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Abstract 

Brain injury around birth is associated with nearly half of all cases of cerebral palsy. Although 

brain injury is multifactorial, particularly after preterm birth, acute hypoxia-ischemia is a major 

contributor to injury.  It is now well established that the severity of injury after HI is determined 

by a dynamic balance between injurious and protective processes. In addition, mothers who are 

at risk of premature delivery have high rates of diabetes and antepartum infection/inflammation 

and are almost universally given treatments such as antenatal glucocorticoids and magnesium 

sulphate to reduce the risk of death and complications after preterm birth.. We review evidence 

that these common factors affect responses to fetal asphyxia, often in unexpected ways. For 

example, glucocorticoid exposure dramatically increases delayed cell loss after acute hypoxia-

ischemia, largely through secondary hyperglycemia. This critical new information is important 

to understand clinical treatment of women at risk of asphyxia. 
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Fetal asphyxia and HIE 

Acute perinatal hypoxia-ischemia (HI) remains a major cause of life long disability. Half of all 

cases of CP are now associated with perinatal brain injury (Reid et al., 2016). A third of cases 

are related to preterm birth (Committee on Understanding Premature Birth and Assuring 

Healthy Outcomes). There is considerable evidence that in term infants, perinatal HI is the 

primary antecedent of acute neural injury (Cowan et al., 2003). Preterm brain injury is 

notoriously complex and multifactorial (Galinsky et al., 2017b). However, acute, profound 

asphyxia at birth with early onset hypoxic-ischemic encephalopathy (HIE) is more common 

that at term; for example from 2008 to 2011, in a cohort of 115,502 deliveries in the USA, 

37.3/1000 infants born before 37 weeks of gestation had moderate to severe HIE (Manuck et 

al., 2016). 

Fetal HI has distinct characteristics that limit extrapolation from studies of neonatal or adult 

HI. Firstly, the insult is most often global, affecting the whole fetus. Thus the fetal systemic 

and cardiovascular responses are critical to understanding the determinants of outcome. 

Secondly, the insult is generally reversible, whether spontaneously or therapeutically (e.g. 

delivery and resuscitation) and so can be associated with an evolving pattern of cerebral 

dysfunction and delayed injury after the insult. Thirdly, the injury may be a single acute 

episode, or repeated insults. Fourthly, many of the insults occur in the stable and warmer 

thermal environment of the uterus. Finally, the maturity of the brain has a considerable effect 

on how neurons and glia respond to asphyxia.  

It is now understood that the fetal response to asphyxia is not stereotypical, but rather depends 

upon both the nature of the insult and the condition of the fetus (Figure 5.1). The fetus is 

spectacularly good at defending itself against such insults, and injury occurs only in a very 

narrow window between intact survival and death. Further, even after severe HI, there can be 

significant transient recovery of cell function, followed by delayed evolution of cell death, 
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modified by a balance between endogenous protective and damaging pathways from hours to 

weeks after the insult (van den Heuij et al.). Not surprisingly this fine balance is affected by 

external factors, such as is the significant neuroprotection provided by mild “therapeutic” 

hypothermia (Wassink et al., 2014). There is increasing evidence that other common clinical 

therapies and metabolic changes also modulate neural outcome. 

Evolution of neural injury after asphyxia 

It is now well established in term infants and animals that there can be considerable cell survival 

after severe HI, followed by progressive evolution of bulk cell death over hours to days (Wyatt 

et al., 1989; Lorek et al., 1994). Distinct phases of injury can be broadly defined. During the 

“primary” phase of HI ischemia per se high energy metabolites are depleted, with progressive 

depolarization of cells, leading to severe cytotoxic edema (cell swelling) (Gunn et al., 1997) 

and extracellular accumulation of excitatory amino acids due to failure of reuptake by astroglia 

and excessive depolarization mediated release (Tan et al., 1996).  

