be employed to generate stable packaging cell lines for 

lentiviral vector production. 
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1.1 Gene therapy- From concept to reality  

Gene therapy has the potential to treat a disease at its genetic roots, in both 

hereditary and acquired conditions [7]. Gene therapy can be simply defined as 

a treatment that involves the introduction of a new gene into a patient's cells 

in an attempt to cure a disease or improve a condition. Recent advances in 

molecular biology and the sequencing of the human genome helped to 

transform gene therapy from a revolutionary concept to an important tool in 

the treatment of genetic diseases [8].  

In the 20th century, it was already clear that some conditions are passed on 

from parents to offspring [9]. The idea of using viruses to deliver genes was 

first started in the mid-1970s when Varmus and Bishop reported that gamma-

retrovirus could obtain cellular genes naturally [10, 11]. In the late 1970s, 

recombinants of both non-integrating viruses (e.g. adenovirus, bovine 

papilloma, vaccinia and herpes simplex viruses) and integrating retroviruses 

were being studied by several laboratories [12].  

Although gene therapy was still controversial, by 1980s retrovirus-based gene 

transfer to mammalian cells was routinely performed [13-16]. In the early 

1990s, the first approved clinical trial was performed in patients with severe 

combined immunodeficiency (SCID) using gammaretrovirus based vectors. 

Temporary improvement of the immune system was observed in the patients, 

and although they still required enzyme replacement therapy, this can be 

considered as the first successful human gene therapy trial [16-18].  

In the mid-1990s, long-term expression of vectors based on adeno-associated 

virus (AAV) was demonstrated in mice which led to the first AAV gene therapy 



20 
 

clinical trial for haemophilia B in the late 1990s [19, 20]. While these early trials 

were relatively safe, AAVs were cleared as a result of pre-existing neutralising 

antibodies in the body [21].    

In early 2000, Cavazzana-Calvo and colleagues introduced the common 

interleukin receptor γ-chain (IL2RG) in the bone marrow of patients with X-

linked severe combined immunodeficiency (X-SCID) using a murine 

leukaemia virus (MLV)-based vector. Although this therapy restored the 

immune system function, several cases of leukaemia (including the death of 

one patient) that were induced due to the insertional mutagenesis caused by 

the vectors were reported [22]. Similar results were observed by Thrasher 

group (University College London, UK) in 2004 [23].  

The first effective gene therapy trial for cancer treatment was reported in 2006. 

In this trial, the T cells of the patients were engineered using a retroviral vector 

to express TCR against a melanoma antigen ex vivo. Cells were then re-

administrated into the patients. This treatment resulted in regression in 2 out 

of fifteen patients [24]. 

Currently, many human gene therapy clinical trials have proved to be effective. 

All the scientific efforts in the past decades, both successful and unsuccessful, 

helped to improve gene therapy through the development of better vectors 

regarding safety, and efficacy.      

1.2 Vectors used for gene delivery 

Vectors are vehicles that are used to transfer genetic materials into target cells 

and tissues. The ideal vector for gene delivery should be specific to target cells 
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efficiently, stable (e.g. thermostable at body temperature), safe, and to have 

high and long-term expression levels for as long as required.  

Naked DNA injection into tissues locally or into systemic circulation might 

seem to be the simplest way of gene delivery to the body, however, injected 

naked DNA can be rapidly degraded by nucleases or cleared by the immune 

system, which can limit the efficiency of gene transfer into target cells [25, 26]. 

Therefore, other methods were developed to increase the efficiency of gene 

delivery. These methods include viral and non-viral based gene delivery 

systems. Viral vectors are effective tools for gene transfer. However, there are 

limitations associated with their use including immunogenicity [27, 28], 

carcinogenesis [29], difficulty in production and scaling up [30, 31], and limited 

capacity for the transgene [32]. Non-viral delivery systems were developed as 

an alternative to virus-based delivery systems owing to several advantages 

such as lower immunogenicity and toxicity, larger carrying capacity, and 

simpler production and scale-up [33]. Non-viral methods are used for gene 

delivery in around 20% of all current clinical trials [34, 35] and are categorised 

into two types, physical and chemical. In physical methods, physical force is 

used to permeabilise the cellular membrane. The most common physical 

methods are microinjection, electroporation, ultrasound, and gene gun. 

Chemical methods, on the other hand, use carriers such as liposomes, cationic 

lipids, and polymers to deliver genetic material into target cells [36-38]. 

Nevertheless, despite all the advances so far, the ideal vector has yet to be 

constructed. 

On the other hand, viruses have evolved naturally to transfer their nucleic acid 

into target cells for replication. This feature makes viruses to be attractive as 
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gene delivery vehicles. Over the years they have been engineered to make 

suitable vehicles for gene transfer into humans. Specific viruses have been 

chosen based on their characteristics to develop viral vector systems. DNA 

viruses such as adenoviruses, adeno-associated viruses, and herpesviruses 

have been widely used in clinical trials [39].   

Amongst RNA viruses, retroviral vectors are the most commonly used due to 

their high gene transfer efficiency and expression of therapeutic genes. These 

vectors have a relatively large carrying capacity of ~9kb, can integrate into the 

host cell genome, and therefore, can induce long-term expression of the 

transgene in target cells [40]. Over the past decades, a number of patients 

with various immunodeficiencies have been treated using MLV-based 

gammaretroviral vectors to transduce autologous haematopoietic cells with 

the desired transgene [41-43] (Table 1-2). In recent years, lentiviral vectors 

that are derived from human immunodeficiency virus type 1 (HIV-1) have been 

utilised due to their unique ability to infect both dividing and non-dividing cells 

[44-46] (Table 1-3). This is a desirable characteristic in gene therapy 

applications that slowly-dividing cells such as haematopoietic stem cells or T 

lymphocytes are the gene delivery target. The focus of this thesis will be on 

HIV-1- based lentiviral vectors. 

1.3 Retroviruses  

The Rous sarcoma virus (RSV) was the first retrovirus to be discovered when 

it was isolated from tumours in chickens [47]. Other retroviruses then were 

isolated from a range of animals [48-50]. The first human retrovirus was 

isolated in the 1980s in human T-cell leukaemia virus type 1 (HTLV-1) affected 
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patients [51]. Shortly after, the human immunodeficiency virus (HIV) which is 

now known as the cause of acquired immune deficiency syndrome (AIDS), 

was discovered in 1984 [52, 53]. 

Retroviruses belong to the family of Retroviridae which consists of a large 

number of enveloped RNA viruses. This family is divided into two main sub-

families; Orthoretrovirinae and Spumaretrovirinae. Orthoretrovirinae is further 

divided into two groups: simple and complex viruses. Simple viruses are 

alpharetroviruses, betaretroviruses, and gammaretroviruses; complex viruses 

are deltaretroviruses, epsilonretroviruses, and lentiviruses. Spumaretrovirinae 

sub-family has one known genus, spumavirus (Table 1-1). 

The RNA genome of the Retroviridae family is positive sense, linear, single-

stranded, and 7-12 kb in size. The replication method of retroviruses is 

considered the hallmark of this family as they employ a reverse transcriptase 

enzyme, encoded by the viral pol gene, to transcribe the viral single-stranded 

RNA (ssRNA) into linear double-stranded DNA (dsDNA) which after entering 

the nucleus integrates into the target cell genome [54, 55].  Retroviruses are 

surrounded by an envelope consisting of a host cell-derived lipid bilayer and 

virus-encoded envelope glycoprotein.   

The genome of both simple and complex retroviruses contain three main 

coding domains: gag, which codes for the viral structure including capsid (CA), 

matrix (MA) and nucleocapsid (NC) proteins; pol, that codes for the viral 

enzymes necessary for replication such as reverse transcriptase (RT), 

protease (PR), and integrase (IN); and env, that codes for the viral envelope 

glycoprotein that consists of the transmembrane (TM) and surface (SU) 
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subunits [56]. Complex retroviruses such as lentiviruses contain additional 

open reading frames that code for regulatory genes, for example the regulatory 

genes tat and rev in HIV-1, which are essential for the viral genome expression 

and nuclear export, respectively, in addition to a set of accessory genes (e.g. 

HIV-1 vpu, vif, vpr and nef) that are essential for viral pathogenicity. The 

retrovirus genome has the long terminal repeat (LTR) at both 5’ and 3’ ends. 

Sequences within the viral LTR contain cis-acting regulatory sequences that 

regulate viral gene expression and genome replication [55].  

The RNA genome of HIV contains R and U5 sequences at the 5’ end, followed 

by a packaging signal (ψ) which is responsible for incorporating the RNA 

genome into viral particles [57].  Another R sequence is repeated at the 3’ end 

of the genome following U3. The R sequences on both ends of the viral 

genome have a pivotal role in reverse transcription (Figure 1-1A). What makes 

retroviruses unique is the reverse transcription and integration into the cell 

genome, which makes the retroviral infection permanent [54] as it is inherited 

by daughter cells.  

The attachment of retroviral surface glycoprotein to specific receptors on target 

cells induces conformational changes in the glycoprotein exposing the fusion 

domain which leads to the fusion of the viral membrane to that of the target 

cell. This membrane fusion results in the release of the viral core, including the 

RNA genome, into the cell’s cytoplasm. Reverse transcriptase then 

transcribes this RNA into DNA that enters the nucleus and integrates into the 

host cell genome via the viral integrase [54, 58]. With integration, the viral 

genome becomes part of the cellular genome and can employ the cellular 

systems such as RNA polymerase II and ribosomes to express the viral genes. 
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In simple retroviruses, from the integrated provirus two different mRNAs are 

synthesised; spliced mRNAs that encode the viral proteins, and un-spliced 

mRNAs that are destined for incorporation into progeny virions, and for gag/pol 

expression. After viral protein synthesis from the mRNAs by the cellular 

machinery in the cytoplasm, in most retroviruses, the viral proteins are 

transferred to the plasma membrane where viral particle assembly takes 

place. The envelope is acquired during the budding process where the viruses 

are released from the plasma membrane.  

As retroviruses efficiently deliver their genome into the host cell, they have 

been converted to vehicles for gene delivery. In addition to the ability to 

integrate into the target cell genome, the simple genetic organisation is the 

primary factor in choosing gammaretroviral vectors (GRVs) for delivering 

genetic materials [54]. Most gammaretroviral vectors have been developed 

based on MLV (murine leukaemia virus) for gene transfer applications where 

they have been used widely over the past decades [43, 56]. However, there 

are some adverse effects caused by gammaretroviral vector integration into 

the host cell genome; the integrase and LTRs of these vectors seem to 

promote preferential interaction with active host cell promoter and enhancer 

regions that are enriched for transcription factor binding sites [59]. Therefore, 

transcriptional activation of nearby proto-oncogenes by the vector has been 

occurring in some clinical trials (e.g. X-SCID) leading to myelodysplasia or 

lymphoid leukaemia [41, 60]. 

Moreover, GRVs enter the nucleus only when the cells are undergoing mitosis 

while the nuclear membrane degenerates. Therefore, they can only infect 

dividing cells [61, 62]. This can be a major limitation when the target cells are 
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non-dividing and/or slow-dividing cells such as haematopoietic stem cells 

(targeted in immunodeficiency disorders and hereditary anaemia clinical 

trials), quiescent lymphocytes (targeted in cancer clinical trials), hepatocytes, 

neurons, and muscle fibres.  

On the other hand, as lentiviruses use nuclear pores to enter the nucleus, they 

can infect both dividing and non-dividing cells [63]. This unique characteristic 

makes lentiviruses to be even more attractive to be used as viral vectors. 

Additionally, these vectors have been developed without the viral LTR 

enhancer elements (SIN or self-inactivating vectors) to reduce the chances of 

transcriptional activation of nearby proto-oncogenes.  Furthermore, the overall 

insertion site of lentiviral vectors (LVs) seems to be different from that of 

gamma-retroviral vectors, possibly due to the cellular factors associated with 

IN or the alterations of the LTR in LVs as well as the differences between the 

integrases of these two vectors [41, 59, 64]. Owing to these advantages, more 

studies have been conducted in an attempt to develop safer and more efficient 

HIV-1 derived vectors over the past few years.   
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Family Sub-family Class Genus Prototype virus 
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Orthoretrovirinae 

Simple 

Alpharetrovirus RSV 

Betaretrovirus Mouse mammary 

tumour virus 

Gammaretrovirus MLV, FLV 

Complex 

Deltaretrovirus BLV, HTLV 

Epsilonretrovirus Walleye dermal 

sarcoma virus 

Lentivirus HIV, BIV, FIV 

Spumaretrovirinae  Spumavirus HFV, SFV 

Table 1-1. Retroviridae family classification.  
BIV: Bovine immunodeficiency virus; BLV: Bovine leukaemia virus; FIV: Feline 
immunodeficiency virus; FLV: Feline leukaemia virus; HFV: Human foamy virus; HIV: Human 
immunodeficiency virus; HTLV: Human T-lymphotropic virus; MLV: Murine leukaemia virus; 
RSV: Rous sarcoma virus; SFV: Simian foamy virus. 
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1.3.1 Gamma-retroviral vectors in clinical trials 

Stable integration into the host cell genome, ease of manipulation and 

production of therapeutic-containing vectors are some of the reasons behind 

retroviral vectors (RVs) becoming the most frequently used vectors for gene 

therapy applications [65]. Haematopoietic stem cells (HSCs) (CD34+ cells), 

usually autologous, are obtained from the patient, expanded and then 

transduced with therapeutic-containing RVs ex vivo before administration back 

into the patient. Allogeneic haematopoietic stem cell transplantation (HSCT) is 

considered to be the gold standard for treating primary immunodeficiencies 

(PID) [66-68]. This method not only minimises the risk of immunologic 

complications including graft-versus-host disease (GVHD) and graft rejection 

but also is more accessible to patients especially those without HLA-matched 

donors [69]. MLV-based gammaretroviral vectors (GRVs) have been used for 

the treatment of some PIDs including X-linked severe combined 

Immunodeficiency (SCID-X1), adenosine deaminase deficiency (ADA-SCID), 

X-linked Chronic Granulomatous Disorder (X-CGD), and Wiskott - Aldrich 

syndrome (WAS). Although some of these trials resulted in clinical benefits 

comparable to that of the allogeneic HSCT [67, 70, 71], the occurrence of 

insertional mutagenesis (IM) caused by GRV integration was one of the 

complications reported in these clinical trials. Consequently, studies have 

been done to improve all aspects of ex vivo transduction to minimise the risk 

of IM as well as to optimise HSC culture and transduction conditions [60, 72]. 

Furthermore, to eliminate the off-target effects and to guarantee adequate 

transgene expression, the use of specific promoters have been studied in the 

past few years [73].  
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Third generation self-inactivating (SIN) LVs have been developed in an 

attempt to eliminate the risk of IM caused by GRVs [69]. These SIN LVs have 

shown encouraging results in recent trials including adrenoleukodystrophy 

(ALD) [74], metachromatic leukodystrophy (MLD) [75], β-thalassemia [76], and 

WAS [77, 78]. 

Some selected gamma-retroviral vector-mediated gene therapy clinical trials 

are listed in Table 1-2. 
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Target 

cells 

Disease 

group 

Disease/ 

Transgene 
Env 

Production 

method 
reference 

HSCs PIDs 

ADA-SCID 

ADA 

MLV 

GALV 

GALV 

Gp+Am12 

PG13 

PG13 

[79] 

[67] 

[80] 

X-SCID 

IL2RG 

MLV 

GALV 

GALV 

ψCRIP 

PG13 

PG13 

[68] 

[81] 

[82] 

X-CGD 

gp91(phox) 

GALV 

GALV 

MLV 

PG13 

PG13 

Vamp 

[83] 

[84] 

[85, 86] 

WAS 

WASP 
GALV PG13 [87] 

T cells Cancer 

Neuroblastoma GALV PG13 [88, 89] 

Lymphoma/ 

Leukaemia 

NS 

NS 

GALV 

GALV 

NS 

NS 

NS 

PG13 

PG13 

NS 

[90, 91] 

[92] 

[93] 

[94] 

[95] 

Melanoma 
GALV 

NS 

PG13 

NS 

[24] 

[96] 

Synovial 

sarcoma 
GALV PG13 [97] 

Colorectal 

cancer 
RD114 Transient [98] 
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1.4 Lentiviruses 

Lentiviruses are a subclass of retroviruses (Table 1-1).  They consist of two 

copies of positive-sense single-stranded RNA genome. They are 

characterised by a long incubation period (Lente means slow in Latin) in which 

the virus pathogenicity is at a low level. Lentiviruses include a number of 

viruses such as human immunodeficiency virus-1 (HIV-1), HIV-2 and simian 

immunodeficiency virus (SIV). Amongst these viruses, HIV-1, which causes 

acquired immunodeficiency syndrome or AIDS in humans, has been the 

interest of many researchers.  

1.4.1 HIV-1 life cycle 

HIV-1 wild-type genome contains nine open reading frames: gag, pol, env, rev, 

tat, vpr, vpu, vif, and nef (Figure 1-3A). The HIV-1 replication cycle [99] 

includes two stages: early and late. Early phase begins with viral 

attachment/entry to the cell and ends in proviral integration. The late phase 

includes viral gene expression, viral particle assembly, budding, release, and 

maturation [58]. 

 

Table 1-2. List of selected recent RV-mediated gene therapy clinical trials. 
HSCs: hematopoietic stem cells; PID: primary immunodeficiency; ADA-SCID: adenosine 
deaminase deficiency; SCID-X1: X-linked severe combined immunodeficiency; X-CGD: X-
linked chronic granulomatous disorder; WAS: Wiskott Aldrich syndrome; WASP: WAS protein; 
ALD: adrenoleukodystrophy; MLD: metachromatic leukodystrophy; IL2RG: interleukin-2 
receptor common gamma chain; ARSA: arylsulfatase-A; GRV: Gamma-retroviral vector; Env: 
envelope; MLV: murine leukaemia virus; GALV: gibbon ape leukaemia virus; NS: not specified. 
Gp+Am12, PG13, ψCRIP and Vamp are stable gammaretroviral packaging cell lines. HEK 
293T cells were used in transient production. 
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1.4.1.1 Cell attachment and viral entry 

Viral entry to the target cell is the first stage of the life cycle. This stage requires 

the attachment of the virus Env to the host cell receptor followed by the fusion 

of virus and host cell membranes [100, 101].  

Following the initial attachment to the cell surface, the envelope engages with 

the specific receptors to enter the cells. The CD4 membrane glycoprotein and 

a G-protein-coupled chemokine receptor act as cellular receptor and co-

receptor for HIV entry. The chemokine receptors include cysteine-cysteine 

chemokine receptor 5 (CCR5) [102] and chemokine (C-X-C motif) receptor 4 

(CXCR4) (Figure 1-2, step 1) [103]. CD4 is mainly expressed on helper T cells 

(Th) and engages with the antigens presented by the major histocompatibility 

complex class II (MHC II) inducing immune response against the specific 

antigen [104].  

The envelope glycoprotein of HIV is a homotrimer of non-covalently linked 

heterodimers composed of a receptor-binding surface unit (gp120) and a 

fusogenic transmembrane unit (gp41). In the early stage of replication cycle, 

attachment of gp120 to CD4 receptor leads to conformational changes in 

gp120 and gp41 subunits. Conformational changes in the gp120 lead to the 

attachment of this protein to a co-receptor, CCR5 or CXCR4 [105]. 

Conformational rearrangement in gp41 occurs due to folding at the hinge 

regions of the trimer resulting in an amino-terminal helical region (HR-N) and 

a carboxy-terminal helical region (HR-C) to form a six-helical bundle (6HB). 

This results in the exposure of the hydrophobic fusion peptide leading to its 

insertion into the target cell membrane (Figure 1-2, step 2) [106-108].  The HIV 

attachment and entry into the cells can happen through pH-independent 
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endosomal uptake [109]. Next, the virion core is released into the cytoplasm. 

This core, which is now called the reverse transcription complex (RTC), in 

simple viruses such as Molony MLV consists of the viral genome, RT, IN, and 

CA, however, the HIV RTC contains Nef and Vpr in addition [110].  

1.4.1.2 Reverse transcription 

Before 1970, the accepted concept of the information flow or the ‘central 

dogma’ described that the information in genes flows from DNA to protein 

through RNA; DNA is required for RNA transcription and RNA for protein 

synthesis. In 1970 reverse transcription was first reported by two independent 

groups [40, 111] which changed the concept of information flow in molecular 

biology.  

Retroviruses package two copies of ssRNA. These two copies are used in 

reverse transcription to make the viral dsDNA (Figure 1-2, step 3). In addition, 

the HIV RT generates the LTRs on both ends of the DNA genome which will 

aid in the integration process [112].  

To initiate reverse transcription [110], a transfer RNA Lys3 (tRNALys3) binds to 

the primer binding site (PBS) of the HIV genome which is located downstream 

of the unique 5 (U5) in RNA [113, 114]. This binding mediates the synthesis of 

the minus cDNA including the U5 and R of the 5’ end which is termed as strong 

stop cDNA (Figure 1-1A). RT then degrades the RNA associated with the 

newly synthesised cDNA via its RNase H function (Figure 1-1B) [115]. As the 

R sequence is present in both 5’ and 3’ ends of the genome, the strong stop 

cDNA jumps to the 3’ end to bind the R sequence. This jump is known as the 

first strand transfer which leads to the minus strand cDNA extension to the 5’ 
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end of the RNA genome (Figure 1-1C). Apart from the 3’ polypurine tract (PPT) 

and the central PPT (cPPT) which are resistant to RNase H degradation, the 

rest of the template RNA is digested by the RNase H function of RT (Figure 1-

1D). The purine-rich sequences then act as primers to extend the 

complementary strand, or the positive strand, of DNA (Figure 1-1E). Having 

multiple transcription initiation sites results in the faster synthesis of the 

positive strand DNA compared to that of the minus strand [116]. The second 

strand transfer occurs as the complementary PBS on both strands bind 

together which results in the development of a circular DNA (Figure 1-1F/G). 

Strand displacement synthesis follows which results in copying the LTR 

sequence on both ends of the viral DNA which produces a longer DNA 

genome compared to the viral RNA [117]. By completing the reverse 

transcription and DNA synthesis, RTC develops into the pre-integration 

complex (PIC) [118].  

RT is a complicated process with two template exchange. Moreover, RT is 

error-prone (approximately one substitution per 10,000 bases) as it lacks 

proofreading activity [119, 120]. These factors contribute to recombination and 

high diversity of the HIV genome which contributes to the challenges of 

vaccine development against this virus.   
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A 

B 

D 

C 

F 

Figure 1-1. Steps of Reverse Transcription.  
Schematic of HIV-1 reverse transcription illustrating the conversion of ssRNA viral genome 
into double stranded DNA. RNA is shown in black and DNA in grey. (A) Initiation of reverse 
transcription by RT following tRNA binding with the primer binding site downstream of U5. 
(B) Synthesis of the minus-strand starts from the U5 and R sequences in the 5’ end of the 
genome. The RNase H activity of RT degrades the viral RNA in the generated RNA-DNA 
complex (dotted line). (C) The first strand transfer: the minus strand is transferred to the 
identical R sequences at the 3’. (D) cDNA extension while viral RNA gets degraded except 
for RNase H resistant cPPT and PPT sequences. (E) cPPT and PPT sequences act as 
primers for the plus strand DNA synthesis. (F) The second strand transfer: the tRNA primer 
is cleaved by RNAse H domain and plus strand DNA elongated from the PPT sequence is 
transferred to the 3’ side of the minus strand DNA. DNA synthesis of the plus strand is 
resumed from the cPPT. (G) Following elongation of both strands of DNA, a double 
stranded provirus is produced with a central DNA flap caused by the cPPT. Adapted from 
[6]. 
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1.4.1.3 Viral uncoating 

HIV capsid encloses the viral RNA genome, viral proteins such as CA, NC, 

RT, IN, and Vpr. RT are present within the capsid [121]. The shape and 

stability of the capsid have a direct effect on RT efficiency and hence viral 

infectivity [122]. The loss of capsid prior to entry of the viral genome to the cell 

nucleus is known as uncoating [123, 124]. This process is essential for viral 

genome entry to the nucleus as the diameters of the nuclear pore is smaller 

than that of the viral capsid.  

Although uncoating is known to take place during the transition between RTC 

and pre-integration complex (PIC) [118], the exact time and location of 

uncoating are yet to be elucidated. A study demonstrated that some CA stays 

in association with the PIC in the nucleus [125]. In a different study, complete 

cores were observed at the nuclear pore complex (NPC) suggesting that 

uncoating occurs when RTC arrives at the NPC. This might be the viral 

strategy to protect its genome against the host immune system [126, 127]. 

1.4.1.4 Nuclear transport of the viral genome  

While GRVs require nuclear membrane breakdown during mitosis in order to 

enter the nucleus (hence infecting only dividing cells) [61], HIV PIC contains 

MA, IN, and Vpr in association with the viral genome [128] allowing the 

complex to access the host cell chromatin in non-dividing cells (Figure 1-2, 

step 4) [129].  

NPCs are vessels cross the nuclear membrane that allows selected molecules 

and proteins such as ribonucleoproteins to pass through to or from the nucleus 

[130]. While molecules smaller than 9 nm in diameters can pass through NPCs 
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through diffusion, as HIV PIC is considerably larger, other mechanisms of 

nuclear transport are in place [131].      

One mechanism is by the interaction of the remaining capsid in the PIC with 

some nuclear transport factors (e.g. NUP358, NUP153) in the NPCs [132]. 

The other mechanism of PIC nuclear transport is mediated via energy-

dependent transport machinery through the interaction of the IN of the PIC 

with members of an importin-α protein family that exist in the NPCs [133].  

1.4.1.5 Integration of viral DNA into the host genome 

Upon entering the nucleus, the proviral DNA integrates into the host cell 

genome to maintain stable infection (Figure 1-2, step 5). This integration is 

mediated by the viral IN [134, 135]. The retroviral IN structure was analysed 

through the crystal structure of prototype foamy virus IN revealing that IN 

exists in dimers in the integration complex. While each monomer plays a 

distinct role in this complex, contact of the viral LTR is allowed via an extended 

conformation of the inner monomer. In HIV, IN was shown to have a few 

distinct structural and functional domains: The N-terminal domain (NTD), the 

N-terminal extension domain, the core catalytic domain (CCD), and the C-

terminal domain (CTD) [136]. 

Structural analysis of integration intermediates revealed three steps in the 

integration process. The first step takes place prior to PIC entering the nucleus 

where two nucleotides are removed from both ends of the viral dsDNA (from 

the U3 of the upstream 5’ LTR and the U5 of the downstream of 3’ LTR). This 

process is known as 3’ end processing [137]. Upon nuclear entry of the PIC, 

the exposed oxygen of the hydroxyl group on the processed 3’ ends of each 
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strand attack and join phosphodiester bonds on the host cell DNA strand. This 

step is known as the strand transfer during which a few nucleotides (four for 

MLV, five for HIV) on each side of the provirus remain single-stranded. In the 

final step of integration which is known as the gap repair process, the DNA 

repair system of the host cell fills in the gaps flanking the integrated viral 

genome [138, 139]. 

Lentiviral integration in host cells depends upon the interaction between the 

viral IN and the host cell protein lens epithelium-derived growth factor 

(LEDGF/p75). LEDGF/p75 protein contains a nuclear localisation signal and 

chromatin binding elements on its N-terminal region while the C-terminal 

region attaches to the IN via the integrase-binding domain (IBD) [140]. It has 

been shown that the absence of LEDGF/p75 protein affects HIV integration 

[141] and reduces viral infectivity [142, 143].  

While the elucidation of the complete human genome helped with identifying 

retroviral integration sites [144, 145], advancement in next-generation 

sequencing enhanced the quantitative analysis of larger number of integration 

sites [135]. Various studies revealed that retroviral integration is not random 

[146]. For instance, at the chromosomal level, while MLV preferentially 

integrates near transcription start sites, HIV favours integrating within active 

transcriptional units [147, 148], which may promote efficient viral gene 

expression after integration. Accordingly, HIV-based vectors are considered 

safer vectors compared to MLV-based ones. Other retroviruses show different 

specificity to integrate into the host cell genome. For instance, avian sarcoma-

leukosis virus (ASLV) is less likely to integrate into gene-dense regions [148], 
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and mouse mammary tumour virus (MMTV) has shown the most random 

integration profile so far [149].  

1.4.1.6 Viral gene expression 

After integration, the late phase of HIV infection occurs in which the viral 

genome is transcribed. This process is controlled by the DNA regulatory 

elements in the viral LTR that employ the cellular RNA polymerase II complex.  

One of the first products to be transcribed is the transactivator protein (Tat). 

This protein then binds to the transactivation response (TAR) element at the 

5′ LTR on the HIV genome to stimulate transcription initiation of the viral 

genome. This mediates the recruitment of the cellular positive transcription 

elongation factor b (P-TEF-b) which includes proteins that are necessary for 

elongation (e.g. Cyclin-dependent kinases). This recruitment results in 

increased affinity of Tat protein to TAR which triggers hyper-phosphorylation 

of the C-terminal domain of RNA polymerase II stimulating efficient 

transcriptional elongation [150]. 

