
I Lingam 10-10-16 

Magnesium as an adjunct to therapeutic hypothermia: a review of its use 

in the fetus, term infant with neonatal encephalopathy and the adult 

stroke patient  

 

Ingran Lingam, Nicola J Robertson 

 

 

 

Institute for Women's Health, London, United Kingdom;  

 

 

Corresponding author: Nicola J Robertson, UCL EGA Institute for Women's Health 

(IfWH), University College London, London WC1E 6HX 

Direct line: +44 (0)20 7679 6052 

Mobile: +44 (0)7779 248 235 

E mail: n.robertson@ucl.ac.uk 

 

 

 

Key words 3-10 key words 

Magnesium sulfate; Neonatal Encephalopathy; Hypoxic Ischemic 

Encephalopathy; Fetal Neuroprotection;  

 

 

  

mailto:n.robertson@ucl.ac.uk


I Lingam 10-10-16 

Abstract (500 words) 

 

Magnesium is an intracellular cation essential for many enzymatic processes 

and cellular functions. This article explores the possibility of magnesium being 

used as an adjunct to hypothermia in postnatal term neonatal encephalopathy. 

There are three basic lines of evidence for magnesium sulfate as a 

neuroprotective agent. 1) Animal studies of neonatal encephalopathy (NE) at 

term equivalent age have been confounded by concomitant hypothermia 

induced by magnesium itself. 2) The combination of magnesium and cooling 

has been shown to be more effective than either treatment alone in adult 

rodents. 3) In preterm gestation, magnesium sulfate given antenatally in 

threatened preterm labor has demonstrated a significant reduction in the risk of 

cerebral palsy at 2 years of age, though the benefit is not clear at school age. 

Against the use of magnesium sulfate as a neuroprotective strategy are 

disappointing results in adult studies in ischemic and hemorrhagic stroke. 

Furthermore, the neurological scores may be affected by the increased 

hypotonia observed. 

 

The theoretical basis of magnesium sulfate is that it acts as an endogenous 

calcium channel antagonist at neuronal synapses, thought to prevent excessive 

activation of N-methyl-D-aspartate (NMDA) receptors by excitatory amino 

acids, such as glutamate, and by down-regulation of pro-inflammatory 

pathways. The immature brain is particularly prone to excitotoxicity and 

inflammation has been strongly implicated in the pathogenesis of cerebral 

palsy. Early intervention is essential in the prevention of the secondary phase 

of neuronal injury. 

 

Magnesium sulfate may be considered as a neuroprotective agent given its 

favorable safety profile, relative inexpense and widespread availability. 
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INTRODUCTION 

 

Magnesium is an ionized mineral essential to hundreds of enzymatic 

processes, including hormone receptor binding, energy metabolism, muscle 

contractility as well as neuronal and neurotransmitter function[1]. It is primarily 

an intracellular cation and stores are distributed between bone (53%), muscle 

(27%) and soft tissue (19%).  Serum magnesium levels are tightly controlled 

(0.65 – 1.05 mmol/L) and homeostasis is maintained through intestinal 

absorption, storage in bones and renal excretion[1,2]. Magnesium has an 

inhibitory effect at neuronal synapses, leading to its use as an anticonvulsant, 

particularly in eclamptic seizures[3].  We present three lines of evidence to 

support the possible use of magnesium sulfate as adjunct to hypothermia for 

term neonatal encephalopathy and leave it to the reader to judge for themselves 

whether the evidence is sufficient; i) studies in term neonates with neonatal 

encephalopathy (NE), ii) studies in antenatal use for preterm delivery and iii) 

adult brain injuries. This article explores the neuroprotective potential of 

magnesium, its mechanism of action and efficacy in different patient 

populations and neurological disorders. 

 

Role of magnesium in cellular metabolism 

 

Magnesium is an important co-factor in over 300 enzymatic reactions and is 

essential to normal cellular function. Magnesium acts as a counter ion for ATP 

and stabilizes many ATP-dependent processes, including glucose utilization, 

protein and nucleic acid synthesis[4]. It contributes to the structural integrity of 

nucleic acids, proteins and mitochondria[5]. 

