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Abstract 
 

Mosquera, 2014) to the archaeological record, allowing us to identify the hand laterality 

of our ancestors and determine when and how this feature, which is exhibited most 

strongly in humans, appeared in our evolutionary history. The method focuses on 

identifying handedness by looking at the technical features of the flakes produced by a 

single knapper, and discovering how many flakes are required to ascertain their hand 

preference. 

 

This method can potentially be applied to the majority of archaeological sites, since 

flakes are the most abundant stone tools, and stone tools are the most widespread and 

widely-preserved remains from prehistory. For our study, we selected two Spanish sites: 

Gran Dolina-

by pre-Neanderthal and Neanderthal populations, respectively.  

 

Our analyses indicate that a minimum number of 8 eight flakes produced by the same 

knapper is required to ascertain their hand preference. Even though this figure is 

relatively low, it is quite difficult to obtain from many archaeological sites. In addition, 

there is no single technical feature that provides information about handedness, instead 
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there is a combination of eight technical features, localised on the striking platforms and 

ventral surfaces. The raw material is not relevant where good quality rocks are used, in 

this case quartzite and flint, since most of them retain the technical features required for 

the analysis. Expertise is not an issue either, since the technical features analysed here 

only correlate with ha

tentatively identify one right-handed knapper among the pre-Neanderthals of level 

TD10.1 at Gran Dolina (Atapuerca), while four of the five Neanderthals analysed from 

-handed. The hand preference of the fifth knapper from that 

location (AR5) remains unclear. 

 

 

Keywords:  

 

Introduction 

 

Laterality is the preference that living beings display for one half of the body over the 

other. This organisation settles in the structure of the brain, the organ that designates the 

role played by each extremity when performing a task.  

 

Hand laterality is well known in our species, Homo sapiens. Various studies point to 

about 97% of the current population being lateralised, among which between 85% and 

90% of individuals are right-handed, and between 10% and 15% are left-handed, 

depending on whether the communities are preindustrial, illiterate, and so on (Annett, 

2002; Uomini, 2009). Hand laterality in apes has also been studied (Hopkins, 1996; 

McGrew and Marchant, 1997, 2001; Hopkins and Cantalupo, 2005), but it is less 



 

 3 

marked than human handedness and depends on several environmental and social 

conditions (Mosquera et al., 2007; Llorente et al., 2009, 2011). According to Llorente 

us). However, the subject is not as straightforward as simply being right- or left-handed, 

since some studies have highlighted the fact that chimpanzees become more and more 

lateralised as the task to be done becomes increasingly complex. This condition also 

leads to an increase of in their technological behaviour, which has been interpreted as a 

landmark in the evolution of our hominin clade (Mosquera et al., 2012).  

 

In fact, some researchers support that the most widespread tasks undertaken by humans 

are those where both hands play different roles: e.g., cutting, where one hand holds the 

matter to be cut, and the other uses the knife to do the actual cutting. In addition, cutting 

is not usually needed in the world of apes (Schick and Toth, 2009), which may have 

marked a strong difference between their ancestors and hominins. These type of tasks 

are also known as bimanual complementary tasks (McGrew and Marchant, 1999), 

bimanual complex tasks (Hopkins et al., 2004), and complementary role differentiation 

tasks (Uomini, 2009), which are indeed the most complex, as well as the most 

lateralising tasks, as demonstrated by Uomini (2009) in her experimental study with 

humans. Interpretation has led to the view that there is a feedback mechanism in the 

origin of handedness, where the recurring use of one hand gives it more skills compared 

practice reinforce handedness, a trait that may have favoured brain lateralisation 

(Teixeira and Okazaki, 2007). From a phylogenetic point of view, hand laterality may 

have been on the increase since the earliest hominins, as far back as Australopithecus 
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(Mosquera et al., 2012). In this sense, cut-marks found at Dikika (Ethiopia) from 3.3 my 

ago (McPherron et al., 2010) do not inform us about hand laterality, but they are by-

products of bimanual complementary tasks (i.e., cutting, defleshing), which reinforce 

our hypothesis. 

 

The issue then, is to ascertain when handedness evolved in our hominin clade. Previous 

approaches to the question of hand laterality in our ancestors mostly focused on the 

hominin remains recorded from certain sites. Such is the case of in the dental-wear 

studies of with the so- -

Neanderthal individuals deposited at the Sima de los Huesos site (Atapuerca, Spain) 

, 2003; Lozano et al., 2009). Other studies have centred on the 

endocrania (Poza-Rey, 2015), humerus and other limb bones (Carretero, et al., 1997; 

Lazenby, 2002; Shaw, 2011). All these studies point to a similar handedness in 

Neanderthals as is found in modern humans (Frayer et al., 2010; Fiore et al., 2015). For 

its part, the pre-Neanderthal population of Sima de los Huesos (until recently, Homo 

heidelbergensis) from 450,000 years ago, is under debate: some researchers find 

evidences enough to interpret a similar pattern as in modern humans (Frayer et al., 

2012), and others find not well-defined brain lateralization (Poza-Rey et al., 2015).  

 

In fact, the relation between brain asymmetry and hand laterality is not definitively 

solved (see Poza-Rey et al., 2015 for debate), and even just at the paleoanthropological 

level we may obtain divergent results. As mentioned, several studies pointed out that 

hand laterality (right-handedness) of Sima de los Huesos hominins may be identified in 

five 5 

1988; 2003; Lozano et al., 2009). However, in their recent publication on skulls from 
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Sima de los Huesos (Atapuerca, Spain), Poza-Rey and colleagues (2015) have 

compared these data with the brain endocasts asymmetries found in four of the skulls to 

which some of that dentition belongs: crania/endocrania 16, 10, 9 and 6. Individual 16 

and 6 did not show a right-handed manual preference in their endocasts asymmetries, 

but individual 16 shows dental striations to the left, while individual 6 shows dental 

striations to the right. Individuals 10 and 9 demonstarated right-handed manual 

preferences in their endocasts asymmetries, both associated with dental striations to the 

right. The authors suggest that the discrepancy obtained in individual 6 may be the 

result of ambidextrous handedness, but also a product of learning by imitation. 

 

Anyway, hominin remains are scarce in the archaeological record, and they do not 

always include the body parts that give us information on this matter. Tests have been 

carried out on the direction and trajectory of the cut-marks accidentally left on bone 

surfaces by the stone tools used by hominins when processing prey for consumption 

(Bromage and Boyde, 1984; Bromage et al., 1991;). However, the results of this method 

have been also contested (Pickering et al., 2008). 

 

For this study we have used the only remains that appear commonly at the majority of 

Pleistocene archaeological sites: stone tools. Because they are the most abundant 

remains at this type of sites, they can be an excellent source of information.  

 

One approach that uses stone tools is use-wear analyses, the study of the use-wear 

developed along the edges of stone tools during use. Use-wear studies have revealed 

that one of the pre-Neanderthals that used tools to cut the meat off a carcass at the 

 was right-handed 
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the user, but the approach requires that the tools themselves were both sufficiently used 

and well preserved.  

 

Determining hand laterality through the technical study of flakes has been approached 

from two different perspectives: the knapping method used to produce the flakes (Toth, 

1985), and the analyses of a single technical feature (Rugg and Mullane, 2001; 

-Ballesteros and Arrizabalaga, 2015). Both of these approaches have been 

discussed and their results questioned because of the methods used (see Patterson and 

Sollberger, 1986, and Pobiner, 1999 for Toth, 1985 , 2014 

for Rugg and Mullane, 2001). 

 

In this paper, we apply the method we previously published, on how to identify 

and Mosquera, 2014), with the aim of finding out how many flakes produced by a single 

Pleistocene knapper are needed to ascertain his/her hand preference. As mentioned 

previously, the benefit of this method is that it can potentially be applied to the majority 

of archaeological sites. 

 

To do this, we selected two Spanish sites: Gran Dolina-TD10.1 (Atapuerca) and Abric 

-Neanderthal and Neanderthal 

populations, respectively. In both species, the handedness of some individuals has been 

identified, so this study serves to both confirm the previous results and to test the 

reliability of this method when applied to older sites and hominin species, until the first 

hominin species that was completely lateralised is found, as well as any evolution in 
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that process. Furthermore, given that the TD10-1 archaeological record was made by 

pre-Neanderthal populations peri-contemporary to that of SH, our results may provide 

more evidence on the current debate. 

 

 

Method 

 

from lithic evidence. The study was conducted by means of an experimental programme 

in stone knapping, after which the resulting lithic flakes were analysed. These flakes 

were produced by 15 inexpert knappers (eight right-handed and seven left-handed), 

because we were not able to find a statistically significant number of left-handed expert 

knappers. We considered inexpert knappers to include individuals who had never struck 

two pebbles together, as well as individuals who were quite familiar with prehistoric 

tools and had had some degree of practice. Importantly, the Mann-Whitney U test 

proved that all of them produced flakes with the same technical features concerning 

handedness, meaning that, within this sample group, expertise was not a factor that 

affected the presence or absence of these technical features analysed to determine hand 

laterality. On the contrary, expertise clearly affects the quality of the flakes in 

technological terms (i.e., longer, sharper edges, regular morphologies, etc.). The results 

of the experiment indicate that no single variable can be used to determine the laterality 

of the knapper, but instead this requires a combination of several variables. 