After reperfusion, in term piglets there is marked recovery of high energy phosphates on 

magnetic resonance spectroscopy for many hours, in a “latent” phase. The extent of recovery 

in the latent phase is related to the severity of injury (Iwata et al., 2008); milder injury may 

even be associated with recovery to above baseline values for many hours. This is followed by 

secondary deterioration with secondary cytotoxic edema and seizures (Gunn et al., 1997), and 

ultimately cerebral energy failure from 6 to 15 hours after birth (Azzopardi et al., 1989). The 

timing of energy failure after HI is tightly coupled with the appearance of histologic brain 

damage (Vannucci et al., 2004), implying that it is primarily a function of evolving cell death 

(Figure 1). From 3 days after HI, there is evidence of a tertiary phase of injury, involving repair 

and reorganisation, but also chronic inflammation and epigenetic changes lasting for weeks to 

months after injury (Fleiss & Gressens; Galinsky et al., 2017b). It is this delay before secondary 
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deterioration in a ‘latent’ phase that enables delayed therapeutic hypothermia to significantly 

improve clinical outcomes (Wassink et al., 2014).  

Targets during hypoxia-ischemia 

Ultimately neuronal loss requires a period of sustained anoxic cell depolarisation due to lack 

of oxygen and substrate. The triggers of delayed neuronal loss include excessive entry to 

calcium, combination of biophysical damage, excessive entry of calcium into the cell though 

multiple channels, including the excitatory amino acid receptors, and damage-associated 

molecular patterns (DAMPs). After reperfusion, there is increasing evidence that astrocytic and 

microglia responses contribute to spreading injury from the most severely affected regions to 

previously undamaged areas of the brain, in part by opening of cell membrane channels such 

as connexin43 hemichannels, leading to release of excitatory small molecules such as ATP and 

glutamate (Davidson et al., 2013; Hartings et al., 2017). These all contribute to activate multiple 

intracellular programmed cell death pathways leading to delayed apoptosis and necrosis 

(Thornton et al., 2017).  

In preclinical studies, these damaging events are associated with endogenous inhibitory 

neuroprotective responses that help to limit the degree of injury. For example, the dramatic rise 

in extracellular glutamate during HI in grey matter is closely accompanied by accumulation of 

endogenous inhibitory neuromodulators such as gamma-aminobutyric acid (GABA) and 

adenosine in term-equivalent (0.8 to 0.9 of gestation) fetal sheep (Tan et al., 1996; Hunter et 

al., 2003; Lotgering et al., 2003). In striking contrast with the adult brain, the relative rise in 

GABA in near-term fetal sheep is many times greater than that of glutamate (Tan et al., 1996). 

There is strong evidence that metabolism of ATP to adenosine during HI mediates the initial 

rapid depression of EEG activity, and that this reduces hippocampal, striatal, and parasagittal 

neuronal loss after 72 hours recovery (Hunter et al., 2003).  
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During the latent phase after HI there is delayed-onset regulated suppression of cerebral 

metabolism. In preterm fetal sheep for example, this regulated suppression reached a maxima 

1 h after occlusion and gradually resolved at the end of the latent phase, with increased cortical 

tissue PO2, and cerebral hypoperfusion. This hypometablism and hypoperfusion are actively 

mediated by inhibitory neuromodulators including allopregnanolone (Yawno et al., 2007), and 

alpha-2 adrenergic receptor activity (Dean et al., 2006). Blocking these factors markedly 

increased cerebral injury, strongly denoting that these responses are beneficial (Dean et al., 

2006; Yawno et al., 2007).  

In addition to neuronal inhibition, multiple neuroendocrine responses also help protect the brain 

(Robertson et al., 2012). For example, in newborn piglets and postnatal day 7 (P7) rats there is 

release of melatonin early in the latent phase, and delayed upregulation of multiple anti-

apoptotic growth factors such as erythropoietin (Epo) and insulin like growth factor 1 (IGF-1) 

in the secondary and tertiary phases after HI (Guan et al., 2003; Robertson et al., 2013; Ohls 

et al., 2015). Evidence that it is possible to further improve outcomes by augmenting these 

responses is discussed later. 