1.4.1.7 Viral RNA export from the nucleus 

In early stages of transcription, while unspliced transcripts are retained in the 

nucleus, fully spliced mRNAs coding for Tat, Rev, and Nef are exported to the 

cytoplasm via the nuclear export factor NXF1 (Figure 1-2, step 6) [151]. The 

nuclear export of unspliced transcripts in HIV is controlled by Rev.  Rev is 

imported to the nucleus via cellular importin β [152] where it binds to its 

associate cis-acting element the Rev-response element (RRE) within env on 

the mRNA transcripts [153]. This complex then interacts with cellular export 

proteins and GTP-bound form of the Ran GTPase to promote nuclear export 

of viral transcripts [154, 155].   
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1.4.1.8 Viral assembly, budding, and release  

Gag which is the main viral structural protein is synthesised in the cytoplasm 

from the full-length RNA as a polyprotein precursor, containing the domains 

for MA, CA, NC, p6, and two spacer peptides. This RNA then is translated into 

Gag and GagPol precursors. Gag-Pol which codes for the viral enzymes as 

well as the Gag proteins is synthesised by programmed ribosomal frameshift 

and its expressed level is at approximately 5% of that of Gag (Figure 1-2, step 

7) [156].  

After transport to the cytoplasm, HIV RNAs are either translated into viral 

proteins or packaged into the newly assembled particles [157]. Two copies of 

RNA are packaged into each virion. This allows the recombination during 

reverse transcription. Moreover, this might help the virus to carry on with 

reverse transcription even if one RNA copy is functional [157, 158]. After the 

RNA is dimerised, it is encapsidated by NC of Gag via the packaging signal 

(ψ) [159]. This complex then is anchored to the plasma membrane via MA. It 

has been shown that defective MA results in mistargeting the complex to the 

late endosomes [160].  

While Gag and Pol proteins are translated in the cytoplasm then transported 

to the cell membrane, Env is trafficked via the secretory pathway in the rough 

endoplasmic reticulum (RER) where it is glycosylated and trimerised. The 

cellular protease furin then cleaves Env into the surface unit (SU; gp120) and 

transmembrane unit (TM; gp41) and is delivered to the cell membrane via 

vesicular transport [161]. These glycoproteins are then transported to the cell 

membrane where the assembly of the virions takes place. Gag and Env are 

localised to common sites, the inner leaflet of the plasma membrane where 
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HIV-1 particles assemble. Env is recruited by Gag, either directly or via a 

cellular bridging protein, to be incorporated to the viral particle [162]. The N-

terminal of Gag is known as MA, which directly binds to Env.  The central 

domain of Gag is known as CA which creates the shell that encapsidates the 

viral core. Mutations in Gag’s MA has been reported to block Env incorporation 

highlighting the role of Env-MA interaction in viral assembly [163]. As the 

virions bud out, they acquire the lipid bilayer from the plasma membrane and 

the Env spikes.  

Progeny viruses are released from the infected cells through membrane 

splitting. This process is mediated by the cellular endosomal sorting 

complexes required for the transport (ESCRT) pathway which is involved in 

intracellular membrane fission processes required for particle release such as 

cytokinesis and budding of enveloped viruses away from the membrane [164]. 

This process is recruited by Gag after which non-infectious immature viral 

particles are released from the cells (Figure 1-2, step 8).  

1.4.1.9 Viral maturation 

For the viral particles to be infectious, they need to go through maturation 

(Figure 1-2, step 9).  This requires the protease protein which is encoded by 

the Gag-Pol precursor.   As soon as the viral particles are released from the 

cells, to trigger maturation, Gag and Gag-Pol polyproteins are cleaved into 

MA, CA, NC, and p6 proteins by protease encoded by pol [165, 166].  
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1.4.2 Restriction factors influencing HIV-1 infection 

Like other viruses, HIV-1 utilises various host cellular proteins for its replication 

in the host cells.  However, some cellular proteins, known as restriction factors, 

have evolved as part of the host defence mechanism to block the HIV-1 

lifecycle [167]. In turn, HIV-1 has evolved to evade the anti-viral defence 

mechanism, via accessory proteins such as Vif and Vpu, in order to infect and 

replicate in human cells [168]. As these factors tend to be species-specific, the 

anti-viral activity of these proteins is considered as a barrier preventing cross-

species transmission [168]. 

Some factors such as Fv4 in mice can prevent viral infection by blocking cell 

entry while some other proteins act as post-entry restriction factors. Fv4 is a 

Figure 1-2. Schematic of HIV-1 Life Cycle.  
The major steps of the human immunodeficiency virus type-1 life cycle are shown. Adapted 
from [4].  
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mutant form of retroviral provirus that expresses a mutant env. This Env 

prevents the spleen focus-forming virus (SFFV) from entering the cell by 

interacting with the viral receptor on the cell surface [169, 170]. This process 

is known as receptor interference.  

1.4.2.1 APOBEC3 

Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like-3 

(APOBEC3) is a family of cytidine deaminases that includes APOBEC3B, 

APOBEC3DE, APOBEC3F, APOBEC3G (A3G), and APOBEC3H proteins 

that inhibit HIV-1 replication [171, 172].  A3G is one of the most studied HIV-1 

restriction factors and has been shown to be the most potent anti-HIV-1 in this 

family [167, 173]. During reverse transcription, this protein causes 

deamination of the DNA minus strand resulting in multiple hypermutations in 

the plus strand. This leads to the production of abnormal viral transcripts and 

thus degradation [167]. In the presence of Vif however, this protein prevents 

A3G to be packaged in the viral particle to retain viral infectivity [174]. 

1.4.2.2 TRIM5α  

TRIM5α belongs to the family of tripartite motif (TRIM)-containing protein 

[175]. This protein has been shown to bind to the viral capsid. It has been 

proposed that the interaction with the capsid can either mediate degradation 

or can induce an immune reaction against the virus. Either way, this interaction 

with the capsid is suggested to inhibit or block life-cycle before reverse 

transcription [176-179]. 

1.4.2.3 SAMHD1 
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The sterile α motif domain – and histidine-aspartate domain-containing protein 

1 (SAMHD1) is found in myeloid cells and resting T cells [180-182]. It was 

believed that this protein functions as an anti-HIV-1 restriction factor by 

reducing the nucleotide pool and thus inhibiting reverse transcription [183]. 

Yet, recently it was reported that this protein degrades the viral RNA via its 

RNase activity [184]. Nevertheless, HIV accessory protein Vpx inhibits 

SAMHD1 anti-viral activity [180, 181]. 

1.4.2.4 MX2 

Myxovirus resistance 2 protein (MX2) is a restriction factor that is induced by 

IFN. This protein inhibits nuclear transport of the viral cDNA or prevents its 

integration into the genome through interaction with the viral capsid [185, 186]. 

HIV-1 however, averts MX2 anti-viral activity by reducing cellular cyclophilin A 

(CypA) which has a role in stabilising the HIV-1 capsid and hence facilitating 

viral infection [186, 187].   

1.4.2.5 Tetherin 

Tetherin which is also known as BST2 or CD317 is an IFN-inducible protein 

that is expressed on the cell surface of different cell types including myeloid 

and lymphoid cells [188]. It functions as an anti-HIV-1 restriction factor by 

blocking viral release from the infected cells [189]. HIV-1 accessory gene vpu 

(or nef in lentiviruses that do not express vpu) has been reported to antagonise 

tetherin's anti-viral function [190]. 

1.4.2.6 SERINC 

Serine incorporator (SERINC) family consists of multi-pass membrane 

transporters [191]. While there is still no evidence of direct interaction between 
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SERINC5 and viral envelope, it has been recently reported that SERINC5 

might destabilise the trimer conformation of the envelope, therefore, blocking 

fusion [167]. The absence of Nef antagonises the activity of SERINC5 by 

mediating its relocalisation from the plasma membrane to the reticulum 

compartment [192, 193].  

1.4.3 Development of HIV-1 derived lentiviral vectors  

Lentiviral vectors have been developed from various lentiviruses such as HIV-

2 [194], the simian [195], feline [196], bovine immunodeficiency [197] or the 

caprine arthritis-encephalitis virus [198], and equine infectious anaemia virus 

(EIAV) [199]  however, LVs derived from HIV-1 are most widely used for gene 

transfer applications.  

LVs are produced by cells that are transfected to express the necessary viral 

components including gag/pol, and env genes [200]. The first generation LV 

production plasmids included three plasmids: a plasmid coding for the 

packaging (gag/pol), accessory (vif, vpu, vpr, and nef), and regulatory (tat and 

rev) genes; a plasmid transferring the gene of interest, known as transfer 

vector, flanked by the LTRs and including the packaging signal (Ψ); a plasmid 

coding for env. In order to widen the tropism of these vectors, the endogenous 

HIV-1 envelope glycoprotein (gp41/120) is often replaced with that of the 

vesicular stomatitis virus Indiana strain (VSVind.G) [201]. This process is 

known as vector pseudotyping. Other envelope glycoproteins such the feline 

endogenous retrovirus RD114, Cocal virus, and the Gibbon Ape leukaemia 

virus (GALV) were also used to pseudotype LVs. Also, transduction of 

neuronal cells was accomplished by using LVs pseudotyped with Venezuelan 

Equine Encephalitis and Rabies virus. Moreover, efficient transduction of 
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CD34+ HSC was achieved by using chimeric envelopes such as RD114/LTR 

(contains the cytoplasmic domain of the MLV) and RDpro (contains the HIV-1 

cleavage site) [202].  Nevertheless, as so far VSVind.G pseudotyped LVs 

demonstrated higher titres compared to other envelope glycoproteins, 

VSVind.G is considered to be the gold standard for LV pseudotyping [203]. 

In the second generation of LVs, while utilising the three plasmid system, the 

safety was improved by eliminating the viral accessory genes (vif, vpu, vpr, 

and nef), from the packaging plasmid (Figure 1-3B) [204]. As the likelihood of 

generating replication competent viruses (RCV) remained a major concern for 

clinical application of these vectors [205], the third generation of LV production 

system was developed (Figure 1-3C). This system improved the biosafety of 

the vectors over 2nd generation system firstly by using self-inactivating (SIN) 

vectors in which the promoter and enhancer are deleted (e.g. deletion of a 

399bp DNA fragment including the TATA box which is necessary for 

transcription initiation) from the U3 in 3’LTR [206]. This deletion in the 3’LTR 

is transferred to the 5’LTR after the first round of infection.  Furthermore, tat is 

eliminated in this system and is replaced by a constitutive promoter, such as 

the Rous sarcoma virus [205] or the cytomegalovirus (CMV) [207] promoters 

(as used in the vector constructs pRRL and pCCL, respectively), is fused to 

the 5’LTR. Consequently, the expression of the transfer vector genome is no 

longer dependent on tat activation [208]. Moreover, the packaging plasmid is 

split into two plasmids; one encoding the rev gene and the other encoding a 

codon-optimised gag/pol gene [208-210]. These improvements had major 

roles in reducing the risk of developing RCV or insertional mutagenesis in 

target cells [207].   
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Figure 1-3. Lentiviral vector packaging systems.  
(A) Lentiviral packaging system is based on the HIV-1 wild type genome which consists of nine 
open reading frames. To increase safety, this genome is edited and split across multiple 
plasmids. (B) Second generation system that contains a single packaging plasmid encoding 
the Gag, Pol, Rev, and Tat. The transfer plasmid contains the viral LTRs and psi (ψ) packaging 
signal. The envelope is encoded by a third, separate plasmid. (C) In third generation systems 
the packaging plasmid is further split into two plasmids, one encoding rev and one encoding 
gag and pol. In this system the transgene is encoded by a SIN vector containing a mutated 3’ 
LTR and a foreign promoter fused to the 5’ LTR. RRE: rev response element; LTR: long 
terminal repeats; ψ: Psi or packaging element. 

A 

B 

C 
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1.4.3.1 VSVind.G-pseudotyped lentiviral vectors 

Retroviruses have limited natural host range and cell tropism. For gene 

therapy, one might either want to limit or expand the range of cells susceptible 

to transduction by a gene therapy vector. So far, many vectors have been 

developed in which the endogenous viral envelope proteins have been 

replaced either by envelope proteins from other viruses or by chimeric 

proteins.  Viruses in which the envelope proteins have been replaced are 

referred to as pseudotyped viruses [211].  Depending on the envelope used 

for pseudotyping, some of the virus particle characteristics such as tropism 

and stability might be altered. Due to mentioned restrictions in using lentiviral 

vectors with the HIV-1 envelope such as lower particle stability as well as the 

limited cell tropism (the CD4 receptor is usually expressed in T-lymphocytes, 

monocytes, macrophages and dendritic cells, the primary target cells for 

primate immunodeficiency viruses in vivo  [212]), LVs are usually pseudotyped 

with VSV-G Indiana strain glycoprotein as it has an extremely broad tropism. 

Furthermore, VSVind-G seems to increase the vector particle stability that can 

provide purification advantage by allowing the vector concentration to a high 

titre using ultracentrifugation [213].  

Nevertheless, this pseudotyping has several drawbacks; first, VSVind.G is 

highly fusogenic, which can lead to syncytia formation and cell death at mildly 

basic pH levels, and highest levels of fusogenic activity have been seen at pH 

around 7.2 [214]. Syncytium formation by VSV G protein at neutral pH might 

be considered as an unusual characteristic as this protein triggers viral entry 

through pH-triggered fusion [215]. Nevertheless, VSV G protein was reported 

to be an atypical fusion protein that undergoes reversible conformational 
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changes [216]. Upon its transport to the plasma membrane via the secretory 

pathway, it goes through the acidic environment of the Golgi apparatus which 

triggers conformational changes. Therefore, G protein reaches the plasma 

membrane in a fusion-active form and thus is able to perform cell-cell fusion. 

The resulting syncytia are inevitably destined for apoptosis, as shown for other 

fusogenic viruses [217-219].  

1.4.4 Lentiviral vector production methods 

 The main LV production method is by delivering the packaging plasmid, 

envelope protein, and transfer vector into a cell line such as HEK 293T cells 

that is able to package all the viral components into a viral particle [220]. The 

size and quality of transgene, the employed method of transfection, and the 

target cells are amongst factors that can influence the efficiency of transfection 

[221].  

1.4.4.1 Transient production of lentiviral vectors 

Transient production of LVs is easy and less time consuming compared to 

stable cell line development. In addition, this method enables the expression 

of some cytotoxic viral proteins. Although transient method is the most efficient 

technique for research, the high cost and low adaptability of this method to 

large-scale Good Manufacturing Practice (GMP) vector production [222], 

potential contamination with transfection plasmids [223], batch-to-batch 

variability, and difficulty in optimisation of transfection conditions limit the use 

of transient method for clinical purposes. The yield of current methods which 

are set in cell factories (109-1011 TU), is sufficient to treat only a few numbers 

of patients [74, 76, 222].  
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Recent work optimising the different aspects of production such as cell type, 

culturing method (adherent vs suspension) and density, culture media 

supplementation (e.g. with or without serum), and plasmid delivery systems 

(e.g. calcium phosphate [224] or polyethyleneimine (PEI) [225]), has led to 

production of larger scale industrial batches of LVs [226].   

HEK 293 cells have been commonly used for vector production, lab-based 

protein production, and gene expression studies. These cells have been 

modified to different derivatives such as HEK 293T and HEK 293FT (traceable 

HEK 293T cells) [227].  HEK 293T cells express the SV40 (simian virus 40) T-

Antigen which is compatible with vectors carrying the SV40 origin of replication 

resulting in higher expression levels. Moreover, these cells have a high growth 

rate and transfection efficiency [228]. While these cells are heavily used for 

small-scale vector production, they are as desirable for larger scale 

applications. One method used for larger-scale LV production is the direct 

scale-up, which refers to expanding the small-scale production culture surface 

by adding production units such as Cell Factory™ (Nunk) and CellSTACK® 

systems (Corning) [229].  

Although using adherent cells for LV production is the common gold standard 

method, the optimal technique for industrial-scale vector production at the 

moment is using cell suspension in bioreactors. Therefore, HEK 293T cells 

have been recently adapted to grow in suspension culture. Serum or other 

animal-originated components are not required for maintaining these cells in 

culture. Thus, these cells are more suitable for clinical applications due to 

reduced risk of contamination. Moreover, these suspension cells can be 

readily expanded into different types of vessels (e.g. wave bags, shake flasks, 
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stainless steel bioreactors) which aids with the scaling up of the production. 

Recently, a HEK 293 clone, HEK 293SF-3F6, was established for suspension 

culture [230, 231]. Culturing this clone in serum-free media in 3 litres stirred 

tank bioreactors yielded in titre up to 108 transduction units (TU)/mL of LV 

[232]. 

Still, the optimisation of these large-scale production methods is needed for 

the development of an industrial-friendly method of LV production where lower 

amounts of DNA is used, and the cost of production is reduced. Consequently, 

development of stable producer cells seems to be a more affordable way of 

production of LVs to be used to treat various diseases [229].   

1.4.4.2 Stable production of lentiviral vectors 

Stable vector production can potentially overcome the limitations of the 

transient method such as batch-to-batch variability and cost of production, as 

well as can reduce the risk of DNA recombination and generating RCVs [233]. 

A packaging cell line (PCL) stably expresses gag-pol, rev, and/or env. When 

the transgene is provided, the PCL becomes a producer cell line. Even though 

a stable cell line should ideally be consistent in growth and to be able to 

produce large volumes of infectious LVs, PCLs developed so far not only 

achieved low titres of 105 -107 TU/mL, but also demonstrated less stability over 

generations due to the cytotoxic effects of some viral components [201, 234, 

235]. It has been reported that VSVind.G and some viral elements such as 

protease are toxic to cells when expressed continuously [201]. To overcome 

the toxicity of the envelope glycoprotein in stable cell line production, 

VSVind.G has been replaced with other envelope glycoproteins such as 
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RDpro which is derived from the feline endogenous virus envelope RD114, 

and GALV [236].  

1.4.4.2.1 Established packaging cell lines  

Several stable packaging cell lines have been developed over the past years 

[237-239]. The STAR packaging cell line was developed via a novel approach 

of transfecting HEK 293T cells with second-generation MLV vectors [240]. 

While titres were higher than 107 TU/mL, as non-SIN vectors were utilised, the 

clinical application of these cells was limited. RD2-MolPack is another 

packaging cell line that was developed that continuously expresses RD114-

RT (a chimeric RD114 containing the cytoplasmic domain of MLV [241]). This 

cell line was also developed using a non-SIN vector. Next, RD3-MolPack was 

then developed using a SIN vector instead. Nevertheless, in both cell lines, 

the titres were around 106 TU/mL which is not ideal for clinical use [239]. 

Recently, Humbert et al. reported a third-generation SIN LV producer cell line 

using Cocal G protein. These cells were adapted to grow in serum-free 

suspension culture and achieved concentrated titres of 108 IU/mL [237]. 

The Collins/Takeuchi group developed the WinPac packaging cell line that can 

support the continuous production of LV. A non-toxic gammaretroviral 

envelope from the feline endogenous virus RD114 with an altered cytoplasmic 

tail to allow LV incorporation, RDpro, was adopted [240]. Due to its lack of 

cytotoxicity, also as the receptor of this envelope is widely expressed on 

hematopoietic stem cells [242], RDpro was used in the STAR packaging cells 

[240] as well as WinPac-RD packaging cell line [238]. The WinPac (WP) cell 

line was developed by stably transfecting a codon-optimised gag-pol into HEK 

293FT cells using recombinant mediated cassette exchange (RMCE). In this 
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study, MLV vectors introduced recombinase recognition sites in actively 

transcriptional sites. Gag-pol genes were then introduced via RMCE into this 

active locus, and the rev and env genes were finally transfected into the cells 

stably. Although isolated single clones produced titres for several months, the 

titres of 106 TU/mL were sub-optimal for clinical purposes. Furthermore, due 

to the limited host tropism and reduced physical stability, compared to that of 

VSVind.G, which lead to suboptimal titres and virus recovery, the usage of the 

RDpro packaging cell line is limited.   

In 2010, Trobridge et al. published a paper in which lentiviral vectors were 

pseudotyped with the envelope G protein of Cocal virus (COCV). It has been 

reported that, in transient production systems, G protein of COCV (COCV.G) 

can efficiently pseudotype LVs producing relatively high titres (107 TU/mL).  

COCV.G LVs also demonstrated broad tropism as they could transduce a 

variety of cells of different origins including human, primate, and dog-

hematopoietic progenitor cells. Moreover, compared to VSVind.G-

pseudotyped LVs, COCV.G- pseudotyped LVs showed more resistance to 

inactivation by human and dog serum, which shows promise for in vivo 

applications [243]. Lastly, some preliminary data suggest that COCV.G might 

be less cytotoxic compared to VSVind.G when expressed continuously [244]. 

These favourable characteristics would facilitate affordable large-scale vector 

production if COCV.G also demonstrates high vector stability like VSVind.G. 

This would greatly improve the range of clinical applications of lentivectors and 

would help propel the field of LV-mediated gene therapy forward [238]. 

Consequently, our laboratory decided to replace the RDpro envelope in 

WinPac-RD packaging cell line with that of Cocal virus to generate WinPac-
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COCV.G cell line. From the WinPac-COCV.G transfected cells, single clones 

were isolated and vectors were produced by transiently transfecting them with 

SIN pHV plasmid which codes for GFP gene.  The titres of these vectors then 

were tested by measuring the percentage of GFP using flow cytometry. The 

initial results of the test were promising, as COCV.G seemed to show similar 

properties to its close phylogenetic relative VSVind.G [244]. 

Although it has been reported that the VSVind.G glycoprotein is cytotoxic, due 

to its advantages including high tropism, the stability of the viral particle, and 

higher vector titres, other strategies to express this glycoprotein in packaging 

cell lines were investigated. One of these strategies was the introduction of the 

inducible expression systems. Systems commonly use tetracycline or 

doxycycline [245-248] as inducible agents were developed to regulate the 

gene expression of cytotoxic viral components like VSVind.G. The Tet-off 

system was first introduced by Gossen and Bujard [249] where the expression 

of a Tet-inducible promoter was lessened when tetracycline was added into 

the system. In this system, a tetracycline-controlled transactivator protein and 

a tetracycline-responsive promoter element (TRE) are used to regulate the 

expression of the transgene. 

The tet-off system allows for the silencing of a gene as long as it remains in 

the system outside the expression period. In addition, the tetracycline has to 

be removed entirely from the system which might be easy in smaller scale 

cultures yet; it can be challenging in larger scale and suspension cell culture 

systems. Furthermore, as several days are needed for the production of the 

protein to reach its peak, as well as the risk of leakiness of expression in the 
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off-state, transcriptional instability was reported a few months after cultivating 

the cells [250]. 

A few years after the development of the tet-off system, the Tet-on system was 

introduced in which, instead of removal, the addition of tetracycline allows the 

expression of the gene.  In this system, the expression of the gene is switched 

on by tetracycline binding to the tetracycline transactivator and TRE [251, 252]. 

While this system is better for transient gene expression, the background 

activity of the inducible gene in the absence of the inducer agent is a limiting 

factor [253, 254]. Although this promoter has been through lots of modification, 

more improvement is needed to optimise the final product [255].  

1.4.5 Lentiviral vectors in clinical gene therapy 

While both GRVs and LVs have the advantage of integration into the host cell 

genome, LVs seem to be less mutagenic and hence safer vectors compared 

to GRVs, as they often do not show preferential integration near oncogenes 

or cell cycle genes [9, 256]. LVs have shown high efficacy in recent clinical 

trials for the treatment of HIV, cancer, and genetic diseases such as X-linked 

Adrenoleukodystrophy (X-ALD) and β-thalassaemia. The ability of LVs to 

stably infect non-dividing cells makes them better candidates compared to 

other integrating vectors [257]. 

1.4.5.1 Cancer immunotherapy 

Tumour cells have the ability to evade the immune system. Cancer 

immunotherapy includes antibody and cytokine therapies, cancer vaccines, 

and adoptive cell transfer [258]. These methods attempt to improve the 

targeting ability and cytotoxicity of the immune response in order to eliminate 
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tumour cells [257]. In anti-cancer vaccine design, effective delivery of tumour-

associated antigens (TAA) as well as avoiding tumour-induced immune 

tolerance are the major challenges [259].  

In cancer immunotherapy, ongoing CD8 T cell (cytotoxic T cell) immunity is 

required. Viral vectors have been shown to be very effective in inducing T cell 

response. Accordingly, LV-based vaccines seem to be suitable options due to 

their integration and therefore a prolonged expression of TAA which can be 

processed by the antigen-presenting cells (APCs), especially dendritic cells 

(DCs) as key T cell activators [260]. LV-based anti-cancer vaccines are also 

designed to target the tumour cells by specific antibodies incorporated in their 

envelope [9, 261]. 

To induce an anti-cancer immune response, autologous DCs are usually 

transduced with LVs carrying TAA [262] or co-stimulatory signals [263] ex vivo, 

then re-administrated into the patients [257].  LV-transduced DCs have been 

reported to induce expression of CD4+ T cells and a higher concentration of 

IFN-γ. Despite the potential advantages of this method, some challenges 

remain.  One is the low numbers of DCs in the peripheral blood. To overcome 

this issue, CD34+ blood or bone marrow DC precursors and CD14+ monocyte 

DC precursors have been stimulated by cytokines to differentiate into mature 

to DCs [264, 265]. Another obstacle is the short lifespan of antigen-carrying 

DCs [266]. This issue has been tackled by transducing DCs with LVs carrying 

survival genes such as c-FLIPS, c-FLIPL, and Bcl-XL resulting in prolonged 

DC survival time [267].  
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As production of mature DCs can be demanding, an alternative method of 

turning cancer cells themselves into APCs to stimulate the immune response 

has been developed. This method is based on the fact that cancer cells 

already express TAAs. Therefore, autologous cancer cells are transduced by 

co-stimulatory factors and cytokines which can induce Th1 and hence 

cytotoxic T lymphocyte (CTL) response against TAAs upon administration 

back to the patient [257].  

Moreover, B-cell lymphoma cells transduced with LVs expressing IL-12 (which 

is usually expressed by APCs in response to tumour antigens) have been 

tested in mouse models in comparison to systemic delivery of IL-12. Long-

term immunity and survival were reported in mice injected by modified cells 

[268]. Other LV-based cancer immunotherapies have been developed such as 

acute myeloid leukaemia (AML) cells transduced with CD80 and GM-CSF 

(inflammatory cytokine stimulating macrophage and DC infiltration) [269] or 

CD80 and IL-2 [270]. Both these cells induced an anti-tumour response. This 

method is believed to offer an improved immunotherapy response compared 

to that of the systemic delivery of IL-12 and IL-2 due to toxic effects [271].   

1.4.5.1.1 T-cell therapy 

In T-cell therapy, expressing engineered antigen-specific T-cell receptors 

(TCRs) or chimeric antigen receptors (CARs) aid in conveying cytotoxic T-cells 

against tumour-associated antigens [272, 273]. This approach has been used 

in treating several malignancies including neuroblastoma, 

lymphoma/leukaemia, colorectal cancer [98], melanoma, and synovial 

sarcoma. So far, no IM was reported despite the use of GRVs suggesting that 
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differentiated T-cells are resistant against malignant transformations [274, 

275].  

T cell therapy is based on selecting the autologous T cells that robustly 

express antigen-specific T cell receptors, activating and expanding them, then 

administrating them back to the patient. However, due to low numbers of Ag-

specific T cells and the challenges in their sufficient expansion, other 

strategies had to be developed. One of these strategies is based on the TCRs’ 

ability to be transferred from one T cell population to another [276]. 

Accordingly, a method has been developed in which TAA-specific TCR genes 

from highly active T cells are transferred to other isolated autologous T cells. 

LVs are the vector of choice for stable and efficient delivery of TCR cDNA; 

especially bicistronic LVs that express both the α and β genes of TCR [277]. 

Moreover, autologous T cells transduced with LV-TCRs targeting NY-ESO-1 

[278] and MART-1 [279] have been used in clinical trials for treating 

oesophageal cancer or metastatic melanoma, respectively.    

A possible disadvantage in using TCR is the risk of recombination between 

the introduced TCR with the endogenous one resulting in off-target 

genotoxicity [280]. This can be dealt with by using endonuclease to suppress 

the expression of the endogenous TRC. Zinc finger nucleases (ZFN)-edited T 

cells expressing LV-transferred TCRs against Wilms tumour-1 antigen have 

demonstrated higher purity and lower off-target effect compared to unedited T 

cells [281].   

In the past few years, chimeric antigen receptors or CARs against CD19+ have 

become very popular for treating different B cell malignancies. CARs consist 
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of an extracellular and intracellular domain. The extracellular domain contains 

a single-chain variable fragment (scFv) of the light and heavy chains of a TAA-

specific antibody that activates the immune system by directly recognising 

these tumour antigens. The intracellular region of CARs contains 1-3 domains 

that activate and enhance the cytotoxicity of T cells through increased cytokine 

secretion and proliferation [282, 283].  

Despite recent success using CARs against CD19+ B cell malignancies, they 

show some limitations. Since the extracellular scFv is of mouse origin, they 

can be immunogenic. Even antibodies derived from humanised mice have the 

potential of provoking the immune system as novel proteins resulting in their 

clearance from the body. This immune response can range from fever to organ 

failure and death and usually occurs due to uncontrolled overexpression of 

various cytokines which is known as cytokine storm or cytokine release 

syndrome (CRS). In addition, CARs are designed to recognise TAA 

independent of MHC, giving them an advantage over TCRs which are MHC-

dependant. This allows CARs only to identify extracellularly expressed 

antigens which limits the targets for this therapy.  