 

As an endogenous calcium antagonist, magnesium serves a number of 

regulatory roles at neuronal and neuromuscular synapses. It blocks calcium 

entry at the presynaptic junction, preventing excessive acetylcholine release 

and stimulation at the neuromuscular junction. It also has a depressant effect 

at the post-synaptic membrane through the voltage dependent block of N-
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methyl-D-aspartate (NMDA) receptors[1]. This action as an NMDA receptor 

antagonist underpins one of the main proposed mechanisms of magnesium 

neuroprotection. 

 

Excitotoxicity 

 

The precise mechanism by which magnesium provides neuroprotection has not 

been well established. One of the most commonly held theories is that 

magnesium prevents excitotoxic damage through NMDA receptor blockade. 

This post-synaptic receptor normally strengthens synaptic connections when 

repeatedly activated (long-term potentiation) and plays a crucial role in memory 

function[6]. Activation of the NMDA receptor by excitatory neurotransmitters 

permits the influx of calcium ions, serving as secondary messenger for 

physiological cell processes e.g. regulation of transcription factors and DNA 

replication[7,8]. 

 

Neurons exposed to hypoxic stress are unable to maintain normal glutamate 

homeostasis, resulting in excessive stimulation of NMDA receptors. This results 

in a cascade of ‘excitotoxic’ events causing acute cell swelling and delayed cell 

degeneration[9]. This delayed neuronal injury is mediated by excessive calcium 

influx in to the cell, triggering catabolic enzymes (e.g. proteases, 

phosphlipases, endonucleases) and free radical production (Fig 2). Glutamate 

excitotoxicity and the loss of intra-cellular calcium homeostasis also triggers 

cellular ‘suicide’ programs, leading to apoptosis[9]. 

 

The NMDA receptor itself is composed of four subunits (heterotetramer), similar 

to a hemoglobin molecule. Receptors subunits containing NR2B have a high 

permeability to calcium[10] and are particularly abundant in preterm white 

matter[11]. While this may serve an important role during the rapid growth and 

myelination in early neuronal development, it may also confer particular 

vulnerability to preterm white matter. This may explain in part the different 

patterns of injury between preterm and term hypoxia ischemia[8,12]. 
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Magnesium is an endogenous calcium antagonist and provides a voltage 

dependent blockade of the NMDA receptor. Through inhibiting the rapid influx 

of calcium, magnesium may prevent the secondary cascade of injury that leads 

to cell death[1]. This theory is supported by preclinical data, both in vitro and in 

vivo. Magnesium has been shown to reduce excitotoxic damage induced in 

mice by ibotenate, a glutamatergic agonist[13]. Extracellular levels of glutamate 

are reduced in magnesium treated gerbils following focal cerebral ischemia[14]. 

Furthermore, incubation of primary oligodendrocyte precursor cells with 

magnesium appears to improve cell survival following oxygen glucose 

deprivation[15]. 

 

The extent of injury secondary to excessive NMDA receptor activation however 

remains controversial. Alternative NMDA receptor antagonists have shown 

limited improvement in neuronal survival and in less injured regions after HI 

[16,17] and in the absence of thermoregulation, improved neuronal survival has 

been attributed to drug-induced hypothermia[18–20]. A recent clinical trial of 

xenon, a NMDA receptor antagonist in combination with cooling was also 

disappointing; though a delay in initiating therapy may have contributed to the 

lack of efficacy[21]. 

 

Magnesium and Inflammation 

 

Inflammation and infection have been implicated in neuronal injury. Magnesium 

sulfate may confer neuroprotection through down regulation of the inflammatory 

cascade. Magnesium significantly decreased the frequency of maternal and 

neonatal monocytes producing TNF-a and IL-6 when exposed to LPS in 

vitro[22].  Pre-clinical data have also demonstrated that magnesium reduces 

levels of pro-inflammatory cytokines (IL-6, TNF-a)[23] in LPS treated pregnant 

rodents as well as improves the offspring’s learning ability at 3 months[24]. 

