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Abstract

How do people pursue rewards in risky environments, where some outcomes should be

avoided at all costs? We investigate how participant search for spatially correlated

rewards in scenarios where one must avoid sampling rewards below a given threshold.

This requires not only the balancing of exploration and exploitation, but also reasoning

about how to avoid potentially risky areas of the search space. Within risky versions of

the spatially correlated multi-armed bandit task, we show that participants’ behavior is

aligned well with a Gaussian process function learning algorithm, which chooses points

based on a safe optimization routine. Moreover, using leave-one-block-out

cross-validation, we find that participants adapt their sampling behavior to the riskiness

of the task, although the underlying function learning mechanism remains relatively

unchanged. These results show that participants can adapt their search behavior to the

adversity of the environment and enrich our understanding of adaptive behavior in the

face of risk and uncertainty.

Keywords: Exploration-Exploitation; Generalization; Function learning; Risky

choices
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Generalization and search in risky environments

Introduction

Your phone rings. It is your parents. They are on their way for a surprise visit.

You can hear the engine of their car running as you talk to them. They will arrive in a

few hours and ask if you could prepare something for dinner. Your mum jokes that they

already had beans on toast for lunch. Aiming to amaze them with a unique culinary

experience, you decide to prepare something extraordinary, something they have never

eaten before. As you open your fridge and kitchen cupboards, you find a plethora of

ingredients at your disposal. In your head, you go through different combinations of

ingredients, imagining how their taste combines and interacts to produce a—hopefully

memorable—culinary experience. You have enough time to try out some combinations,

experiencing the resulting taste, and thereby learning about the effects of unusual

combinations and methods of preparation. While you can be adventurous, you need to

be sure to avoid certain options; you cannot risk trying inedible, poisonous, or otherwise

disappointing dishes.

This scenario is an example of a multi-armed bandit task (Robbins, 1985; Srinivas,

Krause, Kakade, & Seeger, 2009; Steyvers, Lee, & Wagenmakers, 2009), where there are

a number of options or “arms” of the bandit (e.g., the possible dishes) which lead to

initially unknown and stochastic outcomes or rewards (e.g., the taste of the dish), that

are related to a set of features (e.g., the ingredients, the method of preparation, and so

forth). Through experience, you can learn a function which maps features to rewards,

and use this knowledge to maximize the overall rewards gained over repeated plays of

the bandit. A key challenge for optimal behavior in such tasks is framed by the

exploration-exploitation dilemma (Gittins, 1979; Laureiro-Martínez, Brusoni, & Zollo,

2010): should you choose an option that you know will likely lead to a high reward, or

try an unknown option to experience its outcome and thereby learn more about the

function mapping features to rewards, increasing the chances of gaining even higher

rewards in the future?

Single-mindedly focusing on optimizing outcomes is frequently ill-advised as there
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might be further constraints which one has to take into account. For example, you may

need to avoid a particularly bad outcome (e.g., poisonous food) at all cost. In order to

satisfy this constraint, you should only explore options that—while uncertain—are

likely to be “safe”. Such restricted exploration-exploitation problems are indeed

common in daily life, from choosing which restaurant to visit (avoid food poisoning),

where to buy a second-hand car (avoid buying a lemon), to finding the shortest route

home (avoid dangerous terrain). In our previous research on human behavior in

contextual (Schulz, Konstantinidis, & Speekenbrink, 2017) and spatially-correlated

multi-armed bandits (Wu, Schulz, Speekenbrink, Nelson, & Meder, 2018), we found that

human behavior in the search for rewards without constraints can be robustly described

by a combination of a universal function learning mechanism and a decision strategy

which explicitly balances an option’s expected reward and its attached uncertainty. The

function learning mechanism was formalized as Gaussian process regression, which is a

form of non-parametric Bayesian regression that adapts its complexity to the data at

hand (Griffiths, Lucas, Williams, & Kalish, 2009; Rasmussen, 2006), while the decision

strategy was formalized as upper confidence bound sampling strategy (UCB; Auer,

2002).

In the present study, we expand on our previous work by introducing scenarios

with additional constraints: unsafe options—defined as options which produce outputs

below a given threshold—which should be avoided at all costs. We assess how people

behave when they have to maximize accumulated rewards while also avoiding

(momentary) outcomes below the threshold. The task is presented as a spatially

correlated multi-armed bandit in which participants choose an input, and then observe

and accrue the output of an underlying function which maps spatial locations to

expected rewards. In two experiments with a uni- and bivariate spatially-correlated

multi-armed bandit, we find that participants adapt their exploration-exploitation

strategy to the additional constraints of risky situations, but utilize the same underlying

learning mechanism.
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From a computational perspective1, the task of maximizing rewards while

avoiding unsafe inputs can best be solved by a safe optimization algorithm (Sui,

Gotovos, Burdick, & Krause, 2015). This algorithm tries to find points that are likely to

be safe, and then expands on the set of safe points while also attempting to optimize

the underlying function. When analyzing how humans choose from the three sets of

points identified by a safe optimization algorithm (i.e., safe, expanding, and maximizing

points), we find that choices are strongly influenced by a tendency to stay safe.

From an algorithmic perspective, it is possible to predict individual participant

choices by combining different models of learning with multiple decision strategies, and

then perform model comparison using out-of-sample prediction accuracy. Whereas the

estimated parameters of the learning model remain relatively unchanged, we find that

participants seem to adapt their decision strategy to whether or not they need to avoid

unsafe outcomes, as predicted by a decision strategy that focuses on staying safe.

Our results point to the relevance of safe reinforcement learning (Berkenkamp,

Turchetta, Schoellig, & Krause, 2017) for explaining human behavior in naturalistic

tasks and enrich our notion of how people strategically adapt their behavior to the risk

and uncertainty of the environment. In particular, whereas the way in which people

generalize over different options remains similar across different riskiness conditions,

they tend to adapt their sampling strategy by focusing more on safe actions as the

situations become more risky.