Multiple hit hypothesis 

A recent MRI study in preterm infants demonstrated that a synergy between prenatal and 

postnatal insults, such as intrauterine growth restriction and prolonged mechanical ventilation 

had a cumulative effect on white matter injury, as shown by lower white matter fractional 

anisotropy at term equivalent age, and impaired neurodevelopmental outcomes at 20 months 

corrected age (Barnett et al., 2018). It is also plausible that the developing fetus can potentially 

be exposed to multiple injurious factors in-utero, such as chronic hypoxia, intra-uterine 

infection/inflammation, antenatal treatments (e.g. glucocorticoids and magnesium sulphate), 

and maternal health and lifestyle associated issues that may modulate fetal response to asphyxia 

and resultant neural injury.  
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Modification of neural outcome by multiple insults 

Many preterm deliveries are associated with the presence of intrauterine inflammation. 

Histological chorioamionitis is reported in nearly 95% of preterm births at 21 – 24 weeks of 

gestation, and in about 10% of deliveries at 33 – 36 weeks (Kim et al., 2015). The evidence 

from preclinical studies in neonatal rats suggests that exposure to inflammation can either 

exacerbate or induce tolerance against HI neural damage depending on the order, intensity and 

time of the insults (Eklind et al., 2005; Hickey et al., 2011).  

Sensitisation 

Clinical data suggest that prior inflammatory stimulus can enhance metabolic decompensation 

during subsequent HI. For example, near-infrared spectroscopy in preterm infants showed that 

intrauterine inflammation was associated with an increase in cerebral oxygen consumption 

after birth (Stark et al., 2016). Numerous preclinical studies have provided evidence that an 

acute inflammatory insult can worsen neuroinflammation after subsequent HI. In P8 mice 

systemic inflammation induced with injection of TLR 2 agonist (Pam3CSK4) suppressed ADP 

induced oxidative phosphorylation in mitochondria isolated from the brain 14 hours after the 

injection (Mottahedin et al., 2017). The combination of TLR 2 activation and HI was associated 

with greater loss of neural tissue 5 days after HI, suggesting that inflammation induced 

dysregulation of mitochondrial function might contribute to neural damage during HI.  

In P2 rat pups, 0.5 mg/kg of lipopolysaccharide ((LPS), a component of cell wall of gram 

negative bacteria) given 2 hours before HI augmented microglia activation, cerebral cytokines, 

blood brain barrier damage and white matter damage compared to HI alone (Wang et al., 2010). 

Similarly, the interaction between inflammation induced by the viral protein mimetic 

polyinosinic-polycytidylic acid (poly(I:C)) and subsequent HI in P8 mice, increased pro-

inflammatory cytokines and apoptotic proteins in the brain, and increased infarct size compared 
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with HI alone (Stridh et al., 2013). This preclinical literature is supported by clinical evidence 

that exposure to sepsis and HI during the perinatal period have a cumulative effect on the risk 

of cerebral palsy in very premature infants (Wang et al., 2014). Similarly, the combination of 

fetal growth restriction, denoting prenatal hypoxia and postnatal inflammation markedly 

increases risk of impaired neurodevelopmental scores at 2 years of age compared to either alone 

(Leviton et al., 2013). 

Tolerance 

It is important to appreciate that exposure to multiple insults is not consistently deleterious. 

Depending on the insult severity, the time interval between insults and maturational stage of 

the brain, the interaction between inflammation and HI insults can be protective. Mild or sub-

threshold insults can activate endogenous neuroprotective pathways and modify evolution of 

injury after the subsequent insult. For example, in P7 rat pups, exposure to low-grade 

inflammation (0.3mg/kg LPS) 24 hours before HI, reduced neural injury two weeks after HI 

(Eklind et al., 2005). The neuroprotective effect of low dose LPS (0.3mg/kg) for subsequent 

HI was only observed if the time interval between the insults was 24 hours, whereas exposure 

2, 6 or 72 hours before HI increased neural damage (Eklind et al., 2005). This timing likely 

reflects at least in part the time needed for upregulation of type I interferon and interferon 

regulatory factors (Marsh et al., 2009).  