A possible approach to overcome CRS exploits suicide gene or cell-fate 

control system. In this system, a cDNA sequence such as an enzyme [e.g. 

herpes simplex virus-thymidine kinase (HSV-TK)], which can be activated 

upon administration of its associated prodrug (ganciclovir or GCV for HSV-

TK), is transduced into cells leading in the elimination of target cells [284, 285]. 

Moreover, universal CARs have been introduced recently. These T cells are 

engineered to have disrupted HLA-I [286], or to be devoid of TCR, β-2 m, and 

PD1 triple loci [287]. Anti-CD19 CAR-T cells were also recently developed by 
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TALENs which are less likely to develop GVHD. Tumour regression was 

reported after administration of genome-edited cells into two patients with 

refractory B cell acute leukaemia [288]. These universal CARs have been 

reported to demonstrate high anti-tumour activity while reduced allogeneic 

activity [289]. Nevertheless, as TAAs are usually self-antigens (e.g. CD19 

which is a marker on healthy B cells is overexpressed in B cell malignancies), 

on-target off-tumour response in T cell therapy is of concern. Consequently, 

further research to identify novel TAAs and to optimise CARs’ affinity is 

required in order to improve T cell treatment efficacy and off-target effects 

[284, 290, 291].  

A number of selected clinical trials utilising LVs are listed in Table 1-3. 
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Target 

cells 
Disease group Disease Env 

Production 

method 
Reference 

HSCs 

PIDs 

WAS 
VSVind.G 

VSVind.G 

Transient 

Transient 

[77] 

[78] 

X-SCID VSVind.G 
Tet-off 

Inducible 
[292] 

Hereditary 

anaemia 

Β-thalassemia 

Sickle cell 

anaemia 

VSVind.G 

VSVind.G 

Transient 

Transient 

[76] 

[293] 

Storage 

disease 

ALD VSVind.G Transient [74, 294] 

MLD VSVind.G Transient [75, 295] 

T cells Cancer 
Lymphoma/ 

Leukaemia 

VSVind.G 

VSVind.G 

Transient 

Transient 

[296, 297] 

[298, 299] 

Table 1-3. List of selected recent LV-mediated gene therapy clinical trials. 
HSCs: hematopoietic stem cells; PID: primary immunodeficiency; WAS: Wiskott Aldrich 
syndrome; WASP: WAS protein; ALD: Adrenoleukodystrophy; MLD: metachromatic 
leukodystrophy; ARSA: arylsulfatase-A; LV: Lentiviral vector; Env: envelope; VSVind.G: 
vesicular stomatitis virus (Indiana strain). HEK 293T cells were used for transient vector 
production; X-SCID: X-linked severe combined immunodeficiency. 
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1.4.6 LV delivery for genome editing  

Genome editing technologies based on endonucleases have been the centre 

of attention in recent years as they have the advantage of genome modification 

over the viral vector which can only mediate gene addition [300]. 

Endonucleases mediate double-strand break (DSB) resulting in recombination 

in mammalian cells through non-homologous end-joining (NHEJ) and 

homology-directed repair (HDR) systems. At the site of DSB, NHEJ can 

inactivate a gene by creating insertion or deletion mutations while HDR, in the 

presence of a donor DNA, can modify specific sequences to correct a mutation 

or to insert a new sequence in a site-specific fashion [301]. 

Genome editing systems offer the possibility to tackle the problems of viral 

vector gene transfer such as genotoxicity due to integration and activation of 

proto-oncogenes. In addition, this method is desirable for the treatment of 

diseases with dominant detrimental mutations [300]. Moreover, the regulation 

of the modified gene expression is improved as its expression is controlled by 

the endogenous promoter [302].   

Zinc finger nucleases (ZFN) [303] or meganucleases [304] were amongst the 

early genome editing molecules to be used. Transcription activator-like 

effectors or TALES are bacterial DNA binding domains that were used to 

create TALE nucleases (TALENs) which can be engineered to target DNA 

sequence of interest. Although these nucleases opened new doors to genome 

manipulation, the design of specific nuclease for each DNA target is required 

which can limit their use [305-307].  
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More recently, the clustered regulatory interspaced short palindromic repeats 

(CRISPR)-associated 9 (Cas9) gene-editing system has become popular as it 

simplified the process of site-specific gene editing. The CRISPR-Cas9 

nucleases are based on a prokaryotic adaptive immune system by which they 

silence the nucleic acids of the invading viruses and plasmids [308]. This 

system uses a guide-RNA (gRNA) to target the specific target sequence and 

a Cas nuclease to cut [257, 308].  

As TALENs and CRISPR-Cas9 systems can target specific DNA sequences, 

they have been heavily studied and used in basic research applications in 

recent years [309, 310]. LVs delivering the CRISPR system used in mouse 

embryonic stem cells for site-directed mutagenesis showed higher gene 

suppression efficiency compared to RNAi [311]. Targeted gene suppression 

or activation using LVs delivering CRISPR was also achieved in human cells 

where the CRISPR-Cas transgene maintained stable expression for two 

weeks [312].  

Genome editing as a therapeutic agent has made its way into the clinic. For 

instance, ZFN against CCR5 has been engineered to block HIV infection in T-

cells and HSCs [313, 314]. Several CRISPR-Cas nuclease clinical trials 

targeting PD1 expression had also been recently approved in China [300]. 

Despite all the advances in this field, further preclinical studies are required for 

safer and more feasible designs, to minimise off-target cutting and mutations 

due to homologous DNA sequences. Also, the immunogenicity of nucleases 

in in vivo applications and targeted delivery need further investigations [300].   
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1.5 Rhabdoviruses 

The Rhabdoviridae family (the Greek word “rhabdos” meaning rod or wand) is 

one of the most ecologically diverse families of enveloped, bullet-shaped RNA 

viruses. This family includes two main prototype viruses: vesicular stomatitis 

virus (VSV) which belongs to the genera of vesiculoviruses, and rabies virus 

(RABV) which belongs to lyssaviruses. While the primary hosts of lyssaviruses 

are bats by which these viruses are transmitted, vesiculoviruses are usually 

transferred via insects to a wide host range of mammals. For many decades, 

VSV and RABV have been studied extensively as model systems for 

investigating the molecular mechanisms of rhabdovirus life cycle, infectivity, 

and antigenic properties [315]. 

1.5.1 Vesiculoviruses 

Vesiculoviruses consist of 16 viruses classified based on their host range, 

serological properties, and genome organisation [316, 317]. Vesicular 

stomatitis virus (VSV) was the first vesiculovirus to be described and is the 

most studied virus. VSV includes four serotypes: VSV Indiana (VSVind), VSV 

New Jersey (VSVnj), VSV Alagoas (VSVala), and Cocal virus (COCV).  Two 

other major vesiculoviruses are Chandipura virus (CHAV) and Piry virus 

(PIRYV).  

VSV causes vesicular disease (initially known as ‘sore mouth/ tongue’) in farm 

animals such as horses, pigs, and cattle [214]. They were first seen in livestock 

in the USA and South America. Both VSVind and VSVnj are endemic 

especially in central and South America. VSV’s natural hosts are their insect 

vectors as well as cattle, horses, pigs, and other mammals [318-320]. VSV 
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infection in human, however, can result in flu-like symptoms. PIRYV was first 

isolated in northern Brazil, and only five cases of non-fatal lab-related human 

infection have been reported so far. CHAV was first known as the cause of 

febrile disease and recently has been related to outbreaks of fatal encephalitis 

which is becoming a health concern in India [321, 322]. 

1.5.1.1 Genome organisation of vesiculoviruses 

Vesiculovirus’ genome is composed of a non-segmented, single-strand, 

negative-sense RNA encoding five structural proteins; nucleoprotein (N), 

phosphoprotein (P), matrix protein (M), glycoprotein (G) and large protein or 

the viral polymerase (L).  The RNA genome combines with N, P, and the viral 

polymerase to form the helical ribonucleoprotein (RNP) complex [215, 323]. 

This complex is connected to the envelope via the matrix protein (M), which 

binds to both the N protein and the inner leaflet of the lipid-bilayer membrane 

[324]. The matrix protein partly regulates the replication of VSV. This protein 

codes for the RNA polymerase as well as aids in viral budding. The matrix 

protein also has a pivotal role in the virus early infection by blocking the 

expression of antiviral genes (e.g. IFN), which aids the virus to replicate freely. 

The VSV envelope is a single-spanning transmembrane glycoprotein with 

receptor-binding and fusion activities. It contains a small transmembrane and 

C-terminal regions while 90% of G protein is its N-terminal region that protrude 

of the viral envelope [1, 325-327]. 

Full-length genome analysis of VSVind, VSVnj, and COCV structural proteins 

indicates that while these viruses are genetically closely related to each other, 

they all are serologically different [328, 329]. N, M, and L are the most 

conserved proteins while G and P are more variable [330]. 
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1.5.1.2 Vesiculovirus glycoprotein 

In enveloped viruses, the envelope glycoproteins play an essential role in viral 

attachment to the host cell receptor, fusion and viral infectivity [326]. VSVind 

(the prototype of vesiculoviruses) contains one glycosylated protein, G protein 

(VSVind.G) [214, 331]. The mature VSVind.G protein is a 65-kDa type I 

transmembrane protein (single-pass trans-membrane protein, N-terminal is 

exposed to the exterior of the cell while the C-terminal is located on the 

cytoplasmic side) containing 511 amino acids that oligomerises into a 

homotrimer during transport to the cell surface, where the trimer is then 

assembled into the viral particle [325]. 

While the glycoprotein of VSVind, VSVnj, and CHAV are well studied, there is 

little known about other vesiculovirus G proteins (VesGs) such as Maraba virus 

G protein (MARAV.G), COCV.G, VSVala.G, or PIRYV.G. Sequence analysis 

of VSVind.G indicates that this protein shares some characteristics with both 

class I and class II membrane-associated glycoproteins, however, due to 

reversibility of its conformational changes, this G protein is classified in a 

separate group of fusion proteins, class III [306, 332]. The structure of these 

classes of proteins consists of long extracellular ends, a hydrophobic 

transmembrane section, and a C-terminal domain within the cell membrane 

[317, 333].  

While CHAV.G and PIRYV.G share a similar number of amino acid residues 

(530 and 529, respectively), the G protein in other VesGs ranges around 511-

517 amino acid residues long [334-338] (Figure 1-4). Nevertheless, a high 

degree of homology on the amino acid level suggests high functional and 

structural similarities amongst these seven VesGs [323, 327, 333, 339, 340].  
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Amino acid alignment of the G protein of MARAV.G and COCV.G shows the 

highest homology to VSVind.G of around 78% and 72%, respectively.  

VSVala.G and VSVnj.G follow with 64% and 50% homology, respectively while 

PIRYV.G shows the lowest levels of homology (of around 40%) to VSVind.G 

(Figure 1-5A). Moreover, the phylogenetic analysis of the amino acid 

sequences of these G proteins highlights that MARAV and COCV are closely 

related to VSVind while PIRYV and CHAV are close to each other and distant 

from VSVind (Figure 1-5B). 
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Figure 1-4. Multiple amino acid sequence alignment of the G proteins of Vesiculoviruses. 
Dashed lines represent gaps introduced to maximise matching of amino acid residues. 
Blue shading indicates percent identity; dark blue: 80-100%, medium blue: 60-80% light 
blue: 40-60%, and no colour indicating <40% identity. The sequences were aligned using 
Clustal Omega online multiple sequence alignment tool (EMBL-EPI) and the alignments 
were visualised using JalView software. The arrow indicates the signal peptide cleavage 
site. 



69 
 

  

Virus %AA Identity 

VSVind.G 100 

MARAV.G 78 

COCV.G 72 

VSVala.G 64 

VSVnj.G 50 

PIRYV.G 40 

Figure 1-5. Phylogenetic relationship of vesiculoviruses based on G protein amino acid 
sequences.  
(A) The percent amino acid identities of the G proteins compared to VSVind.G are 
summarised in the table. (B) G proteins of the major vesiculoviruses, as well as the G 
protein of the rabies virus (another prototype rhabdovirus, utilised as the base for the 
phylogenetic tree), were included in the analysis. The amino acid sequences were aligned 
using Clustal Omega online multiple sequence alignment tool (EMBL-EPI). The 
evolutionary analyses were conducted in MEGA7 [3]. The evolutionary history was inferred 
by using the maximum likelihood method based on the Jones-Taylor-Thornton matrix-
based model [5]. The tree with the highest likelihood is shown with the bootstrap confidence 
values (out of 100) indicated at the nodes. The tree is drawn to scale, with branch lengths 
measured in the number of substitutions per site, depicted in the linear scale. CJSV: 
Carajas virus, ISFV: Isfahan virus. Vesiculoviruses that this thesis focuses on are 
highlighted in coloured boxes. 

A 

B 
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Although the signal peptide shows different lengths amongst the seven 

vesiculoviruses, it shares similar characteristics in the four VSV serotypes; a 

charged residue near the N-terminal end, a hydrophobic central area, and a 

less hydrophobic C-terminal end [341, 342].  The signal peptide is 21 residues 

long in PIRYV.G and CHAV.G while it is 16 residues in VSVind.G, VSVnj.G, 

and MARAVA.G, and 17 residues in COCV.G [333, 338].  

Crystal structure of VSVind.G indicates four distinct domains (Figure 1-6C): 

Domain I (DI) which is called the lateral domain is rich in β-sheets. Domain II 

(DII) or the trimerisation domain consists of α-helices that are involved in the 

trimeric pre-fusion formation of the protein. This domain is further divided into 

three sections: the N-heptad repeat (NHR), the middle-heptad repeat (MHR), 

and the C-heptad repeat (CHR). Domain III (DIII) contains the pleckstrin 

homology domain (PHD) which consists of 2 α-helices and two β-sheets. This 

domain is inserted into domain II, and as it is the most exposed domain in the 

pre-fusion conformation, it has been suggested that might play a role in 

receptor recognition. Domain IV (DIV) is inserted into domain III and contains 

six β-sheets with highly preserved amino acid residues. Two hydrophobic 

fusion loops in this domain interact with the target cell membrane stabilising 

the structure of the G protein [1]. During conformational changes from pre- to 

post-fusion (Figure 1-6A/B), while domains I, III, and IV retain tertiary structure, 

their relative orientation is rearranged due to refolding of domain II [1, 2, 332]. 

These structural reformation has been suggested to move the fusion domain 

from the viral surface towards the target cell membrane.  

The low-pH conformation of CHAV.G has been recently revealed its high 

structural similarity to the post-fusion structure of VSVind.G within the central, 
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fusion, and PHD domains [2, 327, 343, 344]. Although the central and fusion 

domains are almost indistinguishable, PHD seems to be more diverse.  

Overall, PHD is the most diverse domain in VesGs, and it has been suggested 

to be the target for the neutralising antibodies [327, 345].    

 

 

 

  

Figure 1-6. Structure and domain organisation of VSVind.G. 
Mature VSVind.G protein (AA 17-429) generated by thermolysin-mediated limited 
proteolysis of virions [1, 2] in (A) prefusion and (B) postfusion structures. 3D structures 
were retrieved from RCSB Protein Data Bank, visualised, and coloured using JalView 
software. (C) Domain architecture of VSVind.G’s amino acid structure in a linear diagram.  
The C-terminus is not shown in the structure, indicated here in grey. Domain boundaries 
are numbered according to the G protein precursor which includes the signal peptide. 
Domains are indicated in colours: Lateral domain DI: red; Trimerisation domain DII: blue; 
Pleckstrin Homology domain (PHD) DIII: orange; Fusion domain DIV: yellow. Adapted from 
[1]. 

A B 

C 
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1.5.1.3 Receptor-mediated viral entry 

VSV.G protein is responsible for entry to the target cell [332]. This includes 

attachment to the receptor on the cell surface followed by pH-dependant fusion 

to the endosomal membrane. After attachment to a cell receptor, VSV particles 

go through endocytosis in a clathrin-based manner [346].  

Current studies suggest that low-density lipoprotein receptor (LDLR) and its 

family members are the receptors for VSVind.G cell entry [347]. It has also 

been suggested that LDLR serves as the primary receptor for VSV and VSV.G 

pseudotyped LV infection, while other LDLR family members act as alternative 

receptors. This is based on a study where the VSVind infection was reduced 

in a dose-dependent manner by soluble LDLR (sLDLR). This infection was 

fully blocked when receptor-associated protein (RAP), which blocks all other 

LDLR family members except for LDLR itself), was added [348]. Similar data 

have been reported for COCV infection [244]. However, the receptor usage of 

other vesiculoviruses is yet to be known [349].  

1.5.1.3.1 The low-density lipoprotein receptor family 

The LDLR family is a class of single-transmembrane glycoproteins that are 

known as cell-surface receptors [350]. The LDLR family members are widely 

expressed on different cell types and variety of species which explains the 

broad tropism of VSVind and VSVind.G based vectors. In mammals, this 

family consists of different receptors: the LDLR itself, apolipoprotein E receptor 

2 (APOER2), very low-density lipoprotein receptor (VLDLR), the LDLR-related 

protein (LRP), LRP1B, megalin (LRP2), LRP3, LRP4, LRP5, and LRP6 [351].  
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The extracellular domains are structurally conserved amongst these 

receptors. This domain contains ligand binding repeats and epidermal growth 

factor (EGF) precursor homology domains which bind to and internalise the 

ligand, respectively. After endocytosis, these sites are involved in the pH-

dependent release of the ligand. The cytoplasmic tails are involved in 

regulation of ligand-internalisation through clathrin-mediated endocytosis 

[352-356]. 

Other than acting as an entry point for some viruses, the LDLR family 

members are involved in a range of cellular activities such as binding to 

signalling molecules and carrying various components like vitamins, toxins, 

and antibiotics. VLDL receptor interacts with the serine protease urokinase-

type plasminogen activator (uPA) to modulate proteolysis processes [357]. In 

addition, it is an entry port for the hepatitis C virus, independent of CD81 [358, 

359].  On the other hand, LRP and megalin are known as scavenger receptors 

as they bind to more than 20 ligands due to having 31 and 36 ligand 

recognition sites, respectively [360, 361].   

1.5.1.3.2 The low-density lipoprotein receptor  

The LDL receptor was first identified in association with the genetic disease 

familial hypercholesterolemia (FH) in which the receptor is dysfunctional due 

to mutations in the LDLR gene [362]. The primary role of the LDLR is to 

transport cholesterol-carrying lipoproteins to cells. The main lipoprotein ligand 

is LDLR which carries approximately 70% of the plasma cholesterol. LDLR 

molecules usually cluster on the cell surface in clathrin-coated pits. After 

binding to the ligand, this complex is endocytosed. Upon interaction with the 
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low pH of the endosome, the ligand is released, and LDLR is recycled back to 

the cell surface [350].  

The mature LDLR is a type I transmembrane protein consisting of 839 amino 

acids [363-366]. The ectodomain of LDLR contains two main regions: the 

ligand-binding domain (LBD) which consists of seven cysteine-rich repeats 

(CR1-CR7), each of about 40 amino acid residues (Figure 1-7). Each CR 

contains six cysteine residues that form three disulfide bridges, and an acidic 

residues cluster that coordinates the Ca2+ ion [349]. The ligand-binding domain 

is followed by the epidermal growth factor precursor homology (EGFPH) 

domain which has a role in the pH-dependant release of LDL in the endosome. 

The EGFPH contains two EGF-like repeats followed by six repeats of YWTD 

(β-propeller) which includes tyrosine, tryptophan, threonine, and aspartic acid 

residues, followed by another EGF-like repeat [367, 368]. Right after this 

domain, there is a serine/threonine-rich sequence that gets highly glycosylated 

which is then followed by the transmembrane and the cytosolic end of the 

protein enriched in O-linked oligosaccharides [364, 369-371].  

It has been shown that calcium ions have a crucial role in the binding of LDLR 

to LDL as the removal of these ions blocked the LDLR-LDL interaction [372]. 

These ions are necessary for the disulfide bonds between the conserved 

cysteine residues in the CR repeats as well as for the structure and binding 

ability of these residues [373, 374]. LDLR is highly flexible in binding various 

ligands. This characteristic has been linked to the lack of inter-domain 

connectivity between its CR repeats which results in an independent ligand-

binding structure in the receptor allowing the ligand-binding repeats to adjust 



75 
 

their position to be able to bind to various ligands in a variety of shapes and 

diameters [375].  

Electron microscopy and crystal structure studies suggest two different pH-

dependent structural conformations for LDLR. In neutral pH, this receptor has 

an elongated structure which is considered to be the binding-active or the open 

structure of LDLR. However, in acidic pH, this receptor adopts a closed 

conformation as the CR4 and CR5 interact with the β-propeller of the EGFPH 

domain resulting in ligand release [376]. The receptor is then recycled back to 

the cell surface. 

1.5.1.3.3 LDLR as the main receptor for VSVind.G cellular entry 

In the endosome, the acidic pH triggers conformational changes in G protein 

resulting in viral membrane fusion to that of the endosome releasing the viral 

genome into the cell cytoplasm. LDLR and other members of the LDLR family 

have been reported to be the primary receptors for VSVind.G [347, 349, 377]. 

VSV infection was successfully inhibited in a dose-dependent manner via 

soluble LDLR molecules and was entirely blocked by the addition of RAP 

[347]. 

It has been shown that CR2 and CR3 domains directly bind to VSV G protein 

in neutral pH (Figure 1-7). Binding was not detected in pH 6, suggesting that 

this interaction occurs only in the pre-fusion structure of VSV. Also, mAbs 

against the LDLR-CR3 were shown to block VSV infection [347, 349]. 

Moreover, VSV infection was blocked after incubation with soluble forms of 

CR2 and CR3 [349]. 
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Crystal structures of soluble G protein interaction with soluble CR2 and CR3 

indicate that VSVind.G interacts with both domains using the same recognition 

epitope [349]. The binding site on the G is organised by sections from residues 

8 to 10 and 350 to 354 in the lateral domain, 180 to 184 in the PHD domain, 

and 47 to 50 in the S2 segment. These sections undergo reorganisation in the 

post-fusion state hence losing the ability to interact with these binding sites [2]. 

Some of these residues seem to play a critical role in this interaction. For 

instance, the basic residues H8 and K47 are positioned closer to the acidic 

residues on the CR domains. K47 also binds to the amide groups of Q71 on 

CR2 via H-bond and forms a salt bridge with the acidic group of D110 on CR3.  

R354 also binds to the C=O groups of the main chain in both CRs. 

Furthermore, the mutated forms of K47 and R354 blocked the interaction 

between CR domain and G protein [349]. 

  



77 
 

  

Figure 1-7. Interactions between VSVind.G and CR2-CR3 domains of LDLR.  
Diagram demonstrates the bound structure of VSVind.G to both CR2 (right) and CR3 (left) on 
LDLR at neutral pH while both proteins are anchored to the viral and cell membranes, 
respectively. EGFL domain: epidermal growth factor-like domain.  
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1.5.1.4 pH sensing 

The envelope of enveloped viruses is derived from the phospholipid bilayers 

of the host cells [378]. For the viruses to deliver their genetic material to the 

target cell, they need to overcome the physical barrier of the phospholipid 

bilayers; the electrostatic repulsion of the polar groups of the phospholipids 

between the cell and the envelope. This is achieved through the viral 

glycoproteins in the viral envelope [106, 379, 380].  Upon exposure to the 

mildly acidic pH of the endosome, the viral glycoprotein goes through 

conformational changes that induce pore formation allowing proton 

penetration. This virion acidification reduces the affinity of the viral M protein 

to the viral ribonucleoprotein releasing it into the cytosol to initiate a successful 

infection [381]. 

Crystallography studies report three distinct conformational states in the 

glycoproteins; the prefusion state (Figure 1-4A), the extended intermediate 

state, and the postfusion state (Figure 1-4B). Structural analysis of the G 

protein indicates conformational changes take place due to side-chain 

protonation on Asp, Glu, and His. Three histidine residues H76, H178, and 

H423 have been shown to act as pH sensors on the pre-fusion structure of 

VSVind.G [2, 332, 382].  These residues have been shown to be conserved 

amongst all seven vesiculoviruses studied in this project yet, their role in pH 

sensing has not been confirmed in other G proteins [2, 332].  

In contrast, in the post-fusion state of VSVind.G, deprotonation of four acidic 

residues D268, D274, D393, and D395 have been reported to act as pH 

sensors for the transition back to the prefusion state [383].  While D274, D393, 

and D395 are conserved amongst all VesGs, it appears that vesiculoviruses 
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other than VSVind.G, recruit alternative residues as pH sensors.  For instance, 

it has been reported that in CHAV.G, deprotonation of D269, E234, and H209 

destabilises the post-fusion structure triggering the transition back to pre-

fusion structure [327].  

VSVind.G is a class III glycoprotein and is responsible for both receptor 

recognition and membrane fusion. This glycoprotein undergoes reversible 

conformational changes. It has been demonstrated that while acidic pH 

inactivates the viral infectivity, the infectivity was recovered when the pH was 

changed to the neutral range [384].  

The prefusion form of the VSVind.G is compact where many interactions exist 

between all four domains. Histidine residues act as pH sensors in the prefusion 

state [382, 385-387]. Two distinct pH-dependant residue interaction has been 

identified in the G protein, the Histidine/Cationic (HisCat) pairing where 

histidine (His) exists in cluster forms when pairing with other cationic residues 

such as lysine (Lys), arginine (Arg), or His. These clusters are mainly localised 

in the interfaces between DIV and DI and DII (Figure 1-4C). Various studies 

have investigated these clusters for pH sensing. His132/Lys15 and 

His162/His407 have been identified to mediate the pH-dependant 

conformational rearrangements in VSVind.G [388]. The second residue 

interaction is Anion-Anion (AniAni) pairing.  The AniAni pairing refers to the 

interaction between two anionic residues such as aspartate (Asp) and 

glutamate (Glu). At neutral pH, these two amino acids are negatively charged 

due to their acidic side chains. Upon pH acidification and therefore protonation, 

they form hydrogen bonds which stabilise the postfusion form of the molecule 

[389, 390].  All AniAni pairings are formed in DII at the trimer interface [339]. 
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In neutral pH, DI usually exists in the interior while DIII occupies the base of 

the molecule. DII however, is mainly unstructured in the neutral pH. Upon 

contact with the acidic pH of the endosome, DI moves to the exterior side while 

DII folds into a six α-helical structure which is highly stable [2]. The NHR and 

MHR of DII create the postfusion trimer by forming the three-helix core of the 

molecule enveloping the CHR section. DIII then folds beside DII while DIV 

extends towards the target cell membrane. While HisCat pairs are reduced, 

the number of AniAni interactions are increased in the postfusion formation 

[339, 390]. However, His residues that were involved in HisCat pairing in the 

prefusion state can form salt bridges with D145 of DIV in acidic pH stabilising 

the postfusion conformation. All these mechanisms that result in pH-

dependent stabilising of the G protein conformational changes, in both pre and 

postfusion states, are suggested to be the reason behind reversibility of the 

conformational changes in VSVind.G [390]. 
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1.5.1.5 Fusogenic activity 

In the acidic pH of the endosome, the G protein undergoes conformational 

changes from the prefusion state to postfusion reformation where the fusion 

loops are exposed to merge the viral membrane to that of the endosome [2, 

106, 332, 339, 391, 392].  It has been reported that the highest levels of 

VSVind infectivity occur around the physiological pH (pH 7.2) and that these 

titres drop by 30-folds when pH is reduced to 7.0 and drop even further when 

pH value is at 6.8 [214, 327, 393].  

To investigate which part of the G protein is responsible for the viral fusogenic 

activity, after incubation of wild-type (WT) VSVind virus in acidic pH and 

comparing the amino acid sequence to that of the neutral pH, four mutations 

were identified in low-pH adapted VSVind virus: F18L, Q301R, K462R, and 

H65R. Three out of four changes in the above mutations are to arginine 

residues, suggesting that positive charges might play a role in pH-induced 

conformational changes of the G protein [214].  

Similar studies on VSVnj.G and CHAV.G reported that both these G proteins 

have lower pH threshold compared to VSVind.G [214, 327]. Moreover, cell-to-

cell fusion assays at mildly acidic pH demonstrated that while VSVind 

infectivity was completely stopped, VSVnj and CHAV were still able to replicate 

in infected cells causing them to fuse together, a process known as syncytia 

formation. This lower pH threshold and higher stability of VSVnj and CHAV in 

slightly acidic pH have been suggested to be related to higher pathogenicity 

and more severe outbreaks compared to VSVind, in animals and humans, 

respectively [214, 327]. Amino acid sequence alignment reveals that VSVnj.G 

contains the K462R amino acid exchange and CHAV.G contains the F18L. 
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Interestingly, while no similar data is reported for PIRYV.G, the G protein also 

contains the K462R amino acid replacement which suggests that PIRYV.G 

could also have lower pH threshold compared to VSVind.G.    

Martinez and Wertz also compared the G proteins of VSV Indiana and New 

Jersey strains. They reported that while VSVnj.G was still infectious in mildly 

acidic pH (6.8), the infectivity of VSVind.G was severely reduced.  Moreover, 

VSVnj.G was shown to have a lower pH threshold compared to VSVind.G as 

its infection was inhibited in the presence of ammonium chloride.  These 

biological differences between VSVind.G and VSVnj.G were linked to the 

higher pathogenicity of New Jersey serotyped compared to Indiana serotype. 