General task description

We use a variant of the spatially correlated multi-armed bandit (Wu, Schulz,

Speekenbrink, Nelson, & Meder, 2017), where the rewards of each option (i.e., arm) are

correlated according to how close they are to each other. Intuitively, nearby arms tend

to have similar rewards, with the level of similarity decreasing over larger distances.

The options are either univariate input values placed along a line, or bivariate input

values placed on a grid. Each discretized input value represents a playable arm of the
1Marr (1982) famously proposed to analyze intelligent systems on three different levels: the compu-

tational (what is the task the system is trying to solve), the algorithmic level (how does it solve it), and
the implementation level (how is the solution implemented).
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bandit. Traditionally, the goal in such tasks is to maximize cumulative payoffs by

sequentially choosing one of the N -arms of the bandit that stochastically generate

rewards (Lai & Robbins, 1985; Steyvers et al., 2009), with learning happening

independently for each arm (e.g., through associative learning). In our case, because

proximate arms generate similar rewards due to the spatial correlations, there is the

opportunity to form inductive beliefs about the rewards of untried options by learning

the function that maps the spatial location of options to their rewards. This task allows

us to study how people generalize their experience to generate beliefs about novel

options, and how this process influences their search behavior (Wu et al., 2018).

Importantly, we add a constraint such that participants need to avoid rewards

below a given threshold. If participants obtain rewards above the threshold, they collect

the reward and continue to the next trial where they are again asked to choose an

input. If they obtain a reward below the threshold, they forgo the reward, end their

round, and lose the opportunity to collect further rewards within the current round.

The additional requirement of avoiding unsafe options in the Risky Spatially Correlated

Bandit makes generalization even more important, as it now serves to identify not only

highly rewarding options, but also unsafe options. In contrast to unconstrained

spatially correlated multi-armed bandits, where good performance does not require

accurate knowledge of the function in regions of low rewards, our risky version requires

people to learn about both regions of low and high reward.

Function learning as model of generalization

We assume that generalization within spatially correlated multi-armed bandits

can be described as a function learning mechanism that learns a function mapping the

spatial context of each arm to expectations of reward. We use Gaussian process

regression (Rasmussen, 2006; Schulz, Speekenbrink, & Krause, 2016) as an expressive

model of human function learning. Gaussian process regression is a non-parametric

Bayesian approach towards function learning which can perform generalization by

making inductive inferences about unobserved outcomes. In past research we found that
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Gaussian process regression captures the inductive biases of human participants in a

variety of explicit function learning tasks (Schulz, Tenenbaum, Duvenaud,

Speekenbrink, & Gershman, 2016), and provides an accurate description of human

generalization in contextual and spatially correlated multi-armed bandits without the

presence of unsafe outcomes (Schulz et al., 2017; Wu et al., 2018).

Gaussian process regression integrates both rule-based and similarity-based

approaches towards function learning and has originally been proposed as a rational

model of human function learning by Lucas, Griffiths, Williams, and Kalish (2015).

Here, we use Gaussian process regression both as a rational model, and as a component

in our models which describe behavior on an algorithmic level. Thus, we use an

approach that bridges the gap between two levels of descriptions (Griffiths, Lieder, &

Goodman, 2015; Griffiths, Vul, & Sanborn, 2012).

To categorize participant choices from a computational level, we assess the

correspondence between input points preferred by a Gaussian process safe optimization

algorithm and those preferred by the participants in our experiments. To determine the

model which describes behavior on the algorithmic level, we combine Gaussian process

regression with different decision strategies, some of which are risk-averse and some of

which are not. We then use cross validation to compare the resulting models with other

models that do not apply generalization.

Gaussian process function learning

A Gaussian process defines a distribution over functions (see Rasmussen, 2006;

Schulz, Speekenbrink, & Krause, 2016, for an introduction). Let f : X 7→ R denote a

function over input space X (i.e., options or arms) that maps to real-valued scalar

outputs (i.e., rewards). The function is assumed to be a random draw from a Gaussian

process:

f ∼ GP(m, k), (1)
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where m is a mean function specifying the expected output of the function given input

x, and k is a kernel (or covariance) function specifying the covariance between outputs:

m(x) = E[f(x)] (2)

k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))] . (3)

Intuitively, the kernel encodes an inductive bias about the function’s expected

smoothness. We follow standard conventions and set m(x) = 0.

Conditional on observed data Dt = {xj, yj}tj=1, where yj ∼ N (f(xj), σ2
ε ) is a

noise-corrupted draw from the underlying function (σ2
ε is the noise variance), the

posterior predictive distribution of the function value for a new input x∗ is Gaussian

with mean and variance given by:

E[f(x∗)|Dt] = k>t∗(Kt + σ2
ε I)−1yt (4)

V[f(x∗)|Dt] = k(x∗,x∗)− k>t∗(Kt + σ2I)−1kt∗, (5)

where yt = [y1, . . . , yt]>, Kt is the t× t matrix of covariances evaluated at each pair of

observed inputs, and kt∗ = [k(x1,x∗), . . . , k(xt,x∗)] is the covariance between each

observed input and the new input x∗.

A common choice of kernel function is the radial basis function kernel

k(x,x′) = exp
(
−||x− x′||2

λ

)
, (6)

where the length-scale λ governs how quickly correlations between points x and x′

decay towards zero as their distance increases2.

2Sometimes the RBF kernel is specified as k(x,x′) = exp
(
− ||x−x′||2

2l2

)
whereas we use λ = 2l2 for

simplicity.
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Rational model

Given a learned representation of a function at time t, this knowledge can be used

to choose the next input at time t+ 1 in a close-to-rational way. This is done through a

decision strategy that takes the predicted mean µ(x) and uncertainty σ(x) for each

input, and produces a criterion governing which input to choose next in order to

balance exploration and exploitation (Brochu, Cora, & De Freitas, 2010; Schulz,

Speekenbrink, & Krause, 2016).