 

A potential anti-inflammatory mechanism is the inhibition of the Nuclear Factor–

kB (NF-kB) signal pathway. NF-kB is a transcription factor present in cell 

cytoplasm and rapidly activated by inflammatory or immunological stimuli. On 
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activation, NF-kb enters the nucleus and initiates transcription of multiple genes 

to produce pro-inflammatory cytokines, cell adhesion molecules as well as 

regulators of apoptosis[25]. Gao and colleagues (2013) demonstrated that 

magnesium sulfate significantly reduces NF-kB activity by inhibiting its 

translocation into the nucleus in LPS sensitized adult rodent microglia[26]. 

 

In the preterm infants, inflammation may be an important etiological factor of 

brain injury. The risk of cerebral palsy in preterm infants increases in the 

presence of chorioamnionitis (OR 4.2, CI 1.4-12), prolonged rupture of 

membranes (OR 2.3, CI 1.2-4.2) and maternal infection (OR 2.3, CI 1.2-

4.5)[27]. Preterm labor itself may have an underlying infective origin as 

demonstrated by raised pro-inflammatory cytokines in cord blood (IL-1, IL-6, IL-

8 and TNF-a). Maternal infection also increases the risk of cerebral palsy in 

term infants (OR 9.3, CI 3.7-23), especially if combined with perinatal hypoxia 

ischemia[28]. 

 

The theory that magnesium attenuates infective or inflammatory processes 

however has yet to be borne out in clinical trials. Subgroup analysis of the 

NICHD cohort receiving antenatal magnesium for the prevention of cerebral 

palsy demonstrated no benefit among infants exposed to chorioamnionitis[29].  

 

ANIMAL MODELS OF NEUROPROTECTION 

Animal models of hypoxia ischemia have been used to assess the 

neuroprotective potential of novel therapeutic strategies. The Rice Vannucci 

rodent is one of the most commonly used animal models of hypoxia ischemia, 

combining unilateral carotid artery ligation with moderate hypoxia to generate 

cerebral injury[30]. Most studies using this method measure infarct area or 

volume and histological assessment of neuronal apoptosis to measure 

outcomes. Magnesium efficacy trials from term equivalent animals (postnatal 

day 7) have generated conflicting results[18]. Studies demonstrating 

neuroprotection were confounded by co-existing hypothermia and those that 

maintained normothermia failed to show benefit.  
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Large animal models provide an opportunity for more translational and clinically 

relevant outcomes. Magnesium failed to demonstrate a reduction in the level of 

secondary energy failure on magnetic resonance imaging[31] or severity of 

tissue damage in a piglet model of hypoxia ischemia[32]. In addition, 

magnesium sulfate has not demonstrated improvement of EEG or neuronal 

loss in fetal sheep undergoing umbilical cord occlusion at human term 

equivalent age (0.85 gestational age)[33]. 

 

Magnesium has also been evaluated in adult pre-clinical models of traumatic 

brain injury.  Animals injured by fluid percussion to exposed dura (parasagittal) 

were treated with magnesium sulfate. Although there was no benefit observed 

in post-traumatic learning, there was a significant reduction in tissue loss in the 

hippocampus[34]. Similarly, magnesium significantly improved motor outcomes 

in rodents following diffuse axonal brain injury[35].  

 

Animal studies of magnesium in fetal neuroprotection are limited compared to 

models of neonatal hypoxia ischemia. Timed-pregnant rodents have been used 

as a model of maternal infection to evaluate the role of magnesium in 

modulating inflammation to improve developmental outcomes in 

offspring[23,24]. 

 

Temperature controlled studies by Galinsky and colleagues[36,37] assessed 

the efficacy of magnesium sulfate given 24 hours prior to umbilical cord 

occlusion and maintained the infusion for a further 24 hours after insult in 

preterm fetal sheep at 104 days gestation (term is 147 days). Magnesium did 

not affect the cardiovascular response (degree of hypotension) during umbilical 

cord occlusion and thus did not alter insult severity. Although magnesium 

sulfate significantly reduced the frequency of seizures post-asphyxia, it did not 

improve EEG recovery or survival of subcortical neurons[36]. Magnesium was 

in fact associated with a reduction in mature (olig-2 +ve) oligodendrocytes in 

the intragyral and periventricular white matter and immature (CNPase +ve) 

oligodendrocytes in the intragyral region. The mechanism of this loss is unclear. 