Sequence analysis of VSVind.G after repeated culture in pH 6.8 revealed a 

single amino acid substitution (F18L) to be responsible for adaptation to pH 

6.8. Repeated cultures of VSVind.G in lower acidic pH (6.6 and 6.4) exposed 

additional amino acid substitutions. Moreover, VSVind.G infectivity could be 

recovered after incubation at neutral pH indicating the reversibility of the 

conformational changes of the G protein in Indiana serotype [214]. 
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1.5.1.6 Cell tropism of vesicular stomatitis virus 

VSV is small, replicates rapidly, can easily be manipulated, and has broad cell 

tropism, most human cell types and organisms as distant as Drosophila or 

zebrafish [394-396]. These advantages make this virus a popular model for 

basic research applications and studies such as vaccine development and 

pseudotyping other viruses. Although vaccine vectors have been originally 

developed based on human DNA viruses, in recent years the use of RNA 

viruses, especially animal RNA viruses like VSV, has been considered. The 

lack of a pre-existing neutralising antibody is one of the advantages the animal 

viruses have over the human viruses. Moreover, RNA viruses have rapid 

growth compared to DNA viruses which could be beneficial in vaccine 

development and dose amplification [397].  

The glycoprotein of VSVind (VSVind.G) is the most widely used envelope as 

a model in many studies [194, 211]. Besides broad tropism, VSVind.G 

pseudotyped viral particles demonstrate high physical stability and can 

produce high titres under ultracentrifugation. Nonetheless, VSVind envelope 

is highly sensitive to human serum limits their potential for in vivo applications 

[213]. In addition, VSVind.G is reported to be cytotoxic [201]. Accordingly, 

studies investigating alternative G proteins have been conducted to replace 

VSVind.G [237, 238].   

1.5.1.7 VSV as a vaccine vector and an oncolytic virus  

VSV can be engineered to stimulate the immune system against disease such 

as influenza and AIDS [397]. Studies have demonstrated that without the need 

of injection, mucosal vaccination of a live modified VSV has a protective effect 

against infection: intranasal administration of the live attenuated recombinant 
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VSV expressing hemagglutinin of influenza or the measles virus, protected the 

rodent subjects after a challenge with influenza [398] or measles viruses [399], 

respectively.  

The fact that many tumours are either non-responsive to IFN treatment or can 

develop resistance to the immune system [400] led to studies investigating the 

ability of viruses to infect tumour cells selectively.  This was based on the 

hypothesis that tumour cells infected by the virus can be cleared by the IFN 

that is expressed against the virus infection [401]. VSV can be modified to 

target cancer cells [397]. A recombinant strain of VSVind has been reported 

to show oncolytic ability where it infected and killed cancer cells in both in vitro 

and in vivo studies, while did not affect normal cells. While this oncolysis effect 

was improved massively in the presence of IFN [401-403], VSV was able to 

infect malignant primary cells with defective IFN response [404]. The efficiency 

of VSV against different malignancies [405] as well as recombinant VSV 

coding for the IFN-β gene against hepatocellular carcinomas [406] has been 

reported. These strains of IFN-inducing VSVs are not only efficient in 

promoting oncolysis, but they might also be utilised as vaccine vectors [397]. 

Investigations have been performed to alter the broad tropism of VSV to target 

specific cells. For this, a single-chain variable fragment (scFv) antibody against 

the human major histocompatibility complex class I (MHC-1) was linked to the 

N-terminus of VSV.G. Although LVs pseudotyped with this chimeric VSV.G 

specifically bound to the MHC-1, their infectivity was reduced due to the loss 

of fusogenic ability of the altered VSV.G [407]. 
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VSV is neurotropic and can cause lethal CNS infections in rodents and non-

human primates [408] and encephalitis in humans [409]. While post intranasal 

(i.n.) injection of WT VSV into non-human primates, no trace of the virus in the 

brain or the spinal cord was found, intrathalmic (i.t.) injection caused severe 

neurological disease [408, 410]. Although the mechanisms of this 

neurotropism are not clear, they need to be addressed for VSV to be safe for 

gene therapy and clinical applications [409]. 

Improved knowledge of the molecular biology and epidemiology of VSV in 

recent years, enabled scientists to work on engineering new strains of this 

virus that would be able to function not only as a safe vaccine but also as a 

killer of malignant cells.  Nevertheless, extensive work is needed to investigate 

the safety and the optimal way of delivery of this virus to human. Moreover, 

comprehensive investigations are required to study the interaction between 

the virus and the human immune system as well as the impact of virus 

shedding on the environment [397]. 

 

  



86 
 

1.6 Aims of the thesis 

VSVind.G is commonly used to pseudotype LVs. LVs pseudotyped with this G 

protein exhibit high physical stability. This characteristic enables vector 

concentration via ultracentrifugation yielding high vector titres. Nevertheless, 

when this protein was expressed continuously in cells, cytotoxicity due to high 

fusogenic activity as well as superinfection was reported. These have 

detrimental effects on the cell’s integrity and eventually vector titres. 

Accordingly, the work presented in this thesis aimed to explore the adaptation 

of genus Vesiculovirus envelopes, including VSVind.G, COCV.G, VSVnj.G, 

PIRYV.G, CHAV.G, VSVala.G, and MARAV.G, for lentiviral vector-based 

gene delivery.  

In the first part of this project, these G proteins were tested for functional 

lentiviral vector generation as well as for their physical and thermal stability in 

comparison to VSVind.G, to assess their suitability for high titre vector 

production. 

Chapter 4 of this thesis explored vesiculovirus G proteins’ cytotoxicity via 

comparing the fusogenicity amongst these G proteins including VSVind.G. 

Adaptation of all these G proteins to be stably expressed in cells was also 

examined.  

The final part of this project explores the occurrence of superinfection in other 

vesiculovirus G proteins as well as their receptor usage. Furthermore, the 

effect of receptor knock out was examined in an attempt to block 

superinfection.  
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Materials and Methods 
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2.1 Cell culture 

2.1.1 HEK 293T cells 

The human embryonic kidney (HEK) 293T cells are widely used in cell biology 

experiments and are used throughout this project. These cells are derived from 

the original 293 cells that were first isolated from the kidney of an aborted 

human embryo in 1973 [411]. HEK 293T cells stably express the SV40 large 

T antigen which allows them to be transfected with high efficiency and grow in 

much higher rate than their parental cell line making them a good candidate 

for LV production [411, 412].   

These cells were maintained in Dulbecco's Modified Eagle Medium (DMEM) 

(Sigma-Aldrich) supplemented with 10% heat-inactivated Foetal Calf Serum 

(Gibco), 2mM L-Glutamine (Gibco), 100 units/ml Penicillin and 100μg/ml 

Streptomycin (Gibco).  All cells were kept in cell culture incubators at 37ºC and 

5% CO2. 

2.1.2 TE671 cells 

TE671 are human rhabdomyosarcoma cells.  In this project, they were mainly 

used for the pH-sensitivity assay as they showed robustness, especially when 

incubated at atmospheric CO2, compared to HEK 293T cells. These cells were 

also maintained in DMEM supplemented with 10% heat-inactivated Foetal Calf 

Serum, 2mM L-Glutamine, 100 units/ml Penicillin and 100μg/ml Streptomycin. 

All cells were kept in cell culture incubators at 37ºC and 5% CO2. 
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2.1.3 WinPac cells 

WinPac (WP) is a lentiviral vector packaging cell line derived from HEK 293FT 

cells. HEK 293FT cells are a traceable variant derived from HEK 293 cells 

[412]. The WinPac cells were produced by transfecting a codon optimised 

gag/pol cassette via recombinase-mediated cassette exchange (RMCE) as 

well as stable transfection of a plasmid encoding HIV rev protein. Stable 

transfection of these cells with plasmids encoding RDpro and COCV-G 

envelope proteins generated WinPac-RD and WinPac-CVG cell lines, 

respectively [238, 244]. 

WinPac cell lines were cultured in DMEM containing Glutamax (Gibco) 

supplemented with 100U/mL Penicillin/Streptomycin (Sigma-Aldrich), and 

10% heat-inactivated Foetal Calf Serum (Gibco) at 37°C and 5% CO2.  When 

indicated, antibiotics (Invivogen) were added to the culture medium.  

Antibiotics and their working concentration are listed in table 2-1. 

 

 

 
Table 2-1. Antibiotics used in mammalian cell lines. 

  

Antibiotics Mechanism of action 
Working 

concentration 
(µg/mL) 

Vector component 
selected for 

Puromycin 
Inhibition of protein 

synthesis 
1 Gag/pol 

Hygromycin 
Inhibition of protein 

synthesis 
100 Rev 

Phleomycin DNA cleavage 30 Envelope 

Blasticidin 
Inhibition of protein 

synthesis 
10 CRISPR-Cas9 
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2.2 Gene transfer to mammalian cells 

2.2.1 Transfection of Cells for G Protein Expression 

To express VesG on HEK293T cell surface, these were seeded one day prior 

to transfection at 3x106
 cell per 10cm plate density. These cells were 

transfected by lipofection using FuGENE6 (Promega).  5μg/plate of G protein-

encoding plasmid was mixed with 20μl/plate of dH2O. When co-transfecting 

with pHV-Luc, 2.5μg/10cm plate of each plasmid was added. This DNA 

mixture was then added to a solution of OptiMEM (Gibco) and FuGENE6 (1:5 

μg of DNA: μl of FuGENE6), incubated at room temperature for 20-30 minutes 

and then added to each 10cm plate of HEK293T cells dropwise.  48 hours 

later, cells were harvested to be used in different assays. 

2.2.1.1 Plasmid details 

VesG envelopes were cloned into the high-expression plasmid backbone 

pMD2, driven by a CMV promoter (Figure 3-1A). Amino acid sequences for 

VSVnj.G (UniProt Accession Number: P04882), PIRYV.G (UniProt Accession 

Number: Q85213), MARAV.G (UniProt Accession Number: F8SPF4), 

VSVala.G (UniProt Accession Number: B3FRL4) were retrieved from UniProt. 

Codon-optimised genes were ordered from GENEWIZ (NJ, USA) and 

subcloned into the backbone. 

2.2.2 Transient lentiviral vector production and concentration 

Three-plasmid co-transfection of 293Ts was used to make lentiviral vectors. 

2x107 HEK 293T cells were seeded per 15cm plate a day prior to transfection.  

Cells were then transfected using FuGENE6 with the following plasmids: 2.5μg 

p8.91 (Gag-Pol and Rev expression plasmid), 2.5μg of envelope expression 
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plasmids, and 3.75μg of SIN pHV-GFP [green fluorescent protein (GFP)] 

expressing vector plasmid (Table 2-2). 

24 hours post-transfection, the medium is replaced with fresh complete 

DMEM.  48 hours post-transfection, the vector-containing media is collected 

for 2-3 days in 24-hour periods. Following collection, the supernatant was 

filtered through Whatman Puradisc 0.45μm cellulose acetate filters (SLS) and 

concentrated ~100X using ultracentrifugation [Beckmann Optima LK-90 

ultracentrifuge, SW-28 swinging bucket rotor (radius 16.1cm)] at 22,000 rpm 

(87,119 g) for 2 hours at 4°C. The vectors are resuspended in cold DMEM and 

incubated on ice for 1 hour before aliquoting and storage at -80°C. 

2.3 Plasmid amplification 

2.3.1 Transformation of competent cells with plasmid DNA 

5-alpha high-efficiency competent E.coli (NEB) was thawed on ice. 1-5µl of 

100ng of plasmid DNA/ligation mix was added to 50µl of competent cells, 

incubated on ice for 30 mins and heat shocked at 42°C for 30 seconds.  The 

cells were then incubated on ice for 5 minutes before adding 950µl of SOC 

medium (provided by the manufacturer). The mixture was incubated at 37°C 

for 60 minutes in a shaker at 250 rpm. Following incubation, 100µl of the 

mixture was spread on LB (Luria-Bertani) agar plates containing 100µg/ml 

ampicillin (Sigma-Aldrich). The plates were incubated at 37°C overnight to 

allow colony formation.   



92 
 

2.3.2 Colony screening by PCR 

Ampicillin-resistant colonies were screened for the correct construct using 

Polymerase chain reaction (PCR). GoTaq HotStart Green Master Mix 

(Promega) was prepared in a final volume of 25μl per reaction. Colonies were 

picked with a pipette tip, streaked on an agar plate containing 100μg/ml 

ampicillin (Sigma-Aldrich), and then transferred to PCR mastermix.  PCR 

cycling conditions were as follows: 98°C for 5 minutes; 25-35 cycles 

(denaturation at 98°C for 30 seconds; annealing for 30 seconds at 65°C; and 

elongation at 72°C for 30 seconds/kb of the insert); 72°C for 7 minutes. Melting 

temperatures were calculated using the NEB Tm Calculator: 

(http://tmcalculator.neb.com/#!/). 

2.3.3 Plasmid purification 

Mini and midi-preps were used for plasmid DNA purification. Single positive 

colonies were picked from LB agar plates and transferred to 5ml (for mini-

Plasmid Source Type 

pMD.2A.VSVind.G 
pMD.2A.COCV.G 
pMD.2A.VSVnj.G 
pMD.2A.PIRYV.G 
pMD.2A.CHAV.G 
pMD.2A.VSVala.G 
pMD.2A.MARAV.G 

pMD2.1A-4A & 1B-4B.G 

Self-made G protein 

pRDpro-LF 
Khaled S. Sanber 

(Collins/Takeuchi Group) 
G protein 

SIN pHV-GFP 
Sean B. Knight 

(Collins/Takeuchi Group) 
GFP expression with SIN 

LTR 

p8.91 Plasmid Factory Gag-Pol and Rev 

Table 2-2.  List of plasmids used. 

http://tmcalculator.neb.com/#!/
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preps) or 100ml (for midi-preps) of LB broth containing 100µg/ml ampicillin. 

Cultures were grown overnight at 37°C, shaking at 250 rpm.   

All plasmids were purified from bacterial cultures using the QIAGEN Plasmid 

Mini or Midi-prep kits (QIAGEN) according to the manufacturer’s instructions. 

In this system, LB cultures were pelleted by centrifugation at 4,000 rpm for 30 

minutes.  Bacteria were resuspended in Buffer P1 and exposed to a detergent 

in high pH conditions with the addition of Buffer P2 which causes denaturation 

of plasmid and genomic DNA as well as proteins. While the hydrogen bonds 

of the base pairs are completely disrupted, the circular structure of the plasmid 

prevents two DNA strands from separating in the short duration of exposure 

to these conditions. The addition of Buffer N3 neutralises the aforementioned 

conditions and enables the reformation of the base pairings in the plasmid 

DNA. The addition of Buffer N3 also helps co-precipitation of genomic DNA 

and proteins leaving plasmid DNA in the supernatant. Then plasmids are 

bound to an anion-exchange resin provided by the kit, washed with Buffer PB 

and PE once each, and finally eluted via Buffer EB under low salt conditions. 

After elution, DNA concentrations were determined using a NanoDrop 

(Spectrophotometer, ND-1000). 

2.4 Cloning 

2.4.1 Polymerase chain reaction (PCR) 

Phusion PCR Kit (NEB) was used to perform PCR reactions. Phusion 

polymerase was provided in an inactive form requiring activation before the 

polymerase reaction. This was achieved by incubating the reaction tubes at 

98°C for 5 minutes after the samples were mixed with the freshly prepared 
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master mix and Phusion polymerase. Since the enzyme was inactive at room 

temperature any endonuclease activity that would degrade primers were 

avoided as well as making it possible for the reaction to be set up at room 

temperatures.  The reactions were carried out in a PCR thermal cycler (Applied 

Biosystems, GenAmp PCR system 2700). 

2.4.2 Overlap extension PCR 

As in most PCR reactions, two flanking primers, one for each end, are used 

per sequence.  To link two DNA molecules, special primers are used at the 

ends that are to be joined.  For each molecule, the first of two PCRs creates a 

linear insert such that it has a 5' overhang complementary to the end of the 

other molecule. Following annealing when replication occurs, these 

extensions allow the strands of the PCR product to act as a pair of oversized 

primers and the two sequences will be fused. Once both DNA molecules are 

extended, a second PCR is carried out with only the flanking primers to amplify 

the newly created double-stranded DNA. 
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Figure 2-1. Overlap extension PCR. 
Schematic of overlapping extension PCR. Four primers were designed for the creation of 
each chimeric protein: flanking primers (a and d) and overlapping primers (b and c) which 
contain sequences from both templates. Primers b and c create overlapping sequences at 
each end after the first step PCR. In the second step PCR, the overlapping sequences, 
which are complementary to each other, bind together then the rest of the sequence is 
generated. The newly synthesised sequence is then amplified via a and d flanking primers. 
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2.4.3 Gel electrophoresis, DNA extraction, and purification 

Agarose gel electrophoresis was used to separate different sizes of DNA, to 

analyse PCR and colony screen PCR products as well as to separate and 

purify restriction endonuclease reaction fragments. 1% agarose gels were 

prepared by dissolving agarose (Sigma-Aldrich) in Tris/Borate/EDTA (TBE) 

Buffer.  Depending on the final volume of the solution the mixture was heated 

up in a microwave for 1.5-2 minutes shaking approximately every 30 seconds 

until the agarose was fully dissolved. The solution was then cooled before 

adding 0.1µl/mL SyberSafe DNA gel stain (Invitrogen). Gels were set in 

various casting trays using different sizes of combs depending on need and 

were left to set at room temperature for 30-45 minutes. 

To separate DNA fragments the set gels were placed in electrophoresis tanks 

containing TBE buffer in orientation in which wells closest and parallel to the 

cathode. A 1 kb GeneRuler DNA ladder (Thermo-Fisher Scientific) was added 

to 1 of the wells while samples, positive and negative controls containing DNA 

loading dye (Thermo-Fisher Scientific) to the other wells. The gels were run 

using a constant voltage of 100mW for an hour. Lastly, the DNA bands were 

visualised using a UV transilluminator (UltraBright Blue, Maestrogen), and 

necessary bands were extracted using a scalpel (Swann-Morton). 

The extracted DNA fragments were purified using the QIAquick Gel Extraction 

Kit (QIAGEN) according to the provided protocol. In short, pieces of gel 

extracted using a scalpel were dissolved at 60°C in Buffer QG and then 

centrifuged through an anion exchange resin to which DNA binds to under high 

salt and in acidic pH conditions created by the buffer. After a wash with Buffer 
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PE with ethanol, the DNA fragments were eluted with Buffer EB under low salt 

and high pH conditions. 

2.4.4 DNA digestion 

Various restriction endonucleases were used in the production of several 

plasmid constructs. All endonucleases were obtained from New England 

Biolabs. In a sample reaction, 1µg of the DNA sample was digested with ten 

units of enzyme/µg DNA, 1X of the buffer with bovine serum albumin (BSA) 

(according to manufacturer’s instructions) and nuclease-free water (MEB) with 

the final reaction volume of 50µl. The reaction mix was incubated at 37°C for 

10 minutes and was stopped by the DNA loading dye provided by the 

manufacturer. 

2.4.5 DNA ligation 

The quick ligation kits used were obtained from NEB and Thermo-Fisher 

Scientific and T4 DNA ligase was used according to the manufacturer’s 

instructions for cloning DNA plasmids. In a typical reaction, 50µg of backbone 

was mixed with the DNA insert in 1:3 molar ratio in a final concentration of 1X. 

Ligase buffer (supplied by the manufacturer) made up to a final volume of 10 

µl with nuclease-free water. The reaction was incubated at room temperature 

for 5 minutes and chilled on ice until transformation or stored at -20°C. 

2.5 Flow cytometry 

Fluorescence-activated cell sorting (FACS) analysis was used to determine 

the G protein or GFP expression, on the cell membrane and titrate lentiviral 

vectors, respectively.  FACS is a specialised type of flow cytometry in which 
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cells are carried by liquid flow in a way so that they pass through laser light 

beams one cell at a time for sensing. Then a detector measures the forward-

scattered light (FSC) and side scattered light (SSC), as well as dye-specific 

fluorescence signals. FSC is proportional to the cell size while SSC is a 

measure of cell granularity. All flow cytometry experiments were carried out 

using FACSCanto II (BD Biosciences) machine and FACS Diva analysis 

software (BD Biosciences). 

To analyse the data, FlowJo single cell analysis software (BD Biosciences) 

was utilised. This analysis was based on the negative HEK293T cells, which 

were gated for single cell population based on FSC and SSC data to eliminate 

any dead cells and debris. These gated cells represent the working population 

for the assay analysis. 

2.5.1 Titration of lentiviral vectors 

Vector titres were determined via flow cytometry analysis of GFP expression 

in vector-transduced HEK 293T cells. Titres are reported as TU/ml indicating 

how many cells can be transduced with a given volume of the vector.  3x105 

of HEK 293T cells/well of 12-well plate are seeded in 1mL medium containing 

8µg/mL polybrene (Sigma-Aldrich). Cells are challenged with a serial dilution 

of vectors 3-4 hours after seeding. GFP expression (5-30%) is measured using 

flow cytometry and the formula below: 

Titre (transfection unit/mL) = number of cells seeded*%GFP of positive 

cells*dilution factor/volume of vector added (mL) 
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2.5.2 Extracellular antibody staining  

HEK 293T cells were transfected based on section 2.2.1. 48 hours after, cells 

were harvested, washed twice with phosphate-buffered saline (PBS), and 

plated in U-bottom 96-well plates (Thermo-Fisher Scientific).  Cells were then 

incubated with extracellular antibodies in 1% bovine serum albumin (BSA) 

(Sigma-Aldrich) in PBS (Sigma-Aldrich) in a total reaction volume of 200μl for 

30 minutes at 4ºC. After washing twice with PBS to remove unbound 

antibodies, the cells were incubated for another 30 minutes at 4ºC with their 

respective fluorophore-conjugated secondary antibodies in 1% BSA in PBS in 

a total reaction volume of 200μl. Cells were then washed twice, fixed in 1% 

paraformaldehyde (PFA) (Sigma-Aldrich) in PBS, and analysed by flow 

cytometry. 

2.5.3 Intracellular antibody staining 

HEK 293T cells were transfected based on section 2.2.1. 48 hours after, cells 

were harvested, washed twice with phosphate-buffered saline (PBS), and 

plated in U-bottom 96-well plates (Thermo-Fisher Scientific). Cells were then 

fixed with 1% paraformaldehyde (PFA) in PBS for 20 minutes at room 

temperature.  After washing twice with PBS, cells were permeabilised by 

incubation in 0.05% saponin (Sigma-Aldrich) in PBS for 10 minutes at room 

temperature. The cells were then washed twice in PBS and blocked with 1% 

bovine serum albumin (BSA) in PBS for 60 minutes at room temperature. 

These cells were then stained with an optimised dilution of the primary 

antibody in 1% BSA in PBS for 60 minutes at room temperature in a total 

reaction volume of 200μl.  After washing twice with PBS to remove unbound 

antibodies, the cells were incubated with the respective secondary antibody in 
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the same buffer composition for another hour at room temperature. Following 

two washes with PBS, stained cells were analysed by flow cytometry. 

2.6 CRISPR-Cas9 gene editing system 

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a 

nuclease system utilised to mediate DNA cleavage (Figure 2-2A). To improve 

genome editing in mammalian cells, a codon-optimised Cas9 (CRISPR-

associated) gene in association with a specific single guide RNA (gRNA) has 

been adapted to be delivered to cells using lentivectors. To create individual 

lentiCRISPR targeting a gene (in this study the LDLR gene) three gRNAs were 

designed, based on the human LDLR gene sequence (Ensembl genome 

browser). These gRNAs were 20 nucleotides each and were flanked on their 

3’ end by the NGG PAM sequence (Protospacer adjacent motif) which is 

essential in target binding [411]. While two of the designed gRNA could not be 

sub-cloned into the plasmid backbone, the three oligo, which targeted the 

beginning of the open reading frame, was sub-cloned successfully. This oligo 

was phosphorylated (Table 2.3) and then annealed: 37 ºC for 30 minutes, 95 

ºC for 5 minutes, then ramped down to 25 ºC. 

The lentiCRISPR plasmid (AddGene) contains two expression cassettes, one 

for the chimeric gRNA and one for the Cas9 nuclease (Figure 5-5A) [413]. This 

vector was digested by BsmBI restriction enzyme (NEB) (see section 2.4.4 for 

DNA digestion). After gel purification of the digested backbone (see section 

2.4.3), 1:200 oligos diluted in ddH2O, were ligated into the backbone (Table 

2-4) at room temperature. Competent cells were then transformed by this 

plasmid (see section 2.3.1). To produce LVs, HEK 293T cells were co-
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transfected transiently with lentiCRISPR, packaging, and VSVind.G plasmids 

(see section 2.2.2). Transfected cells were selected with blasticidin for 10 days 

then were lysed and checked for LDLR gene expression via western blot 

(Figure 2-2B).   

 

 

 

 

 

 

 

 

 

 

A 

B 

Figure 2-2. CRISPR-Cas9 gene editing system schematic. 
(A) CRISPR-Cas9 schematic exhibiting complex formation and target binding via 
sequence-specific gRNA. The Cas9 cleaves both strands of DNA. The cellular repair 
system attempts to repair the cleaved DNA where it can introduce mutation in the sequence 
leading to gene disruption.  (B) CRISPR-Cas9 workflow for generating gene knock out. 
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Table 2-3. Phosphorylation and annealing reaction of the oligos. 

 

Reagent Amount per reaction (μl) 

Diluted oligo  1  

Digested plasmid (50 ng) X 

2X Quick Ligase Buffer 
(NEB) 

5 

Quick Ligase (NEB) 1 

ddH2O Up to 11  

Table 2-4. Ligation reaction. 

 

gRNA Primer Sequence 

Oligo 1 

Oligo1-FW CCAGCCTCATCCCCAACCTG 

Oligo1-RS CAGGTTGGGGATGAGGCTGG 

Oligo 2 

Oligo2-FW GACAACGGCTCAGACGAGCA 

Oligo2-RS TGCTCGTCTGAGCCGTTGTC 

Oligo 3 

Oligo3-FW CGTCGCCTTGCTCCTCGCCG 

Oligo3-RS CGGCGAGGAGCAAGGCGACG 

 
Table 2-5. Guide RNA sequences used for against the LDLR gene.   

Reagent Amount per reaction (μl) 

Oligo 1 (100 μM) 1  

Oligo 2 (100 μM) 1 

10X T4 Ligation Buffer 
(NEB) 

1 

T4 PNK (NEB) 0.5 

ddH2O 6.5 
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2.7 SDS-PAGE and immunoblotting  

HEK 293T cells (LDLR-wild-type and LDLR-KO; G protein expressing in 10cm 

plates were washed with PBS, dissociated with trypsin (Sigma-Aldrich). After 

spinning and removing the media, the cell pellets were lysed with 0.40 ml per 

plate of lysis buffer [(25mM Tris-HCl pH7.5, 150mM NaCl, 1% v/v Triton X-

100) supplemented with Roche cOmplete™ protease inhibitor cocktail (Sigma-

Aldrich)]. The lysates were centrifuged (17,000xg, 20 minutes) and the 

supernatants containing the cellular proteins were collected. Protein 

concentrations were determined using a Pierce BCA Protein assay reagent kit 

(Thermo-Fisher Scientific) using BSA as the standard. After normalisation of 

protein concentrations, samples were boiled at 95ºC for 5 minutes in 5X 

Laemmli buffer [0.5M Tris-HCl pH6.8, 10% glycerol, 2% sodium dodecyl 

sulfate (SDS), 0.2mg/ml Bromophenol blue, 5% β-Mercaptoethanol, and 0.1M 

dithiothreitol (DTT)] and were resolved by electrophoresis in a 4% (wt/vol) 

SDS-polyacrylamide staking gel, followed by 10% (wt/vol) resolving gel for 1.5-

2 hours at 120 volts. Proteins were then transferred onto a nitrocellulose 

membrane (GE Healthcare), blocked with 5% (wt/vol) skimmed milk in PBS-T 

(washing buffer; PBS with 0.1% (v/v) Tween20), and incubated with the 

indicated antibodies in the blocking buffer. Secondary antibodies conjugated 

to horse radish peroxidase were visualised by ECL™ Prime Western Blotting 

Reagent (GE Healthcare) using X-ray machine and CL-XPosure Film (Thermo 

Scientific).  
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2.8 Luminescence Assay 

After trypsinisation, transfected cells were washed with PBS and plated on 

white 96-well plates (Thermo-Fisher Scientific) in triplicates at a volume of 50-

100μl/well following resuspension in PBS. Bright-Glo™ luciferase assay 

system (Promega) was utilised to quantify relative protein expression levels. 

For this, isovolume of the Bright-Glo substrate was added onto the cell 

suspensions, incubated at room temperature for 5 minutes and luminescence 

was measured using MicroBeta2 2450 Microplate Counter (PerkinElmer). 