A strategy that can cope with the additional requirement to avoid outcomes below

a threshold in a close-to-rational way, is the safe optimization algorithm put forward by

Sui et al. (2015). This algorithm uses Gaussian process regression to form beliefs about

the predictive payoff distributions of different arms at time point t. It first defines a safe

set of possible inputs St that are likely to provide outputs above the threshold, and

then further separates the safe set into a set of maximizers (Mt, inputs that are likely

to provide the maximum output) and expanders (Gt, inputs that are likely to expand

the safe set). Following Berkenkamp and Schoellig (2015), we define the upper and

lower bounds of a confidence interval by adding the current expectation of reward

µt−1(x) = E[f(x)|Dt−1] and the estimated uncertainty σt−1(x) =
√
V[f(x)|Dt−1]:

ut(x) = µt−1(x) + ωσt−1(x) (7)

lt(x) = µt−1(x)− ωσt−1(x). (8)

The parameter ω determines the width of the confidence bound, and we set it to ω = 3

to assure high safety for the rational safe optimization algorithm3. Using these bounds,

we can define the safe set St as all the input points in the set of available inputs X that

are likely to lead to output values above the safe threshold hmin,

St = {x ∈ X |lt(x) ≥ hmin} (9)

3Although there are other ways according to which one could choose a particular value for ω, we
follow standard practice in setting ω = 3 to ensure high safety.
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This means that points are considered to be safe if their lower confidence bound is above

the provided threshold. This is intuitive as one would expect the output for these points

to rarely fall below the threshold (around 99.9% of the times when setting ω = 3).

The set of potential maximizersMt contains all safe inputs that are likely to

obtain high output values; these are the safe inputs for which the upper confidence

bound ut is above the best current lower bound (i.e. the highest lower bound of all

input points):

Mt = {x ∈ St|ut(x) ≥ maxx′∈X lt(x′)} (10)

where x′ is the best revealed reward at time t. This means that maximizers are input

points that are likely to be at least as good as the best overall outcome in a worst case

scenario.

To find the set of expanders, we first define

gt(x) = |{x′ ∈ X \ St|lt,(x,ut(x))(x′) ≥ hmin}| (11)

where lt,(x,ut(x))(x′) is the lower bound of x′ based on past data and a optimistic

outcome for x which provides a new upper bound ut(x). Intuitively, this function is

used to determine how many new inputs may potentially be added to the safe set after

choosing input x and observing the output it provides. The function in (11) counts how

many previously unsafe points can be classified as safe according to (9) assuming that

ut(x) is measured when evaluating f(x). This function is positive only if the new data

point has a non-negligible chance to expand the safe set. The set of potential expanders

is then defined as

Gt = {x ∈ St|gt(x) ≥ 0}, (12)

where gt(x) count the number of newly-introduced safe points (i.e. measures the

cardinality of that set). The expander set is assessed by forward simulation and simply
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checks if the safe set is expected to be expanded (i.e., more points will be in the safe set

after observing the expected outcome of the evaluated input) for a given input.

Normally, the safe optimization algorithm operates by considering safe points that are

either maximizers or expanders, and then choosing the point with the highest

uncertainty about the expected outcome. However, here we use only a point’s

membership in the three different sets in order to categorize participant behavior.

For categorizing participant decisions, we assess how much—if at all—choice

behavior is guided by options being safe, maximizers, and/or expanders, as predicted by

the safe optimization algorithm. More precisely, we check if membership of an input

point within the three sets makes it more likely to be chosen. In order to assess if set

membership is related to participant decisions, we use mixed-effects logistic regression

to determine the extent to which factors of the safe optimization algorithm influence

their choices. The dependent variable in this analysis is whether or not an option was

chosen by a given participant on a given trial. The predictors are indicator variables for

an option’s membership in the safe, the maximization, and the expander set. This

analysis allows us to judge whether (i) a Gaussian process function learning model with

parameters set to match the underlying task, combined with (ii) class membership

specified by the safe optimization algorithm, can describe whether or not a participant

chose an option on a given trial. This constitutes the first part of our analysis.

Models of learning and decision making

In the second part of our analysis, we make out-of-sample predictions about

individual choices, using a combination of different learning models with multiple

decision strategies. We first contrast two different models of learning before describing

the decision strategies. The function learning model learns about the underlying value

function relating the spatial locations of options to their expected rewards. The option

learning model does not learn about an underlying function, but rather learns about

each input individually by associating inputs with previously generated rewards.



SAFE SEARCH AND RISKY BANDITS 13

●●●●●●●
●

●
●

●
●

●●●
●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●

−4

−2

0

2

4

0.0 2.5 5.0 7.5 10.0
Input x

O
ut

pu
t f(

x)
+

ε
Safe points

●●●●●●●
●

●
●

●
●

●●●
●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●

−4

−2

0

2

4

0.0 2.5 5.0 7.5 10.0
Input x

O
ut

pu
t f(

x)
+

ε

Maximizing points

●●●●●●●
●

●
●

●
●

●●●
●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●

●●●●●●●
●

●
●

●
●

●●●
●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●

●
●

●
●●●●●●●●●●●●●●●

−4

−2

0

2

4

0.0 2.5 5.0 7.5 10.0
Input x

O
ut

pu
t f(

x)
+

ε

Expanding points

Figure 1 . Example of sets estimated by safe optimization algorithm. Triangles indicate
observations. Threshold was set to h = 0. Left: Identification of safe points (green),
where the lower confidence bound (vertical lines) is higher than the threshold, and
unsafe points (orange) where the lower confidence bound crosses the threshold.
Center: Identification of maximizing points, which have an upper confidence bound
(vertical lines) that is larger than the level (upper horizontal line) of the highest lower
confidence bound across all points. Blue points represent maximizing points, green
points represent safe points, and red points represent unsafe points. Right:
Identification of expanding points, which are expected to increase the set of safe points
when performing forward simulations. Yellow points represent expanding points, green
points represent safe points, and red points represent unsafe points.