The authors postulate that prolonged magnesium NMDA blockade may 
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interrupt neuronal-oligodendrocyte signaling and thus hinder oligodendrocyte 

differentiation and axonal myelination. Microglial infiltration did not differ 

between magnesium and control groups, suggesting that magnesium did not 

suppress inflammation in the 72 hours following hypoxia ischaemia[36]. 

 

NEUROPROTECTION STUDIES 

Neonatal Encephalopathy in Term infants 

 

Therapeutic hypothermia has been successfully implemented as a 

neuroprotective strategy in 2010 (NICE)[38], however in spite of this, 50% of 

newborns with moderate to severe HIE will die or suffer long-term disabilities 

such as cerebral palsy[39]. Therefore there is an urgent need to continue to 

develop new strategies to improve the care of this vulnerable population. 

 

Magnesium inhibition of excessive NMDA receptor activation provides a 

biologically plausible mechanism to limit the delayed “secondary” phase of 

neuronal cell death following perinatal hypoxia ischemia. Interestingly, low 

magnesium levels at birth have been observed in infants with severe HIE 

(0.64mmol/L, 0.47–0.87) compared to mild or no HIE (0.81 moll/L, 95% CI 0.75-

0.87) and controls (0.72 mmol/L, 95% CI 0.69–0.76)[40]. It remains unclear 

whether low magnesium at birth is a result of severe hypoxia or whether it 

confers vulnerability rendering infant susceptible to greater injury.  

 

A pharmacokinetic study of magnesium by Levene and colleagues (1995) 

demonstrated doses of 250mg/kg MgSO4 were not associated with significant 

hypotension or bradycardias in term infants following perinatal hypoxia 

ischemia[41]. The subsequent randomized asphyxia trial (RAST) however was 

suspended following incidences of significant bradycardia, which transpired to 

be the result of infants inadvertently receiving almost twice the intended trial 

dose. The pharmacokinetic study had used a 12.5% solution of magnesium 

sulfate, based upon the heptahydrated magnesium salt (MgSO4.7H2O). The 

pharmaceutical company, commissioned to supply the RAST with a 12.5% trial 
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medication, however provided a 12.5% solution based on the anhydrated salt 

(MgSO4); this solution was effectively double the intended concentration and 

therefore almost double the dose of magnesium was administered[42]. RAST 

recruited 50 patients prior to suspension (25% of the planned cohort) and no 

significant differences were found in mortality between groups. There was a 

trend towards higher mortality in infants given magnesium, although there was 

a disproportionately high number of infants with severe HIE in that group 

(unpublished data; communication with trial investigator D. Evans) 

 

There have since been 6 randomized placebo-controlled trials assessing the 

use of magnesium sulfate in term hypoxia ischemia; 5 of which were conducted 

prior to the introduction of therapeutic hypothermia. These trials included 

infants born at least 35 weeks gestation with signs of moderate to severe 

encephalopathy (see table 2). There was however significant heterogeneity 

between trials in drug dosing and timing as well as outcome measures. All trials 

reported giving magnesium within 24 hours of birth, however only three stated 

this was within 6 hours[43,44]. One study protocol gave a single 250mg/kg dose 

of MgSO4[45] while others opted for an initial dose of 250mg/kg followed by 

repeat doses of either 125mg/kg[33,44] or 250mg/kg[43,46,47] at 24 and 48 

hours. Bhat (2009)[43] and Ichiba (2002)[46] reported favorable-term 

composite outcomes; defined by a normal neurological exam at discharge, 

normal CT brain and normal oral feeding by 2 weeks. These findings however 

did not translate to significant neurodevelopmental improvement at 6 

months[44] and 2 years[33].  

 

Kashiba and colleagues adopted a novel approach, assessing the levels of 

excitatory amino acids (glutamate, aspartate) in the CSF at birth and 72 

hours[45]. They noted higher levels of glutamate and aspartate in infants with 

more severe hypoxia ischemia, supporting the theory that secondary energy 

failure was the result of excitotoxic damage. Magnesium therapy however did 

not alter the levels of these amino acids. 