Furthermore, not all flakes display the entire set of significant features. The conclusion 

of this study is, therefore, that it is not possible to determine the hand preference of a 

knapper through a single variable present on their flakes, but it may be possible to 
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determine his or her laterality by examining a combination of technical variables on a 

number of their pieces.  

 

 

Experimental sample 

 

The experimental sample corresponds to that published by 

(2014). This experimental sample included 1,774 pieces knapped by seven left-handed 

and eight right-handed individuals. Of these, 1,159 were flakes and broken flakes, and 

615 were fragments of flake and angular knapping fragments. The latter were not 

analysed, since they did not retain the necessary technological features. Of the 1,159 

flakes and broken flakes, 629 (54.23%) were produced by right-handers and 530 

(45.76%) by left-handers. The knapper who produced the fewest flakes made 49 pieces, 

and the knapper who generated the most flakes made 140 (Table 1). All the flakes were 

created from the same type of flint as used by H. neandertalensis at the 

 

 

Table 1 

 

Handedness analysis 

 

eight technical features from the 

complete catalogue of characteristics are informative to ascertain the hand laterality of 

the knapper. However, given that many pieces do not show the eight technical features 

indicative of hand preference, and also that the technical characteristics of a single piece 
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may be the result of chance, a number of flakes knapped by the same individual must be 

analysed (Figure 1). 

 

Figure 1 

 

The following are the eight technical features and their variables (n=21) that provide 

information about handedness: 

 a) Ventral surface: 

1. Location of the ridge on the bulb, recorded by Rugg and Mullane (2001) as 

percussion, the proximal part of the whole bulb. It may be located to the right or 

left. 

2. Location of the  scars on the cone. These are small squamae that 

sometimes accidentally appear in the bulb. If present, they may be centred, or 

located to the right or left. 

3. Location of the hackles. Small hackles may appear near the edges of the ventral 

surface. They may be distal, right or left located. 

4. Location of the ripples. Long curved wrinkles that appear along the ventral 

surface and follow the detaching axis of the flake. They may be located distally, 

or to the right or left. 

5. Orientation of the extracting axis of the flake. This may be right or left-oriented 

b) Striking platform: 

1. Location of the impact point on the striking platform. This may be right or left 

located. 

2. Inclination of the striking platform. It may be to the right, left, or sinuous  
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3. Morphology of the striking platform. This may be platform (plan), linear 

(lineal), or punctiform (pointed). 

 

Figure 2 

 

showed that these features clearly allow the right-handed and left-handed knappers from 

the experiment to be distinguished. The first two factors explain 55.56% of the 

variability (factor 1:36.57%, factor 2:18.99%). In Figure 2 all the left-handed knappers 

are placed above factor 2, and the right-handed knappers are placed below factor 2. 

Therefore, left-handed knappers tend to produce ripples (39.39%), hackles (31.79%), 

the ridge of the cone of percussion (42.41%), the  scars (15.67%), and the 

impact points (88.34% of the total relative inertia) on the left side of the flake. 

Interestingly they also tend to detach flakes with the striking platform sloped towards 

the right side of the piece (33.81% of the total relative inertia). In contrast, right-handed 

knappers tend to form ripples (36%), hackles (29.49%), the ridge of the cone of 

percussion (49.59%), the  scars (25.78%), and the impact points (49.58% of the 

total relative inertia) on the right side of the flake. As opposed to left-handers, right-

handed knappers tend to detach flakes with the striking platform sloped towards the 

leftside of the piece (45.89% of the total relative inertia).  

 

This work is based on the fact that the patterns of the experimental knappers help us 

identify the handedness of prehistoric knappers, as the archaeological samples are 

expected to follow the same patterns as the experimental ones (Figure 2).  
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Refit analysis 

 

In order to apply this method to the archaeological record, we need to find flakes 

detached by the same knapper. This can only be achieved by means of searching refits 

from knapping sequences of cores, which is a rather complicated process in many 

archaeological deposits. Although refits do not fully guarantee that only one knapper 

exploited one core, it is the best approach under the circumstances. Therefore, the first 

step is to search for as many refits as possible in archaeological samples.  

 

In this study, we only analysed archaeological pieces longer than 10 mm. Depending on 

the type of raw material, the archaeological assemblage needs to be classified into Raw 

Material Units (RMU; Roeb

and Minimum Analytical Nodules (MAN) (Bleed, 2004; Hall, 2004; Larson, 2004; 

Odell, 2004; Copper and Qiu, 2006). RMU are the blanks from which one, two or 

several cores may be exploited by different knappers. For example, these may be big 

blanks of flint that are fragmented in order to allow the knappers to take a piece and 

start the process of stone tool production. Archaeologically, we are unlikely to obtain 

the entire refit of the blank, since they were often large fragments selected, transported, 

knapped, abandoned, reused, and so on. Only workshops provide the chance of refitting 

a whole RMU. For their part, the MAN are each of the cores knapped. For example, a 

cobble knapped into a discoid is one MAN, as is each of the flint-knapped fragments 

from the abovementioned blank. Archaeologically, MAN are easier to complete by 

refitting than RMU, although the occupational traits of the sites, their post-depositional 

conditions, as well as the area excavated usually make this task difficult. Although 
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theoretically the distinction between RMU and MAN is clear, archaeologically it is not 

always easy to determine whether a particular variety of raw material belongs to a RMU 

or a MAN. Therefore, throughout this work we will use the general term RMU. Both 

RMU and MAN allow us to identify the single cobbles/blanks from which the flakes 

were detached, and indeed, the single knapping events. Associating flakes into RMU 

and MAN is based on the macroscopic features of the artefacts (e.g., grain-size and 

colour of the cortical and non-cortical surface, internal inclusions such as microfossils, 

fractures, and veins) ( Roebroeks, 1998; Odell, 2004; Vaquero, 2008).  

 

Once the pieces have been grouped into RMU and/or MAN, the refitting process begins. 

There are 3 three types of refits: flakes detached in production/knapping sequences 

(refits sensu stricto), breakages (conjoins), and modifications (small pieces detached 

when retouching a flake) (Cziesla, 1990). In this study, only flakes coming from 

production sequences (refits) have been used, and only those that refit together. 

 

 

Data analysis 

 

 

In this study, we applied a multivariate statistical analysis (Correspondence analysis) 

using the program PAST (Paleontological Statistics Software) to identify the hand 

laterality of prehistoric knappers by comparing them with the experimental sample 

(Hammer, Harper and Ryan, 2001, 2008). More conventional, classification 

methodologies were also considered and evaluated using the experimental data. 

Specifically, we fitted our data with a Binary Logistic Regression and applied a simple 
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Machine Learning algorithm (i.e., k- nearest neighbours). In both cases, the 

performance of the resulting classifiers could not significantly outperform the null 

model (i.e., random laterality attribution).  

 

 

 

Archaeological Material 

 

Gran Dolina TD10.1 (Atapuerca, Spain) 

 

Gran Dolina is one of the cavities caves located at Sierra de Atapuerca, in the north of 

the Iberian Peninsula, near the city of Burgos. It is filled with 18 m of sediments divided 

into 11 lithostratigraphic units named TD1 to TD10, from bottom to top, and with a 

et al., 2013; Arnold et al., 2014; Arnold and Demuro, 2015). In this work, we looked at 

the lithic remains of subunit TD10.1, which has a mean date of 244 - 

but may be 

closer to 350 ka (Moreno et al., in press). 

 

Up to now, TD10.1 has been the richest subunit of not only Gran Dolina, but all the 

Sierra de Atapuerca sites, both in terms of lithic and faunal remains. The subunit has 

yielded roughly 21,000 lithic artefacts and 48,000 faunal remains, most of them near the 

The lithic remains probably 

represent the local-scale evolution from Mode 2 to Mode 3 technology at Sierra de 

Atapuerca. While the lithic remains from upper TD10.1 show features typical of the 
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Mode 2 to Mode 3 transition, the main archaeological assemblage of this subunit 

comprises centripetal cores, with diverse and standardised reduction sequences aimed at 

obtaining small and medium-sized flakes, and a number of Levallois cores combined 

-

- ; ). 

 

Up to now, 42 RMU of quartz (n=215), and 148 RMU of quartzite (n=869) have been 

identified from subunit TD10.1. From among these, it has been possible to identify 15 

quartz connections (seven refits and eight conjoins), and 72 quartzite connections (38 

-Ortega et al, 2015). Of these, 80 flakes and broken flakes 

of quartzite, belonging to 34 refit groups, are useful for our purposes (Figure 3). Two to 

five refitting flakes form most of these groups. This means that we have as many as 5 

five flakes produced by a single knapper. 

 

Figure 3 

 

 Spain) 

 

approximately 50 km west of Barcelona. The site is located in the town of Capellades, 

in the tufa formations that rise on the right bank of the Anoia River. The stratigraphy is 

composed of 20 m of well-stratified travertine sediments dated by U-Series as being 

between 40 and 70 ka (Vaquero et al., 2013).  
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The archaeological units tested for this study are levels J and M, aged between 45 and 

54 ka, which also show well-def

Technologically, the lithic assemblage of both levels J and M correspond to Mode 3, 

here characterised by discoid and expeditious knapping methods. 