Function learning model

For the function learning model, we use Gaussian process regression combined

with a radial basis function kernel (Eq. 6). Using a radial basis function to model the

extent of generalization across space is similar to Shepard et al. (1987)’s proposal of a

universal law of generalization and has previously been implemented in a non-Bayesian

model of function learning by Busemeyer, Byun, Delosh, and McDaniel (1997).

Option learning model

The option learning model uses a simple mean tracking approach to learn the

distribution of rewards of each input individually. We implement a version which

assumes rewards are normally distributed with a known variance (σ2
ε ) but unknown

mean θj where the prior distribution of the mean is again a normal distribution. This

implies that the posterior distribution for each mean is also a normal distribution:

p(θj|Dt) = N (µj,t, σj,t) (13)
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The mean µj,t and variance σ2
j,t of the posterior distribution for option j are only

updated when that option is selected at trial t:

µj,t = µj,t−1 + δj,tGj,t [yt − µj,t−1] (14)

σ2
j,t = [1− δj,tGj,t]σ2

j,t−1 (15)

where δj,t = 1 if option j was chosen on trial t, and 0 otherwise. Intuitively, the

estimated mean of the chosen option µj,t is updated based on the difference between the

observed value yt and the expected mean µj,t−1, multiplied by Gj,t. At the same time,

the estimated variance σ2
j,t is reduced by a factor of 1−Gj,t, where Gj,t is defined as:

Gj,t =
σ2
j,t−1

σ2
j,t−1 + σ2

ε

, (16)

σ2
ε is the error variance, which is estimated as a free parameter per round. We set the

prior mean to the median value of the payoffs and the prior variance σ2
j,0 = 5

This model does not generalize over unseen arms at all, but rather only learns

locally about the distribution of rewards for each option separately (Wu et al., 2018). It

can also be considered as a special case of the function learning model as the assumed

correlation between points goes to zero. We use this model as a benchmark for

comparisons in our cross-validation procedure. If this model predicts participant

behavior well, this means that participants do not generalize using the spatial structure

of the environment, but rather learn about each option independently, as is the case in

a traditional multi-armed bandit.

Decision strategies

The learning models produce predictions about the distribution of rewards for

each option in the search space, whereby we use a decision strategy to determine useful

actions and predict choices. We compare four different strategies, two of which are

designed for safe search and two of which are designed for risky search. Each strategy is
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based on an acquisition function, which determines a utility value for each option, with

a softmax choice used to make probabilistic predictions about choice behavior.

Decision strategies for safe tasks. Upper confidence bound sampling directly

trades off between the expected rewards and uncertainty. Given the posterior mean

µt−1(x) and its attached standard error σt−1(x), we calculate the acquisition function of

the upper confidence bound as

UCBt(x) = µt−1(x) + βσt−1(x), (17)

where the exploration factor β determines how much reduction of uncertainty is valued

(relative to exploiting known high-value options) and is estimated as a free parameter.

This sampling strategy has recently been found to describe human behavior well across

different function exploration-exploitation tasks without additional constraints (Schulz

et al., 2017; Wu et al., 2018). Additionally, it has known performance guarantees in

function optimization scenarios (Srinivas, Krause, Kakade, & Seeger, 2012). We use it

as a candidate for unconstrained function optimization tasks.

The probability of improvement (POI) strategy evaluates an option based on how

likely it will be better than the best outcome (x+) observed so far:

POIt(x) = P
(
f(x) ≥ f(x+)

∣∣∣Dt−1)

= Φ
(
µt−1(x)− µt−1(x+)

σt−1(x)

)
(18)

where Φ(·) is the normal CDF. This rule calculates the probability for each option to

lead to an outcome higher than the option that has currently been observed (Kushner,

1964) and has recently been used in experiments involving multi-attribute choices

(Gershman, Malmaud, & Tenenbaum, 2017).

Decision strategies for risky tasks. To define possible search strategies for

risky situations, we consider two modifications of the decision strategies defined above.

The probability of being safe (POS) is similar to the POI strategy, but assess the

probability that a candidate input provides a reward above the safe threshold.
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Formally, if the threshold is hmin, POS is defined as:

POSt(x) = P (f(x) ≥ h| Dt−1)

= Φ
(
µt−1(x)− hmin

σ(x)

)
. (19)

Instead of sampling by the probability to improve upon the best seen point so far, this

sampling strategy only cares about maximizing the probability of being safe (i.e.,

sampling above the threshold). This strategy is very risk averse and frequently prefers

known options over exploratory choices.

Instead of valuing uncertainty positively (as is the case with UCB), the lower

confidence bound algorithm (LCB) tries to avoid highly uncertain options:

LCBt(x) = µt−1(x)− βσt−1(x), (20)

Because inputs with high uncertainty can also lead to possibly bad outcomes, this

sampling strategy can be seen as highly risk-averse but possibly not very adaptive

approach to risky environments. The difference between UCB and LCB also

corresponds to differences observed in risk-sensitive reinforcement learning when

outcomes are either positive or negative (Niv, Edlund, Dayan, & O’Doherty, 2012). A

related sampling strategy that can account for the possibility of a negative uncertainty

bonus (i.e., valuing uncertainty as bad) in the domain of losses has been considered by

Krueger, Wilson, and Cohen (2017) before.

Estimation and model comparison

For model fitting and evaluation, we use a cross-validation procedure in which we

fit the model using maximum likelihood estimation on a subset of the data, and then

use the estimated parameters to make out-of-sample predictions on the remaining data.

For each model, we use a softmax function to transform each model’s criterion into a

probability distribution over options:
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pt(x) = exp(qt(x)/τ)∑N
j=1 exp(qt(xj)/τ)

, (21)

where qt(x) is the value of an option x according to each model, and τ is the

temperature parameter (i.e., lower values of τ indicate more precise predictions).