Correspondingly, data from preterm fetal sheep shows that pre-treatment with low dose LPS 

(50–100 ng/kg) differentially regulated toll-like receptors mRNA expression and increased 

protein expression of interferon-beta only in the animals that were exposed to HI at 24 hours 

after LPS treatment, whereas no effect was seen with the time interval of 4 hours. Furthermore, 

LPS preconditioned fetuses had reduced microgliosis and astrogliosis, and reduced loss of 

oligodendrocytes at 5 days after HI (Dhillon et al., 2015). Developmentally regulated 
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expression of inflammatory pathways can also determine the outcome of the interaction 

between the insults. For example, an age dependent difference in the neuroprotective effect of 

preconditioning with inflammatory stimuli (LPS or poly(I:C)) before HI was reported in 

neonatal rats (Hickey et al., 2011). The neuroprotective interaction may be dose dependent; 

however, there is no consensus on the dose of LPS required to induce preconditioning in P7 

rats (Lin et al., 2009; Hickey et al., 2011). Similarly, the neuroinflammatory response after HI 

was attenuated in P7 rats preconditioned with transient asphyxia in utero or mild hypoxia 

postnatally, and the interaction between the insults was found to be neuroprotective (Park et 

al., 2011; Vlassaks et al., 2013).  

Thus, there is considerable pre-clinical evidence for a protective effect of interactions between 

various insults. In practice, it is unlikely that it will be possible to directly regulate such highly 

time dependent interactions. However, understanding the protective mechanisms underlying 

these interactions warrants careful study to help identify potential new therapeutic strategies. 

 

Modification of neural outcome by antenatal treatment 

Antenatal glucocorticoids and hyperglycemia 

Exposure to antenatal treatments can also modify the neural outcome after fetal asphyxia. For 

example, antenatal glucocorticoids are administered to mothers at the risk of preterm delivery, 

to reduce mortality and morbidity associated with complications of being born prematurely. 

There is no clinical information on the interaction between antenatal glucocorticoids and 

hypoxic-ischemic encephalopathy in preterm infants, as such cases were excluded from the 

many randomised controlled trials (Roberts et al., 2017). Preclinical studies in preterm fetal 

sheep have illustrated that a clinical dose (maternal intramuscular injection of 12 mg) of 

dexamethasone modulated the fetal response to asphyxia. Dexamethasone treatment was 
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associated with increased glucose concentrations before asphyxia, and both dexamethasone 

administration and hyperglycemia alone, induced by glucose infusion, in preterm fetal sheep 

were separately associated with improved neurophysiological adaptation during asphyxia (Lear 

et al., 2017). However, despite this improved adaptation, both dexamethasone treatment and 

hyperglycemia were associated with hyperactive EEG and increased seizure burden after 

asphyxia, and caused cystic neural injury by one week after asphyxia (Lear et al., 2017). 

Similarly, some studies in neonatal rats have also reported exacerbation of HI induced neural 

injury with prior dexamethasone exposure (Chang et al., 2013; Yeh et al., 2016). For example, 

administering a tapering course of dexamethasone 0.5, 0.3 and 0.1 mg/Kg on postnatal day 1-

3 in neonatal rats, and subsequently subjecting them to HI on P7 showed greater loss of 

oligodendrocytes, reduced myelin thickness, and worse functional outcome in the long-term as 

compared to animals subjected to HI alone (Yeh et al., 2016).Treatment with a clinical dose of 

dexamethasone after asphyxia in preterm fetal sheep was also associated with hyperactive 

EEG, evidence of increased mitochondrial metabolism on near-infrared spectroscopy (Lear et 

al., 2014), and increased white and grey matter injury (Koome et al., 2013). 