 

Level J has yielded 7,000 lithic artefacts, and 8,460 faunal remains. There are two main 

archaeostratigraphic units: sublevels Ja and Jb, which have been distinguished only in 

the central area of the occupation. The U-series dates are c. 49 ka BP for the overlying 

ka BP) for the underlying tufa (Bischoff et al., 1988). In addition, a charcoal sample has 

14C ka BP (NZA-2316) (Vaquero et al., 2012). According to 

the refits and the macroscopic characteristics of the raw materials, more than 500 RMU 

have been identified, each corresponding to a singular technical event. Moreover, 262 

refitting groups, totalling 719 artefacts, have been found. In addition, level J has also 

yielded 50 hearths that seem to have spatially structured the site. 

 

18,946, of which 7,614 are faunal remains, 6,084 are lithic remains, 114 are wood 

imprints, 260 charcoal fragments and 37 hearths. In level M it has been possible to 

identify 76 RMU (under study). Moreover, 216 refitting groups, totalling 827 artefacts, 

have been found. 

 

We have selected the refit groups with the most connecting flakes from a single core 

(MAN): one refit group from level Ja and seven refit groups from level M. All of them 
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are flint. The smallest refit comprises 5 five flakes (AR3), while the largest is made up 

of 36 flakes (AR8) (Figure 4). 

 

Figure 4 

 

Results 

 

The total sample set analysed comprised 1,355 flakes and broken flakes. Of these, 80 

1,159 are from the experimental programme. Of the 1,355 pieces, 971 were complete 

flakes and 384 were broken flakes. 

 

Tables 2 and 3 show the frequency at which the technical features of hand preference 

and Gran Dolina refit groups (Table 3). Interestingly, there are differences between the 

archaeological and experimental samples: 63% of the variables included in the technical 

features were not identified in any of the 80 flakes from level TD10.1 of Gran Dolina, 

and 27% of these variables were not identified in any of the 116 flakes from Abric 

1,159 experimental flakes. Furthermore, two variables of the technical features were not 

identified in any of the 196 archaeological flakes analysed: the distal location of 

hackles, and the sinuous inclination of the striking platform. Both these variables tended 

to appear in low frequencies in the experimental sample. Therefore, and taking into 

account the figures, it is likely that the presence/absence of some of the variables is 

directly linked to the number of flakes analysed: the more flakes detached by a single 
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knapper, the more the possibilities of them containing all the variables included in each 

technical feature. The frequencies of each technical feature will be used in the 

correspondence analysis to identify the hand laterality of prehistoric knappers. 

 

Table 2 

Table 3 

 

In order to ascertain the minimum number of flakes required to identify at 100% 

confidence the hand laterality of the knapper, we first performed a correspondence 

analysis, including all the archaeological and experimental samples. Figure 5 shows all 

the samples, and the way the archaeological groups of refits are located around the 

experimental ones. Compared to Figure 2 (only experimental samples) we can see that 

both left- and right-handed experimental knappers situate closer, concentrate, hence 

losing their spatial variability. This is probably because there are too few flakes in some 

of the archaeological refits, some of them having just two or three refit flakes.  

 

Figure 5 

 

Because of this distortion in the distribution pattern of the experimental groups, a 

second correspondence analysis was undertaken, this time excluding all archaeological 

refit groups with less than five flakes. By doing this we lose most of the Gran Dolina 

refit groups, since just one (GD29) comprises five flakes. Figure 6 shows the 

distribution of all the remaining samples, which is more similar to the experimental-

only pattern (Figure 2). Although the relative position of the right- and left-handed 

samples is correct (right-handers above the X axis, left-handers below), the 
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experimental samples maintain the distorted pattern, particularly the position of the 

sample R-Nu (a right-handed participant), which is below the X axis, in a similar 

position to some of the left-handed participants. In other words, individual R-Nu locates 

outside the sector of her true hand preference. This means that although better, this 

sampling is not selective enough to give a perfect fit to the experimental, real pattern. In 

summary, analysing five flakes may lead to a false positive result. 

 

Figure 6 

 

However, given that few flakes make up most of the archaeological samples (Figure 3 

and 4) we decided to perform a series of new simulations involving downscaled 

experimental samples, instead of removing archaeological groups from the analysis. As 

Table 1 shows, the number of flakes per group from the experimental sample ranged 

between 47 and 140 flakes. Consequently, we downscaled each experimental group of 

refits to fewer flakes per knapper. This simulation was made by taking the median of 

each variable, preserving the weight of each technical feature from the original 

distribution pattern. We reduced the experimental sample to five flakes (Figure 7a), six 

flakes (Figure 7b), seven flakes (Figure 7c), and eight flakes per knapper (Figure 7d), 

the last group showing the same pattern between the downscaled experimental 

subsamples and the original experimental sample group. Therefore, eight is the 

minimum number of flakes required to identify the hand laterality of a knapper above a 

confidence level of 93.75%. 

 

These simulations allowed us to obtain the confidence rate for each downscaling of the 

experimental sample. As Figure 7a shows, the distribution pattern of the downscaled 

experimental subsample is quite similar to the pattern of the original experimental 
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sample (Figure 2). An analysis of 5 five flakes entails only a 73.33% probability of 

correctly targeting the hand laterality of the knapper, since groups of five flakes fail to 

achieve their correct position in the plot: individuals L_Et, L_4, L_3, R_4 and R_3 are 

positioned outside the sector of their true hand preference, when analysing just 5 five 

flakes. Actually, these individuals are showing false positives. Besides, the margin of 

success is greater for the right-handed population (75%), than for the left-handed 

population (71.42%). 

 

By analysing 6 six flakes (Figure 7b) we still have some individuals that are positioned 

outside the sector of their true hand preference. These individuals are R-Mn, L_1, L-2, 

L-3, L-4. Interestingly, by analysing six flakes (Figure 7b) the probability of correctly 

identifying the hand preference of the sample reduces to 66.66%, even though with this 

number the probability of correctly assigning right-handers is higher (87.5%, with left-

handers being only 42.85%). Nevertheless, by analysing seven flakes the improvement 

in the results is notable, since the probability of targeting the hand preference of the 

knapper rises to 93.33% (Figure 7c). In this case, only one group of flakes (L_3) 

belonging to a left-handed knapper is wrongly positioned as a right-handed individual. 

Therefore, the margin of error, the probability of a false positive has decreased to 

6.66%. Finally, analysing eight flakes per knapper guarantees the correct distribution of 

the experimental population with regard to their hand preference (Figure 7d), above a 

confidence level of 93.75%.  

 

Figure 7 
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With this information, we looked once again at the archaeological sample group using 

refits formed by eight or more flakes. Only five groups of refits fulfil this condition, all 

 one from level Ja (sample AR1), and 4 four from level M 

(samples AR5; AR6; AR7; AR8). Figure 8 shows the distribution of these samples, 

where all the archaeological groups fit the right-handed pattern of knappers, similar to 

that of the experimental participant R_A_B. However, experimental right-handed 

knapper R_Nu appears in the area of left-handed knappers, showing a false positive. 

This false positive means that there is still a small margin of error (6.66%). This fact 

particularly affects the archaeological group of refits AR5, nearest the X axis, which 

varies its position depending on whether the experimental knapper R_Nu is included in 

(Figure 8), or excluded from (Figure 9) the analysis. In the first case, AR5 appears as a 

right-handed knapper; in the second case, she is left-handed. 

 

Figure 8 

Figure 9 

 

In summary, right-handed Neanderthals knapped four of the five groups of flakes 

to assign to a group. In Gran Dolina-TD10-1, only one group of flakes (GR29) contains 

enough information to be 73.33% certain that they were produced by a right-handed 

knapper. 

 

 

Discussion 

 



 

 21 

The aim of this paper is to apply a method to the archaeological record that allows us to 

identify the hand laterality of our ancestors, and discern when and how this feature, 

which is most prominent in humans, appeared in our evolutionary history. The 

importance of this issue lies in the organisation of the brain, where our motor, sensory 

and cognitive functions are structured accord with this laterality.  

 

Previous approaches to the hand laterality of our ancestors have mainly involved the 

hominin remains found at certain sites. However, these remains are scarce and do not 

always include the body parts that provide information on this question. Other 

approaches using stone tools, such as use-wear analysis, have been successful, but 

require the tools to have been both used sufficiently and be well preserved. Other 

proxies drawn from the study of single technological features of flakes (i.e., Toth, 1985; 

-Ballesteros and Arrizabalaga, 2015) have been 

questioned from the beginning by authors such as Patterson and Sollberger (1986), 

ity 

of finding out the hand preference of one individual by using only one technical feature. 

 

Mosquera, 2014), which deals with handedness in human evolution by analysing a 

combination of certain technical features of the most widely-produced stone tools in the 

Pleistocene world: flakes. We used a multivariate statistical analysis (Correspondence 

analysis), since alternative classification methodologies (i.e., Binary Logistic 

Regression and applied a simple Machine Learning algorithm) could not significantly 

outperform the null model (i.e., random laterality attribution).  
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The selected method requires flakes produced by the same knapper, meaning that these 

flakes must be identified from the archaeological assemblage. It is quite difficult to 

isolate an individual knapping event in an archaeological assemblage, given that most 

archaeological levels are actually palimpsests. Preliminary archaeostratigraphic 

approaches to isolating the remains of each living floor, and a subsequent search for 

refits, are required to identify singular events (Lucas, 2005; Bailey, 2007; 

al., 2015; Machado et al., 2015). Because these singular knapping events may involve 

more than one core (Vaquero, 2008), it is necessary to identify a unique core and the 

flakes that refit one another. However, ethnographic records show that different 

knappers (Stout, 2002; Bril et al., 2005) may have worked on the same core. 

