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Graph Metrics for Temporal Networks

Vincenzo Nicosia1,2, John Tang1, Cecilia Mascolo1, Mirco Musolesi3, Giovanni
Russo4, and Vito Latora2,5,6

Abstract Temporal networks, i.e., networks in which the interactions among a set of
elementary units change over time, can be modelled in terms of time-varying graphs,
which are time-ordered sequences of graphs over a set of nodes. In such graphs, the
concepts of node adjacency and reachability crucially depend on the exact temporal
ordering of the links. Consequently, all the concepts and metrics proposed and used
for the characterisation of static complex networks have tobe redefined or appro-
priately extended to time-varying graphs, in order to take into account the effects of
time ordering on causality. In this chapter we discuss how torepresent temporal net-
works and we review the definitions of walks, paths, connectedness and connected
components valid for graphs in which the links fluctuate overtime. We then focus
on temporal node-node distance, and we discuss how to characterise link persistence
and the temporal small-world behaviour in this class of networks. Finally, we dis-
cuss the extension of classic centrality measures, including closeness, betweenness
and spectral centrality, to the case of time-varying graphs, and we review the work
on temporal motifs analysis and the definition of modularityfor temporal graphs.

1 Introduction

Whenever a system consists of many single units interactingthrough a certain kind
of relationship, it becomes natural to represent it as agraph, where eachnodeof the
graph stands for one of the elementary units of the system andinteractions between
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different units are symbolised byedges. If two nodes are connected by an edge they
are said to beadjacent. According to the nature of the units and to the characteristics
of adjacency relationship connecting them, it is possible to construct different kind
of graphs, such as friendship graphs – where nodes are peopleand edges connect
two people who are friends–, functional brain networks – where nodes are regions
of the brain and edges represent the correlation or causality of their activity–, com-
munication graphs – where nodes are terminals of a communication systems, such
as mobile phones or email boxes, and edges indicate the exchange of a message
from a terminal to another, just to make some examples. Thanks to the availability
of large data sets collected through modern digital technologies, in the last decade
or so there has been an increasing interest towards the studyof the structural proper-
ties of graph representations of real systems, mainly spurred by the observation that
graphs constructed from different social, biological and technological systems show
surprising structural similarities and are characterisedby non–trivial properties. In a
word, they arecomplexnetworks. Independently of the peculiar nature and function
of the original systems, the corresponding graphs are usually small–worlds, i.e.,
they show high local cohesion and, at the same time, extremely small node-node
distance [47]; the distribution of the number of neighboursof a node (itsdegree) is
often heterogeneous, and decays as a power–law (i.e., they are scale–free[2]); they
are locally organised as tightly-knit groups of nodes (called communities), which
are in turn loosely interconnected to each other [33]. The concepts, metrics, meth-
ods, algorithms and models proposed so far to study the structure of real networks
has led to the formation of theoretical framework known ascomplex network the-
ory [1, 31, 5].

However, the relationships among the units of a real networked system (e.g., node
adjacency) are rarely persistent over time. In many cases, the static interpretation of
node adjacency is just an oversimplifying approximation: contacts among individ-
uals in a social network last only for a finite interval and areoften intermittent and
recurrent [13, 8, 18]; different intellectual tasks are usually associated to different
brain activity patterns [45, 9]; communication between agents in a telecommunica-
tion system are typically bursty and fluctuate over time [4, 40, 26]; transportation
networks show fluctuations in their microscopic organisation, despite the stability
of their global structural properties [11]. Consequently,whenever we deal with a
networked system that evolves over time, the concept of adjacency needs to be ap-
propriately redefined. The extension of node adjacency to the case of time-evolving
systems has lately led to the definition oftemporal graphs(sometimes also called
time-varying graphsor dynamic graphs), in which time is considered as another di-
mension of the system and is included in the same definition ofthe graph. Since
most of the metrics to characterise the structure of a graph,including graph con-
nectedness and components, distance between nodes, the different definitions of
centrality etc., are ultimately based on node adjacency, they need to be appropri-
ately redefined or extended in order to take into account of the presence, frequency
and duration of edges at different times. In general, the temporal dimension adds
richness and complexity to the graph representation of a system, and demands for
more powerful and advanced tools which allow to exploit the information on tem-
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poral correlations and causality. Recently, Holme and Saramäki have published a
comprehensive review which presents the available metricsfor the characterisation
of temporal networks [14]. A description of some potential applications of these
metrics can be found in [41].