For the function learning model, we estimate λ (length-scale), for the option

learning model σ2
ε (error variance), and for the upper and lower confidence bound

sampling strategies β (exploration bonus for UCB, safety bonus for LCB). Additionally,

all models include τ as a free parameter. We fit all models separately for each

participant by cross-validated maximum likelihood estimation, using a differential

evolution algorithm (Mullen, Ardia, Gil, Windover, & Cline, 2009). Parameter

estimates are constrained to positive values in the range [exp(−5), exp(5)].

Cross-validation is performed for the safe and risky function

exploration-exploitation objectives separately. Within all rounds, we use

leave-one-block-out cross-validation to iteratively form a training set by leaving out a

single round, computing a maximum likelihood estimate on the training set, and then

generating out-of-sample predictions on the remaining round. This is repeated for all

combinations of training and test sets, and for every participant individually. The

prediction error (computed as log loss) is summed up over all trials, and is reported as

average predictive accuracy, using a pseudo-R2 measure that compares the total log loss

prediction error for each model to that of a random model

R2 = 1− logL(Mn)/ logL(Mrand), (22)

where logL(Mn) is the log loss (negative log likelihood) of model n and logL(Mrand)

the log loss of a random model (which chooses options with equal probability).

Intuitively, a R2 = 0 corresponds to prediction accuracy equivalent to chance, while

R2 = 1 corresponds to a perfect prediction accuracy.
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Experiment 1: Univariate inputs

Figure 2 . Screenshot of Experiment 1. The red line marks the safe threshold (outcomes
below this threshold immediately ended the round). Dots above the red line show
observed outputs. Inputs were chosen by moving the slider and selected by clicking
“submit value”, with the green dot indicating the observed reward.

The first experiment required participants to maximize unknown univariate

functions f : x 7→ y by choosing discretized input values x ∈ (0, 0.5, 1, . . . , 10). This

scenario is similar to a multi-armed bandit task (with n = 21 arms) in which all arms

are ordered horizontally and where the outputs of the arms are correlated as a function

of their distance. Additionally, we introduced the constraint that participants should

avoid choosing options with a reward below the horizontal red line, or else forfeit the

remaining trials in the round.

Participants

61 participants (36 female) with an average age of 32.95 (SD = 8.02) were

recruited via Amazon Mechanical Turk and received $1.00 USD for their participation
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and a bonus of up to $1.00 in proportion to their overall score. The experiment took on

average 12 minutes to complete.

Procedure

Participants were told they had to maximize outputs of an unknown function,

while at the same time trying to avoid obtaining outputs below a given red line. After

reading the instructions and performing an example round, they had to correctly

answer 4 comprehension questions to check if they understood the instructions. There

were 9 rounds in total and each round contained (at most) 10 trials. At the start of

each round, participants were shown the output of a single preselected input value,

which was randomly sampled from all inputs with outputs above the threshold hmin.

On each trial, participants were asked to choose an input with an output above

the red line (i.e., a “safe” option), and told that choosing an input below the line would

end the current round, forfeiting potential additional rewards they could have earned by

finishing the round. On each trial t = 1, . . . , 10 in a round, they could choose an input

value x ∈ {0, 0.5, 1, . . . , 10} to observe (and acquire) a reward y = f(x) + ε with noise

term ε ∼ N (0, 1). The underlying functions were sampled from a GP prior with a radial

basis function kernel (length-scale λ=1). Participants were told that the objective was

to maximize the sum of the obtained rewards over all trials in a round (i.e., score),

which corresponded to a bonus of score× $0.09.

Before the first trial, an initial safe point above the threshold was sampled at

random and provided to participants. A screenshot is shown in Figure 2. Rewards were

scaled to be between 0 and 10 but such that the underlying maximum was never

actually 10 in order to make the maximum not easily guessable. This was done by

sampling a random number between 9 and 10 and using this number as the overall

maximum for rescaling.

In order to see if different levels of risk influence participant learning and sampling

behavior, we manipulated the risk of obtaining outcomes below the red line as a

between-group factor, resulting into 6 groups for which the probability of sampling
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below the line was set to p = [0.55, 0.6, 0.65, · · · , 0.8]. This means that, unknown to

participants and before the start of each round, the red line was placed such that

proportion p of the input points would produce an output lower than the red line,

corresponding to the different risk conditions.

Behavioral results
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Figure 3 . Results of Experiment 1. The upper left panel shows participants’ scores over
trials, including the average score (red) and standard errors in error bars. The upper
right panel shows a box plot of participants’ scores for the different risk conditions
including raw data points and group means (white diamonds). The lower left panel
shows the locality of chosen inputs as compared to a random sampler. The lower right
panel shows a box plot of the locality of chosen inputs by different riskiness-conditions
including raw data points and group means (white diamonds).

Figure 3 shows the results of Experiment 1. In general, participants performed

better than chance (mean score = 6.21, t(61) = 12.32, p < .001, d = 1.57) and improved

over time (mean correlation between trials and score r = .2, t(60) = 6.87, p < .001,

d = 0.88). In addition, the average number of trials per block statistically exceeded

what would be expected if participants chose completely at random (t(60) = 22.69,
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p < .01, d = 2.9), indicating that participants were successful at finding reward and

avoiding risky options. Participants assigned to different risk conditions did not perform

significantly different from each other (correlation between mean score and risk level:

r = .06, t(59) = 0.48, p > .6). Participants also showed localized sampling behavior,

choosing inputs more locally than a random sampling model (t(60) = −22.1, p < .001,

d = −2.83), although participants in higher risk conditions did not choose more locally

(correlation between risk level and average distance of consecutive inputs: r = −.08,

t(59) = −0.64, p = .52). Therefore, participants learned within the task but were

seemingly uninfluenced by the riskiness of the threshold, perhaps because they stayed

almost exclusively to safe points in all of the threshold conditions.