Nevertheless, the archaeological lithic samples we used in this study have the following 

characteristics: 1) all the archaeological groups of refits are formed by relatively few 

pieces, never exceeding forty flakes, and 2) the technical features of the flakes are 

completely homogeneous within each group of refits, suggesting that they were all 

produced by the same person. 

 

The matter of how much raw material may condition the analysis has been solved by 

selecting archaeological refit groups of quartzite for Atapuerca and flint from Abric 

Rom  types were frequently used in prehistory, as well as at each of these 

sites, and they are good quality materials, retaining the maximum number of technical 

features produced by the knapping process, unlike quartz, where the large crystal 

structures makes it difficult to preserve many striking platforms (de Lombera-Hermida, 

2009).  
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In addition, this paper also highlights other potential uses of refit studies. Until now, 

they have been used to analyse the spatial distribution of remains within occupations; to 

understand the way the tools were produced; to identify how hominins organised the 

tasks performed inside the settlements; and to identify the movements of the individuals 

within these activity areas (Cahen et al., 1979; Hofman, 1981; Bodu et al., 1990; 

Ashton, 2004; Turq et al., 2013). Now, refits can also be used to facilitate the 

identification of individuals and provide an understanding of their technological 

cognition. 

 

In this sense, studying the handedness of the fossil hominins is n

providing anecdotal information, but the information may help us understand the 

development of the complex brain organisation during human evolution, and to discover 

how individuals engaged within their communities. In the words of 

reference to an individual agent within a wider society founded on the social 

relationships that they both create and maintain, irrespective of how they conceived of 

 

 

 

Conclusions 

 

 

The minimum number of flakes necessary to successfully identify hand laterality at 

about 94% of confidence is eight. They must be produced by the same knapper, and the 

only way to ensure this from the archaeological record is to find eight flakes that refit 

one other because they were produced from a single core-knapping event. In addition, 
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there is no single technical feature that provides information about hand preference, but 

instead there is a combination of eight technical features, located on the striking 

platforms and the ventral surfaces. Raw material is not relevant in the case of the most-

widely used rocks in Europe, flint and quartzite, since the majority retain the technical 

features required for analysis. The exception to this is quartz, where many flakes from 

the striking platform are lost during the percussion. Expertise is not an issue either, 

since the technical features analysed here correlate only with handedness, and not the 

 

 

Our results indicate that just one pre-Neanderthal knapper from TD10.1 at Gran Dolina 

(Atapuerca) may be suitable for analysis, since only one refit group containing 5 five 

quartzite flakes was found. It has been ascertained with a 73.3% confidence rate that 

this individual was right-

with better results. Levels Ja and M yielded five refit groups made up of more than eight 

flakes, allowing us to clearly distinguish the presence of four right-handers, with the 

hand preference of one remaining unclear. 

 

Even though eight flakes is a relatively low figure, this number is still quite difficult to 

obtain at many archaeological sites. This is the case of Gran Dolina-TD10.1, which up 

to now has yielded 29 groups of quartzite refits from knapping sequences, none of 

which exceeds 5 five flakes. Nevertheless, these figures may increase in the near future, 

and more success may be seen when applying the method to the Neogene chert 

assemblage, which is much more numerous, but also much more difficult to refit, due to 

the poor preservation of this rock type. 
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The possibility of identifying the handedness of our ancestors, in this case from 300 ka 

and 50 ka ago at Gran Dolina-

step forward in the field of human evolution, no matter the age of the samples. Further 

study should eventually allow us to fix the time when handedness arose and, by 

extension, know at what point brain laterality developed in humans at both the 

individual and population levels, as well as which hominin species were partially or 

totally lateralised. It is possible that our earliest ancestors started to display handedness, 

but perhaps more sporadically, as seen in living chimpanzee populations. We will also 

be able to understand the progression of this cognitive feature through our phylogeny, 

and whether it was a progressive change or one that appeared suddenly. In addition, we 

will be able to study the role that social and cultural environments may have played in 

the evolution of this characteristic. Our method ensures this goal through studying the 

knapping activities of our ancestors, one of the best-recorded tasks with well-preserved 

remains. 
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Figure legends 

 

Figure 1: Technical features analysed. Top: technical features present on the flakes. 

Bottom: possible locations of the ridge of the bulb, the  scars, hackles, ripples, 

inclination of the extraction axis, inclination of the striking platform and the type of 

striking platform.  
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Figure 2: Correspondence analysis of the experimental sample: left-handed knappers (L-

x) are located above factor 2, while right-handed knappers (R-x) are located below this. 

All the samples are represented by triangles. 

 

Figure 3: Left: Complete and broken flakes belonging to 34 groups of refits found from 

in level TD10.1 at the Gran Dolina site (Sierra de Atapuerca, Spain). Right: 

Archaeological refit groups GD8 and GD2 -Ortega, 2015). 

 

Figure 4: Top: Complete and broken flakes belonging to eight groups of refits selected 

 site (Barcelona, Spain). 

Bottom: Archaeological refit groups AR1 (photograph from Vaquero et al., 2012) and 

AR8 (photograph by F. Romagnoli). 

 

Figure 5: Correspondence analysis of the entire set of experimental and archaeological 

samples. Triangles: experimental refit groups. + : refit groups from TD10.1, Gran 

Dolina (GD). Circles AR). (Axis 1= 

19.7% eigenvalue; Axis 2= 16.86% eigenvalue). The two axes represent 36.56% of the 

total. 

 

Figure 6: Correspondence analysis of the experimental and archaeological samples, 

selecting just the archaeological refit groups with five or more flakes. Triangles: 

experimental refit groups. +: the only refit group from TD10.1 (GD29) with five flakes. 

Circles: the eight refit AR) with five or more flakes (Axis 

1= 28.36% eigenvalue; Axis 2= 18.63% eigenvalue). The two axes represent 46.99% of 
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the total. Shadowed individual (R_Nu) is positioned outside the sector of her real hand 

preference. 

 

Figure 7. C

per knapper. Triangles: right-handed knappers, both for the original experimental 

-handed 

knappers, both fo

7a. Downscaling the experimental subsample to five 

flakes (Axis 1= 28.49% eigenvalue; Axis 2= 18.53% eigenvalue). The two axes 

represent 47.02% of the total. 7b. Downscaling the experimental subsample to  six 

flakes (Axis 1= 28.56% eigenvalue; Axis 2= 17.11% eigenvalue). The two axes 

represent 45.66% of the total. 7c. Downscaling the experimental subsample to  seven 

flakes (Axis 1= 28.49% eigenvalue; Axis 2= 15.83% eigenvalue). The two axes 

represent 45.66% of the total. 7d. Downscaling the experimental subsample to eight 

flakes (Axis 1= 26.65% eigenvalue; Axis 2= 17.76% eigenvalue). The two axes 

represent 44.41% of the total. Shadowed samples are outside their real handedness 

position. 

 

Figure 8: Correspondence analysis. Triangles: experimental subsample downscaled to  

eight flakes. Circles: the only five archaeological refit groups with  eight or more flakes, 

Nu (shadowed) is outside her 

real hand preference position (Axis 1= 30.93% eigenvalue; Axis 2= 17.03% 

eigenvalue). The two axes represent 47.96% of the total.  

 



 

 42 

Figure 9: Correspondence analysis. Triangles: experimental subsample downscaled to 

eight flakes, without the knapper R_Nu. Circles: the five archaeological refit groups 

with eight 

18.11% eigenvalue). The two axes represent 47.75% of the total. 

 

 

Table legend 

 

Table 1: Number of flakes and broken flakes knapped by each participant during the 

experimental programme. 

 

Table 2: Frequency of the technical features involved in handedness. The table includes 

- and left-handed experimental knappers, 

respectively.  

 

Table 3: Frequency of the technical features involved in handedness. The table includes 

the experimental and archaeological samples from Gran Dolina-TD10.1 level (GD).  

 



 

 1 

LATERALITY 
 

1, Marina Mosquera3,2, Sergi Lozano2,3 

 
1 University College London, Institute Archaeology, London, Great Britain. 
2 ain 
3 Area de Prehistoria, Universitat Rovira i Virgili (URV), Tarragona, Spain 
 
Corresponding author: ameliabarg@gmail.com 
 
 
Abstract 
 

Mosquera, 2014) to the archaeological record, allowing us to identify the hand laterality 

of our ancestors and determine when and how this feature, which is exhibited most 

strongly in humans, appeared in our evolutionary history. The method focuses on 

identifying handedness by looking at the technical features of the flakes produced by a 

single knapper, and discovering how many flakes are required to ascertain their hand 

preference. 

 

This method can potentially be applied to the majority of archaeological sites, since 

flakes are the most abundant stone tools, and stone tools are the most widespread and 

widely-preserved remains from prehistory. For our study, we selected two Spanish sites: 

Gran Dolina-

by pre-Neanderthal and Neanderthal populations, respectively.  

 

Our analyses indicate that a minimum number of 8 eight flakes produced by the same 

knapper is required to ascertain their hand preference. Even though this figure is 

relatively low, it is quite difficult to obtain from many archaeological sites. In addition, 

there is no single technical feature that provides information about handedness, instead 
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there is a combination of 8 eight  technical features, localised on the striking platforms 

and ventral surfaces. The raw material is not relevant where good quality rocks are used, 

in this case quartzite and flint, since most of them retain the technical features required 

for the analysis. Expertise is not an issue either, since the technical features analysed 

here only correlate with 

us to tentatively identify one right-handed knapper among the pre-Neanderthals of level 

TD10.1 at Gran Dolina (Atapuerca), while four of the five Neanderthals analysed from 

t-handed. The hand preference of the fifth knapper from that 

location (AR5) remains unclear. 