 

Rahman et al (2015)[47] evaluated the safety and efficacy of magnesium 

combined with cooling following supportive evidence from adult rodent studies 
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[48–50]. They reported a favorable safety profile of magnesium sulfate 

administered during therapeutic hypothermia with no significant difference in 

death or hypotension between treatment groups. The study however had 

several methodological limitations; hypotension was defined as either mild-

moderate (single inotrope) or severe (multiple inotropes) rather than specifying 

inotrope doses or mean arterial BP values; inclusion criteria varied between 

centers depending on the availability of aEEG; and 5/60 infants included in 

analysis underwent selective head cooling rather than total body hypothermia. 

Long-term outcomes for this study have yet to be published. 

 

A comprehensive meta-analysis by Tagin and colleagues (2013) demonstrated 

a significant reduction in short term composite of ‘unfavorable’ outcomes, 

defined by abnormal neurology, aEEG or neuroimaging (RR 0.48, 95% CI 0.30-

0.77)[51]. Ichiba and colleagues repeated their study in 30 newborns with 

moderate to severe HIE (based on Sarnat criteria) and administered MgSO4 

within 6 hours of birth[52]. They reported normal neuro-developmental 

outcomes in 73% infants at 18 months, though the study was limited by the 

absence of a control arm. There may be some benefit in the use of magnesium 

in term infants with HIE, however studies are limited by small numbers, trial 

heterogeneity and an absence of long term outcome data. 

Fetal Neuroprotection 

 

Magnesium Sulfate (MgSO4) is a familiar drug in obstetrics and has been used 

in the management of eclamptic seizures since the early 1900s. Randomized 

controlled trials have since demonstrated its superiority over other 

anticonvulsants and it is currently recommended in the treatment of eclamptic 

seizures as well as seizure prophylaxis[3]. The neuroprotective properties of 

magnesium in preterm infants was first observed by Nelson and Grether (1995) 

who observed that in-utero exposure to MgSO4 for pre-eclampsia or tocolysis 

was lower in very low birth weight infants (<1500g) with cerebral palsy 

compared to controls (7.1% vs 36%)[53]. While this promising finding was 

corroborating by some[54], the results proved controversial with other reports 
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failing to show benefit[55,56] as well as concerns of increased mortality in 

extreme preterm infants exposed to magnesium tocolysis[57]. 

 

Over the last decade, a number of large prospective randomized controlled 

trials have been conducted to assess the safety and efficacy of MgSO4 as a 

fetal neuroprotective agent (see table 1). 

 

In the Magnesium Endpoint Trial (MagNET 2002)[58], women in preterm labor 

were recruited between 24 to 34 weeks gestational age. They were stratified 

into two groups, those suitable for tocolysis (cervical dilatation < 4cm) and those 

who did not meet tocolysis criteria. The ‘tocolysis’ group was randomized to 

receive MgSO4 (4g bolus and 2-3g/h infusion) or alternative therapy as deemed 

by the obstetrician. The other ‘neuroprotective’ group was randomized to 

MgSO4 bolus (4g) or 0.9% Saline. The study however was stopped 

prematurely due to concerns of higher neonatal mortality rate in the magnesium 

group. Combined analysis of the trial arms did not demonstrate any reduction 

in cerebral palsy. 

 

Two subsequent trials, the Australasian Collaborative Trial of Magnesium 

Sulfate (ACTOMgSO4)[59] study in 2003 and French PREMAG[60] Study in 

2007 did not demonstrate an increased mortality with magnesium use. Neither 

trial however yielded significant improvements in rates of cerebral palsy at 2 

years. The ACTOMgSO4 trial did report a reduced rate of substantial motor 

dysfunction, as defined by a Gross Motor Function Classification (GMFCS) 

level of 2 or worse. 

 

The Beneficial Effects of Antenatal Magnesium Sulfate (BEAM)[61] study in 

2008 was one of the largest randomized controlled trials of magnesium 

involving 2241 women (singletons or twins) at 24 to 31 weeks gestation. This 

study demonstrated a significant reduction in moderate to severe (GMFCS 2-

4) cerebral palsy as well as cerebral palsy overall. In addition to these four trials, 

the MAGPIE trial (2002)[62] was designed to assess whether magnesium 

prevented eclampsia in women with pre-eclampsia. Many of the participating 

centres were in developing countries and reported comparatively higher 
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pediatric mortality compared to other studies. There was no significant 

reduction in the rates of cerebral palsy associated with antenatal magnesium 

exposure.  