Categorization of decisions

We used mixed-effects logistic regression analysis to determine the factors

influencing participant decisions. The dependent variable was whether each input was

chosen or not on each trial for each participant. As predictors, we used indicator

variables for an input’s membership in the safe, maximization, and expander sets.

Results indicated that the most plausible model was one that contains all variables as

fixed effects and a participant-specific random intercept, indicating that participants

were influenced by set membership in an overall similar fashion. The coefficients of the

fixed effects are presented in Table 1 below.

Table 1
Results of the mixed effects logistic regression for Experiment 1.

Estimate S.E. z value Pr(>|z|)
Intercept -3.71 0.12 -29.75 0.00

Maximizer 0.82 0.23 3.50 0.00
Expander -0.44 0.20 -2.20 0.03

Safe 0.85 0.24 3.46 0.00

Comparing the magnitude of the slopes of the predictors, we can conclude that

while all of the sets relate to participant behavior, participants were mostly influenced

by whether or not a point was safe (Estimate = 0.85) or a maximizer (Estimate = 0.82).

Being within the set of possible expanders was negatively related to whether or not
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participants would choose a given point (Estimate = −0.44). This shows that

participant behavior corresponded, at least to some extent, to the predictions generated

by the rational model. However, they seemed to focus more on staying safe and

maximizing locally rather than expanding the safe set. We next assessed if we could

predict trial-by-trial decision behavior with more process-level modeling.

Trial-by-trial models

Assessing the trial-by-trial modeling results, we found that the overall best

performing models were the Gaussian process model with the probability of being safe

decision strategy as well as the option learning model with the same decision strategy.

Comparing the learning models aggregated over decision strategies, we found that the

option learning model outperformed the Gaussian Process learning model (t(60)− 2.34,

p < .05, d = 0.30). This mirrors the behavioral finding that participants explored in a

local manner, thus seemingly not generalizing much over different inputs and observed

outcomes. Comparing the decision strategies aggregated over learning strategies, we

found that the probability of being safe strategy predicted participant behavior better

than any of the other strategies, no matter whether it was combined with the option

learning (t(60) = 5.72, p < 0.001, d = 0.73) or the Gaussian process function learning

model (t(60) = 6.28, p < 0.001, d = 0.80). Finally, there was no significant difference

between the Gaussian process function learning and the option learning, when both

were combined with the probability of being safe sampling strategy (t(60) = −0.71,

p = 0.48, d = 0.09).

We extracted the median parameter estimates of the Gaussian process learning

model combined with the probability of being safe sampling strategy for each

participant to check if they meaningfully tracked behavioral differences in the task

(Figure 5). Overall, the model’s predictions were relatively precise as indicated by low

estimates of the softmax temperature parameter τ (median estimate: τ̂ = 0.097).

Furthermore, the length-scale parameter of the Gaussian process indicated that

participants seemed to somewhat generalize over different arms (median estimate
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Figure 4 . Results of the trial-by-trial learning models in Experiment 1.

λ̂ = 4.43; compared to the ground truth of λ = 1). Interestingly, people who generalized

more performed worse overall (r = −.36, t(59) = −2.99, p < .004). This is most likely

the result of the dual objectives participants were facing, which required them to

generalize beyond encountered examples but to also sample safe options, which

frequently required sampling rather locally.

Lastly, we used the individual participant parameters estimates of the Gaussian

process function learning model paired with the probability of being safe sampling

strategy (henceforth GP-POS) to simulate data within the task. This means that we let

specified the model using participant estimates for both λ and τ , and simulated

performance in the exact same task as participants, for the exact same number of

rounds, trying to optimize the same underlying function. The results of this posterior

model simulation allow us to assess the extent to which the empirical results can be

reproduced by the GP-POS model. The results of this simulation are shown in Figure 6.

Even though the GP-POS model produces a similar trajectory of mean rewards as
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Figure 5 . Parameter estimates of the Gaussian process and probability of being safe
(GP-POS) model in Experiment 1.

participants, its average score per trial is somewhat below that of participants. Looking

at the distribution of average trial length per round, we can see that while the two

distributions are very similar overall, participants managed to more often successfully

complete the full number of rounds (i.e., without sampling below the threshold) than

the simulations. While this could indicate that participants were even more risk averse

than the best fitting GP-POS models, the finding that they also outperformed the

GP-POS model shows that this did not negatively affect their performance.

Discussion

Within a first experiment assessing behavior in a univariate variant of the risky

spatially correlated multi-armed bandit, we found that participants managed to

successfully learn within this tasks, improved their scores over trials, and performed

better than expected by chance. Moreover, participants tended to select input points

which were classified as safe or maximizing points by a rational safe optimization



SAFE SEARCH AND RISKY BANDITS 25

algorithm. Using leave-one-block-out cross-validation, we found that participant

behavior was best predicted by a probability of staying safe (POS) decision strategy is

primarily concerned with sampling points above the provided threshold. Overall,

participants did not generalize far beyond the already observed input points, resulting

in roughly equal performance of both the option learning and the Gaussian process

regression model. There seemed relatively little effect of the level of riskiness in the task

(manipulated by the level of the safe threshold). Perhaps participants start behaving

equally risk averse once a threshold is introduced. Overall, participants performed

slightly better and chose inputs in a more risk averse manner than predicted by the

GP-POS model (parameterized by participant’s estimates), although the model

produced human-like behavior overall. To further discern whether there is continuous

adaptation or whether the introduction of any threshold leads to similar behavioral

outcomes we will apply a within-subject manipulation of the level of riskiness in

Experiment 2.

Experiment 2: Bivariate inputs

In the second experiment, participants were asked to maximize an unknown

bivariate function, which was represented by a two-dimensional grid world (Fig. 7).

Moreover, we introduced a standard, risk-free condition as a within-subjects factor to

see if participants can switch between the two different modes or riskiness.