2.9 Quantitative real-time PCR (qRT-PCR) 

To investigate for the presence/levels of expression of various genes qRT-

PCR was utilised. For all qPCR reactions, QuantiTect SYBR Green PCR Kit 

(QIAGEN) was employed. The SYBR Green dye is an asymmetrical cyanine 

dye used as a nucleic acid stain in molecular biology. The dye preferentially 

binds to double-stranded DNA, resulting in a DNA-dye complex that absorbs 

blue light and emits green light. As the specific DNA sequence is amplified by 

the polymerase (e.g. Taq DNA polymerase) the amount of double-stranded 

DNA thus bound SYBR Green amount and the fluorescence of the sample 

increase. The number of PCR cycles taken to reach a threshold fluorescence 

(Ct) gives a measure of how much specific DNA sequence was present in the 

sample at the beginning of the qPCR program. Meanwhile, the presence of 

ROX, a passive reference dye, compensates for non-PCR-related variations 

in fluorescence detection. As fluorescence from ROX dye does not change 

during the qPCR, PCR-related fluorescent signals can be normalised using 

the ROX signal. Furthermore, to control for non-specific DNA amplification, 



105 
 

which is a potential drawback of SYBR Green-based detection, a melting curve 

is run, whereby the thermocycler detects the melting point of the PCR product. 

Detection of a single melting point is indicative of a single PCR product. 

Total RNA was isolated from cells using the RNeasy kit according to 

manufacturer’s protocol (QIAGEN). Using the extracted RNAs, cDNA was 

synthesised using the First Strand cDNA Synthesis Kit (Thermo-Fisher 

Scientific) according to the manufacturer’s information. Fold-expression level 

differences compared to the utilised house-keeping gene (β-actin) were 

calculated using the Ct values obtained.  Beta-actin gene was used as 

endogenous gene control.  

To convert the Ct value into a useful measure of DNA amount, absolute 

quantification was used throughout this thesis. Therefore, standards 

containing known quantities of the DNA sequence of interest were included in 

the qPCR, and Ct values from these were used to calculate a standard curve. 

Calculations for standards made for qPCR using HIV leader primers to detect 

reverse-transcribed LV provirus copies. The size of the plasmid was used to 

calculate the molecular weight of the molecule which was then used to 

calculate the weight of 1010 plasmid copies in nanograms (ng). 1010 plasmid 

copies/2 μl aliquot of the plasmid was prepared in nuclease-free water which 

was then serially diluted to obtain 108, 107, 106, 105, 104, 103, 102, 101 

plasmids/2μl. Linear regression was later utilised to calculate the number of 

copies of the DNA sequence of interest in the reactions containing genomic 

DNA according to the standard curve. 
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A master mix was prepared according to the manufacturer’s protocol.  23μl of 

the master mix was added into each well of a 96-well qPCR plate (Agilent). 

Next, 2μl of the standard, sample or water per reaction was added to 

corresponding wells to a final volume of 25μl per each well. qPCR plates were 

sealed with an optically clear adhesive tape (Thermo-Fischer Scientific) and 

centrifuged briefly. A Stratagene Mx3005P qPCR System (Agilent) was used 

to run qPCR reactions and the data were analysed using the MxPro Software 

(Agilent). 

2.10 Microscopy 

2.10.1 Bright field microscopy 

Wide-field light microscopy (Leica Microsystems) was used to visualise cells 

after Giemsa staining. HEK 293T cells were transfected with various VesG. 

One hour post incubation in various pH values, cells were washed with PBS, 

fixed in 100% methanol for 10 minutes, stained with Giemsa stain for 30-60 

minutes, and washed with tap water. Stained samples were then visualised 

using wide-field light microscopy via 10X or 20X objective lens. 

2.10.2 Confocal microscopy 

HEK 293T cells were transfected with various VesG. One hour post incubation 

in various pH values, cells were washed with PBS, fixed in 100% methanol for 

10 minutes, and stained with WGA (green) and SYTO® 61 (red) for cytoplasm 

and nuclei, respectively. Stained samples were visualised using SP8 X 
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confocal Laser Scanning Microscope (Leica Microsystems) via 20X objective 

lens. 

2.11 Appendix 

2.11.1 Antibodies 

Against Antibody Host  Manufacturer 
Working 
dilution 

VSVind.G 
8G5F11 

VSV-Poly 
P5D4 

Mouse 
Goat 

Mouse 

Kerafast 
Dr Hoshino 

(Japan) 
Sigma-Aldrich 

1:1000 
1:500 
1:500 

Human 
GAPDH 

GAPDH Mouse Sigma-Aldrich 1:5,000 

RDpro 
Anti-RDpro 
antiserum 

Mouse  Dr Pule (UCL) 1:500 

Table 2-6. List of primary antibodies used. 

 

 

Antibody Host  Manufacturer Working dilution 

Alexa Fluor® 
647 AffiniPure 

Goat Anti-
Mouse IgG 

(subclasses 
1+2a+2b+3), 

Fcγ Fragment 
Specific 

Goat Jackson Immunoresearch 

 
 

1:500 

Alexa Fluor® 
647 AffiniPure 
Rabbit Anti-
Goat IgG, Fc 

Fragment 
Specific 

Rabbit Jackson Immunoresearch 1:500 

Amersham 
ECL Mouse 
IgG, HRP-

linked whole 
Antibody 

Sheep  GE Healthcare 1:500 

 
Table 2-7. List of secondary antibodies used. 
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2.11.2 Primers 

Vector Primer name Sequence 

pMD-2A-1A.G 

pMD-2A-2A.G 

pMD-2A-3A.G 

pMD-2A-4A.G 

COCV-OL-FW 
GCAAATCACGTGGCCACCATGAATTTT 

CTTCTCTTGACC 

VSVind-OL-RS 
GAGATGAACCGACTTGGAAAGTAA 

GAATTCATTTGC 

pMD-2A-1B.G 

pMD-2A-2B.G 

pMD-2A-3B.G 

pMD-2A-4B.G 

VSVind-OL-FW 
GAAATTCACGTGGCCACCATG 

AAGTGCCTTTTG 

COCV-OL-RS 
GCCGCTTCAGGAAGTGAGAA 

TTCTTTTCC 

 
Table 2-8. Primers used for cloning A and B chimerae. 
 
 

 

Vector Primer name Sequence 

Tail-VesG 

VSV-flanking RS GAATTCTTACTTTCCAAGTCGGTTCATCTC 

PIRY-flanking FW ATCAACACGTGTCTAGAGCCACCATGGATC 

NJ-flanking FW ATCAACACGTGTCTAGAGCCACCATGCTG 

COCV-flanking FW ATCAACACGTGGCCACCATGAAT 

PIRY-inner FW CCAGGGATGGTTCAGTAGTTGGAAAAGC 

PIRY-inner RS GCTTTTCCAACTACTGAACCATCCCTGGATC 

NJ-inner FW GAGGGCTGGTTCAGTAGTTGGAAAAGC 

NJ-inner RS GCTTTTCCAACTACTGAACCAGCCCTCCAC 

COCV-inner FW GAAGGTTGGTTTAGTAGTTGGAAAAGCTCT 

COCV-inner RS CCAACTACTAAACCAACCTTCGATAAGCTC 

 
Table 2-9. Primers used for cloning the Tail-VesG.  
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Gene Primer Sequence  

LDLR 
LDLR-FW CCAAGTGTCCAGGGAGATGT 

LDLR-RS TCTCATTTCCTCTGCCAGCA 

VLDLR 
VLDLR-FW GCCCGATTTGCTTAGGACAG 

VLDLR-RS TGCTAATTCTTCCTGGGGCA 

APOER2 
APOER2-FW CAGTCACTGCCGCTGTTATC 

APOER2-RS AAATCAGGACTGGGAGGTGG 

Lgr4 
Lgr4-FW TGACTTAAGGACACTGAGGCT 

Lgr4-RS GGGTTAAGGACACTGAGGCT 

 
Table 2-10. Primers used to quantify gene expression in WT vs LDLR-KO cells. 

 

2.11.3 Proteins 

Virus 
UniProtKB/Swiss-Prot 

Accession Number 
Genbank Accession 

Number  

Vesicular stomatitis 
Indiana virus (VSVind) – 

San Juan strain 
P03522 M35219 

Maraba virus (MARAV) F8SPF4 HQ660076 

Cocal virus (COCV) O56677 AF045556 

Vesicular stomatitis 
Alagoas virus (VSVala) 

B3FRL4 ACB47442 

Vesicular stomatitis New 
Jersey virus (VSVnj) – 

Ogden strain 
P04882 V01214 

Piry virus (PIRYV) Q85213 D26175 

Chandipura virus (CHAV) - 
I653514 strain 

P13180 AY614717.1 

 
Table 2-11. Accession numbers of vesiculovirus G proteins. 
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2.11.4 Cloning and sub-cloning steps 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B

Figure 2-3. Gel electrophoresis displaying various steps of constructs cloning.  
(A) Gel electrophoresis showing cloning various genes for the pMD.2A plasmid backbone 
and, (B) various Vesiculovirus G proteins.  

Figure 2-4. Gel electrophoresis displaying various steps of cloning the chimeric G protein 
via overlap extension PCR.  
Gel electrophoresis showing cloning various segments of each chimerae (upper panel) and 
the final step of PCR ligating the two overlapping segments to create each of the chimeric 
G proteins (lower panel).  
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3 CHAPTER 

Physical stability of 
transiently produced LVs 
pseudotyped with various 

vesiculovirus G protein 
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3.1 Overview   

Lentiviral vectors (LVs) are important tools for gene delivery into cells for gene 

therapy purposes. As LVs use in clinical gene therapy requires highly 

concentrated and high-purity vectors produced by large-scale preparations, 

the stability of LVs during production, concentration, and transduction is a vital 

practical consideration [227, 414]. Overall stability of the vector, mediated by 

its envelope glycoprotein, is dependent on several factors including 

temperature, pH, freeze-thaw frequency, and incubation and production 

conditions (i.e. growth media, CO2 levels).   

However, the stability of HIV-1 based vectors has not been well-characterised 

[415]. Previous studies have demonstrated that when incubated at 37°C half-

life of retroviral vectors lies between 3.5-7 hours dependent on the envelope 

utilised [416-418]. The envelope glycoprotein of vesicular stomatitis virus 

Indiana strain (VSVind.G) is the most commonly used envelope to pseudotype 

LVs as it provides the vector particles with high physical stability enabling 

vector concentration to higher titres using high-speed ultracentrifugation [201, 

419].  

Stability of the prototype VSVind virus has been investigated from a health and 

safety perspective. The wild-type virus was remarkably stable in long-term 

incubation at 4°C demonstrating minimal loss of infection after over a month;  

however, upon incubation at 37°C complete degradation of the virus and loss 

of infectivity was observed within 21 days [420]. However, a similar inactivation 

pattern was not observed when short-term incubation (i.e. up to 30 mins) on 

viral inactivation was tested. No significant decrease in viral infectivity was 
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detected when the virus was incubated in the temperature range of 20-46°C, 

but it was rapidly (i.e. in less than four mins) degraded when incubated at 

temperatures above 50°C. All in all, the data acquired from this study 

corroborated previous studies performed on rabies virus and other 

rhabdoviruses (e.g. mokolo virus, spring viremia of carp virus, and pike fry 

rhabdovirus) [421]. Therefore, it can be inferred that thermal stability 

characteristics are shared amongst the rhabdovirus subfamily.  

Through directed evolution studies, several key amino acid residues have 

been identified which confer VSVind.G thermostability [422]. Following several 

rounds of plaque rescue, several advantageous mutations including K66T, 

T368A, and E380K were identified which enhanced the G protein’s existing 

thermostability. This increased thermostability may be the result of formation 

of new disulfide bond and electrostatic interactions [423]. Furthermore, an 

increased thermostability may lead to better physical stability and improved 

vector recovery following freeze-thaw cycles. All in all, the generation or usage 

of more stable envelope G proteins will aid in the enhancement of vector 

production and potentially reducing the dosage needed in vivo. 

The LVs used in the clinic are produced transiently by DNA transfection of 

HEK 293T cells with three or four plasmids [229, 424], while a stable producer 

cell line will have the advantages of being cheaper, easily scalable with less 

batch to batch variation. 

The Collins/Takeuchi group developed packaging cell lines that can support 

the continuous production of LV, STAR packaging cells [240] as well as 

WinPac-RD packaging cell line [238]. They initially adopted a non-toxic 
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gammaretroviral envelope, from the feline endogenous virus RD114, with an 

altered cytoplasmic tail to allow LV incorporation, RDpro [240]. This was 

preferred to VSVind.G due to its reported high cytotoxicity and inactivation by 

human serum complement [211, 213]. Due to limited host tropism and reduced 

physical stability, which lead to suboptimal titres and virus recovery, the usage 

of the RDpro packaging cell line is limited.  

In 2010, Trobridge et al. published a paper in which lentiviral vectors were 

pseudotyped with the envelope G protein of Cocal virus (COCV). It has been 

reported that, in transient production systems, G protein of COCV (COCV.G) 

can efficiently pseudotype LVs producing relatively high titres (107 transducing 

units/mL). COCV.G LVs also demonstrated broad tropism as they could 

transduce a variety of cells of different origins including human, primate, and 

dog-hematopoietic progenitor cells. Moreover, compared to VSVind.G-

pseudotyped LVs, COCV.G-pseudotyped LVs showed more resistance to 

inactivation by human and dog serum, which shows promise for in vivo 

applications [243]. Lastly, some preliminary data suggest that COCV.G might 

be less cytotoxic compared to VSVind.G when expressed continuously [244]. 

These favourable characteristics would facilitate affordable large-scale vector 

production if COCV.G also demonstrates high vector stability like VSVind.G. 

This would greatly improve the range of clinical applications of LVs and would 

help propel the field of LV-mediated gene therapy forward [238]. 

Consequently, our laboratory decided to replace the RDpro envelope in 

WinPac-RD packaging cell line with that of Cocal virus to generate WinPac-

COCV.G cell line. The initial results of the test were rather promising, as 
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COCV.G seemed to show similar properties to its close phylogenetic relative 

VSVind.G [244].  

Therefore, well-structured research investigating COCV.G and other members 

of the vesiculovirus genus exploring their ability to pseudotype HIV-1 based 

LVs and the beneficial characteristics they confer upon the vector particles will 

be beneficial in the development of gene therapy products more suitable to the 

clinic. 
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3.2 Aims 

Several vesiculovirus G proteins have been reported to have beneficial 

characteristics over VSVind.G (e.g. reduced toxicity and nonimmune serum 

resistance). Therefore, their adaptation to LV producer cells may lead to the 

generation of promising pseudotypes increasing the therapeutic potential of 

LVs in gene therapy. The work presented in this chapter was aimed towards 

evaluating various vesiculovirus G proteins for their ability to pseudotype HIV-

1 based LVs and the stability of the pseudotyped particles: 

• Investigate whether lentiviral vectors can be pseudotyped with other 

vesiculovirus G proteins including COCV.G, VSVnj.G, PIRYV.G, 

CHAV.G, VSVala.G, and MARAV.G. 

• Inspect whether other vesiculovirus G proteins are as robust as 

VSVind.G during vector production, concentration, and storage. 
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3.3 Results  

3.3.1 Development of pMD-2A-VesG constructs 

In order to examine the pseudotyping ability of the vesiculovirus G proteins, 

expression vectors were constructed. To allow for selection of G protein 

expressing cells a selectable marker, the Streptoalloteichus hindustanus 

phleomycin inhibitor (Sh ble) was expressed as a fusion protein with the G 

proteins, separated by a foot-and-mouth disease virus (FMDV) 2A-like self-

cleaving peptide [425, 426] (Figure 3-1A). 2A is an oligopeptide (usually 19–

22 amino acids) with a cleavage site located between the glycine and the last 

proline residues on its C-terminal end (indicated by an arrow in below 

sequence). Successful cleavage during translation results in two cleaved 

proteins: the protein upstream of the 2A which is attached to the complete 2A 

sequence apart from the C-terminal proline, and the protein downstream of the 

2A which is attached to the proline at the N-terminus [427]. The use of such 

peptides allows for expression of two (or more) proteins in a single open 

reading frame controlled by the same promoter. The 2A-like peptide chosen 

for the construct was derived from the insect virus Thosea asigna virus [426] 

and coded for twenty amino acids: RAEGRGSLLTCGDVEENPG↓P. 

Codon-optimised 2A peptide sequence as well as sequences of seven 

different vesiculoviruses, VSVind.G, COCV.G, VSVnj.G, MARAV.G, 

VSVala.G, and PIRYV.G, were subcloned into high expression plasmid 

backbone pMD2. As a control envelope RDpro, derived from the feline 

endogenous gammaretrovirus RD114 with a modifies cytoplasmic tail, was 

utilised [240], which has previously been adopted to two LV packaging cell 
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lines in the Collins/Takeuchi group [238, 240]. The G protein sequences were 

introduced into the C terminal end of the 2A peptide while Sh ble in the N-

terminal end. G proteins were subcloned either from previously constructed 

plasmids or from codon-optimised sequences obtained commercially (see 

section 2.2.2) generating the pMD-2A-VesG plasmids (Figure 3-1A). 

As the first step, pMD-2A-VesG constructs were examined for their 

functionality to ensure that the presence of the 2A peptide had no adverse 

effect on the G protein expression. To investigate this, HEK 293T cells were 

transfected with these constructs. 48 hours later, the cells were stained with 

goat anti-VSVind.G antiserum (VSV-Poly), and the envelope expression was 

determined via flow cytometry (Figure 3-1B). Although this antibody was 

produced against VSVind.G, cross-reaction with other G proteins was 

observed in earlier investigations (accepted manuscript [428]).  Expression of 

all G proteins was detected on the cell surface. The median fluorescence 

intensities of the signals detected, except that of CHAV.G, were at comparable 

levels to that of the saturated signal determined in affinity analyses [428, 429]. 

The fluorescent signal detected from cells expressing CHAV.G were 

comparable to that of mock-transfected HEK293T cells (Figure 3-1B). This 

may be due to lack of cross-reaction of the polyclonal antibody against the 

CHAV.G protein, or lower CHAV.G expression. 

Following detection of expression, the functional LV titres pseudotyped with 

these G proteins were investigated. LVs were generated via transient 3-

plasmid co-transfection. The vector containing media were harvested 48h after 

transfection and were titrated on HEK 293T cells to determine infectious titres.  

Titres indicated that all VesG were able to pseudotype HIV-1-based LVs 
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yielding functional vectors (Figure 3-1C). Moreover, all VesG except for 

CHAV.G (6.1x104), achieved high titres comparable (COCV- 7.5x106; VSVnj- 

4.3x106; PIRYV- 2.0x106; VSVala- 1.0x106; MARAV- 1.5x106) to that of the 

widely used VSVind.G (1.1x107).  
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*** 

Figure 3-1. Construction of vesiculovirus G protein envelope expression plasmids. 
(A) Vesiculovirus G proteins were sub-cloned into the pMD2 plasmid backbone in which 
the marker gene, Sh ble, and the G protein are linked by the TAV 2A- self-cleaving peptide 
and therefore are controlled by a single CMV promoter. The Sh ble-G-protein fusion protein 
is flanked by an upstream bovine beta-globin intron and a downstream bovine growth 
hormone poly-A site. The restriction endonuclease enzyme sites used for subcloning are 
marked. (B) G proteins were expressed in HEK 293T cells and stained with VSV-Poly and 
analysed via flow cytometry to deduce transient envelope expression levels. (C) Functional 
titres of LVs pseudotyped with pMD-2A-VesG were produced by transient 3-plasmid 
transfection. LV containing media were collected and titrated on HEK 293T cells to 
determine the infectious titres. Data shown represent relative titres +/- SD for three 
experiments performed in duplicates. One-way ANOVA with Dunnett's post-test was 
performed to compare all VesG to the gold standard VSVind.G (*** p<0.001). 

A 

B 

C 



121  
 

3.3.2 Development of pMD-2A-Chimerae constructs 

Mapping key determinant dictating the envelope stability may be critical to 

tailor these G proteins to improve G protein-containing advanced therapy 

products as well as improve packaging cell line’s health and LV titres.   

Phylogenetic analysis of amino acid sequences of the G proteins, shows that 

COCV.G is closely related to VSVind.G [335]. The sequence alignment of the 

amino acid sequences of COCV.G and VSVind.G highlights the structural 

similarities between these two G proteins. These include N-terminal signal 

peptide [333] and two N-linked glycosylation sites at amino acids 180 and 337. 

As well as having the similar 4-domain structure, VSVind.G and COCV.G have 

72.5% sequence homology on the amino acid level (see Figure 1-2) [335]. 

Two sets of chimeric G proteins were generated between COCV.G and 

VSVind.G (Figure 3-2A). They were produced, based on amino acid 

alignment, by having the protein junctions in regions where the G proteins are 

conserved. Eight chimeric G proteins were created: series A (COCV.G N-

terminal, VSVind.G C-terminal) and series B (VSVind.G N-terminal, COCV.G 

C-terminal). These chimerae were sub-cloned into the pMD-2A backbone as 

the G proteins. The functionality of these constructs was investigated by 

producing transient LVs pseudotyped with pMD-2A-Chimerae constructs via 

3-plasmid LV production system. The unconcentrated titres were then 

determined by measuring GFP expression 48 post-transduction of HEK 293T 

cells via flow cytometry (Figure 3-2B). While all pMD-2A-Chimerae produced 

reasonable crude titres, 3-A titres were around 100-folds lower. To investigate 

the envelope expression of pMD-2A-Chimerae, HEK 293T cells were 



122  
 

transfected with these constructs. 48 post-transfection, the cells were stained 

with VSV-Poly, and the envelope expression was measured using flow 

cytometry. Analysed histograms indicate that all pMD-2A-Chimerae except 3-

A transfected cells express envelope G protein on their surface (Figure 3-2C). 

To further investigate the low envelope expression in 3-A construct, the 

transfected cells were also stained intracellularly using a monoclonal anti 

VSVind.G antibody (P5D4, Sigma). Analysed histograms show higher 

expression of 3-A in intracellular compared to extracellular staining (Figure 3-

2D). This data suggests that the mix-and-match of VSVind.G and COCV.G 

might have introduced some modifications in 3-A construct which might be 

affecting the trafficking of this protein to the cytoplasm.  
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Figure 3-2. Construction of chimeric G protein envelope expression plasmids. 
(A) The design and the cross-over points of the chimeric G-proteins are represented in 
linear diagrams, in which black bars stand for wild-type (WT) VSVind.G sequences and 
WT COCV.G sequences are represented by white bars. The cross-over points between 
the two WT sequences is indicated by amino acid number above the bar. (B) A- and B-
chimerae were sub-cloned into the pMD-2A backbone. LVs pseudotyped with pMD-2A-
Chimerae were produced using 3-plasmid transient production. The titres of these vectors 
were calculated by measuring GFP percentage via flow cytometry. Data shown represent 
relative titres +/- SD for three experiments performed in duplicates. (C) Extracellular 
staining of A-chimerae (left panel) and B-chimera (right panel) with VSV-Poly 48 hours 
post-transfection. (D) Intracellular staining of A-chimerae (left panel) and B-chimera (right 
panel) with anti-VSVind.G antibody, P5D4, 48 hours post-transfection. These graphs are 
representative of one of two independent experiments performed in duplicates. One-way 
ANOVA with Dunnett's post-test was performed to compare 3-A to VSVind.G and COCV.G 
(*** p<0.001). 
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3.3.3 Physical stability of VesG-pseudotyped LVs  

To establish which vesiculovirus G proteins (VesG) are most promising to 

generate a stable packaging cell line, we decided to test the physical stability 

of the VesG-pseudotyped LVs. HEK 293T cells were co-transfected with HIV 

packaging, VesG or RDpro, and transfer vector (GFP) plasmids. Starting at 48 

hours post-transfection, the vector containing supernatant was collected, 

filtered and kept at 4°C. This was repeated for three consecutive days with 24 

hours intervals. On the day of the third collection, the pooled supernatant of 

each vector was concentrated using high-speed (87,119 g) ultracentrifugation 

and resuspended in a 1:300 of the original volume. To check the titres of the 

produced vectors, HEK 293T cells were transduced with both crude and 

concentrated vectors. The titres were determined by measuring GFP 

expression using flow cytometry. Figure 3-3 shows that LV with all 

vesiculovirus envelopes were readily concentrated to around hundred-fold 

higher titres by centrifugation (COCV- from 3.4x106  to 2.1x108; VSVnj- from 

1.9x106  to 2.2x108; PIRYV- from 1.0x106 to 2.2x108; VSVala- from 6.5x105  to 

3.3x107; MARAV- from 1.5x106 to 9.1x107), as was reported for VSVind.G 

(from 3.1x106  to 1.6x108). Moreover, all VesG-pseudotyped LVs could be 

recovered with high efficiency (overall average approximately 75%) following 

concentration indicating minimal envelope shedding due to shearing forces of 

the centrifugation process (Figure 3-3; right Y axis). On the other hand, 

although CHAV.G could also be concentrated to 100-fold higher (3.5x104 to 

1.7x106) implying high physical stability like other VesG, its titres remained 

low. 
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Figure 3-3. High physical stability in VesG pseudotyped LVs. 
Transient LVs pseudotyped with VesG were concentrated using high speed 
ultracentrifugation. The titres before and after centrifugation indicate successful 
concentration of these vectors. For all pseudotypes, the percentage of recovery was higher 
than 50%, indicating minimal envelope shedding and robust physical stability. The graph 
represents three repeats from two separate transient LV production; error bars indicate +/- 
SD for three experiments performed in duplicates. One-way ANOVA with Dunnett's post-
test was performed to compare all VesG/RD titres to that of VSVind.G (*** p<0.001; ** 
p<0.01; * p<0.05).# 
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3.3.4 Thermal stability of VesG-pseudotyped LVs 

To further examine VesG-LVs, the transient vectors were also tested for their 

thermostability by several cycles of freezing-thawing, incubation at 37°C (heat 

block) for 2 and 6 hours, and incubation at 4°C (refrigerator) for 24 and 48 

hours.  

Figure 3-4 demonstrates the crude titres after the vectors went through 

multiple cycles of freeze-thawing. Data show that titres of most LVs remained 

stable throughout freeze-thaw cycles. RDpro LV titres were less stable and 

dropped considerably (~10-fold) after each freeze-thaw cycle compared to 

VesG LVs while CHAV.G-LV significantly lost infectivity after the second cycle. 

Figure 3-5 shows the percentage of recovery of LVs after going through 

freeze-thaw cycles or incubation at 37°C and 4°C. VSVind.G, COCV.G, 

VSVnj.G, and PIRYV.G did not lose infectivity after freeze-thaw cycles, also, 

COCV.G recovery seemed to exceed that of VSVind.G (90% vs 85%, 

respectively (p<0.001). VSVala.G and MARAV.G infection dropped from 

around 80% to approximately 70%, and RDpro infection dropped from around 

60-50% compared to their respective original titres.  

VSVind.G and COCV.G demonstrated similar sensitivity to incubation at 4°C.  

Although a slight decrease in infectivity was observed, 10% after 24 hours and 

a further 10% after 48 hours, overall both pseudotypes were stable. Similarly, 

VSVnj.G and MARAV.G were robust and retained infection levels at more than 

80% for up to 48 hours of incubation. VSVala.G infection dropped slightly from 

around 90-70%. In contrast, PIRYV.G seemed to be less stable at 4°C 

compared to other VesG as the percentage of infectivity dropped from around 
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70% after 24 hours incubation to around 60% at 48 hours. CHAV.G LVs were 

substantially sensitive to incubation at 4°C losing more than half of their 

original titres within 24 hours. However, following this initial loss of titre, the 

infectivity remained constant (around 30-40%). RDpro LVs were also highly 

sensitive to incubation at 4°C; their infectivity dropped from around 60% after 

24 hours to around 20% after 48 hours.  

Furthermore, COCV.G, VSVala.G, and MARAV.G seemed to be following a 

similar pattern of retaining around 90% infectivity for up to 6 hours at 37°C. 

VSVind.G and VSVnj.G LVs infectivity remained stable (around 100%) for up 

to two hours of incubation at 37°C however, infectivity dropped to around 80% 

after additional 4 hours of incubation. RDpro-LVs retained stable infectivity 

(around 70%) for up to 6 hours of incubation while CHAV.G infectivity dropped 

from around 70% after 2 hours of incubation to around 60% up to 6 hours of 

incubation at 37°C.  
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Figure 3-4. Sensitivity of VesG-LV to repeated cycles of freezing and thawing. 
VesG and RDpro LVs went through three cycles of freeze-thawing (x-axis). HEK 293T cells 
were then transduced with these vectors and 48 hours later the titres were measure by 
GFP expression using flow cytometry.  Error bars indicate mean titres +/- SD of three 
repeats performed in duplicates, from two separate batches of transient LV productions. 
One-way ANOVA with Dunnett's post-test was performed comparing 1x, 2x, 3x to the 
control column of 0 (* p<0.05).  
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Figure 3-5. Thermostability of VesG pseudotyped LVs. 
The relative titres of VesG-LV were calculated after LVs underwent several different 
thermostability assays (i.e. freeze-thaw, incubation at 4ºC and 37ºC). Data represent the 
mean value of three repeats performed in duplicates, from two separate batches of 
transient LV productions. The titres are presented as a percentage of titre before 
commencing the thermostability test. One-way ANOVA with Dunnett's post-test was 
performed to compare all VesG to the gold standard VSVind.G (*** p<0.001; ** p<0.01; * 
p<0.05). The significance of a selection of comparisons are indicated on the graph. 
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 3.4 Discussion 

Maintaining virus viability over long periods with little or no change of infectivity 

is valuable for research and clinical applications. The manufacture of gene 

therapy products comprises several steps: vector production and purification, 

storage, and application of the vectors for gene transfer. Throughout these 

steps, vectors can get inactivated which can affect the final quality and efficacy 

of the vector preparations as well as vector transduced cells [430].  In addition, 

the efficiency of transduction into primary cells using viral vectors depends on 

the initial viral titres applied and on the stability of vector during the 

transduction period [431, 432]. Moreover, compounds of cellular origin 

released into the medium might affect gene transfer results negatively [433].  