 

Comprehensive meta-analysis of these five trials demonstrated antenatal 

magnesium sulfate reduced both the risk of cerebral palsy (RR 0.69, CI 0.54-

0.87) and substantial gross motor dysfunction (RR 0.61, CI 0.44-0.85). The 

number women needed to treat to prevent one infant developing cerebral palsy 

was 63[63]. 

 

Outcome data at school age (6-11 years) however was disappointing. The 

ACTOMgSO4 trial followed up 77% of their cohort and found no significant 

difference in cognitive, academic, attention or behavioral outcomes. The earlier 

finding of reduced gross motor dysfunction did not translate to an overall 

reduction in the severity of cerebral palsy at school age[64]. Long term follow 

up data from the PREMAG cohort (7-14 years) also reported no significant 

difference in neuromotor, cognitive or language ability. They did observe fewer 

incidences of grade repetition, specific educational needs and overall better 

parental perception of child health[65]. 

 

To date, there have been at least five meta-analyses[63,66–69] and an 

evaluation of cost effectiveness[70] that all support the use of antenatal 

magnesium sulfate as a neuroprotective agent. Clinical adoption of this 

intervention was initially slow with concerns raised over the lack of a statistical 

difference in primary outcomes as well as safety data raised in one trial[71]. 

The American College of Obstetricians has supported the use of magnesium in 

preterm neuroprotection, however encourages clinicians to develop guidelines 

locally[72]. Both Australia[73] and Canada[74] issued guidelines detailing the 

use of magnesium sulfate as neuroprotection of fetuses born less than 30 

weeks and 32 weeks, respectively. The National Institute of Clinical Excellence 

(NICE) have recently recommended using magnesium sulfate in mothers in 

preterm labor at gestational ages 24 – 29+6 weeks and considering it in those 

at gestational between 30 – 33+6 weeks[75]. 
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Although the long term follow up data from ACTOMgSO4 and PREMAG are 

disappointing, the findings do not negate the reduction in cerebral palsy at 2 

years seen across the 5 trials included in the meta-analysis. It does however 

highlight the need for ongoing long-term evaluation of this intervention. 

 

Neonatal encephalopathy in preterm infants 

 

NE seen in term infants represents a distinct clinical entity to the more chronic 

evolving cerebral white matter injury associated with prematurity. The preterm 

brain is particularly vulnerable to injury due to highly active dendritic and axonal 

growth as well as the exaggerated inflammatory response of an immature 

immune system. Although hypoxic ischemic events may complicate preterm 

delivery, there is limited evidence that interventions trialed in term infants can 

be directly translated to the preterm population.   A small pilot study of selective 

head cooling in infants between 32 – 35 weeks gestation was associated 

significant adverse effects[76]. Designing a randomized control trial to evaluate 

neuroprotective strategies in preterm infants with NE is challenging due to the 

relatively low incidence and difficulties in accurately identifying signs of 

encephalopathy.  

 

Adult Neuroprotection 

 

In addition to the preterm and term infant populations, magnesium sulfate has 

been evaluated as a rescue therapy in adult neurological injuries. The proposed 

mechanism of benefit includes NMDA blockade as well as dilatation of 

penetrating cerebral arterioles. 

 

The Intravenous Magnesium Efficacy in Stroke[77] (IMAGES) trial was a large 

double-blind randomized control trial assessing the benefit of magnesium 

sulfate in acute ischemic strokes. The trial recruited 2368 participants with a 

clinical diagnosis of stroke, aiming to start magnesium or placebo within 12 

hours of the onset of symptoms. Disappointingly, magnesium did not affect the 

primary outcome of death or disability at 90 days post-event. There was 
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however a significant improvement in a subgroup of patients with lacunar 

infarcts, mostly secondary to small cortical emboli. 