Participants

62 participants (37 male), with an average age of 31.77 years (SD = 8.97) were

recruited via Amazon Mechanical Turk and received $1.00 USD for their participation

and a performance-dependent bonus of up to $1.00 USD.The average completion time

of the whole experiment was 11 minutes.

Procedure

We created functions f : x 7→ y with x = (x1, x2)>, defined over the grid

x1, x2 ∈ [0, 0.1, . . . , 1] resulting in a 11× 11 grid, with y = f(x) + ε with ε ∼ N (0, 1). As
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in Experiment 1, a function f was sampled independently from a GP with an RBF

kernel (length-scale λ = 2) on each round. The output values y varied between 0 and

100 and one initial input point with an output above the threshold of 50 was chosen at

random and provided at the start of each round. We varied the level of risk

within-participants: out of the total of 10 rounds there were 5 which were “safe” (i.e.,

unconstrained maximization tasks without a threshold) and 5 which were labeled as

“risky” (i.e., constrained maximization tasks where obtaining an output below 50 caused

the round to terminate immediately, forfeiting any remaining trials in the round). The

rounds were presented in a counter balanced order. Participants were paid a basic fee of

$1 and an additional bonus of $0.01 for every 10 points they earned overall.

Behavioral results

Figure 8 shows the results of Experiment 2. Participants performed better than

chance overall (t(61) = 15.48, p < .001, d = 1.97). On average, participants did not

increase their scores significantly over trials (mean correlation: r = .04, t(61) = −1.34,

p > .1, d = 0.16). However, looking separately at the riskiness conditions showed that

while this was true for the safe conditions (mean correlation: r = .02, t(61) = 0.99,

p > .3, d = 0.13), participants did get significantly better over trials within the risky

condition (mean correlation: r = .10, t(61) = 2.23, p < .05, d = 0.28). Surprisingly,

participants scored higher in risky rounds compared to safe rounds (t(61) = 9.78,

p < .001, d = 1.24). This seems to be driven by a tendency towards greater exploration

of the whole input space in the safe rounds which also explains why the average of their

first sampled output considerably drops from the average revealed value (see Figure 8).

In risky rounds, participants avoided scoring below the threshold for longer than

expected by chance (t(61) = 8.06, p < .001, d = 1.02).

Participants again explored more locally than expected by chance (t(61) = 18.43,

p < 0.001, d = 2.34), but did not explore more locally during risky as compared to safe

rounds (t(61) = −0.31, p > 0.7, d = −0.06). Thus, participants might have sampled

further away from the first point at the beginning, but later on again sampled rather
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locally.

Categorization of decisions

We again fit a mixed-effects logistic regression analysis to participants’ choices and

found that the best possible model contained a random intercept over participants as

well as an interaction term between the effect of the safe sets and the current riskiness

condition (Table 2). As expected, the effect of the safe set was again the strongest

overall (Estimate = 1.85). As before, participants also chose points that were classified

as maximizers more frequently (Estimate = 1.16). Additionally, being within the

expansion set also deemed points to be significantly more frequently chosen this time,

although this effect turned out to be relatively small (Estimate = 0.13). The interaction

effect between the riskiness condition and the safe sets indicate that participants are

less likely to sample from within the safe sets in the conditions without additional risks

(Estimate = −0.61). This is intuitive as they are not required to focus on sampling

above 50 in this condition.

Table 2
Fixed effects of the mixed-effects logistic regression in Experiment 2.

Estimate S.E. z value Pr(>|z|)
Intercept -5.17 0.02 -271.95 0.00

Maximizer 1.16 0.11 10.58 0.00
Expander 0.13 0.06 2.24 0.02

Safe 1.85 0.11 16.75 0.00
Safe × Condition -0.61 0.06 -10.62 0.00

Trial-by-trial modeling

Model fits for the two riskiness conditions are shown in Figure 9. We can see that

the predictions of the models were generally better for the risky condition than the safe

conditions (t(61) = 9.69, p < .001, d = 1.23). Only analyzing the safe condition, we

found that the Gaussian process regression model led to better predictions than the

option learning model (t(61) = 4.89, p < .001, d = 0.62). There were no differences

between the different decision strategies when paired with the Gaussian process model
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for the safe conditions (all p > 0.05). Looking at the results for the risky condition, the

Gaussian process regression again predicted behavior better than the option learning

model (t(61) = 4.53, p < .001, d = 0.58). Importantly, the probability of being safe

sampling strategy led to significantly better prediction than any other sampling

strategy (t(61) = 3.37, p < .01, d = 0.43). Therefore, participants seem to adapt their

sampling strategy to the risky constraints of the task.

Figure 10 shows the median parameter estimates for each participant for the

GP-POS model(Gaussian process learning paired with the probability of being safe

decision strategy) for both the risky and safe conditions. Whereas the estimates of the

softmax temperature parameter differed between the two conditions (t(61) = −4.13

p < .001, d = 0.52) indicating more precise predictions for the risky (median estimate

τ̂ = 0.11) than for the safe condition (median estimate τ̂ = 0.27), estimates of the

length-scale λ did not differ significantly between conditions (t(61) = −0.66, p = .51,

d = 0.08). Instead, median estimates of λ per participant correlated significantly

between conditions (r = .36 t(60) = 2.97, p < .01), indicating that participants

approached both conditions with a similar tendency towards generalization.

As in Experiment 1, we performed a posterior model check by parameterizing the

GP-POS model with the participant-wise parameter estimates and let the model

perform the exact same task as participants. Results of this simulation are shown in

Figure 11. We can see that, in the risky condition, the average score of the GP-POS

model drops on the second trial but afterwards increases more sharply than

participants’ mean trajectory. From round 9 onwards, the model performs slightly

better than participants. This indicates that the GP-POS model explores more

extensively than participants did, incurring an initial hit to performance in order to

reap later benefits. For the safe condition, the model corresponds almost perfectly with

participants’ mean trajectories. This is expected as this result is primarily driven by a

higher temperature parameter τ , leading to an increase in random exploration. The

histogram of round length again indicates that participants’ behavior is more risk averse

than that of the GP-POS model, as participants managed to play for the maximum
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number of trials more frequently than he GP-POS model.