For ex vivo transduction, cells are isolated from a patient and externally 

propagated. In that case, the stability in growth medium is predominant. For in 

vivo applications, vectors are mostly delivered to the bloodstream and 

therefore the stability in the human blood is of interest. Both procedures 

require stable particles. Additionally, in the in vivo approach, the biological 

stability of the vectors in the presence of the immune system is of great 

importance [434]. 

Lentiviral vectors are used commonly for gene transfer protocols while their 

use is expanding rapidly in gene therapy clinical trials. These vectors present 

the main advantage of being able to insert the gene of interest into the host 

cell genome in both dividing and non-dividing cells [435, 436].  Nevertheless, 

the production of lentiviral vectors presents several problems. One of the most 

critical is the low stability of these vectors. For in vitro cell transduction, crude 

(unconcentrated) vector stocks are often sufficient, whereas concentrated 
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vector stocks are needed for in vivo applications. Concentrating lentiviral 

vector stocks are typically performed using ultracentrifugation approaches 

[437, 438]. This is a rapid and robust method for vector concentration at a 

small scale. However, the low stability of the vectors affects their production, 

storage, and efficacy in preclinical and clinical settings, making high-quality 

clinical preparations a challenging goal to achieve [430]. At 37°C, these 

vectors are less stable, which is a critical issue concerning the efficacy of viral 

preparations in clinical studies. During purification and short-term storage, LVs 

are usually kept at 4°C while for long-term storage; they are kept at -80°C 

however, freeze-thaw has a detrimental effect on viral titres [439].  

Amongst other advantages, to increase the overall vector particle stability, LVs 

are commonly pseudotyped with VSVind.G proteins. Nevertheless, due to 

some drawbacks pertaining to VSVind.G, alternative envelopes have been 

studied for LV pseudotyping. The work presented in this chapter aimed to 

investigate the stability of lentiviral vectors at temperatures relevant for 

production and usage: 37°C and 4°C, in freeze-thaw cycles as well as to check 

the physical stability of the vectors by ultracentrifugation. 

3.4.1 Development of vesiculovirus G protein-pseudotyped 

lentiviral vectors and their physical and thermal stability 

Transient LVs pseudotyped with VSVind.G, COCV.G, VSVnj.G, PIRYV.G, 

CHAV.G, VSVala.G, MARAV.G, and RDpro were produced to establish which 

vesiculovirus are most promising to generate a stable packing cell line with.   

As there are only specific commercial antibodies available against VSVind.G, 

All VesG were stained with goat anti-VSVind.G antiserum, VSV-Poly, which 
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can cross-react with VesG other than VSVind.G (accepted manuscript  [428]) 

in order to examine the expression of the G proteins on the cell surface 

following transfection of HEK 293T cells.  

Figure 3-1 demonstrates that all VesG except CHAV.G were able to 

pseudotype LVs with titres comparable to that of VSVind.G and exceeding that 

of RDpro. Furthermore, they could readily be concentrated by 

ultracentrifugation at 22,000 rpm (87,119) for 2 hours at 4°C. As VSVind.G 

pseudotyped LVs are stable, these vectors were expected to produce high 

titres before and after concentration. All VesG pseudotyped LVs except for 

CHAV.G, produced crude titres of around 106 TU/mL and concentrated titres 

of around 108 TU/mL or higher (Figure 3-2). This shows that these VesG can 

produce LVs with high vector particle stability. CHAV.G produced LVs with 

crude titres of around 104 TU/mL and concentrated titres of around 106 TU/mL, 

which are considered too low titres to be useful for gene delivery purposes. 

VesG vectors were also stable during freeze-thawing achieving recovery 

levels of minimum 80% on average (CHAV.G excluded). Under different 

incubation conditions, the infectivity recovery varied amongst different G 

proteins (Figure 3-4). Overall, COCV.G, VSVnj.G, VSVala.G, and MARAV.G, 

similar to VSVind.G, seemed to be stable under all three conditions. PIRYV.G 

was stable during freeze-thaw cycles and at 37°C, yet the percentage of 

recovery after 48 hours incubation at 4°C dropped to around 60%.  

In contrast, CHAV.G and RDpro vectors were less stable after freeze-thawing 

and incubation at 4°C however, short-term (<6 hours) incubation at 37°C did 

not decrease their infectivity dramatically (p<0.001). Due to CHAV.G 
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pseudotyped LVs demonstrating low titres even after concentration (p<0.001), 

as well as the low performance in thermostability experiments, we decided to 

exclude this G protein from our further experiments.   

In summary, we have compared, by identical technique, the effect of 

temperatures, centrifugation and freeze-thawing upon the viability of HIV-1 

based LVs pseudotyped with VesG. All G proteins except for CHAV.G were 

overall stable in all conditions demonstrating decay rates comparable to that 

of VSVind.G. Their resistance to 37°C incubation is promising as it will allow 

systemic and local delivery of LVs in vivo without the concern of body-

temperature dependent loss of titre. Furthermore, robust vector stability 

demonstrated at 4°C and during freeze-thaw cycles is useful for short and 

long-term storage of the vectors. Taken together, these results support further 

consideration of COCV.G, VSVnj.G, PIRYV.G, VSVala.G and MARAV.G LV 

for their use in stable packaging cell lines for preclinical and clinical 

applications. 

3.4.2 Development of chimeric G proteins and their 

functionality 

To investigate the key elements affecting the envelope stability, based on G 

proteins of VSVind and COCV, I created eight mix-and-match chimeric G 

proteins. Four of these chimerae (A-chimerae) have COCV.G N-terminal and 

VSVind.G C-terminal; while the other four (B-chimerae) have VSVind.G N-

terminal and COCV.G C-terminal. These chimeric G proteins were sub-cloned 

into the pMD-2A backbone as the G proteins.  
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Overall, all chimeric G proteins were successfully produced, except 3-A, 

demonstrated similar transduction ability and protein display characteristics 

compared to their wild-type counterparts (figure 3-1). Although highly 

conserved amino acid sequences were targeted in the generation of the 

chimerae, 3-A’s LV titre was significantly lower than the other seven G proteins 

(p<0.001). Antibody binding assays revealed that 3-A faced membrane 

trafficking issues and was trapped in the intracellular compartments of the cell 

(figure 3-5C/D). The cross-over point of 3A corresponded to the lateral domain 

of VSVind.G and is close to one of the N-linked glycosylation sites of the WT 

protein [2, 332]. Therefore, the switch of this domain with that of COCV.G 

might be hindering post-translational modifications preventing the protein to 

be transported to the cell membrane. In addition, although there were no 

substantial stability differences between the chimerae they were later utilised 

to map serum sensitive determinants on VSVind.G (in press [440]). Thus, 

generation of such chimerae with PIRYV.G or CHAV.G could provide insights 

on other biochemical characteristics of VesG including thermal stability. Partly 

because no substantial difference in stability between VSVind.G and COCV.G 

was observed, these chimeric constructs were not studied for stability. 

Furthermore, understanding the destabilising mechanism enforced on VesG 

pseudotyped vectors in variable conditions will provide valuable insights 

regarding approaches to improve vector stability further. In addition, the effect 

of thermal and physical conditions on HIV-1 capsid and matrix proteins which 

have essential roles in LV structure should also be investigated. Combined, 

this will allow modification of LVs and G protein-containing advanced therapy 
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medicinal products to generate more stable regents with better longevity under 

critical manufacturing conditions.   
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4 CHAPTER 

Investigating the fusogenic 
activity and cytotoxicity of 

the vesiculovirus G 
proteins 
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4.1 Overview 

Vesicular stomatitis virus (VSV) is a well-studied virus with a small genome 

that can be easily manipulated. In addition to its broad tropism and ability to 

infect target cells with high efficiency, VSV has intrinsic oncolytic properties 

[403]. These characteristics of VSV, as well as its short replication cycle, 

makes it a promising platform for oncolytic virotherapy [441].   

VSV pathogenesis in natural hosts depends on the virus serotype. The two 

major serotypes of VSV, Indiana and New Jersey, are endemic in Central and 

South America and some regions of the USA. Their natural hosts include 

cattle, pigs, horses, and their insect vectors. However, VSVind and VSVnj do 

not have the same pathogenicity; VSVnj causes more frequent and severe 

outbreaks compared to VSVind strain [214, 405].  

The high toxicity of VSV was mainly attributed to its matrix protein (M).  This 

protein promotes viral pathogenesis by inhibiting host gene expression, acting 

on both nuclear transcription and RNA transport, and inducing apoptosis [442]. 

Nevertheless, M-mutant VSVs were found to trigger apoptosis via a distinct 

pathway compared to wild-type VSV. This has been shown to be due to fusion 

caused by the viral G protein. 

It was reported that VSV infection could lead to cell fusion when G protein 

accumulates on the cell surface [443]. Cell fusion was shown to be dependent 

on the interaction between positively charged amino acid residues in G 

proteins and the negatively charged membrane surface [444]. In addition, 

protonation of histidine residues (His) in acidic pH has been reported to 

promote fusion [382]. VSV enters the cells through receptor-mediated 
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endocytosis. The acidic environment of the endosome induces a fusion-

competent form of the G protein allowing the viral envelope to fuse with the 

endosomal membrane releasing the viral RNA genome into the cytoplasm 

[445]. This fusogenic activity is claimed to be a sign of toxicity for VSV G 

protein [215]. After infection, the adjacent infected cells are fused together to 

form large multinucleated syncytia. A similar syncytia formation mediated by 

viral envelope protein has been reported for other viruses such as Gibbon Ape 

leukaemia virus and respiratory syncytial virus where the resulting syncytia are 

destined to apoptosis [217, 218].  

To improve the vector particle stability as well as to increase its tropism, LVs 

are commonly pseudotyped with vesicular stomatitis virus Indiana strain G 

protein (VSVind.G) [129, 211, 446]. To generate clinically suitable LVs 

however, stable production of these vectors is advantageous as this will aid to 

improve biosafety by standardising the production process and reducing the 

risk of DNA recombination. In addition, a stable producer cell line will reduce 

the cost of producing large batches of vectors required for clinical and some 

preclinical use in large animals [233, 238]. The development of a stable 

packaging cell line for LVs proved to be challenging due to cytotoxicity of some 

viral components such as the Gag-Pol proteins. Moreover, VSVind.G has been 

reported to be toxic to cells when expressed continuously [211, 238] which 

was attributed to its high fusogenic activity causing syncytia formation and 

apoptosis. This affects the integrity of the stable producer cells utilising this G 

protein affecting vector titres. Several cell lines have been developed so far 

either by using alternative G proteins or inducible expression, however; they 

demonstrated either low titres or limited tropism [447-450].   
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To overcome the toxicity issue of VSVind.G, other vesiculovirus G proteins 

have been proposed as alternative proteins. However, no studies have been 

done to investigate whether the cytotoxicity issue is shared amongst these 

family members. Therefore, a detailed analysis of their cytotoxicity and pH-

dependent fusogenicity will be instrumental in their adaptation into PCLs. 
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4.2 Aims 

The work presented in this chapter aimed at investigating the fusogenic activity 

and relative cytotoxicity of the vesiculovirus G proteins.  Initially, the effects of 

pH on VesG mediated syncytium formation and VesG-LV were explored.  The 

difference in G protein-mediated cytotoxicity was also examined, and the 

generation of cell lines stably expressing VesG was attempted for LV 

production.   
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4.3 Results 

4.3.1 Fusogenicity in vesiculovirus G protein expressing 

cells 

Cocal virus envelope G protein (COCV.G) has been utilised to generate a 

stable producer cell line for LV production [237]. VSVind.G and COCV.G have 

a high level of homology on the amino acid level (~72%) conferring them some 

shared advantageous characteristics including stability and broad tropism. 

Yet, it has been suggested that COCV.G is less cytotoxic compared to 

VSVind.G [237, 243]. Consequently, the fusogenicity of COCV.G under mildly 

acidic pH in comparison to VSVind.G was investigated, as a reference for 

toxicity. 

First attempts were carried out using HEK 293T cells.  However, they proved 

to be pH sensitive and easily detached from the plate after incubation at acidic 

pH and atmospheric CO2 conditions. Therefore, TE671 cells (human 

rhabdomyosarcoma cell line) were utilised instead as they are less pH 

sensitive compared to HEK 293T cells. TE671 cells were co-transfected 

transiently by a luciferase expressing plasmid, pHV-Luc (as transfection 

efficiency control), and VSVind.G or COCV.G. 72 hours post-transfection, 

media was replaced with fresh Minimum Essential Medium (MEM) adjusted to 

pH 6.0 and 5.0. Cells were incubated at 37ºC in atmospheric CO2 for one hour, 

were washed and fixed in methanol.  The cells were then stained with Wheat 

germ agglutinin (WGA) and SYTO® 61 for cytoplasmic membrane and nucleus 

staining, respectively. The cells were then visualised using a Leica SP8 X 

confocal Laser Scanning Microscope (Figure 4-1).  
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Interestingly, at neutral pH, both VSVind.G and COCV.G formed a few 

syncytia compared to un-transfected cells (approximately 1-2 per field of view). 

When the pH value was reduced to 6.0, an expanded cytoplasm was observed 

in un-transfected, yet no fusion was observed in these cells. This change in 

the shape might be due to the acidic extracellular condition affecting the 

intracellular pH and Ca2+ [451, 452]. On the other hand, both VSVind.G and 

COCV.G expressing cells demonstrated a higher number of syncytia per field 

of view compared to that of neutral pH. While both G proteins induced cell 

fusion at this pH, the syncytia formed by VSVind.G expressing cells were 

visibly larger and contained more nuclei (>10 nuclei) compared to that of 

COCV.G.   

At pH 5.0, while un-transfected cells retained their elongated shape, no fusion 

was observed. In transfected cells, however, cells seemed very unhealthy; 

expanded cytoplasms of cells were fused to generate large syncytia.  

Multinuclear syncytia of at least eight nuclei were observed and in places, 

especially in VSVind.G expressing cells, all remaining cells seem to have 

fused together. The morphology of fused cells in both transfected cells were 

rather different from un-transfected cells.  
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Figure 4-1.  Fusogenicity in VSVind.G and COCV.G expressing cells. 
TE671 cells were co-transfected with pHV-Luc and plasmids expressing VesG. (A) 
Luciferase activity was checked with Bright-Glo™ Luciferase Assay system as a reporter 
for transfection efficiency. Data shown is the mean value of one experiment performed in 
duplicates. (B) One-hour post incubation in various pH values, cells were washed, fixed, 
and stained with WGA (green) and SYTO® 61 (red) for cytoplasm and nuclei, respectively.  
Stained samples were visualised using a Leica SP8 X confocal Laser Scanning 
Microscope. Shown images are magnified by 20X objective lens. 
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The fusogenic activity has been related to cytotoxicity in VSVind.G [215] while 

COCV.G was reported to be less cytotoxic. Yet, VSVind.G and COCV.G 

displayed similar characteristics regarding fusion and syncytia formation in 

acidic pH. This suggests that COCV.G might be as toxic to cells as VSVind.G. 

To further investigate the syncytia formation of other VesG, in addition to 

VSVind.G and COCV.G, VSVnj.G and PIRYV.G were also incubated in pH 

7.0, 6.0, and 5.0. A similar protocol to above was followed by cell staining with 

Giemsa stain to check for syncytia formation. The cells were then checked 

using bright-field microscopy (Figure 4-2).  

At pH 7.0, 6.0, and 5.0, as expected, cell fusion was observed in both 

VSVind.G and COCV.G expressing cells. For both, the syncytia looked smaller 

in neutral pH while in acidic pH they seemed larger and included a higher 

number of fused cells (i.e. higher numbers of nuclei per syncytia).  At pH 5.0, 

cells seemed to be very unhealthy compared to those of un-transfected cells, 

as they were lifted off the plate in both VSVind.G and COCV.G but looked 

more severe in VSVind.G.   

On the other hand, expression of VSVnj.G and PIRYV.G did not lead to cell 

fusion in neutral pH.  However, upon acidification of the environment, syncytia 

were formed in both G protein-transfected cells. At both pH 6.0 and 5.0, 

VSVnj.G induced smaller syncytia containing less number of cells, and the 

morphology of the cells was similar in both these pH values. PIRYV.G 

however, induced the formation of larger syncytia in both pH 6.0 and 5.0.  

Moreover, the number of syncytia formed seemed higher in PIRYV.G 

compared to VSVnj.G (approximately double). The level of fusogenicity of this 
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G protein seemed to be higher in pH 6.0 compared to pH 5.0 as most cells 

seemed to either be involved in fusion or very unhealthy. 

Overall, VSVind.G and COCV.G demonstrated similar characteristics in terms 

of cell fusion and syncytia formation that was distinct from that of VSVnj.G and 

PIRYV.G infected cells. This might be due to differences in fusogenicity, lower 

pH threshold for fusion, or other characteristics of the G protein such as the 

nature of the conformational changes the VesG go through. Next, we decided 

to investigate the effect of pH on vector infectivity in more detail.    
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Figure 4-2.  Fusogenicity vesiculovirus G protein expressing cells. 
TE671 cells were co-transfected with pHV-Luc and VesG. (A) Luciferase activity was 
checked with Bright-Glo™ Luciferase Assay system as a measure of transfection 
efficiency. (B) Envelope expression in transfected cells stained with VSV-Poly antiserum.  
(C)  One hour post incubation in various pH values, cells were washed, fixed, and stained 
with Giemsa stain. Stained samples were visualised using wide-field light microscopy. 
Shown images are magnified by 10X objective lens. 
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4.3.2 Vesiculovirus infectivity levels in various pH values 

In infections by enveloped viruses, the fusion of the viral membrane with the 

host cell follows the initial step of receptor attachment. In VSV, the G protein 

is the sole viral protein that mediates both attachment and fusion. A three-

stage model has been proposed for VSV.G fusion: first, the G protein 

undergoes pH-dependent conformational changes from the pre-fusion to an 

extended open form. This open conformation results from protonation of each 

G monomer. The extended form of G protein directs the fusion loops 

positioned in the Pleckstrin homology domain (PHD) towards the target 

membrane. The adjacent extended monomers are then trimerised and fold 

back to bring the two membranes together [2, 332, 453].  

While pH-dependent conformational changes of VSVind.G has been well 

studied, no data have been reported for other vesiculovirus G proteins. Hence, 

we planned to investigate the effect of pH changes on VSVind.G, COCV.G, 

VSVnj.G, and PIRYV.G pseudotyped LVs. VesG pseudotyped LVs were 

incubated at 37ºC for 30 minutes in pH values ranging from 2.0 to 10.0. These 

LVs were then plated on HEK 293T cells in neutral pH at MOI 1.0. 48 hours 

post-transduction, the infectivity of VesG-LVs was investigated by measuring 

GFP expression in challenged cells (Figure 4-3).    

Figure 4-3A demonstrates that all LVs remained infectious after incubation at 

pH values between 10.0 and 5.0. In pH ranges lower than 5.0 (i.e. 4.0 and 

2.0), the infectivity of all LVs reduced gradually, then was completely 

abrogated (i.e. dropped to 0% GPF expression) at pH 2.0. These results were 

in line with previous studies reporting that VSV is more sensitive to acidic 
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conditions compared to alkaline conditions [454]. Moreover, all four LVs 

followed a similar pattern of infectivity at various pH values to that of VSVind.G.    

Accordingly, we decided to investigate the effects of lower pH ranges more in-

depth. Therefore, the experiment was repeated where LVs were incubated in 

pH ranges from 7.3 to 2.0, with 0.3-0.4 intervals (Figure 4-4B). The 

normalisation of the GFP expression to that of pH 7.0 revealed that at pH 

between 3.6 and 3.3, the infectivity of VSVind.G, VSVnj.G, and PIRYV.G drop 

drastically. At pH 3.3, while VSVind.G-LV infectivity reduced by more than half, 

GFP expression was almost undetectable in cells challenged with VSVnj.G- 

and PIRYV.G-LV. COCV.G infectivity seemed to reduce by 50% when the pH 

was decreased from 4.0 to 3.6. COCV.G-LV infection was completely blocked 

by reducing the pH further to 3.3. These results may suggest that the pH 

threshold of COCV.G conformational change is slightly higher than the other 

G proteins tested. All VesG infectivity demonstrated similar trends between pH 

6.0 and 5.0, infectivity remaining stable compared to neutral pH.    

Overall, the data show that the inactivation point for all LV’s infectivity lies 

between pH 3.0-3.6 with pH 3.0 being the endpoint of infectivity for all VesG.  

This contradicts previously published data reporting pH 2 as the point of 

deactivation for recombinant VSVind virus [454]. Furthermore, at pH levels 

below 5, VSVind.G and VSVnj.G seem to be more infectious compared to 

COCV.G and PIRYV.G (COCV.G/PIRYV.G infectivity approximately around 

40-50% while NJ/IND around 70-80%). However, until pH 3.6 and below, 

overall infectivity of all VesG was retained at >50%. This implies that all VesG 

tested can go through a wide range of pH changes during which they can 
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remain infective. In addition, no striking difference was observed between 

strains, and all VesG demonstrated a similar overall response to pH changes. 
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Figure 4-3.  pH-dependent inactivation of VesG-LV. 
VSVind.G, COCV.G, VSVnj.G, and PIRYV.G pseudotyped LVs were incubated at 37ºC for 
30 minutes in pH values ranging from 2.0 to 10.0. These LVs were then added on HEK 
293T cells in neutral pH at an MOI of 1 TU per cell. (A) The percentage of GFP expression 
indicative of LV infectivity, was measured by flow cytometry 48 hours post-transduction. 
The percentage of live cells is indicated in dotted lines (right axis). (B) The experiment was 
repeated with more in-depth investigation of pH range 2-7.3. Measured GFP expression 
was normalised to that of at neutral pH. Data represent mean of three repeats done in 
duplicates. 

A 

B 



152  
 

Following the establishment of pH-dependent VesG-LV inactivation by testing 

the infectivity of VesG-LV pre-treated at different PH, we decided to investigate 

the effects of pH on viral attachment and following steps, by conducting the 

infection while cells are incubated at different pH range. For this, cells were 

challenged with LVs via spinoculation in media adjusted to a range of pH. After 

the spin (2,000 g, for 30 minutes at 4ºC), the LV containing media with different 

pH were removed from the cells and was replaced with media with neutral pH. 

48 hours post-infection, the GFP expression was measured in cells. This 

experiment was based on the hypothesis that at different pH range, G proteins 

go through conformational changes resulting in pre- or post-fusion forms. 

While in the pre-fusion form, the G protein will be able to interact with its 

putative receptor and enter the cells, the change to the post-fusion structure 

will block this interaction.  

LV infectivity was completely abrogated between pH 3.3 to 3.6, while cell 

viability was more than 50% (Figure 4-4A). This profile is similar to that shown 

in Fig 4-3B, suggesting that the observation resulted, at least partly, from pH-

dependent VesG-LV inactivation. A maximum level of infection was observed 

at pH 6.0 to 6.6 implying the highest level of interactions and attachment of G 

proteins to receptors and internalisation at this pH range. In some cases even 

direct fusion might have been achieved as the pH range in early and late 

endosomes, where VSVind.G-LV fuses, are around 6.5 and 5.5, respectively 

[455]. In line with this, Figure 4-4B shows the relative infection rates at different 

pH compared to that of neutral pH. It can be observed that the infectivity levels 

gradually increase as pH decreases from 7.0 to 6.0, reaching a maximum 

around pH 6.0-6.3.    
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Furthermore, compared to VSVind.G and VSVnj.G, COCV.G and PIRYV.G 

lost infectivity much faster, especially for COCV.G where the infectivity 

dropped suddenly when the pH was reduced from 6.0 by only 0.4 points to 

5.6. On the other hand, VSVind.G and VSVnj.G still had higher infectivity at 

pH 5.0-5.3 compared to pH 7.0 suggesting a lower pH threshold for shifting to 

postfusion trimerisation for these G proteins compared to COCV.G and 

PIRYV.G.  
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Figure 4-4.  Effect on LV infection of pH at LV attachment to the cell. 
HEK 293T cells were challenged with VesG LVs via spinoculation in the presence of media 
adjusted to various pH. Following spinoculation the media was removed, cells were 
washed, and complete media in neutral pH was added. GFP expression and live cell 
percentage was measured 48 hours post-challenge via flow cytometry. (A) Measured GFP 
expression was normalised to that off pH7 control. Dotted lines represent the percentage 
of live cells (right axis). (B) The relative infection change compared to neutral pH 7.0. Data 
represent mean of three repeats done in duplicates. 
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4.3.3 Investigating the cytotoxicity of vesiculovirus G 

proteins 

As discussed in section 3.3.1, to allow for the selection of G protein expressing 

cells, the phleomycin resistance gene was linked to the G protein via the 2A 

self-cleaving peptide in the pMD-2A-VesG constructs. The use of 2A peptide 

allows for both the G protein and the marker gene to be controlled by a single 

promoter. This allows the co-expression of both genes at a more similar ratio 

compared to genes expressed under two separate promoters [427]. This 

feature was essential for this assay enabling us to have a more reliable 

comparison of expression of different VesG after phleomycin selection.  

The high fusogenic activity of VSVind.G is linked to high cytotoxicity through 

syncytia formation and apoptosis [201]. On the other hand, COCV.G, a 

phylogenetically close vesiculovirus G, was reported to be less cytotoxic 

compared to VSVind.G [237]. However, the data presented thus far through 

investigating syncytia formation and the effect of pH changes on various VesG, 

demonstrated that the VesG tested do not exhibit major differences. This 

suggested that all VesG might be equally cytotoxic.  

Accordingly, to compare relative toxicity levels amongst different VesG, HEK 

293T cells were co-transfected with pHV-Luc and VesG including VSVind.G, 

COCV.G, VSVnj.G, PIRYV.G, VSVala.G, and MARAV.G. 48 hours later, the 

luciferase activity of the cells was checked to determine relative transfection 

levels (Fig 4-5A) and 2.5x104, 5.0x103, and 1.0x103 of transfected cells per 

well were seeded in 6-well plates. These cells were selected with phleomycin 

for up to one week to ensure the selection of G protein expression. After seven 
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days of selection, G protein expression was measured on cells by staining with 

VSV-Poly antiserum (Figure 4-5B). Cells were then washed with PBS, fixed in 

methanol and stained with Giemsa stain. The number of colonies grown in 

cells transfected with various G proteins was investigated (Figure 4-5C). While 

higher levels of cytotoxicity would lead to reduced numbers of colonies, higher 

numbers of colonies indicate less cytotoxicity. In this assay, VSVind.G was 

used as the positive control for cytotoxicity [215] while RDpro envelope, a non-

toxic feline retrovirus, was used as negative control [238].  

Interestingly, compared to RDpro, the negative control (in LFA backbone 

which was adapted to WinPac-RD cell line [238]), all envelopes yielded a 

similar number of phleomycin resistant colonies, with approximately one 

colony per one hundred transfected cells. Colony numbers in VSVind.G, the 

positive control, seem to be higher in all cell dilutions compared to that of 

COCV.G and RDpro. This data challenges the well-accepted concept of 

VSVind.G being highly toxic to cells [201]. The similar number of colonies 

formed by all VesG in all dilutions were comparable to that of non-toxic RDpro 

indicating that all tested G proteins demonstrated similar levels of toxicity. 
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Figure 4-5. Colony formation of various vesiculovirus G proteins in the presence of the 
selection marker. 
To compare the cytotoxicity in various VesG, HEK 293T cells were co-transfected with 
pHV-Luc and pMD2-2A-VSVind.G, -COCV.G,-VSVnj.G, -PIRYV.G, and RDpro. 48h post-
transfection; (A) Luciferase expression was checked as a measure of transfection 
efficiency. Data shown mean of two repeats performed in duplicates/triplicates. (B) After 7 
days in selection, cells were stained for G protein expression by VSV-Poly antiserum. (C) 
Cells were seeded in different dilutions (seeding density is indicated) and were selected 
with phleomycin for one week, then fixed and stained with Giemsa. Similar number of 
colonies were formed for each construct suggesting that all these G proteins have similar 
levels of cytotoxicity. Data shown represent one of the two separate repeats performed. 
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4.3.4 Long-term G protein expression and support for LV 

production 

Based on obtained data highlighting that all VesG share similar level of 

cytotoxicity, comparable to that of non-toxic RDpro, we decided to investigate 

the long-term expression of G proteins and the effect this might have on viral 

titres. For the first attempt, HEK 293T cells were transfected with VSVind.G, 

COCV.G, VSVnj.G, and PIRYV.G plasmids. These cells were kept in 

phleomycin selection as bulk populations for up to 14 weeks. During this 

period, the envelope expression was monitored every two weeks using the 

antiserum VSV-Poly. VSV-Poly binds to VSVind.G with high affinity, while it 

has an intermediate affinity to COCV.G and weak affinity to VSVnj.G and 

PIRYV.G (Figure 4-6A). The flow cytometry histograms indicated that although 

G protein expression gradually decreased over time in all stable VesG 

expressing cells (Figure 4-6B), VSVind.G and COCV.G could still be detected 

for up to 22 weeks (Figure 4-6C). Cells were also transiently transfected with 

gag/pol, rev, and SIN-pHV (coding for GFP transgene) over time to produce 

transient LVs. For all VesG, the transient LV titres were around 106 TU/ml after 

six weeks of phleomycin selection (Figure 4-6D). A ten-fold reduction was 

observed after ten weeks of selection in all VesG. After this time point, while 

VSVind.G and COCV.G still produced LVs, vectors titres were undetectable in 

VSVnj.G, and PIRYV.G so was G protein expression via flow cytometry. 