 

 

Keywords:  

 

Introduction 

 

Laterality is the preference that living beings display for one half of the body over the 

other. This organisation settles in the structure of the brain, the organ that designates the 

role played by each extremity when performing a task.  

 

Hand laterality is well known in our species, Homo sapiens sapiens.sapiens Various 

studies point to about 97% of the current population being lateralised, among which 

between 85% and 90% of individuals are right-handed, and between 10% and 15% are 

left-handed, depending on whether the communities are preindustrial, illiterate, and so 

on (Annett, 2002; Uomini, 2009). Hand laterality in apes has also been studied 

(Hopkins, 1996; McGrew and Marchant, 1997, 2001;  Hopkins and Cantalupo, 2005), 

 
just one sapiens? 

changed. 
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but it is less marked than human handedness and depends on several environmental and 

social conditions (Mosquera et al., 2007; Llorente et al., 2009, 2011). According to 

Translated by us). However, the subject is not as straightforward as simply being right- 

or left-handed, since some studies have highlighted the fact that chimpanzees become 

more and more lateralised as the task to be done becomes increasingly complex. This 

condition also leads to an increase of in their technological behaviour, which has been 

interpreted as a landmark in the evolution of our hominin clade (Mosquera et al., 2012).  

 

In fact, some researchers support that the most widespread tasks undertaken by humans 

are those where both hands play different roles: e.g., cutting, where one hand holds the 

matter to be cut, and the other uses the knife to do the actual cutting. In addition, cutting 

is not usually needed in the world of apes (Schick and Toth, 2009), which may have 

marked a strong difference between their ancestors and hominins. These type of tasks 

are also known as bimanual complementary tasks (McGrew and Marchant, 1999), 

bimanual complex tasks (Hopkins et al., 2004), and complementary role differentiation 

tasks (Uomini, 2009), which are indeed the most complex, as well as the most 

lateralising tasks, as demonstrated by Uomini (2009) in her experimental study with 

humans(Uomini, 2009). This point of view interpretation has led to the view that there 

is a feedback mechanism in the origin of handedness, where the recurring use of one 

hand gives it more skills compared with the other, in turn favouring the preferential use 

favoured brain lateralisation (Teixeira and Okazaki, 2007). From a phylogenetic point 

of view, hand laterality may have been on the increase since the earliest hominins, as far 
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back as Australopithecus (Mosquera et al., 2012). In this sense, cut-marks found at 

Dikika (Ethiopia) from 3.3 my ago (McPherron et al., 2010) do not inform us about 

hand laterality, but they are by-products of bimanual complementary tasks (i.e., cutting, 

defleshing), which reinforce our hypothesis. 

 

The issue then, is to ascertain when handedness evolved in our hominin clade. Previous 

approaches to the question of hand laterality in our ancestors mostly focused on the 

hominin remains recorded from certain sites. Such is the case of in the dental-wear 

studies of with  the so-called use of the t -

Neanderthal individuals deposited at the Sima de los Huesos site (Atapuerca, Spain) 

, 2003; Lozano et al., 2009). Other studies have centred on the 

endocrania (Poza-Rey, 2015), humerus and other limb bones (;Carretero, et al., 1997; 

Lazenby, 2002; Shaw, 2011). All these studies point to a similar handedness in 

Neanderthals as is found in modern humans (Frayer et al., 2010; Fiore et al., 2015).  For 

its part, the pre-Neanderthal population of Sima de los Huesos (until recently, Homo 

heidelbergensis) from 450,000 years ago, is under debate: some researchers find 

evidences enough to interpret a similar pattern as in modern humans (Frayer et al., 

2012), and others find not well-defined brain lateralization (Poza-Rey et al., 2015).  

 

In fact, the relation between brain asymmetry and hand laterality is not definite 

definitively solved (see Poza-Rey et al., 2015 for debate), and even just at the 

paleoanthropological level we may obtain divergent results. As mentioned, several 

studies pointed out that hand laterality (right-handedness) of Sima de los Huesos 

hominins may be identified in five 5 individuals by means of labial striations of the 

l., 2009). However, in their 
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recent publication on skulls from Sima de los Huesos (Atapuerca, Spain), Poza-Rey and 

colleagues (2015) have crossed compared these data with the brain endocasts 

asymmetries found at in 4 four  of the skulls to which some of that dentition belongs to: 

Ccrania/endocrania 16, 10, 9 and 6. Individual 16 and 6 showed at not did not show  a 

right-handed manual preference in their endocasts asymmetries, but individual 16 shows 

dental striations to the left, while individual 6 shows the dental striations to the right. 

Individuals 10 and 9  resulted in demonstarated  right-handed manual preferences in 

their endocasts asymmetires asymmetries, both associated with to dental striations to the 

right. The authors suggest that the discrepancy obtained in individual 6 may be the 

result fruit of ambidextrous handedness, but also a product of learning by imitation 

(Poza-Rey et al., 2015: 11). 

 

Anyway, hominin remains are scarce in the archaeological record, and they do not 

always include the body parts that give us information on this matter. Tests have been 

carried out on the direction and trajectory of the cut-marks accidentally left on bone 

surfaces by the stone tools used by hominins when processing prey for consumption 

(Bromage and  Boyde, 1984; Bromage et al., 1991;). However, the results of this 

method have been also contested (Pickering et al., 2008). 

 

Furthermore, f For this study we have used the only remains that appear commonly at 

the majority of Pleistocene archaeological sites: stone tools. Because they are the most 

abundant remains at this these type of sites, they can be an excellent source of 

information.  
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One approach that uses stone tools is use-wear analyses, the study of the use-wear 

developed along the edges of stone tools during use. Use-wear studies have revealed 

that one of the pre-Neanderthals that used tools to cut the meat off a carcass at the 

-handed 

 in identifying the hand preference of 

the user, but the approach requires that the tools themselves were both sufficiently used 

and well preserved.  

 

Determining hand laterality through the technical study of flakes has been approached 

from two different perspectives: the knapping method used to produce the flakes (Toth, 

1985), and the analyses of one a single technical feature (Rugg and Mullane, 2001; 

-Ballesteros and Arrizabalaga, 2015). Both of these approaches have been 

discussed and their results questioned because of the methods used (see Patterson and 

Sollberger, 1986, and Pobiner, 1999 for Toth, 1985 , 2014 

for Rugg and Mullane, 2001). 

 

In this paper, we apply the method we previously published, on how to identify 

and Mosquera, 2014), to the archaeological record, with the aim of finding out how 

many flakes produced by a single Pleistocene knapper are needed for the analysis to 

ascertain his/her hand preference. As mentioned previously, the benefit of this method is 

that it can potentially be applied to the majority of archaeological sites. 

 

To do this, we selected two Spanish sites: Gran Dolina-TD10.1 (Atapuerca) and Abric 

Roma -Neanderthal and Neanderthal 

 

Ok I checked and 
corrected. 
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populations, respectively. In both species, the handedness of some individuals has been 

identified, so this study serves to both confirm the previous results and to test the 

reliability of this method when applied to older sites and hominin species, until the first 

hominin species that was completely lateralised is found, as well as any evolution in 

that process. Furthermore, given that the TD10-1 archaeological record was made by 

pre-Neanderthal populations peri-contemporary to that of SH, our results may come to 

provide more evidences to on the current debate. 

 

 

Method 

 

from lithic evidence. The study was conducted by means of an experimental programme 

in stone knapping, after which the resulting lithic flakes were analysed. These flakes 

were produced by 15 inexpert knappers (8 eight  right-handed and 7 seven left-handed), 

because we were not able to find a statistically significant number of left-handed expert 

knappers. We considered inexpert knappers to include individuals who had never struck 

two pebbles together, as well as individuals who were quite familiar with prehistoric 

tools and had had some degree of practice. Importantly, the Mann-Whitney U test 

proved that all of them produced flakes with the same technical features concerning 

handedness, meaning that, within this sample group, expertise was not a factor that 

affected the presence or absence of these technical features analysed to determine hand 

laterality. On the contrary, expertise clearly affects the quality of the flakes in 

technological terms (i.e., longer, sharper edges, regular morphologies, etc.). The results 

of the experiment indicate that no single variable can be used to determine the laterality 

Why expert here 
when the others are  inexpert? 

Here is expert 
because we indicated that we were not 
find the left-handed expert knappers. 
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of the knapper, but instead this requires a combination of several variables. 

Furthermore, not all flakes display the entire set of significant features. The conclusion 

of this study is, therefore, that it is not possible to determine the hand preference of a 

knapper through a single variable present on their flakes, but it may be possible to 

determine his or her laterality by examining a combination of technical variables on a 

number of their pieces.  

 

 

Experimental sample 

 

The experimental sample corresponds to that published in by 

(2014). This experimental sample included 1,774 pieces knapped by 7 seven left-handed 

and 8 eight  right-handed individuals. Of these, 1,159 were flakes and broken flakes, 

and 615 were fragments of flake and angular knapping fragments. These latter were not 

analysed, since they did not retain the necessary technological features. Of the 1,159 

flakes and broken flakes, 629 (54.23%) were produced by right-handers and 530 

(45.76%) by left-handers. The knapper who produced the fewest flakes made 49 pieces, 

and the knapper who generated the most flakes made 140 (Table 1). All the flakes were 

created from the same type of flint as used by Homo. neandertalensis at the Abric 

2014). 