The underlying cause of exacerbation of neural damage with a combined exposure to 

dexamethasone and HI is not completely understood. Studies in neonatal (P7) rats have 

suggested a role of dexamethasone induced excitotoxicity in exacerbation of neural damage 

after HI (Chang et al.; Yeh et al.). For example, a reduction in the basal expression of glutamate 

transporter GLT1 after dexamethasone treatment from P1 to P3 in rats was associated with 

worse neural outcome after HI induced at P7, and pharmacological intervention that increases 

GLT1 transporter expression significantly reduced dexamethasone mediated exacerbation of 

HI neural injury (Chang et al., 2013). Furthermore, the effect of dexamethasone on 

neurophysiological recovery and neural outcome after asphyxia were replicated with glucose 

induced hyperglycemia in preterm fetal sheep, suggesting that hyperglycemia plays a role in 
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mediating the dexamethasone induced neural damage (Lear et al., 2017). Treatment with 

dexamethasone after asphyxia was likewise associated with hyperglycemia (Lear et al., 2014). 

However, in contrast with the cystic lesions observed with dexamethasone pretreatment (Lear 

et al., 2017), only mild exacerbation of neural injury was found with treatment after asphyxia 

(Koome et al., 2013). This strongly suggests that the main detrimental effect of hyperglycemia 

occurs during HI. In vitro evidence supports this concept and further suggests that increased 

opening of connexin hemichannels may be a key factor in the detrimental effects of 

hyperglycemia during HI (Orellana et al., 2010). 

Hyperglycemia 

There is increasing evidence that hyperglycemia independently increases hypoxic-ischemic 

injury. This is especially pertinent considering given that infants with HIE show highly variable 

blood glucose levels during the early period after birth (Nadeem et al., 2011). Preclinical 

studies in preterm and near-term fetal sheep and newborn piglets have shown exacerbation of 

neural injury induced with HI in combination with hyperglycemia (LeBlanc et al., 1993; 

Petersson et al., 2004; Lear et al., 2017). Clinical data from term infants with HIE shows 

adverse neurodevelopmental outcomes associated with both hyperglycaemia and 

hypoglycaemia during the first day after birth (Chouthai et al., 2015; Basu et al., 2016). 

Similarly, hyperglycaemia during postnatal period in very preterm infants has been associated 

with impaired neurodevelopment at two years of age (van der Lugt et al., 2010).  

Neuroprotective effect of dexamethasone and hyperglycemia in neonatal rats? 

Given the evidence suggesting that hyperglycemia aggravates HI ischemic injury (LeBlanc et 

al., 1993; Lear et al., 2017) and mediates the adverse neural effects of dexamethasone in 

preterm fetal sheep after HI (Lear et al., 2017), it is interesting to note that there is contrary 

evidence that hyperglycemia is both independently protective and at least in part mediates the 
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protective effects of dexamethasone in P7 rats after HI (Vannucci & Mujsce, 1992; Tuor et al., 

1993; Tuor et al., 1997) Overall, these data suggest species and age-dependent differences in 

the effect of dexamethasone on on HI neural injury, with neuroprotection only occuring in 

neonatal rats. The most likely explanation is the low utilisation of and ability to transport 

glucose in the neonatal rat brain (Vannucci, 1994). Therefore, the reassuring neuroprotective 

effects of dexamethasone for HI induced neural injury observed in neonatal rat studies might 

not translate into human infants. Consistent with this, a recent meta-analysis reported lack of 

evidence for antenatal glucocorticoid treatment to have a preventive effect on cerebral palsy 

(Shepherd et al., 2017).  

Magnesium sulphate 

Evidence from meta-analyses and systemic reviews show that magnesium sulphate 

administered to women at risk of preterm labour is associated with small, but significant 

reduction in the risk of cerebral palsy at 18 months to two years of age (Doyle et al., 2009). 