VSVind.G and COCV.G stable expressing cells were kept in selection for 

further ten weeks. The G protein expression fell gradually in VSVind.G 

expressing cells over this period (Figure 4-6C). Moreover, while transient LV 

titres were stable around 105 TU/ml for up to 14 weeks in selection, they also 
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fell gradually over the next four weeks. The LV titres could not be detected at 

week 22 post-selection. On the other hand, COCV.G envelope expression and 

transient LV titres remained detectable for up to 22 weeks of selection. While 

the titres reduced slowly over time, they were still around 104 TU/ml at week 

22, when this experiment was terminated (Figure 4-6D).  
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Figure 4-6. Long-term G protein expressing cells and long-term vector production. 
HEK 293T cells were transfected with VSVind.G, COCV.G, VSVnj.G, and PIRYV.G. (A) 
Transient G protein expression was measure by VSV-Poly antiserum 72 hours post-
transfection via flow cytometry. (B) Stable G protein expression in transfected cells kept in 
phleomycin selection was measured for up to 14 weeks. (C) Stable G protein expression 
levels in VSVind.G and COCV.G was measured in cells kept in selection for up to 22 
weeks. (D) Transient VesG-LV titres were measured over the course of selection; Data 
shown represent one experiment performed in duplicates. 
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Achieving stable envelope expression in cells for around 5 months, especially 

for VSVind.G that is considered to be cytotoxic, was a promising result which 

prompted us to try a similar approach with two additional VesG: VSVala.G, 

and MARAV.G. Consequently, HEK 293T cells were co-transfected with pHV-

Luc and VSVind.G, COCV.G, VSVnj.G, PIRYV.G, VSVala.G, and MARAV.G.  

Luciferase activity was measured 48 hours post-transfection (Figure 4-7A).  

Cells were kept in phleomycin selection for up to 14 weeks, during which 

envelope expression and transient LV titres were measured every two weeks.  

Envelope expression was measured by staining with VSV-Poly antiserum. All 

VesG-transfected cells demonstrated G protein expression for up to 14 weeks 

(Figure 4-7B). Although the expression levels decreased gradually over time, 

they were still detectable at week 14, when this experiment was terminated.  

G protein expression levels in these stable cells seemed to be higher 

compared to the ones from the first attempt. 

As per the previous experiment, to investigate LV production, these cells were 

transfected transiently with gag-pol, rev, and SIN-pHV once every two weeks. 

LV titres were then measured in the harvested supernatant. COCV.G 

demonstrated initial titres of 106 TU/ml for up to eight weeks (Figure 4-7C). 

The titres dropped to around 105 TU/ml at week ten where they remained 

stable until week 14. Although VSVala.G initial titres started at around 105 

TU/ml, similar to COCV.G, they remained stable throughout the experiment. 

VSVind.G, VSVnj.G, and PIRYV.G titres started at slightly lower than 106 

TU/ml at week four and six, then fell gradually to around 104 TU/ml over the 

next two months. MARAV.G expressing cells, on the other hand, produced 

titres at around 105 TU/ml at week four and six. These titres then dropped to 
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104 TU/ml at week eight. From week 12 onwards, despite measurable G 

protein expression in these cells, the transient titres were undetectable (Figure 

4-7C, arrows). 

Overall, both experiments highlighted the possibility of expressing VesG, 

including VSVind.G, stably in HEK 293T cells for at least 3-4 months. In 

addition, transient LVs produced by COCV.G and VSVala.G expressing cells 

persisted at 105 TU/ml for over 14 weeks in phleomycin selection. 
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Figure 4-7. Establishment of stable VesG expressing cells and long-term vector production. 
HEK 293T cells were transfected with pHV-Luc and VSVind.G, COCV.G, VSVnj.G, and 
PIRYV.G, VSVala.G, and MARAV.G. (A) Luciferase expression was checked as a 
measure of transfection efficiency. (B) Stable G protein expression in transfected cells kept 
in phleomycin selection was measured for up to 14 weeks. (C) Transient VesG-LV titres 
was measured for up to 14 weeks. Data shown represent one experiment performed in 
duplicates. 
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4.4 Discussion 

This chapter aimed to investigate the fusogenic activity and relative cytotoxicity 

of the vesiculovirus G proteins. Therefore, the effects of pH on VesG mediated 

syncytium formation and VesG-LV infectivity were explored. Also, the 

differences in pH dependence observed were further studied as a cause of G 

protein-mediated cytotoxicity and the generation of cell lines stably expressing 

VesG was attempted. 

4.4.1 Fusogenic activity amongst various vesiculovirus G 

proteins in a range of pH  

Cocal envelope G protein was reported to be less cytotoxic compared to that 

of VSVind.G [237, 243]. Thus, the first attempt was set to compare the 

fusogenic activity of these two G proteins.  Both G proteins induced cell fusion 

at neutral pH. The formed syncytia were larger and in higher quantities per 

field of view when transfected cells were pre-incubated at pH 6.0 and 5.0 

(Figure 4-1B). This experiment was then repeated to include VSVnj.G and 

PIRYV.G as well to investigate fusogenic activity amongst other vesiculovirus 

family members.  

At mildly acidic pH of 6.0 and 5.0, all four VesG induced cell fusion and 

syncytia formation. However, at neutral pH 7.0, while as expected, both 

VSVind.G and COCV.G induced cell fusion, VSVnj.G and PIRYV.G did not 

trigger syncytia formation (Figure 4-2C). This suggests that VSVnj.G and 

PIRYV.G are not fusion-competent at neutral pH. This may be indicative of 

differences in pH dependence amongst the G proteins. For VSVnj.G and 

PIRYV.G, the population of prefusion trimer at neutral pH might not be enough 
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to trigger fusion at this pH. Another explanation might be that the level of G 

protein expression might be lower compared to that of VSVind.G and 

COCV.G. Due to this the critical number of post-fusion trimers might not be 

reached hence not resulting in cell-cell fusion. It was not possible to control 

the VesG expression level without universal quantitative binding assay for all 

VesG.   

Moreover, based on VSVind.G structure, the acidic residues D268, D274, 

D393 and D395, have been shown to play a role as pH-sensitive switches.  

While the acidic character of D274, D393 and D395 is conserved among 

vesiculovirus genus, D268 is not.  As these pH-sensitive switches are essential 

for the function of G protein, in other VesG they are located in different 

positions (e.g. in CHAV.G in D269-E234-H209 cluster) [456]. It has been 

shown that clustering of protonatable residues can affect the acidification of 

these residues which in turn can affect the conformational changes of the G 

protein [457]. This might affect the stability of the prefusion trimer conformation 

creating the different fusogenic profiles observed (Figure 4-2). 

4.4.2 Effect of pH on the infectivity of vesiculovirus G 

protein-pseudotyped lentiviral vectors 

We further investigated the pH-sensitivity of VesG pseudotyped LVs by pre-

incubating the vectors in media adjusted to a wide range of pH. The data 

revealed that all VesG are more sensitive to acidic than alkaline conditions; 

infection remained stable up to pH 10.0 (Figure 4-3A), in line with previous 

studies which elucidated the stability of the conformational changes up until 

pH 11.0 [454].   
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While all investigated G proteins seem to be more stable at alkaline pH, in 

highly acidic conditions the G protein may undergo irreversible denaturation.  

While other studies reported that VSV inactivation occurred at pH 2, here we 

show that G protein’s infectivity in all VesG was abolished between pH 3.0-3.6 

(Figures 4-3 and 4-4). It has been reported that low pH treatment can induce 

viral aggregation [458]. This can be another reason, besides viral 

denaturation, behind reduced viral infectivity in acidic conditions.  

A maximum level of infection for all VesG was observed at pH 6.0 to 6.6 

(Figure 4-4B). This data is in line with previously published studies reporting a 

high pH threshold of 6.0 for VSV G protein-induced fusion [443]. In addition, 

COCV.G and PIRYV.G seem to have higher pH threshold as they lose 

infectivity at higher pH than VSVind.G and VSVnj.G. VSVind.G and VSVnj.G 

had higher infectivity levels at pH 5.0-5.3, higher than neutral pH, implying a 

lower pH threshold for going to postfusion trimer than the other two. Further 

analyses of pH-dependence of LV infectivity may allow optimisation of 

culturing conditions to improve LV titres. 

4.4.3 Colony formation in the presence of selection marker in 

vesiculovirus G protein-transfected cells  

Overall, pH-induced syncytia formation appeared similar amongst VesG 

investigated, indicating similar cytotoxicity. We tested colony formation of 

these G proteins in the presence of the selectable marker using the pMD-2A-

VesG constructs in which the VesG ORF is linked to the phleomycin resistance 

gene via a 2A peptide, in comparison to RDpro, a non-toxic G protein. These 

results also suggested that there is no major difference in VesG-induced 
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syncytia formation among various VesG as a comparable number of 

phleomycin resistant colonies were produced in all VesG (Figure 4-5).    

4.4.4 Generation of stable vesiculovirus G protein expressing 

cells 

Consequently, we inspected the G protein expression over time in stable VesG 

expressing cells. Surprisingly, we found that VSVind.G could be stably 

expressed in cells for up to at least five months. Moreover, these cells could 

produce transient LVs with titres of more than 104 TU/ml for up to 20 weeks 

post-selection (figure 4-6). These are striking results as it was believed that 

VSVind.G could not be stably expressed in cells due to high toxicity [201]. 

These results were in line with a recently published report by Humbert et al. 

[237]. 

Moreover, we were able to generate stable cell lines with other VesG (Figure 

4-7). While these cell lines performed adequately with regards to G protein 

expression and LV titres, COCV.G and VSVala.G produced transient titres of 

105 TU/ml for at least approximately four months. This performance was 

followed by VSVind.G, VSVnj.G, and PIRYV.G which produced LV titres of 104 

TU/ml for almost four months. 

We have demonstrated that all VesG tested can be stably expressed in 

HEK293T cells without demonstrable cytotoxicity for up to 5 months with 

satisfactory LV titres following transient supply of gag-pol, rev, and the 

transgene. The longevity of the stable cells, when adapted into packaging cell 

lines, will allow for sufficient cell expansion for clinical LV characterisation and 

production. For instance, the best performing VesG constructs can be stably 
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transfected into the WinPac cell line. This may improve the low LV titres 

produced by the WinPac-RD cell line [238]. Furthermore, we have proposed 

an alternative continuous LV production method: admixing. In this method, 

unenveloped bald LVs and G proteins secreted from HEK 293T cells in 

vesicles are produced in trans via their respective stable cell lines and later 

admixed to produce infectious LV particles. This method not only circumvents 

the superinfection problem identified (see chapter 5) but also can support 

continuous LV production. Therefore, these stable G expressing cells can be 

used for such methods as well (in press [440]). 

Taken together, the work presented in this chapter suggest that overall all 

VesG tested demonstrated similar properties with regards to toxicity, pH-

dependent fusion, and infectivity, with modest differences which may be 

dictating key structural and functional changes. However, the most striking 

conclusion is that VSVind.G, as well as other VesG, are not demonstrably 

cytotoxic when expressed constitutively in cells. Furthermore, most G proteins 

could be stably expressed and supported LV production for at least 3-4 months 

making them promising candidates for clinical grade PCL formation (in press 

[440]). 
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5.1. Overview 

The cellular entry is the first step in viral infections and involves multiple viral 

and host proteins [459]. Attachment of viruses to the cellular receptor initiates 

endocytosis and fusion resulting in virus genetic material to be delivered to the 

cytoplasm. Several host cell mechanisms have been developed as immune 

mechanisms to interfere with viral infections [460]. However, there is also a 

viral interference mechanism preventing secondary infections called 

superinfection resistance (SIR) [459, 461]. SIR is observed mainly between 

serologically related viruses and usually dependent on differences in time or 

multiplicity of infection [462-466]. SIR can proceed through several different 

mechanisms including attachment and replication hindrance, or competition 

for viral polymerase and host factors [467-469]. Although not exclusive to 

retroviruses, the occurrence of SIR in retroviruses has been extensively 

studied. 

One of the most common types of SIR observed is receptor occupancy via 

virus-encoded envelope proteins on the plasma membrane blocking the 

attachment of other viruses or, in short, receptor interference [459, 470]. This 

was first observed in avian leukosis virus in chicken embryos [471]. Since then 

receptor interference has been widely utilised to characterise and group many 

serotypes of retroviruses including Rous sarcoma virus [472, 473], feline, and 

murine leukaemia viruses [474-476]. It is postulated that the interference 

happens on the cell surface and functions through interactions of the viral 

envelope proteins already expressed on the cell surface with its receptor. This 

theory was later supported as it was demonstrated that when envelope 



171  
 

glycoproteins pre-adsorbed on the cell surfaces fully blocked infection and 

fusion by viruses utilising the same receptor [477, 478]. 

As alternative mechanisms, HIV, a lentivirus, achieves SIR via downregulating 

its putative receptor CD4 in infected cells [479-481]. It has been demonstrated 

that HIV proteins Vpu, Env, and Nef are involved in this down-regulation 

process through distinct mechanisms [482, 483]. While Nef down-regulates 

CD4 via direct interactions with its C-terminal end, Env and Vpu mediate this 

process by preventing intracellular transport of the newly synthesised receptor 

molecules. 

SIR can pose an issue with regards to the use of retroviral envelopes to 

pseudotype GRVs and LVs [484]. There have been studies reporting the 

occurrence of superinfection limiting transduction efficacy and levels of 

transgene expression [484, 485].  On the other hand, it becomes an advantage 

in the construction of stable packaging cell lines for clinical grade GRV and LV 

production. Without SIR, produced viral particles can re-enter and re-infect the 

producer cells. This results in accumulation of vector genome and many 

random genome integrations which might lead to loss of titres and possible 

cell death [486]. As retroviruses display a robust SIR against viruses which 

utilise the same receptor [470], several envelopes derived from retroviruses, 

for example, amphotropic MLV [487] and modified RD114 envelope RDpro 

have been successfully adapted to packaging cell lines (PCLs) [238, 240]. 

It has been suggested that VSVind.G’s toxicity occurs through superinfection 

[487]. Vogt and colleagues have reported a lack of superinfection interference 

with VSVind.G pseudotyped LVs (Figure 5-1). They suggest that this might be 
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due to the abundance of the target receptors on the cells which are less likely 

to be saturated with the expressed glycoprotein [486]. VSVind.G’s primary 

receptor for cell entry has been identified as the low-density lipoprotein 

receptor (LDLR) and other LDLR family members [347, 349]. This family of 

proteins are involved in the metabolism and transport of cholesterol and are 

abundantly expressed in several different tissues and cell types [488].  

 

  

Figure 5-1. Receptor interference of expressed G protein.  
Receptor occupancy via virus-encoded RDpro envelope proteins on the plasma membrane 
blocking the attachment of viruses that use the same receptor for cell entry (left panel).  
Lack of superinfection interference in VSVind.G expressing cells allows viruses to enter 
the cells (right panel).   
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Furthermore, it has been found that even virus-like particles which lack 

envelope glycoproteins can efficiently transduce VSVind.G expressing target 

cells. The phenomenon of VSVind.G converting non-infectious unenveloped 

particles into functioning pseudotypes has been previously demonstrated 

[486, 489]. It has been hypothesised that the LDLR expressed on Env negative 

particles act as fusion targets for the VSVind.G expressed on the cell surface 

leading to fusion into the target cells [487]. This may become a substantial 

issue because immortalised cell lines widely utilised in LV production, HEK 

293 or HEK 293T cells, express LDLR on their surface.   

Therefore, lack of superinfection interference has limited the use of VSVind.G 

envelope in generating stable producer cell lines for clinical use and clinical 

trials using VSVind.G pseudotyped LVs thus far. While most trials have 

employed transient production methods, some groups have been 

experimenting with inducible G protein systems [486].  In inducible systems, 

G protein expression is induced by addition of induction/suppression reagents 

to the culture media [233, 246, 490].  Another alternative to overcome the 

superinfection problem is to study alternative G proteins to replace VSVind.G.  

Meanwhile, it is essential not only to investigate these G proteins for 

superinfection but also to explore alternative ways to overcome this issue as 

well.   

Identifying potential solutions to superinfection would help to catapult lentiviral 

gene therapy as not only it will enable the establishment of 

packaging/producer cells with the current gold-standard envelope VSVind.G 

but also possibly lengthen the longevity of vector producer cells and cut down 

on production costs. 
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5.2. Aims  

The primary aim of this chapter was to investigate superinfection in other VesG 

both in stable packaging cells and transient infection, and to explore whether 

VSVind.G ability to superinfect could be curtailed. To achieve this, the 

following points of investigation were utilised:  

• Confirm superinfection in previously established WinPac-COCV.G 

packaging cells and stable VesG expressing cell lines. 

• Examine the main pathway for cell entry utilised by other VesG. 

• Explore the effects of knocking out the LDL receptor to superinfection 

and G protein expression. 
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5.3 Results  

5.3.1 Superinfection in WinPac stable packaging cell line 

The Collins/Takeuchi group has previously developed the WinPac (WP) stable 

packaging cell line which stably expresses HIV Gag-Pol and Rev proteins 

[238]. To avoid VSVind.G- related cytotoxicity [215], WP cells were stably 

transfected with RDpro to develop WinPac-RD cell line. These cells can 

continuously produce third generation SIN LV at titres of 106 TU/ml. Moreover, 

vector titres were relatively stable over a period of 4-5 months. Compared to 

inducible packaging cells developed for clinical LV production, stable 

production using WP cells is easier to scale up and avoids the rapid decline in 

titres following induction [238].  

Following this, a phylogenetically close relative of VSVind.G, COCV.G, was 

introduced into WP cells owing to its advantageous characteristics over RDpro 

(higher stability and titres, Chapter 3) and VSVind.G [243]. 

To investigate whether Cocal envelope glycoprotein blocks superinfection, 

WP-RD and WP-COCV.G cell lines were challenged with GFP-LVs 

pseudotyped with VSVind.G, COCV.G, and RDpro at MOIs 0.5 and 3.0. RDpro 

and COCV.G expression levels in WP cells were determined by extracellular 

antibody staining (Figure 5-2A). To detect RDpro, WP-RDpro cells were 

incubated with mouse anti-RDpro polyclonal antibody (Pule group- UCL 

Cancer Institute).  WP-COCV.G cells were stained with VSV-Poly antiserum. 

After being selected for gag-pol, rev and env for 3-4 passages, these cells 

were checked for envelope expression (Figure 5-2A). After infection with GFP-

LVs, GFP expression in the producer cells demonstrated that, as expected, 
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WP-RDpro cells blocked RDpro-LV infection (Figure 5-2B) while they were 

permissive to VSVind.G- and COCV.G-LVs. The level of GFP positive WP-RD 

cells was significantly less than that of WP-COCV following challenge with 

RDpro-LV (p<0.0001). In contrast, WP-COCV.G cells were infected by all LVs, 

including COCV.G-LVs, at similar levels (Figure 5-2B) suggesting that 

COCV.G lacks the ability of receptor interference. 
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Figure 5-2. WinPac-COCV.G cells lack superinfection resistance through receptor 
interference.  
(A)  Env expression levels for WinPac-RD and WinPac-COCV.G cells of their respective 
envelope glycoproteins. WinPac-RD cells were stained with rat anti-RD antiserum.  
WinPac-COCV.G cells were stained with goat VSV-Poly antiserum (see Table 2-4 and 2-
5 for primary and secondary antibodies, respectively). Data shown represent one of the 
three repeats performed. Envelope negative WinPac cells were utilised as negative control. 
(B) WP-COCV.G and WP-RDpro packaging cell lines were challenged with COCV-G- 
VSVind.G- and RDpro-LV at two MOIs: 0.5 and 3.0.  GFP expression of the cells was 
measured 48h after transduction via flow cytometry.  Data shown represent mean +/- SD 
of three repeats performed in triplicates.  One-way ANOVA analysis with Tukey’s post-test 
was performed to compare percentage GFP positive cells (**** p<0.0001). 

A 
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5.3.2 Superinfection in stable VesG expressing cells 

The lack of superinfection interference of COCV.G, similar to VSVind.G, led 

us to hypothesise that this may be a shared characteristic amongst VesG.  

Therefore, we decided to test this using the stable envelope expressing cell 

lines generated (section 4-3-4). As a superinfection negative control, stably 

transfected HEK 293T cells with RDpro were used. We tested the bulk cell 

populations for superinfection permissiveness similarly as done in 5.3.1, after 

four weeks of antibiotic selection. The infection rates were determined by 

measuring the GFP expression via flow cytometry while the envelope 

expression was monitored by VSV-Poly antiserum and anti-RDpro. VSV-Poly 

antiserum cross-reacts with all VesG with various levels of affinity. After 

confirming that G proteins were expressed in all stable VesG and RDpro cells 

(Figure 5-3A), they were challenged with VesG- and RDpro-LV.  As previously 

demonstrated RDpro-LV transduced RDpro expressing cells at a significantly 

lower level than that of naïve HEK 293Ts (Figure 5-3) (p<0.001). Furthermore, 

corroborating previously published data and results from section 5.3.1 

VSVind.G and COCV.G-LVs could superinfect their respective Env expressing 

cells (Figure 5-3B).  Interestingly, the same was observed for the other VesG 

tested: no statistically significant differences were observed between the 

infectivity of VesG expressing cell and naïve HEK 293Ts.  
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Figure 5-3. All VesG expressing cells are susceptible to superinfection by LVs pseudotyped 
with their relative envelopes.  
(A)  Env expression levels for stable VesG (left) and RDpro (right) expressing cells.  Data 
shown represent one of the three repeats performed. VesG expressing cells were stained 
with goat VSV-Poly and WinPac-RD cells were stained with rat anti-RD antisera (see Table 
2-4 and 2-5 for list of antibodies). (B) Stable Env expressing cells were challenged with 
VesG and RDpro-LV at MOI 1. GFP expression was measured 48h later via flow cytometry. 
Data shown represent mean +/- SD of three repeats performed in triplicates. One-way 
ANOVA analysis with Tukey’s post-test was performed to compare percentage GFP 
positive cells (*** p<0.001). 
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5.3.3. Investigating the role of LDLR family members in VesG-

LV entry 

LDLR has been reported to be the primary cellular receptor responsible for 

VSVind.G entry while other LDLR family members have been demonstrated 

as alternative receptors [347, 491]. Soluble LDLR (sLDLR) has been reported 

to bind VSVind.G at high affinity preventing its binding to cells thus inhibiting 

transduction by VSVind.G pseudotyped LVs.  Furthermore, this viral infection 

is successfully inhibited in a dose-dependent manner via soluble LDLR 

molecules and was entirely blocked by the addition of receptor-associated 

protein (RAP). RAP blocks all LDLR family members, except for LDLR itself 

[315]. Similar dose-dependent partial inhibition of COCV infection by soluble 

LDLR has also been demonstrated [243]. 

Combined with this information, the data presented in section 5.3.2 implied 

that the various VesG might be sharing their main path for cell entry and hence 

sharing the apparent lack of superinfection resistance. To test whether LDLR 

is responsible for the VesG-LV infection, an infection assay in the presence 

and absence of sLDLR and RAP proteins was performed. HEK 293T cells 

were challenged with VesG- and RDpro-LV with and without prior treatment 

with sLDLR, RAP, or both (Figure 5-4). 
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As expected RDpro-LV infection was unaffected by the presence of both LDLR 

and RAP as it uses ASCT-2, a neutral amino acid transporter, as its primary 

receptor. On the other hand, all VesG-LV infections except that of PIRYV.G-

LV, was inhibited in the presence of sLDLR. The results implied that while 

VSVind.G, COCV.G, VSVnj.G, VSVala.G, and MARAV.G utilised LDLR for 

cell entry, PIRYV.G did not interact with sLDLR and therefore most probably 

does not utilise this protein as a receptor. RAP effect was not observed in this 

study using 293T cells as the infection target, unlike previous studies on WT 

FS-11 fibroblasts and LDLR-deficient GM701 fibroblasts cells [347]. 

  

Figure 5-4. Inhibition of VesG-LV infection by soluble LDLR. 
HEK 293T cells were challenged with GFP expressing VesG and RDpro pseudotyped LV 
at MOI 0.5 in the absence and presence of 0.5 μg/ml sLDLR and 2.5 μg/ml RAP.  The 
infection rates were analysed 48h later via flow cytometry.  Data shown represent relative 
infection +/- SD from three experiments performed in duplicates. One-way ANOVA analysis 
with Dunnett’s post-test was performed to compare percentage GFP positive cells to that 
of virus only samples (*** p<0.001; * p<0.05). 
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5.3.4. Effects of LDLR-Knock Out to VSVind.G infection 

Results from the experiments in section 5.3.3 suggested that all VesG except 

for PIRYV.G use LDLR to infect HEK 293T cells. Consequently, we decided 

to knock out (KO) the LDLR gene on the producer cell lines to obtain further 

evidence that VesG-LVs enter cells via LDLR and to investigate whether 

LDLR-deficient cells are still permissive to superinfection. 

To KO the LDLR gene, the CRISPR-Cas9 genome editing technology was 

utilised. The CRISPR-Cas9 system was initially developed a few years ago 

based on a bacterial defence mechanism against invading phages and 

plasmids. In this system, a guide RNA (gRNA) complementary to the target 

DNA is designed which will guide the nuclease to induce double-strand break 

(DSB) in the target sequence. For this project, the LentiCRISPR system was 

used. This system contains the blasticidin resistance gene as the selectable 

marker as well as the Cas9 enzyme to induce DSB at the target sequence, 

which is encoded into the vector plasmid of an LV. Exploiting LV ability to 

target a broad range of cells and to integrate its genome into the host cell, a 

mammalian codon-optimised Cas9 along with the specific gRNA is delivered 

into the cells, and the genomic cut is carried out (Figure 5-5A).  

For this, I designed three different guide RNAs (gRNA) targeting different parts 

of the gene, checked functionality and proceeded with diagnostic processes 

including sequencing and plasmid digestion with restriction enzymes after 

inserting into the lentiCRISPR construct (section 2-6). One gRNA that targeted 

the LDLR open reading frame was selected to subclone into the LentiCRISPR 

plasmid (Figure 5-5B). LDLR-KO LVs were produced via transient production 
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method.  Briefly, HEK293T cells were transfected with VSVind.G encoding env 

plasmid, p8.91, and LentiCRISPR plasmids to produce transient VSVind.G 

pseudotyped LVs encoding the gRNA and Cas9 protein to KO the LDLR gene 

(αLDLR-LVs). LVs were harvested 48 hours post-transfection while the LV 

producing HEK293T cells were put under blasticidin selection. 

WT HEK 293T cells were transduced with 1.5 mL, 1mL, and 500 µL of αLDLR-

LVs and kept under selection for two weeks before being investigated for 

LDLR expression via immunoblotting. For this 8x106 cells were lysed and 

immunoblotted for LDLR using anti-LDLR mAb, 5E6. After infection with 

αLDLR-LVs, LDLR gene was successfully knocked out from 293T cells at all 

three doses, as the receptor protein was not detected (Figure 5-5C).   

  



184  
 

  

Figure 5-5. KO of LDLR from HEK 293T cells utilising the LentiCRISPRv2 system.  
(A) LV vector backbone encoding the SpCas9 and the selectable marker blasticidin 
resistance gene. The designed gRNAs were subcloned into the backbone utilising the 
BsmBI cloning site. (B) The diagram for the designed gRNA. This oligo was digested using 
BsmBI restriction enzyme, then subcloned into the lentiCRISPR backbone. (C) Western 
blot analysis of LDLR expression in naïve HEK 293Tcells, αLDLR-LV producer cells, and 
αLDLR-LV transduced cells two weeks post-antibiotic selection. GAPDH was used as 
protein input control. Data shown represent one of the three repeats performed. 
Psi packaging signal (psi); rev response element (RRE); central polypurine tract (cPPT); 
elongation factor-1α short promoter (EFS); FLAG octapeptide tag (FLAG); 2A self-cleaving 
peptide (P2A); blasticidin selection marker (Blast); Woodchuck posttranscriptional 
regulatory element (WPRE); blasticidin selection marker (blast); gRNA: Guide RNA. 
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After the LDLR knock out confirmation in the cells, the infection levels of VesG-

LV in WT and KO HEK 293T cells were examined by flow cytometry (Figure 

5-6). RDpro uses ASCT-2, a neutral amino acid transporter, as its primary cell 

entry pathway [492, 493]. Therefore, RDpro-LVs were used as a control where 

no changes in infection were expected. On average, a modest reduction in 

infectivity was detected in KO cells compared to WT when the cells were 

challenged with all VesG-LV except for PIRY (Figure 5-6A). This data 

corroborated our previous findings that sLDLR blocks infection of LV with G 

proteins of VSVind, COCV, VSVnj, VSVala and MARAV and suggest that 

these viruses are sharing LDLR as a cell entry receptor. However, the 

reduction of infection effect was subtler than expected as just the addition of 

0.5 μg/ml sLDLR to the culture media had blocked on average 80% of infection 

(Figure 5-4). These two findings both pointed towards the involvement of other 

receptors, possibly other LDLR family members as previously described. 
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Figure 5-6. Investigation of VesG-LV infection of LDLR-KO HEK 293T cells.   
(A) VesG-LV were produced using transient production protocol. LVs were titrated on 
LDLR-KO and naïve HEK 293T (WT) cells using equimolar mounts.  Cells were harvested 
48h later, and GFP expression was measured via flow cytometry. Data presented 
represent mean +/- SD of three experiment performed in duplicates. One-way ANOVA 
analysis with Dunnett’s post-test was performed to compare VesG infection decrease to 
that of RDpro, the negative control with an unrelated primary receptor. (B) LDLR-KO 
HEK293T cells were challenged with GFP expressing VesG and RDpro pseudotyped LV 
at MOI 0.5 in the absence and presence of 0.5 μg/ml sLDLR and 2.5 μg/ml RAP. The 
infection rates were analysed 48h later via flow cytometry. Data shown represent relative 
infection +/- SD from three experiments performed in duplicates. One-way ANOVA analysis 
with Dunnett’s post-test was performed to compare percentage GFP positive cells to that 
of virus only samples (*** p<0.001; ** p<0.01; * p<0.05). 