 

Table 1 

 

Handedness analysis 
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8eight  technical features from the 

complete catalogue of characteristics are informative to ascertain the hand laterality of 

the knapper. However, given that many pieces do not show the eight technical features 

indicative of hand preference, and also that the technical characteristics of a single piece 

may be the fruit result of chance, a number of flakes knapped by the same individual 

must be analysed (Figure 1). 

 

Figure 1 

 

The following are the 8 eight  technical features and their variables (n=21) that provide 

information about handedness: 

 a) Ventral surface: 

1. Location of the ridge on the bulb, recorded by Rugg and Mullane (2001) as 

percussion, the proximal part of the whole bulb. It may be located to the right or 

left. 

2. Location of the  scars on the cone. These are small squamae that 

sometimes accidentally appear in the bulb. If present, they may be centred, or 

located to the right or left. 

3. Location of the hackles. Small hackles may appear near the edges of the ventral 

surface. They may be distal, right or left located. 

4. Location of the ripples. Long curved wrinkles that appear along the ventral 

surface and follow the detaching axis of the flake. They may be located distally, 

or to the right or left. 

5. Orientation of the extracting axis of the flake. This may be right or left-oriented 

Morphology is spelt 
incorrectly in this figure and there is an 
accent missing on  in the 
ventral surface diagram 
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b) Striking platform: 

1. Location of the impact point on the striking platform. This may be right or left 

located. 

2. Inclination of the striking platform. It may be to the right, left, or sinuous  

3. Morphology of the striking platform. This may be platform (plan), linear 

(lineal), or punctiform (pointed). 

 

Figure 2 

 

showed that these features clearly allow the right-handed and left-handed knappers from 

the experiment to be distinguished. The first two factors explain 55.56% of the 

variability (factor 1:_36.57%, factor 2:_18.99%). In Figure 2 all the left-handed 

knappers are placed above factor 2, and the right-handed knappers are placed below 

factor 2. Therefore, left-handed knappers tend to produce ripples (39.39%), hackles 

(31.79%), the ridge of the cone of percussion (42.41%), the  scars (15.67%), 

and the impact points (88.34% of the total relative inertia) on the left side of the flake. 

Interestingly they also tend to detach flakes with the striking platform sloped towards 

the right side of the piece (33.81% of the total relative inertia). In contrast, right-handed 

knappers tend to form ripples (36%), hackles (29.49%), the ridge of the cone of 

percussion (49.59%), the  scars (25.78%), and the impact points (49.58% of the 

total relative inertia) on the right side of the flake. As opposed to left-handers, right-

handed knappers tend to detach flakes with the striking platform sloped towards the left-

side of the piece (45.89% of the total relative inertia).  
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This work is based on the fact that the patterns of the experimental knappers help us 

identify the handedness of prehistoric knappers, as the archaeological samples are 

expected to follow the same patterns as the experimental ones (Figure 2).  

 

 

Refit analysis 

 

In order to apply this method to the archaeological record, we need to find flakes 

detached by the same knapper. This can only be achieved by means of searching refits 

from knapping sequences of cores, which is a rather complicated process in many 

archaeological deposits. Although refits do not fully guarantee that only one knapper 

exploited one core, it is the best approach under the circumstances. Therefore, the first 

step is to search for as many refits as possible in archaeological samples.  

 

In this study, we only analysed archaeological pieces longer than 10 mm. Depending on 

the type of raw material, the archaeological assemblage needs to be classified into Raw 

Material Units (RMU; 

and Minimum Analytical Nodules (MAN) (Bleed, 2004; Hall, 2004; Larson, 2004; 

Odell, 2004; Copper and Qiu, 2006). RMU are the blanks from which one, two or 

several cores may be exploited by different knappers. For example, these may be big 

blanks of flint that are fragmented in order to allow the knappers to take a piece and 

start the process of stone tool production. Archaeologically, we are unlikely to obtain 

the entire refit of the blank, since they were often large fragments selected, transported, 

knapped, abandoned, reused, and so on. Only workshops provide the chance of refitting 

a whole RMU. For their part, the MAN are each of the cores knapped. For example, a 

Might be better to 
abbreviate as RMUs and MANs and 
then use as needed  with or without 
the s throughout. 

Ok, I did 
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cobble knapped into a discoid is one MAN, as is each of the flint-knapped fragments 

from the abovementioned blank. Archaeologically, MAN are easier to complete by 

refitting than RMU, although the occupational traits of the sites, their post-depositional 

conditions, as well as the area excavated usually make this task difficult. Although 

theoretically the distinction between RMU and MAN is clear, archaeologically it is not 

always easy to determine whether a particular variety of raw material belongs to a RMU 

or a MAN. Therefore, throughout this work we will use the general term RMU. Both 

RMU and MAN allow us to identify the single cobbles/blanks from which the flakes 

were detached, and indeed, the single knapping events. Associating flakes into RMU 

and MAN is based on the macroscopic features of the artefacts (e.g., grain-size and 

colour of the cortical and non-cortical surface, internal inclusions such as microfossils, 

fractures, and veins) ( Roebroeks, 1998; Odell, 2004; Vaquero, 2008).  

 

Once the pieces have been grouped into RMU and/or MAN, the refitting process begins. 

There are 3 three types of refits: flakes detached in production/knapping sequences 

(refits sensu stricto), breakages (conjoins), and modifications (small pieces detached 

when retouching a flake) (Cziesla, 1990). In this study, only flakes coming from 

production sequences (refits) have been used, and only those that refit together. 

 

 

Data analysis 

 

 

In this study, Wwe applied in this study a multivariate statistical analysis 

(Correspondence analysis) using the program PASTast  (Paleontological Statistics 
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Software) to identify the hand laterality of prehistoric knappers by comparing them with 

the experimental sample (Hammer, Harper and Ryan, 2001, 2008).Alternative, m More 

conventional, classification methodologies were also considered and evaluated using the 

experimental data. Specifically, we fitted our data with a Binary Logistic Regression 

and applied a simple Machine Learning algorithm (i.e., k- nearest neighbours). In both 

cases, the performance of the resulting classifiers could not significantly outperform the 

null model (i.e., random laterality attribution).  

 

 

 

Archaeological Material 

 

Gran Dolina TD10.1 (Atapuerca, Spain) 

 

Gran Dolina is one of the cavities caves located at Sierra de Atapuerca, in the north of 

the Iberian Peninsula, near the city of Burgos. It is filled with 18 m of sediments divided 

into 11 lithostratigraphic units named TD1 to TD10, from bottom to top, and with a 

chronology ranging from the Early to Midd

et al., 2013; Arnold et al., 2014; Arnold and Demuro, 2015). In this work, we looked at 

the lithic remains of subunit TD10.1, which has a mean date of 244 - 

possibly but 

may be  closer to 350 ka (Moreno et al., in press). 

 

Up to now, TD10.1 has been the richest subunit of not only Gran Dolina, but all the 

Sierra the de Atapuerca sites, both in terms of lithic and faunal remains. The subunit has 

caves? 

Ok, I changed 
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yielded roughly 21,000 lithic artefacts and 48,000 faunal remains, most of them near the 

Technologically, t The lithic 

remains probably represent the local-scale evolution from Mode 2 to Mode 3 

technology at Sierra de Atapuerca. While the lithic remains from upper TD10.1 show 

features typical of the Mode 2 to Mode 3 transition, the main archaeological assemblage 

of this subunit comprises centripetal cores, with diverse and standardised reduction 

sequences aimed at obtaining small and medium-sized flakes, and a number of Levallois 

-

- ; et al., 2013). 

 

Up to now, 42 RMU of quartz (n=215), and 148 RMU of quartzite (n=869) have been 

identified from subunit TD10.1. From among these, it has been possible to identify 15 

quartz connections ( 7 seven refits and 8 eight conjoins), and 72 quartzite connections 

-Ortega et al, 2015). Of these, 80 flakes and broken 

flakes of quartzite, belonging to 34 refit groups, are useful for our purposes (Figure 3). 

Two to five refitting flakes form most of these groups. This means that we have as 

many as 5 five flakes produced by a single knapper. 

 

Figure 3 

 

 

 

approximately 50 km west of Barcelona. The site is located in the town of Capellades, 

in the tufa formations that rise on the right bank of the Anoia River. The stratigraphy is 
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composed of 20 m of well-stratified travertine sediments dated by U-Series as being 

between 40 and 70 ka (Vaquero et al., 2013).  

 

The archaeological units tested for this study are levels J and M, aged between 45 and 

54 ka, which also show well-

Technologically, the lithic assemblage of both levels J and M correspond to Mode 3, 

here characterised by discoid and expeditious knapping methods. 

 

Level J has yielded 7,000 lithic artefacts, and 8,460 faunal remains. There are two main 

archaeostratigraphic units: sublevels Ja and Jb, which have been distinguished only in 

the central area of the occupation. The U-series dates are c. 49 ka BP for the overlying 

ka BP) for the underlying tufa (Bischoff et al., 1988). In addition, a charcoal sample has 

been dated as 47 14C ka BP (NZA-2316) (Vaquero et al., 2012). According to 

the refits and the macroscopic characteristics of the raw materials, more than 500 RMU 

have been identified, each corresponding to a singular technical event. Moreover, 262 

refitting groups, totalling 719 artefacts, have been found. In addition, level J has also 

yielded 50 hearths that seem to have spatially structured the site. 