However, the long-term follow-up studies show that magnesium sulphate treatment is not 

associated with significant improvement in neurodevelopmental outcomes at school age, 

although these were small studies (Chollat et al., 2014; Doyle et al., 2014). Preclinical studies 

in term equivalent animals of effects of magnesium sulphate for HIE have reported highly 

inconsistent outcomes, ranging from neuroprotection, to no effect or increased neuronal loss; 

it is highly likely that apparent neuroprotection was mediated by drug induced hypothermia, as 

reviewed in (Galinsky et al., 2014).  

Magnesium’s primary neural effect is to inhibit glutamatergic signalling through binding its 

specific site on the N-methyl-D-aspartate  receptor (Zeevalk & Nicklas, 1992). Consistent with 

this, reduced basal brain activity was reported in preterm infants treated with magnesium 

sulphate (Stark et al., 2015), and in preterm fetal sheep (Galinsky et al., 2016). There is some 
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evidence for anti-oxidative and anti-inflammatory effects (Maulik et al., 1999; Sugimoto et al., 

2012). In preterm fetal sheep, magnesium sulphate for 24 hours before and after asphyxia was 

associated with a significant reduction in basal EEG activity and seizure burden after asphyxia, 

but no effect on microglial activation, infiltration, astrogliosis or neuronal loss. Indeed, it was 

associated with increased loss of oligodendrocytes 72 hours after injury (Galinsky et al., 

2017a). A recent study in P7 rats suggests that the interaction between magnesium sulphate 

and HI is time dependent, with neuroprotection when it was administered between 6 days and 

12 hours before HI, but not at 3 hours or 30 minutes before HI (Koning et al., 2017). This effect 

was likely mediated by improved mitochondrial resistance to HI. Overall, these studies suggest 

the impact of magnesium sulphate on HIE is complex and possibly time dependant. Thus, 

further careful investigation into the effect of magnesium sulphate on the pathogenesis of HIE 

in preterm and term-equivalent translation animal models are essential before undertaking 

further clinical trials for HIE. 

Maternal lifestyle associated risks 

Preclinical studies have examined the effect of maternal health on the outcome of hypoxic-

ischemic neural injury in the offspring. For example, a study in neonatal rats showed that there 

was an increased induction of microgliosis, astrocyte hypertrophy and neuronal loss after HI, 

in the pups of mothers that were given high fat diet (Teo et al., 2017). Another study in mice 

showed that maternal exposure to cigarette smoke exacerbated cellular damaged after neonatal 

HI in male offspring (Chan et al., 2017). However, few clinical studies have examined such 

interactions.  

Improving outcomes by augmenting endogenous protective responses 
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As discussed, HI triggers multiple protective responses. Here we will review two promising 

examples of acute and delayed but long-lasting responses with evidence that augmenting these 

responses can protect the brain.  

Melatonin 

Melatonin (N-acetyl-5-methoxytryptamine) is primarily released from the pineal gland and 

helps entrain circadian rhythms (McMillen et al., 1995). It is rapidly induced after HI in many 

species (Robertson et al., 2013), and in adult animals pinealectomy increases focal ischemic 

injury (Kilic et al., 1999), strongly inferring that it is neuroprotective. It appears to act primarily 

on effects during HI and in the reperfusion phase and early latent phase. Consistent with this, 

in term piglets, exogenous infusion of melatonin 15 min after HI dramatically augmented 

hypothermic neuroprotection (Robertson et al., 2013). Similarly, in preterm fetal sheep, 

infusion of melatonin to the mother starting before severe asphyxia reduced oxidative stress, 

inflammation and apoptosis in the white matter, with improved survival of oligodendrocytes 

and increased myelin thickness (Yawno et al., 2017) (Drury et al., 2014). Intriguingly its 

reported effects may be related in part to the diluent, 2% ethanol, which had regional specific 

effects to improve neuronal survival in the caudate nucleus, but increase neuronal loss in 

regions of the hippocampus (Drury et al., 2014), illustrating the complexity of treatment 

studies. 