 

The lack of efficacy in the IMAGES trial was thought to be a result of delayed 

magnesium therapy as only 3% of individuals received the drug within 3 hours 

of symptoms. This led to the novel approach of pre-hospital initiation of therapy 

pioneered in the Field Administration of Stroke Therapy–Magnesium (FAST-

MAG) trial in 2004[78]. Saver and colleagues (2015) subsequently enrolled 

1700 patients to receive magnesium or placebo within 2 hours of symptom 

onset[79]. Patients received a loading dose by paramedics and were started on 

a 24-hour magnesium infusion on arrival to hospital.  Magnesium however was 

not shown to reduce death or level of disability at 90 days. The trial primarily 

involved acute ischemic strokes (73%) rather than intracranial hemorrhage 

(23%). Subgroup analysis of stroke type did not show any alteration of 

treatment effect. 

 

Trials of hemorrhagic strokes have mostly focused on the use of magnesium in 

aneurysmal subarachnoid hemorrhage (SAH). Approximately a third of 

survivors deteriorate 3 – 14 days post-hemorrhage as a result of delayed 

cerebral ischemia. The underlying etiology of this process is likely multifactorial, 

including oxidative stress, vasoconstriction, inflammation and cortical 

spreading depression (CSD)[80]. Magnesium was not found to improve clinical 

outcomes after aneurysmal SAH in a large randomized control trial[81] and 

meta-analysis[82]. 

 

LIMITATIONS OF STUDIES 

Although the use of magnesium sulfate in fetal neuroprotection has shown 

promise in human clinical trials, results from neonatal and adult neurological 

injuries have been disappointing. There are a number of factors that may be 

contributing to this apparent lack of efficacy. 
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Magnesium levels in trials are usually measured in serum, which represent less 

than 1% of the total body content and do not accurately reflect intracellular 

levels[4]. Using serum levels alone to define a neuroprotective concentration 

may be insufficient if the neuroprotective mechanism is through intracellular 

anti-inflammatory mechanisms in addition to synaptic NMDA receptor 

blockade. 

 

Pre-clinical rodent data suggest a neuroprotective ‘target serum level’ of 

approximately 2 – 3 mmol/L[83,84] , noting cardiodepressive effects at higher 

concentrations[84]. However, in vitro studies on rodent hippocampal neurons 

have suggested magnesium concentrations 2–4 times normal serum levels 

may be necessary to achieve benefit[85,86]. Achieving at least double serum 

magnesium levels in the CSF may provide a challenge given the limited CSF 

penetration with peripherally infused magnesium. Pharmacokinetic data from 

adult neurosurgical studies demonstrated doubling plasma magnesium 

resulted in only a modest 11-21% increase in CSF levels[87]. We have 

demonstrated similar findings in a piglet model of NE (fig3). Furthermore, CSF 

and serum magnesium levels do not correlate well following peripheral infusion. 

Levels in the serum rapidly rise within 30 minutes and then fall, whereas it takes 

90 minutes before a significant rise is detected in the CSF[88]. 

 

The adage ‘time is brain’ is a key principle underpinning successful 

neuroprotective strategies. Developing a delivery mechanism to achieve a 

‘neuroprotective’ magnesium concentration in the CSF whilst avoiding the 

toxicity associated with high serum levels represents a major challenge. 

 

 

 

 

 

Conclusion 

 

Magnesium sulfate could be considered as an added adjunct to hypothermia 

with its inherent advantages of widespread availability, low cost and good 
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safety profile. It has been extensively evaluated in a number of different 

neurological disorders across all age groups from the preterm to the elderly. 

Evidence of benefit appears most convincing in fetal neuroprotection, possibly 

due to the increased susceptibility of the immature brain to excitotoxicity and 

increased infective and inflammatory risks associated with prematurity.  

 

The use of magnesium sulfate in term NE however remains controversial. Early 

trials of magnesium in term infants with perinatal asphyxia were limited by small 

numbers, methodological heterogeneity and mostly pre-dated the widespread 

implementation of therapeutic hypothermia. In the post-cooling era, 

neuroprotective interventions are likely to take the form of adjuncts to 

incrementally improve outcomes beyond those achievable by hypothermia 

alone. Magnesium has been shown to augment therapeutic hypothermia in 

adult rodent models, however caution is warranted given possible adverse 

effects on neuronal cell architecture. Further pre-clinical evaluation is essential 

to ensure safety and efficacy of magnesium neuroprotection prior to further 

human clinical trials. 
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