 

 al., 2012). The number of recorded archaeological remains is 

18,946, of which 7,614 are faunal remains, 6,084 are lithic remains, 114 are wood 

imprints, 260 charcoal fragments, and 37 hearths. In level M it has been possible to 

identify 76 RMU (under study). Moreover, 216 refitting groups, totalling 827 artefacts, 

have been found. 
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We have selected the refit groups with the most connecting flakes from a single core 

(MAN): 1 one refit group from level Ja and 7 seven refit groups from level M. All of 

them are flint. The smallest refit comprises 5 five flakes (AR3), while the largest is 

made up of 36 flakes (AR8) (Figure 4). 

 

Figure 4 

 

Results 

 

The total sample set analysed comprised 1,355 flakes and broken flakes. Of these, 80 

are from Gran Dolina (level TD10

1,159 are from the experimental programme. Of the 1,355 pieces, 971 were complete 

flakes and 384 were broken flakes. 

 

Tables 2 and 3 show the frequency at which the technical features of hand preference 

appea

and Gran Dolina refit groups (Table 3). Interestingly, there are differences between the 

archaeological and experimental samples: 63% of the variables included in the technical 

features were not identified in any of the 80 flakes from level TD10.1 of Gran Dolina, 

and 27% of these variables were not identified in any of the 116 flakes from Abric 

e 

1,159 experimental flakes. Furthermore, two variables of the technical features were not 

identified in any of the 196 archaeological flakes analysed: the distal location of 

hackles, and the sinuous inclination of the striking platform. Both these variables tended 
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to appear in low frequencies in the experimental sample. Therefore, and taking into 

account the figures, it is likely that the presence/absence of some of the variables is 

directly linked to the number of flakes analysed: the more flakes detached by a single 

knapper, the more the possibilities of them containing all the variables included in each 

technical feature. The frequencies of each technical feature will be used in the 

correspondence analysis to identify the hand laterality of prehistoric knappers. 

 

Table 2 

Table 3 

 

In order to ascertain the minimum number of flakes required to identify at 100% 

confidence the hand laterality of the knapper, we first performed a correspondence 

analysis, including all the archaeological and experimental samples. Figure 5 shows all 

the samples, and the way the archaeological groups of refits are located around the 

experimental ones. Compared to Figure 2 (only experimental samples) we can see that 

both left- and right-handed experimental knappers situate closer, concentrate, hence 

losing their spatial variability. This is probably because there are too few flakes in some 

of the archaeological refits, some of them having just 2 two  or 3 three  refit flakes.  

 

Figure 5 

 

Because of this distortion in the distribution pattern of the experimental groups, a 

second correspondence analysis was undertaken, this time excluding all archaeological 

refit groups with less than 5 five  flakes. By doing this we lose most of the Gran Dolina 

refit groups, since just one (GD29) comprises 5 five  flakes. Figure 6 shows the 

in these tables (and table 1) is the 
spelling of center to centre. However, 
would be better in all to have Location 
of ripples etc, rather than just Location 
ripples 

OK,  I corrected 

We can said 
nearby for this we used different words
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distribution of all the remaining samples, which is more similar to the experimental-

only pattern (Figure 2). Although the relative position of the right- and left-handed 

samples is correct (right-handers above the X abscise axis, left-handers below), the 

experimental samples maintain the distorted pattern, particularly the position of the 

sample R-Nu (a right-handed participant), which is below the X abscise axis, in a 

similar position to some of the left-handed participants. In other words, the individual 

R-Nu locates outside the sector of her true hand preference. This means that although 

better, this sampling is not selective enough to give a perfect fit to the experimental, real 

pattern. In summary, byby analysing 5 five5 flakes may lead to a false positive result. 

 

Figure 6 

 

However, given that few flakes make up most of the archaeological samples (Figure 3 

and 4) we decided to perform a series of new simulations involving downscaled 

experimental samples, instead of removing archaeological groups from the analysis. As 

Table 1 shows, the number of flakes per group from the experimental sample ranged 

between 47 and 140 flakes. Consequently, we downscaled each experimental group of 

refits to fewer flakes per knapper. This simulation was made by taking the median of 

each variable, preserving the weight of each technical feature from the original 

distribution pattern. We reduced the experimental sample to 5 five flakes (Figure 7a), 6 

six  flakes (Figure 7b), 7 seven  flakes (Figure 7c), and 8 eight  flakes per knapper 

(Figure 7d), the last group showing the same pattern between the downscaled 

experimental subsamples and the original experimental sample group. Therefore, 8 eight  

is the minimum number of flakes required to identify the hand laterality of a knapper 

above a confidence level of 93.75%. 

not wrong, but it is unusual 
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These simulations allowed us to obtain the confidence rate for each downscaling of the 

experimental sample. As Figure 7a shows, the distribution pattern of the downscaled 

experimental subsample is quite similar to the pattern of the original experimental 

sample (Figure 2). An analysis of 5 five flakes entails only a 73.33% probability of 

correctly targeting the hand laterality of the knapper, since groups of 5 five  flakes fail 

to achieve their correct position in the plot: individuals L_Et, L_4, L_3, R_4 and R_3 

are positioned outside the sector of their true hand preference, when analysing just 5 

five flakes. Actually, these individuals are showing false positives. Besides, the margin 

of success is greater for the right-handed population (75%), than for the left-handed 

population (71.42%). 

 

By analysing 6 six flakes (Figure 7b) still we still have some individuals that are 

positioned outside the sector of their true hand preference. These individuals are R-Mn, 

L_1, L-2, L-3, L-4. Interestingly, by analysing 6 six flakes (Figure 7b) the probability of 

correctly identifying the hand preference of the sample reduces to 66.66%, even though 

with this number the probability of correctly assigning right-handers is higher (87.5%, 

with left-handers being only 42.85%). Nevertheless, by analysing 7 seven flakes the 

improvement in the results is notable, since the probability of targeting the hand 

preference of the knapper rises to 93.33% (Figure 7c). In this case, only one group of 

flakes (L_3) belonging to a left-handed knapper is wrongly positioned as a right-handed 

individual. Therefore, the margin of error, the probability of a false positive has 

decreased to 6.66%. Finally, analysing 8 eight  flakes per knapper guarantees the correct 

distribution of the experimental population with regard to their hand preference (Figure 

7d), above a confidence level of 93.75%.  

 



 

 20 

Figure 7 

 

With this information, we looked once again at the archaeological sample group using 

refits formed by 8 eight or more flakes. Only 5 five  groups of refits fulfil this condition, 

 1 one  from level Ja (sample AR1), and 4 four  from 

level M (samples AR5; AR6; AR7; AR8). Figure 8 shows the distribution of these 

samples, where all the archaeological groups fit the right-handed pattern of knappers, 

similar to that of the experimental participant R_A_B. However, experimental right-

handed knapper R_Nu appears in the area of left-handed knappers, showing a false 

positive. This false positive means that there is still a small margin of error (6.66%). 

This fact particularly affects the archaeological group of refits AR5, nearest the X 

abscise axis, which varies its position depending on whether the experimental knapper 

R_Nu is included in (Figure 8), or excluded from (Figure 9) the analysis. In the first 

case, AR5 appears as a right-handed knapper; in the second case, she he/she is left-

handed. 

 

Figure 8 

Figure 9 

 

In summary, right-handed Neanderthals knapped four of the five groups of flakes 

detached at the 

difficult to assign to a group. In Gran Dolina-TD10-1, only one group of flakes (GR29) 

contains enough information enough to be 73.33% certain that they were produced by a 

right-handed knapper. 

 

replace with  x ? 
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Discussion 

 

The aim of this paper is to apply a method to the archaeological record that allows us to 

identify the hand laterality of our ancestors, and discern when and how this feature, 

which is most prominent in humans, appeared in our evolutionary history. The 

importance of this issue lies in the organisation of the brain, where our motor, sensory, 

and cognitive functions are structured accord with according to this laterality.  

 

Previous approaches to the hand laterality of our ancestors have mainly involved the 

hominin remains found at certain sites. However, these remains are scarce and do not 

always include the body parts that provide information on this question. Other 

approaches using stone tools, such as use-wear analysis, have been successful, but 

require the tools both to have been both used sufficiently, and be well preserved. Other 

proxies drawn from the study of single technological features of flakes (i.e., Toth, 1985; 

-Ballesteros and Arrizabalaga, 2015) have been 

questioned from the beginning by authors such as Patterson and Sollberger (1986), 

of finding out the hand preference of one individual by using just only one single 

technical feature. 

 

Mosquera, 2014), which deals with handedness in human evolution by analysing a 

combination of certain technical features of the most widely-produced stone tools in the 

Pleistocene world: flakes. We used a multivariate statistical analysis (Correspondence 

Perhaps better as 
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analysis), since alternative classification methodologies (i.e., Binary Logistic 

Regression and applied a simple Machine Learning algorithm) could not significantly 

outperform the null model (i.e., random laterality attribution).  