Erythropoietin (Epo) 

By contrast with the very rapid release of melatonin, the endogenous growth factor Epo shows 

much slower upregulation, corresponding with the secondary and tertiary phases after HI. Epo 

and Epo receptor protein expression were increased in the injured hemisphere of neonatal (P7) 

rats at 24 hours and one week after HI (Sun et al., 2004). Similarly, Epo receptors were shown 

to be upregulated in the P2 rat brain after exposure to transient HI in-utero at embryonic day 
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18 (Mazur et al., 2010). Interestingly, Epo and Epo receptor mRNA expression were 

differentially regulated after HI alone, or a combination of HI and LPS. Further the discrepancy 

in mRNA levels of Epo receptor and ligand (Epo) at P15 was associated with adverse neural 

outcome at P28 (Jantzie et al., 2014). Recently, elevated serum Epo concentration was reported 

in full term infants exposed to perinatal asphyxia on day one and two after birth, and the serum 

Epo concentration was associated with severity of HIE on MRI (Sweetman et al., 2017). 

Endogenous upregulation of Epo after HI is delayed but prolonged, suggesting that it likely has 

a role both in limiting injury in the secondary phase and promoting neurorepair in the long-

term.  

Studies of exogenous treatment support this hypothesis. Delayed treatment with 5000 U/Kg 

human recombinant Epo (rEpo) at 24, 48 and 72 hours after HI in P7 rats was associated with 

decreased neuroinflammation and improved neural outcome (Sun et al., 2005). Furthermore, 

delayed treatment with rEpo starting 48 hours after HI in P7 rats did not reduce tissue volume 

loss, and yet was able to increase oligodendrogenesis at 5 days after HI, with improved 

oligodendrocyte maturation, reduced white matter injury and increased neurogenesis at 14 days 

after injury (Iwai et al., 2010). Clinically, postnatal treatment with Epo improved 

neurodevelopmental outcomes in several trials of term neonates with hypoxic-ischemic brain 

injury (Zhu et al., 2009; Elmahdy et al., 2010; Wu et al., 2012; Rogers et al., 2014; Wu et al., 

2016; Malla et al., 2017). Moreover, retrospective studies of cohorts of preterm infants that 

received Epo for erythropoiesis compared to controls suggest improved outcomes (Bierer et 

al., 2006; Brown et al., 2009; Neubauer et al., 2010). A recent meta-analysis of 1133 infants 

randomized to early Epo for neuroprotection, demonstrated a reduced incidence of children 

with MDI < 70 at 18-24 months PMA, with an odds ratio (95% confidence interval) of 0.51 

(0.31–0.81), P < .005 and a number needed to treat was 14 (Fischer et al., 2017). 

Conclusions 
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Preclinical studies have provided significant evidence for interaction between multiple insults 

modifying neural outcome after asphyxia and have demonstrated that time and dose dependent 

interactions could act in synergy to exacerbate or attenuate the damage induced by asphyxia. 

However, there is only limited clinical data examining the effect of multiple interactions on 

neurodevelopmental outcome. In addition, there is a significant gap in knowledge of 

mechanisms underlying the interactions between various factors. Nevertheless, the evidence 

presented above highlights the importance to assessing the effect of multiple hits on neural 

outcomes in infants with HIE. Potentially, identification of high-risk groups can inform the 

development of future treatments. Furthermore, there is a need for more preclinical studies 

examining the efficacy of neuroprotective treatments for injury induced with multiple insults 

to examine the realistic clinical scenario.  Identification of endogenous neuroprotective 

mechanisms has provided a rationale for exogenous treatment with these factor agents to 

further augment neuroprotective effects. It remains to be determined if multiple treatments 

given in a similar temporal profile to their endogenous upregulation will have an optimal 

neuroprotective effect.  
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