B 
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One hypothesis behind the lack of infection inhibition observed by RAP and 

the modest reduction of transduction efficiencies in LDLR-KO cells was the 

upregulation of the other family members' expression in order to compensate 

for the lack of LDLR in endogenous lipid/cholesterol pathways. Therefore, 

qPCR analyses on both naïve and LDLR-KO cells were performed to compare 

expression levels of LDLR, and two other LDLR family members: very low-

density lipoprotein receptor (VLDLR) and apolipoprotein E receptor (APOER). 

In addition, we also checked for the Leucine-Rich Repeat Containing G 

Protein-Coupled Receptor 4 (Lgr4) as it has been reported to be essential for 

VSVind.G entry to target cells [494].   

Total RNA from WT and KO cells were extracted, and expression levels of 

different LDLR family members were measured by quantitative PCR. Figure 

5-7A demonstrates the data obtained from the qPCR indicating that LDLR 

gene was still detectable in KO cells. This suggests that complete LDLR KO 

might not have been achieved. As bulk population of LDL-KO cells was used, 

to ensure that LDLR is still absent from the population in use, we decided to 

check the LDLR expression in KO HEK 293T cells from an earlier passage 

(i.e. two weeks in selection) compared to the batch that was currently in use 

that was in culture under blasticidin selection for around 12 weeks (indicated 

here as late passage). qPCR result for LDLR-KO early passage shows that 

LDLR expression, while still detectable, is considerably lower compared to 

LDLR-KO late passage. Moreover, it seems that as well as LDLR, VLDLR 

expression was lower in KO cells compared to WT. When the gRNA was 

aligned against VLDLR sequence to check for any off-target effect, the gRNA 

recognised 5-6 nucleotide long sequences in VLDLR exons 1 and 2 (6 
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determinants in total) suggesting that VLDLR gene might have also been 

knocked out through off-target effect. Also, a slight increase in expression in 

Lgr4 (p<0.05) and APOER genes can be observed in KO cells compared to 

WT suggesting these genes might have been elevated in order to compensate 

for the absence of LDLR.   

To investigate LDLR expression by immunoblotting, cells from LDLR-WT, 

LDLR-KO late passage, and LDLR-KO early passage were lysed and blotted 

using anti-LDLR antibody 5E6. The immunoblotting data indicates that two 

weeks post-selection transduced HEK 293T cells were negative for LDLR 

expression when compared to WT HEK 293T cells, (Figure 5-7B- early pass). 

However, in 12-weeks post knockout cells, an LDLR band was detected, 

similar to the WT control (Figure 5-7B- late pass). These results implied that 

the LDLR expression returned in bulk LDLR-KO population although they were 

kept under blasticidin selection. 
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Figure 5-7. Exploring the expression Levels of LDLR and other LDLR family members in 
early and late passages of LDLR-KO cells.  
qPCR assay performed on genomic DNAs extracted from WT and LDLR-KO cells: (A) 
Late-passage cells; (B) early passage cells.  Copy numbers measured for each gene was 
normalised to that of WT HEK 293T. Data shown represent means +/- SD of three 
experiment performed in duplicates.  (C) Western blot analysis of LDLR expression in early 
passage KO cells (week 2) and late passage KO cells (week 12).  Data shown represent 
one of the three repeats performed. One-way ANOVA with Tukey's post-test was 
performed to compare each receptor to its wild type expression (*** p<0.001; ** p<0.01; * 
p<0.05). ns: not significant. 
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5.3.5 Effect of the LDLR-KO to VesG expression on the cell 

surface and shed in the supernatant 

To investigate whether LDLR-KO influences envelope expression, this 

receptor was knocked out on the stable VesG expressing cells (section 4-3-4) 

and checked the envelope expression in WT compared to KO cells. VSVind.G, 

COCV.G, VSVnj.G, PIRYV.G, VSVala.G, and MARAV.G expressing cells that 

were in phleomycin selection for two weeks were transduced with 500µL of 

αLDLR-LVs and were selected with blasticidin in addition to phleomycin for 

another two weeks. WT and KO Env expressing cells were lysed and blotted 

with VSV-Poly antiserum and P5D4 to detect VesG, and with anti-LDLR 5E6 

to confirm the LDLR KO (Figure 5-8). As expected, the LDLR-KO cells did not 

express the LDLR gene while bands were detected in the WT ones. When 

blotted with anti-VSVind.G mAb P5D4 C-terminally, a modest increase in the 

VSVind.G expression was observed in the KO cells in comparison to the WT 

ones, however, as P5D4 did not cross-react with other VesG on a western blot 

the expression levels of other G proteins could not be deduced. For this, the 

samples were blotted with anti-VSVind.G polyclonal VSV-Poly which was able 

to react with all VesG tested in flow cytometry (section 3-3-1). Although an 

increase in the signal was observed in the KO cell in comparison to WT ones, 

the signals were deemed unspecific, and no conclusive results could be 

deduced with regards to VesG expression.  The data suggest that while VSV-

Poly is suitable for flow cytometry staining and can cross-react with all VesG, 

is not suitable for western blot staining. Moreover, as other available Abs only 

detect VSVind.G and do not cross-react with other VesG, using western blot 

for G protein detection is not feasible.   
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Figure 5-8. Western blot analysis of VesG expression on stable G protein expressing cell 
surface following LDLR KO.   
8x106 cells were lysed, and 50 μg of total protein/ well were loaded.  The samples were 
blotted for LDLR expression (5E6), VSVind.G C-terminal (P5D4), and extracellular domain 
polyclonal VSV-Poly for VesG proteins expression. The data shown represent one of the 
three repeats performed. 
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To observe the VesG expression level differences upon LDLR KO, chimeric 

VesG proteins with the transmembrane and C-terminal domains of VSVind.G, 

produced in our laboratory by Altar Munis, were used; these allowed for G 

protein detection by the mAb P5D4 (Figure 5-9A).  

WT and LDLR-KO cells were seeded at 3x105 cells/well density in 6 well plates 

and transiently transfected with 2.5μg of plasmids expressing VesG-tail 

chimerae. 24 hours later the media was changed with 2 ml of Opti-MEM 

supplemented with L-glutamine and Pen/Strep. 48 hours post-transfection, 

supernatants were harvested, and cells were lysed. Supernatants were 

concentrated via centrifugation at 17,000 g for 2 hours, and total protein 

amounts were normalised using the Pierce BCA Kit.  

The samples were blotted with 5E6 anti-LDLR antibody to confirm LDLR-KO 

and P5D4 to investigate VesG expression and secretion (Figure 5-9B). The 

western blot analysis demonstrated that even by transient transfection a 

modest difference between VesG expression on cells and secretion could be 

observed (depicted by the thickness and density of the bands). All VesG-tail 

chimerae could be detected using P5D4 and comparison of the bands 

between WT and KO cells highlighted that in KO cells the G protein expression 

and secretion were more prominent compared to that of WT indicating that the 

absence of the primary receptor does indeed increase the level of G protein 

expression. However, as this experiment was performed following transient 

transfection all expression levels were relatively high, therefore the preliminary 

results acquired should be further investigated following stable transfection of 

the VesG-tail chimerae. 
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Figure 5-9. Western blot analysis of VesG-tail expression on stable G cell surface following 
LDLR KO.   
(A)  Diagram of VesG-tail chimeric proteins in which the transmembrane and C-terminal 
domains of the G proteins were switched with that of VSVind.G (White Square).  (B)  1x106 
cells were lysed, and 40 μg of total protein/well were loaded on SDS-page gel. The samples 
were blotted for LDLR expression (5E6, Sigma) and C-terminal P5D4 (Sigma) for G 
expression.  Data shown represent one of the three repeats performed. 
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5.4 Discussion  

Cells infected by retroviruses display resistance to superinfection by viruses 

that utilise the same receptor as the pre-infecting virus. This superinfection 

interference is most likely due to saturation of the virus receptors with the 

retroviral envelope glycoprotein expressed in the infected target cells [486].  

The host range of retroviral vectors including lentiviral vectors can be 

expanded or altered by pseudotyping. VSVind.G is among the first, and still 

one of the most widely, used glycoproteins for pseudotyping LVs, due to its 

advantages including broad tropism and stability [211]. A major issue that has 

been reported in stable VSVind.G pseudotyped LV producer cell lines is that 

these cells are prone to be re-infected by the produced LVs. This might be 

because VSV receptors, i.e. LDLR and LDLR family members, are abundant 

components of plasma membranes and receptor saturation most likely is not 

achieved easily to mediate superinfection resistance [486, 495]. The lack of 

superinfection resistance in the producer cells can lead to the accumulation of 

the vector genome in the cells causing genotoxic effects, cell death, and loss 

of titres [486]. 

5.4.1 Superinfection in stable cell lines 

The work presented in this chapter aimed to investigate whether other VesG 

pseudotyped LVs, superinfect producer cells similarly to VSVind.G-LVs. This 

was explored in two separate sets of cell lines; in WinPac (WP) stable 

packaging cell lines as well as the stable VesG expressing cells (chapter 4). 

Both WP-derived cells lines, WP-RD and WP-COCV.G, and stable VesG 

expressing cells were challenged with VesG pseudotyped LVs expressing 
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GFP. Both sets of cells were checked for envelope expression prior to 

challenge as well as for GFP expression after the challenge (Figures 5-2A and 

5-2B). While stable RDpro expressing cells reduced the superinfection by 

RDpro pseudotyped LVs significantly, complete inhibition like that of WP-RD 

cell line was not observed. This can be explained by that the stable RDpro 

expressing cells were a mixed population and not clonally selected ones. 

Therefore, the bulk population might be made up of cells expressing RDpro at 

low levels and/or not expressing RDpro. This will lead to receptors not being 

saturated permitting RDpro LVs entry to the cells. 

On the other hand, in both approaches, VesG-LV infection was unaffected 

pointing to a lack of superinfection resistance in the genus. This might pose 

some challenges such as genotoxicity and loss of titres of VesG based LV 

producer lines, which need to be addressed. A possible way that has been 

suggested to block superinfection is the use of antiretroviral drugs such as 

azidothymidine (AZT) [486].  AZT is widely used as an antiretroviral medicine 

in patients suffering from HIV-1 infection/AIDS. AZT mechanism of action is by 

inhibiting the HIV-1 reverse transcriptase activity by its triphosphate form 

competing with its natural nucleotide counterpart thymidine triphosphate for 

incorporation into newly synthesised viral DNA. Once incorporated, it leads to 

DNA chain termination stopping further DNA synthesis. However, if used, AZT 

would need to be included in the culture media and later filtered out of the final 

LV preparation, a similar issue currently is present in inducible systems which 

utilise induction/suppression chemicals [233, 496]. This will complicate the 

simple continuous stable production process which currently is an advantage 

of constitutive PCLs over inducible systems. 
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Another approach to block superinfection is the blocking of the primary 

receptor which the pseudotypes use to enter the cells. It has been reported 

that VSVind.G employs the low-density lipoprotein receptor (LDLR) as the 

main receptor for cell entry [347, 377], while other LDLR family members act 

as alternative receptors for this G protein. Furthermore, published studies 

reported that while knockdown of LDLR in a human fibroblast cell line (FS-11) 

reduced VSVind.G infection, overexpression of this gene in LDLR-deficient 

GM701 cells increase VSVind.G infection by 6-fold. It was also shown that 

following stimulation of T cells and haematopoietic stem cells with a cytokine 

cocktail, the surface expression of LDLR was elevated on these cells resulting 

in increased VSVind.G pseudotyped LV transduction efficiency [377].   

However, little is known about the receptor for other vesiculoviruses.  As these 

viruses show some degrees of homology on the amino acid level to VSVind.G, 

from higher levels in MARAV.G and COCV.G to lower homology levels in 

PIRYV.G, we hypothesised that they might be sharing the same receptors for 

cell entry.  Preliminary experiments were performed in our lab investigating the 

putative receptor for COCV.G using sLDLR. These data suggested that 

VSVind.G and COCV.G LVs infectivity was partially blocked in a dose-

dependent manner by sLDLR [244]. Similar results were also reported by 

another research group [237]. When other VesG were investigated for their 

use of LDLR and other family members for infection, a hindrance of infectivity 

by sLDLR was observed for all VesG but PIRYV.G (Figure 5-4). 
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5.4.2 Development LDLR knock out cell line  

Accordingly, we tried to knock-out LDLR on HEK 293T cells in an attempt to 

block superinfection in VesG cells. Although PIRYV.G does not interact with 

LDLR, it still demonstrated a lack of superinfection resistance (Figure 5-3).  

Therefore, LDLR KO was expected not to affect PIRY-LV infection, and it was 

utilised as a negative control in the LDLR KO experiments. Hence, a gRNA 

targeting the LDLR gene was designed and cloned into a LentiCRISPR 

plasmid containing a blasticidin resistance gene. After producing transient 

αLDLR-LVs, HEK 293T cells were transduced and kept in blasticidin selection.  

After confirming LDLR KO via immunoblotting (Figure 5-5C), WT and LDLR-

KO HEK 293T cells were transduced with various volumes of VesG 

pseudotyped LVs to investigate the infectivity levels in LDLR-deficient cells 

compared to WT ones. A slight decrease of infectivity was observed in all 

VesG LVs except for PIRYV.G (Figure 5-6) which was in agreement with our 

previous results suggesting that PIRYV.G LVs likely employ receptors other 

than LDLR (Figure 5-4). While in higher volumes added of LV the infection 

seemed to get saturated, in lower volumes yielding 1-30% GFP expression, 

which is the window utilised to calculate LV titres, statistically significant 

(p<0.001) reduction of infectivity in LDLR-KO cells compared to WT ones 

could be observed.  

However, as LDLR was reported to be the main entry port for VSVind.G, a 

greater effect on infectivity level in the absence of LDLR was expected. We 

hypothesised that a possible explanation could be that other LDLR family 

members are elevated to balance out the lack of LDLR. 
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When investigating the levels of mRNA of the other LDLR family members by 

qPCR analysis, it was revealed that the LDLR-KO cells were not 

homogenously and completely knocked out as LDLR could be detected, albeit 

in substantially lower levels (approximately 103 times less compared to WT) in 

the KO cells. The differences in gene expressions also translated into 

differences in protein expression levels (Figure 5-7B-C). Results from 

immunoblotting analysis demonstrated that while there was no detection of 

LDLR protein in early passages, its expression reappeared in later passages.  

This phenomenon can be explained by the karyotypic phenotype of the initial 

KO population; first, the HEK 293T cells have a complex karyotype of 

hypotriploid DNA, with different mean chromosome numbers in cells from 

different sources. The diversity has been suggested to be due to the long-term 

cultivation of these cells causing different clones of 293 cells to undergo 

karyotype diversification [411, 497]. Having a complex karyotype can make 

having a homologous knock out of genes in all alleles to be challenging. 

Furthermore, as the LDLR-KO cells did not undergo clonal selection, we 

utilised a mixed/bulk population of homologous and heterologous KO cells in 

my experiments. After a few weeks of cultivation and selection, the population 

of cells with heterologous LDLR KO might have dominated the homologous 

one via spontaneous clonal selection.  Having a mixed population of KO cells 

could also be the reason behind the unconvincing results we attained from WT 

vs KO cells' transduction (Figure 5-6). Accordingly, clonal selection and 

isolating single clones with higher performance is of high importance in order 

to achieve a reliable knock out HEK 293T cell line. 



200  
 

5.4.3 Investigating other LDLR family members as entry 

receptors for vesiculovirus G proteins 

We then investigated whether the absence of LDLR influenced the expression 

of G protein by checking its levels in the collected supernatant and expressed 

on the cells from WT or KO HEK293T cells. One issue we faced was the lack 

of available antibodies against VesGs other than that of VSVind.G. For flow 

cytometry, we mainly used the VSV-Poly Ab owing to its cross-reacting with 

VesG other than VSVind.G; however, due to it being an antiserum with a 

collection of different immunoglobulins, using it in immunoblotting might result 

in unspecific interactions with lysate proteins. As other available monoclonal 

antibodies do not cross-react with other VesG, comparing G protein 

expression amongst various constructs has proven challenging (Figure 5-8).  

Therefore, we used VesG-tail chimerae which were synthesised by switching 

the endogenous transmembrane and C-terminal tails of VesG with that of 

VSVind.G provided by Altar Munis at NIBSC. This enabled the use of anti-

VSVind.G mAb P5D4 for G protein expression and secretion detection.  

Following transient transfection of these new chimeric G proteins into KO and 

WT HEK 293T cells, western blot analysis was carried out to determine G 

protein expression (Figure 5-9). A modest increase of G protein expression 

was detected for all VesG in LDLR-KO cells in comparison to the WT cells.  

This may be because when expressed on cells, LDLR interacts with VesG and 

other plasma proteins on the secreted vesicles containing VesG to mediate 

their endocytosis. It has been demonstrated that LDLR and LDLR family 

members are continuously recycled at the plasma membrane approximately 

every ten mins [347]. Therefore, when expressed on the cell surface they may 
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interact with the G proteins, incorporate them in the endocytosis cycle and 

reduce their secretion to the supernatant. It is of value to explore the use of 

LDLR-KO cells in the production of LVs hence the preliminary results obtained 

via stable and transient G expressing cells imply that the lack of LDLR on 

producer cells may boost G protein expression and secretion and thus LV 

titres. 

5.4.4 Summary  

Taken together, the work presented in this chapter demonstrates that all VesG 

tested display a lack of superinfection interference (regardless of their primary 

receptor use) and therefore their adaptation to PCLs may lead to instability 

through vector genome accumulation (in press [440]). As a potential approach 

to address this LDLR-KO HEK 293T cells were generated in order to prevent 

produced LVs from re-entering the PCLs. Preliminary data demonstrated a 

modest superinfection block, however, due to incomplete LDLR KO in the cell 

population the results were inconclusive. Therefore, this approach should be 

further investigated following clonal selection of LDLR-KO cells and/or 

generation of LDLR-KO utilising a more stable and homogenous cell line. 
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LVs are promising gene therapy tools. Their translation to the clinic has proven 

successful considering recent clinical trials have demonstrated curative 

therapies using LVs for several acquired and heritable diseases [300]. 

Maintaining virus viability over several steps of vector manufacture, 

production, purification, storage, and application, is vital for the efficacy of the 

therapies developed as well as the quality of the transduced cells [430]. 

Moreover, the vector titres and cellular contaminants in the vector containing 

medium are also of concern in achieving successful gene therapies [431-433]. 

Vesicular stomatitis virus Indiana strain G protein (VSVind.G) is the most 

widely used glycoprotein to pseudotype LVs for both in vivo and ex vivo 

studies. Despite conferring high stability and titres and broad tropism, 

VSVind.G is claimed to be cytotoxic and cannot be expressed constitutively in 

producer cells [201, 238]. Therefore, recently, G proteins derived from other 

members of the vesiculovirus genus (VesG), namely Cocal [237, 243] and Piry 

virus [498], have been proposed as alternative LV envelopes with possible 

advantages over VSVind.G. Therefore, detailed investigation of VSVind.G and 

other VesGs is of interest for their adaptations of clinical LV production.  

In this work, we investigated VSVind.G and other VesG, namely Cocal virus G 

protein (COCV.G), VSV New Jersey strain G protein (VSVnj.G), VSV Alagoas 

virus G protein (VSVala.G), Maraba virus G protein (MARAV.G), and Piry virus 

G protein (PIRYV.G), for their use in LV producer cell lines. Therefore, in 

chapter 3, we undertook detailed characterisation of these VesG with regards 

to their thermal and physical stability because vector production, storage, and 

efficacy in use, can be affected greatly by the stability of the vector particle. 

Transient LVs pseudotyped with VSVind.G, COCV.G, VSVnj.G, PIRYV.G, 
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VSVala.G, MARAV.G, and RDpro were produced to establish which 

vesiculovirus are most promising to generate a stable packaging cell line with. 

They were explored for their ability to be readily concentrated via 

ultracentrifugation and resistance to repeated freeze-thaw cycles and 

incubation at 4ºC and 37ºC. While unconcentrated vectors are often sufficient 

for in vitro studies, for in vivo applications higher titres and hence concentrated 

vector preparations are required. LV concentration is usually achieved by 

ultracentrifugation as it is a fast and robust method [437, 438]. LVs are usually 

kept at 4°C during purification and short-term storage. For long-term storage, 

however, they are kept at -80°C, this implies freeze-thaw of the vector 

preparation and has a detrimental effect on viral titres. Also, at 37°C, these 

vectors are less stable, which is a critical issue concerning the efficacy of viral 

preparations in clinical studies. In this project, all tested G proteins were stable 

after cycles of freeze-thaw and incubation at 4 and 37°C exhibiting similar 

characteristics to that of VSVind.G. These G proteins’ stability at 37°C is 

promising as it will allow systemic and local delivery of LVs in vivo without the 

concern of body-temperature dependent loss of titre. Furthermore, robust 

vector stability demonstrated at 4°C and during freeze-thaw cycles is useful 

for short and long-term storage of the vectors. 

Although VSVind.G has often been the choice of the envelope for LVs, 

VSVind.G-based continuous producer cell lines have not been reported. This 

has been believed to be owing to its highly fusogenic characteristic and 

cytotoxicity due to fusogenicity [201]. Therefore, less or non-toxic envelopes 

such as RD114 derived envelope, RDpro, has been used in the generation of 



205  
 

stable cell lines [238, 240]. On the other hand, Cocal envelope G protein was 

reported to be less cytotoxic compared to that of VSVind.G [237, 243].   

In chapter 4, we attempted to compare VesG’s fusogenic activity and pH-

dependence through pH-induced syncytia formation and LV inactivation. All 

VesG demonstrated similar pH-dependent fusogenicity overall, implying 

similar toxicity levels. This was later confirmed via a colony formation assay. 

Consequently, all VesG were stably expressed in HEK 293T cells and kept 

under selection for the marker gene. Possibly the most striking finding of this 

study was that VSVind.G could be stably expressed in cells for up to at least 

five months.  Moreover, these cells could produce transient LVs with titres of 

more than 104 TU/ml for up to 20 weeks post-selection. This challenged the 

widely-accepted notion that VSVind.G cannot be stably expressed in cells due 

to high toxicity [201].  Furthermore, all tested VesG could stably be expressed 

in cells for up to 5 months, without any apparent cytotoxicity. In addition, 

following transient supply of gag-pol, rev, and the transgene to these stable 

VesG expressing cells, reasonable LV titres were achieved. This durability of 

the stable cells is of high importance when adapted into packaging cell lines, 

allowing for sufficient cell expansion for clinical LV production. For instance, 

the best performing VesG constructs could replace the RDpro G protein in 

WinPac-RD cell line to improve the produced LV titres and stability (Sanber, 

Knight et al. 2015). These stable VesG expressing cells are also suitable for 

cell-free in trans LV production (in press [440]).  

A major issue in stable VSVind.G pseudotyped LV producer cell lines is the 

lack of superinfection interference which can lead to accumulation of vector 

genome in the cells resulting in genotoxic effects, cell death, and loss of titres 
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[486]. Lack of superinfection interference might be because VSV receptors, 

LDLR and LDLR family members, are not saturated by the expressed G 

protein as these receptors are abundantly expressed on most cell lines where 

they are recycled back to the cell membrane after internalisation every 10 

minutes  [347, 486, 495]. 

Consequently, in chapter 5, we explored the adaptation of VesG, starting with 

COCV.G into WinPac packaging cell line, WinPac-COCV.G, and investigated 

the occurrence of superinfection. Experiments performed demonstrated that 

VesG-LV infection was unaffected by the expression of the G proteins on the 

cell surface indicating a lack of superinfection resistance. This might pose 

some challenges such as genotoxicity and loss of titres of VesG based LV 

producer lines, which needs to be addressed. A possible approach to block 

superinfection can be the use of antiretroviral drugs such as azidothymidine 

(AZT) [486] or Nevirapine (in press [440]). 

We explored an alternative option by knocking out the primary receptor utilised 

by the G proteins to block superinfection. Previously, transient knockdowns of 

LDLR in human cell lines have proven to reduce VSVind infection modestly 

[347]. Preliminary experiments performed previously in our group and later by 

me revealed that all the tested VesG but PIRYV.G, shared the binding ability 

to LDLR suggesting that they use LDLR as the primary cell entry receptor. 

CRISPR-Cas9 mediated knock out of LDLR in HEK 293T cells resulted in a 

modest reduction of VesG-LV infectivity while PIRYV.G transduction was 

unchanged. mRNA analysis of the knock out cells revealed that an initial 

reduction of about 1000 times in LDLR mRNA expression compared to the 

wild-type cells was achieved; however, although the KO cells were kept in 
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selection media, the level of LDLR mRNA increased in time. The differences 

in gene expressions also translated into differences in protein expression 

levels in later passages of LDLR-KO 293T cells.  

6.1 Future Directions 

The work presented in this thesis has provided insights related to VesGs’ use 

in clinical grade LV production. Studies focusing on the stability of VesG may 

help researchers understand the destabilising mechanisms enforced on 

VesG-LV in variable conditions they face during the LV manufacturing 

process. Although most G proteins tested demonstrated both high thermal and 

physical stability, the effect of thermal and physical pressure on HIV-1 capsid 

and matrix proteins which have essential roles in LV structure should also be 

investigated. Combined, this will allow modification of LVs and G protein 

containing advanced therapy medicinal products to generate more stable 

reagents with better longevity under critical manufacturing conditions.   

In addition, our experiments revealed that, against commonly accepted notion, 

all VesG including VSVind.G can be expressed constitutively in cells and 

support LV production up to 5 months following transient supply of gag-pol, 

rev, and the transgene. Taken together, this work revealed that all VesG tested 

demonstrated similar properties with regards to toxicity, pH-dependent fusion, 

and infectivity, with modest differences. These G proteins should be further 

utilised in clinical grade PCL formation and closely monitored for their ability 

to produce functional LVs constitutively.  

Our preliminary work in attempting to adapt COCV.G into the clinical grade 

WinPac LV producer cell line revealed that similar to VSVind.G, COCV.G and 
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the other VesG lack superinfection interference. Although the use of anti-

retroviral drugs in cell culture have been suggested to prevent this, removal of 

these substances from the culture media poses another step in the complex 

manufacture of LVs and may result in further titre losses. Therefore, the option 

of knocking out the putative receptor utilised by VesG was explored. The 

complex karyotype of HEK 293T cells amongst a couple of other issues 

prevented the achievement of a complete LDLR-KO cell line, however, despite 

this, a modest reduction in infection permissiveness and increase in G protein 

expression have been observed. Further work is essential to follow up on 

these promising data. Clonal selection and isolating single clones with higher 

performance or the use of alternative cell lines with more stable karyotypes 

are essential in achieving a true complete LDLR-KO cell line. This cell line may 

later be utilised in the generation of PCLs with less of the problem of 

superinfection and thus vector genome accumulation and genotoxicity. 

Although, the role of other LDLR family members as alternative receptors for 

viral entry has to be investigated. Lastly, we were able to demonstrate that 

PIRYV.G’s, unlike the other VesG, does not bind to LDLR. Therefore, the 

identification of this G protein’s main receptor may reveal vital information on 

vesiculovirus infection, evolution and tropism as well as provide the 

opportunity to tailor and re-target LVs and G protein containing medicinal 

products. 

Overall, generation of stable packaging cell lines is of great importance to both 

basic and clinical research. This method reduces the cost of production and 

batch-to-batch variability resulting from transient plasmid transfection which is 

the method of use for lentiviral vector production.  
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As well as low toxicity, vesiculovirus G proteins exhibited high vector particle 

stability. Implementing a physically stable G protein in stable packaging cell 

lines will aid in achieving high vector titres suitable for clinical use. 

Investigating the receptor usage of these G proteins is of pivotal importance. 

This will aid to develop strategies in order to block superinfection to generate 

a reliable packaging cell line with reduced risk of decline in vector titres as well 

as to produce useful batches of therapeutic LVs.    
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