This chapter presents the basic concepts for the analysis oftime-evolving net-
worked systems, and introduces all the fundamental metricsfor the characterisa-
tion of time-varying graphs. In Section 2 we briefly discuss different approaches
to encode some temporal information into static graphs and we introduce a formal
definition of time-varying graph. In Section 3 we examine howreachability and con-
nectedness are affected by time-evolving adjacency relationships and we introduce
the definitions of node and graph temporal components, showing the intimate con-
nections between the problem of finding temporal connected components and the
maximal-clique problem in static graphs. In Section 4 we focus on the concepts of
temporal distance, efficiency and temporal clustering, andwe discuss the temporal
small-world phenomenon. In Section 5 we present the extensions of betweenness,
closeness and spectral centrality to time-varying graphs.Finally, in Section 6 we
report on the definition of temporal motifs and on the extension of the modularity
function to time-varying graphs.

2 Representing Temporal Networks

From a mathematical point of view a networked time-evolvingsystem consists of
a setC of contactsregistered among a set of nodesN = {1,2, . . . ,N} during an
observation interval[0,T] [44, 37]. A contactbetween two nodesi, j ∈ N is rep-
resented by a quadrupletc = (i, j, t,δ t), where 0≤ t ≤ T is the time at which the
contact started andδ t is its duration, expressed in appropriate temporal units. As
we stated above the relationship betweeni and j is usually not persistent (it could
represent the co-location at a place, the transmission of a message, the temporal
correlation between two areas of the brain etc.), so that in general we will observe
more than one contact betweeni and j in the interval[0,T]. In Figure 1 we report an
example of a set of seven contacts observed between a set ofN = 5 nodes within an
interval ofT = 240 minutes. The contacts in the figure are consideredsymmetric,
i.e., (i, j, t,δ t) = ( j, i, t,δ t), even if in general this in not the case. Each contact is
represented by a pair of nodes and a blue bar indicating the start and duration of the
contact. Notice that in this example, which is indeed representative of many social
and communication systems, the typical overlap between contacts is relatively small
with respect to the length of the observation interval.

Before explaining how the temporal information about such aset of contacts can
be represented by means of a time-varying graph, we first review some simple ap-
proaches to deal with time-evolving systems based on staticgraphs, and we discuss
why they are inadequate for analyzing time-evolving systems.
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Fig. 1 The set of contacts registered among five nodes within an observation period of 4 hours.
Blue bars indicate the duration of each contact. The two dashed lines correspond to two instanta-
neous cuts of the contact set, respectively fort = 80min (green) andt = 120min (cyan).

2.1 Aggregated Static Graphs

The classic approach to represent networked systems evolving over time consists in
constructing a singleaggregated static graph, in which all the contacts between each
pair of nodes are flattened in a single edge. An aggregated graph can be represented
by anadjacency matrix A= {ai j} ∈R

N×N, in which the entryai j = 1 if at least one
contact(i, j, ·, ·) has been registered in[0,T] betweeni and j, andai j = 0 otherwise.
If the relationship between any pair of nodesi and j is symmetric, such as in the
case of co-location or collaboration graphs, also the corresponding adjacency matrix
is symmetric, i.e.,ai j = a ji ∀i, j ∈ N . Conversely, whenever a directionality is
implied, for instance when the contact is a phone call fromi to j or represents goods
transferred fromi to j, the adjacency matrix is in general non-symmetric.