 

The selected method requires flakes produced by the same knapper, meaning that these 

flakes must be identified from the archaeological assemblage. It is quite difficult to 

isolate an individual knapping event in an archaeological assemblage, given that most 

archaeological levels are actually palimpsests. Preliminary archaeostratigraphic 

approaches to isolating the remains of each living floor, and a subsequent search for 

refits, are required to identify singular events (Lucas, 2005; Bailey, 2007; 

al., 2015; Machado et al., 2015). Because these singular knapping events may involve 

more than one core (Vaquero, 2008), it is necessary to identify a unique core and the 

flakes that refit one another. However, ethnographic records show that different 

knappers (Stout, 2002; Bril et al., 2005) may have worked on the same single core. 

Nevertheless, the archaeological lithic samples we used in this study have the following 

characteristics: 1) all the archaeological groups of refits are formed by relatively few 

pieces, never exceeding forty flakes, and 2) the technical features of the flakes are 

completely homogeneous within each group of refits, suggesting that they were all 

produced by the same person. 

 

The matter of how much raw material may condition the analysis has been solved by 

selecting archaeological refit groups of quartzite for Atapuerca and flint from Abric 

 types were frequently used in prehistory, as well as at each of these 

sites, and they are good quality materials, retaining the maximum number of technical 

features produced by the knapping process, unlike quartz, whose structure of where  the 
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large crystal structures makes it difficult to preserve many striking platforms (de 

Lombera-Hermida, 2009).  

 

In addition, this paper also highlights other potential uses of refit studies. Until now, 

they have been used to analyse the spatial distribution of remains within occupations; to 

understand the way the tools were produced; to know identify how hominins organised 

the tasks performed inside the settlements; and to identify the movements of the 

individuals within these activity areas (Cahen et al., 1979; Hofman, 1981; Bodu et al., 

1990; Ashton, 2004; Turq et al., 2013). Now, refits can also be used to facilitate the 

identification of individuals and provide an understanding of their technological 

cognition. 

 

In this sense, studying the 

providing anecdotal information, but the information may help us understand the 

development of the complex brain organisation during human evolution, and to discover 

how individuals engaged with

reference to an individual agent within a wider society founded on the social 

relationships that they both create and maintain, irrespective of how they conceived of 

 

 

 

Conclusions 
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The minimum number of flakes necessary to successfully identify hand laterality at 

about 94% of confidence is 8 eight. They must be produced by the same knapper, and 

the only way to ensure this from the archaeological record is to find 8 eight flakes that 

refit one other because they were produced from a single core-knapping event. In 

addition, there is no single technical feature that provides information about hand 

preference, but instead there is a combination of 8 eight technical features, located on 

the striking platforms and the ventral surfaces. Raw material is not relevant in the case 

of the most-widely used rocks in Europe, flint and quartzite, since the majority retain 

the technical features required for analysis. The exception to this is quartz, where many 

flakes from the striking platform are lost during the percussion. Expertise is not an issue 

either, since the technical features analysed here only correlate only with handedness, 

and not the technical quality of the tools (Bargal  

 

Our results indicate that just one pre-Neanderthal knapper from TD10.1 at Gran Dolina 

(Atapuerca) may be suitable for analysis, since only one refit group containing 5 five 

quartzite flakes was found. It has been ascertained with a 73.3% confidence rate that 

this individual was right-

with better results. Levels Ja and M yielded 5 five refit groups made up of more than  8 

eight flakes, allowing us to clearly distinguish the presence of four right-handers, with 

the hand preference of one remaining unclear. 

 

Even though 8 eight flakes is a relatively low figure, this number is still quite difficult to 

obtain at many archaeological sites. This is the case of Gran Dolina-TD10.1, which up 

to now has yielded 29 groups of quartzite refits from knapping sequences, none of 

which exceeds 5 five flakes. Nevertheless, these figures may increase in the near future, 
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and more success may be seen when applying the method to the Neogene chert 

assemblage, which is much more numerous, but also much more difficult to refit, due to 

the poor preservation of this rock type. 

 

The possibility of identifying the handedness of our ancestors, in this case from 300 ka 

and 50 ka ago at Gran Dolina-TD10.1 and A

step forward in the field of human evolution, no matter the age of the samples. Further 

study should eventually allow us to fix the time when handedness arose and, by 

extension, know at what point brain laterality developed in humans at both the 

individual and population levels, as well as which hominin species were partially or 

totally lateralised. It is possible that our earliest ancestors started to display handedness, 

but perhaps more sporadically, as seen in living chimpanzee populations. We will also 

be able to understand the progression of this cognitive feature through our phylogeny, 

and whether it was a progressive change or one that appeared suddenly. In addition, we 

will be able to study the role that social and cultural environments may have played in 

the evolution of this characteristic. Our method ensures this goal through studying the 

knapping activities of our ancestors, one of the best-recorded tasks with well-preserved 

remains. 
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Figure legends 

 

Figure 1: Technical features analysed. Above Top: technical features present on the 

flakes. Below Bottom: possible locations of the ridge of the bulb, the eraillure  

scars, hackles, ripples, inclination of the extraction axis, inclination of the striking 

platform and the type of striking platform.  

 

Figure 2: Correspondence analysis of the experimental sample: left-handed knappers (L-

x) are located above factor 2, while right-handed knappers (R-x) are located below this. 

All the samples are represented by triangles. 

 

Figure 3: Left: Complete and broken flakes belonging to 34 groups of refits found from 

in level TD10.1 at the Gran Dolina site (Sierra de Atapuerca, Spain). Right: 

Archaeological refit groups GD8 and GD2 -Ortega, 2015). 

 

Figure 4: Top: Complete and broken flakes belonging to 8 eight  groups of refits 

selected from levels Ja and M fr

Spain). Bottom: Archaeological refit groups AR1 (photograph from Vaquero et al., 

2012) and AR8 (photograph by F. Romagnoli). 
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Figure 5: Correspondence analysis of the entire set of experimental and archaeological 

samples. Triangles: experimental refit groups.  + : refit groups from  TD10.1, Gran 

Dolina (GD). Circles AR). (Axis 1= 

19.7% eigenvalue; Axis 2= 16.86% eigenvalue). The two axes represent 36.56% of the 

total. 

 

Figure 6: Correspondence analysis of the experimental and archaeological samples, 

selecting just the archaeological refit groups with 5 five or more flakes. Triangles: 

experimental refit groups. +: the only refit group from TD10.1 (GD29) with 5 five  

flakes. Circles: the 8 eight  AR) with 5 five  or more 

flakes (Axis 1= 28.36% eigenvalue; Axis 2= 18.63% eigenvalue). The two axes 

represent 46.99% of the total. Shadowed individual (R_Nu) is positioned outside the 

sector of her real hand preference. 

 

per knapper. Triangles: right-handed knappers, both for the original experimental 

-handed 

7a. Downscaling the experimental subsample to 5 

five  flakes (Axis 1= 28.49% eigenvalue; Axis 2= 18.53% eigenvalue). The two axes 

represent 47.02% of the total. 7b. Downscaling the experimental subsample to  6 six 

flakes (Axis 1= 28.56% eigenvalue; Axis 2= 17.11% eigenvalue). The two axes 

represent 45.66% of the total. 7c. Downscaling the experimental subsample to  7 seven 

flakes (Axis 1= 28.49% eigenvalue; Axis 2= 15.83% eigenvalue). The two axes 

represent 45.66% of the total. 7d. Downscaling the experimental subsample to 8 eight  
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flakes (Axis 1= 26.65% eigenvalue; Axis 2= 17.76% eigenvalue). The two axes 

represent 44.41% of the total. Shadowed samples are outside their real handedness 

position. 

 

Figure 8: Correspondence analysis. Triangles: experimental subsample downscaled to  8 

eight flakes. Circles: the only five archaeological refit groups with  8 eight  or more 

flak

outside her real hand preference position (Axis 1= 30.93% eigenvalue; Axis 2= 17.03% 

eigenvalue). The two axes represent 47.96% of the total.  

 

Figure 9: Correspondence analysis. Triangles: experimental subsample downscaled to 8 

eight  flakes, without the knapper R_Nu. Circles: the five archaeological refit groups 

with  8 eight 

18.11% eigenvalue). The two axes represent 47.75% of the total. 

 

 

Table legend 

 

Table 1: Number of flakes and broken flakes knapped by each participant during the 

experimental programme. 

 

Table 2: Frequency of the technical features involved in handedness. The table includes 

the experimental 

- and left-handed experimental knappers, 

respectively.  
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Table 3: Frequency of the technical features involved in handedness. The table includes 

the experimental and archaeological samples from Gran Dolina-TD10.1 level (GD).  

 



Site
Refit group R_AB R_Jo R_Ju R_Mn R_Nu R_Fd R_H R_Ma L_Ag L_Et L_Fx L_Kr

60 93 84 72 91 82 91 56 140 61 62 47

EXPERIMENTAL

Table



PB
TECHNICAL 
FEATURES VARIABLES AR1 AR2

RIGHT 8 2

LEFT 2 5

CENTRE 1 2

RIGHT 1 0

LEFT 3 0

DISTAL 0 0

RIGHT 1 1

LEFT 4 2

DISTAL 2 0

RIGHT 7 0

LEFT 5 4

RIGHT 8 0

LEFT 7 5

RIGHT 10 1

LEFT 5 3

RIGHT 7 1

LEFT 5 2

SINUOUS 0 0

LINEAL 5 1

PLAN 16 6

POINTED 0 0

Location hackles

Location ripples

Extraction axis

STRIKING 
PLATFORM 
SURFACE

Location impact point

Inclination striking 
platform

Morphology striking 
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