Discussion

Within a bivariate version of the risky spatially correlated multi-armed bandit, we

found that participants improved over trials within the risky but not the safe condition,

gained better scores than would be expected from random choices, played for longer

than expected by chance in the risky conditions, and seemed to generalize further than

in the previous task with univariate inputs. Our mixed effects regression analysis

revealed that participants selected safe and maximizing points frequently, only

marginally cared about choosing inputs from the expanding set input, and focused less

on safe input points during safe conditions. The model comparison results showed that

the Gaussian process regression model predicted behavior best in both conditions, even

though predictions turned out to be generally better for the risky rounds than for the

safe rounds. Importantly, whereas the different decision strategies predicted behavior

equally well for the safe conditions, the probability of staying safe predicted behavior

best for the risky condition. These results suggest that participants adapted their

decision strategy to the task requirements while learning and generalizing about the

underlying function in a similar fashion. In a posterior predictive check for the GP-POS

model, we found that participants explored even more risk-aversely in the risky

condition than predicted by the GP-POS model.

General discussion

Learning unknown functions and exploiting this knowledge to maximize rewards

are essential cognitive skills. Here we focused on a risky version of the spatially

correlated bandit task, in which outcomes below a given threshold need to be avoided.

We first analyzed participants’ choices using a rational Gaussian Process safe

optimization strategy that establishes a safe set and tries to maximize outputs or

expand the safe set by choosing inputs from this set. We found that participants

shunned risks by focusing on maximizing outputs locally to “tried-and-tested” inputs,

mostly ignoring lesser known input points which could potentially expand the safe set.
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This focus on avoiding unsafe inputs is consistent with a biological homeostasis

maintenance principle (Korn & Bach, 2015, 2018) that prioritizes not losing everything

over gaining maximum rewards (Houston, McNamara, & Hutchinson, 1993).

The results of our cross-validation model comparison revealed that participants

learn and perform generalization in a similar fashion, in scenarios with and without

risky constraints. While participants seemed to learn a similar representation of the

reward function (using the same learning strategy) across the different task demands in

Experiment 2, they did adapt their decision strategy to the riskiness of the

environment, sometimes even more than predicted by the best currently available

model. This in turn suggests a flexible mechanism that can guide people through risky

environments via generalization and adaptive search.

In future work, we aim to focus on the factors which drive participants to switch

from pure exploration to safe search strategies, and the situations in which switching

constitutes a normative strategy, for example because it minimizes costs (Bach, 2015).

Another promising avenue for future research will be marrying the powerful methods of

generalization put forward here with restricted methods of planning that have been

studied in other reinforcement learning tasks (Huys et al., 2015; Solway & Botvinick,

2015). Furthermore, investigating how different clinical populations differ in their

search and generalization behavior when confronted with risky decision making tasks

promises to extend our notion of computational mechanisms involved in mental illnesses

(Huys, Maia, & Frank, 2016; Montague, Dolan, Friston, & Dayan, 2012).

Building and assessing additional sampling strategies with increased (and

parametrically varying) levels of risk aversion as well as further probing the effect of

different levels of riskiness on those strategies will also be two necessary steps for

follow-up experiments.

Related work

Unlike previous work on human behavior in a bandit setting, which has primarily

focused on pure exploration and exploitation, our work addresses a relatively novel
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facet—optimizing risky functions while staying above a threshold. However, we note

that this type of constrained risky choice situation, in which choices above a certain

threshold or of a particular option abort the reward-accumulation process, has been

investigated using other paradigms before.

One such task is the Balloon Analogue Risk Task (BART) in which participants

can incrementally pump up a (digitally presented) balloon by clicking a button (Lejuez

et al., 2002). On every trial, participants can gain more money by pumping the balloon

to a larger size or gain nothing if the balloon explodes. A typical finding in studies

using the BART is that people do not explore enough and behave relatively cautiously,

a finding that aligns well with the results reported here. The Columbia Card Task is

another similar paradigm, in which participants can turn around as many of 32 cards

sequentially as they like as long as they encounter gains, however the trial is terminated

as soon as a loss is encountered (Figner, Mackinlay, Wilkening, & Weber, 2009).

Another class of related tasks studies (optimal) foraging behavior in humans and

other animals (Hills et al., 2015). Some of these studies share features with our proposed

spatially correlated multi-armed bandit task such as a “clumpiness” of resources (Wilke

et al., 2015) and a particular focus on model-based exploration (Kolling & Akam, 2017).

There have also been some more theoretical studies that assessed how participants

solve the exploration-exploitation dilemma when rewards are correlated. For example,

Reverdy, Srivastava, and Leonard (2014) and Reverdy and Leonard (2016) studied

participants’ performance in a spatial multi-armed bandit problem, where Reverdy et

al. (2014) developed a model of upper credible set sampling, whileReverdy and Leonard

(2016) proposed a model fitting procedure and applied it to study differences in

strategies adopted by subjects faced with different underlying environments.

Conclusion

We introduced a novel paradigm to assess how participants search for spatially

correlated rewards in scenarios where they have to avoid sampling below a threshold.

Our results show that participants can adapt their sampling behavior to the underlying
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riskiness of the task, but explore only very cautiously overall. We expect that our

approach of assessing safe optimization in humans will continue to enrich our

understanding of how people resourcefully obtain rewards in the real world.
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Figure 7 . Screenshot of Experiment 2. Inputs were arranged in an 11 by 11 grid.
Participants chose inputs by clicking on the corresponding tile, trying to choose inputs
which produce high rewards. The “SAFE” condition indicates that they do not have to
worry about obtaining inputs above the safe threshold of 50. Rounds at which they had
to obtain outputs above 50 were marked as “RISKY”.
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