Representing a time-evolving system by means of an adjacency matrix, i.e., an
unweighted graph, is usually a severe oversimplification: the information about the
number, frequency and duration of contacts between two nodes i and j is flattened
down into a binary digit (i.e.,ai j = 1 if there is at least one contact, of any duration,
betweeni and j, whileai j = 0 otherwise). In general, a binary adjacency information
does not take into account the heterogeneity observed in real systems. Just to make
an example, both the number of phone calls made by a single node during a certain
time interval the duration of a call between two nodes exhibit large fluctuations, and
their distribution is well approximated by a power–law [4, 26, 16]. This means that
assigning the same weight to all the relationships can lead to misleading conclu-
sions. This problem can be partially solved by constructinga weighted aggregated
graph, in which the edge connectingi to j is assigned a weightwi j proportional to
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Fig. 2 Three different aggregated static graphs obtained from theset of contacts in Figure 1. a) The
unweighted aggregated graph; b) the weighted aggregated graph where each weightwi j between
node i and nodej corresponds to the number of contacts observed; c) the weighted aggregated
graph where each weightwi j is the total duration of all the contacts betweeni and j .

the number of contacts observed, their duration, their frequency or a combination of
the these three dimensions.

In Figure 2 we show three different aggregated static graphscorresponding to
the same set of contacts reported in Figure 1. The leftmost graph (Panel a) is the
unweighted aggregated graph; in the middle graph (Panel b) the weights correspond
to the number of contacts observed between the nodes; in the rightmost one (Panel
c) the weight of each edgewi j is equal to the sum of the duration of all the contacts
betweeni and j. However, both unweighted and weighted aggregated graphs fail to
capture the temporal characteristics of the original system. In fact, by considering all
the links as always available and persistent over time, the number of walks and paths
between two nodes is overestimated, while the effective distance between two nodes
is instead systematically underestimated. For instance, in all the three aggregated
representations, node 2 and node 4 are connected by an edge, but their interaction
is limited just to the beginning of the observation period, so that these nodes cannot
directly communicate for most of the time.

Despite not being powerful enough to represent networks in which the temporal
aspects are crucial, static aggregated graphs and the metrics proposed for their anal-
ysis still constitute an invaluable framework to investigate the structure and func-
tion of systems in which the topological characteristics are more relevant than the
temporal ones. After all, most of the classic examples of complex networks, in-
cluding the graph of the Internet at Autonomous Systems level [46], co-authorship
networks [30, 29], the graph of the World Wide Web [2, 6] and functional brain
networks [7] have been obtained so far by aggregating all thecontacts observed
among a certain number of nodes within a given temporal interval, and the analy-
sis of their structure has provided new insights about the organisation of different
complex systems.
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2.2 Time-varying Graphs

The natural way to work out a graph representation that can properly take into ac-
count all the temporal correlations of a set of contacts consists into including time
as an additional dimension of the graph [17]. We notice that aset of contacts implic-
itly defines a graph for each instantt, made by the set of edges corresponding to all
the contacts(·, ·, ti ,δ ti) such thatti ≤ t ≤ ti +δ ti . In the example shown in Figure 1,
if we considert = 80min, corresponding to the dashed green line in the figure, the
graph constructed from contacts active at that time contains only two edges, namely
(2,3) and(4,5). However, we notice that the graph corresponding tot = 120min
(the dashed cyan line in the figure) is an empty graph, since nocontact is active at
that time. For practical reasons, and especially when contacts are instantaneous, i.e.,
δ t → 0, it is convenient to consider a finitetime-window[t, t +∆ t] and to construct
a graph by creating an edge between all pairs of nodes for which there is at least
a contact which overlaps with the interval[t, t +∆ t]. A generic contact(·, ·,τi ,δτi)
overlaps with[t, t +∆ t] if it satisfies at least one of the three following conditions:

t ≤ τi < t +∆ t (1)

t ≤ τi + δτi < t +∆ t (2)

τi < t ∧ τi + δτi > t +∆ t (3)

A graph Gt obtained by aggregating all the contacts appearing in a given in-
terval [t, t + ∆ t] represents the state of the system in that interval, i.e., itis a
snapshotwhich captures the configuration of the links at that particular time in-
terval. If we consider a sequence of successive non-overlapping time-windows
{[t1, t1 +∆ t1], [t2, t2 +∆ t2], [t3, t3 +∆ t3], . . . , [tM, tM +∆ tM]} then we obtain atime-
varying graph, which is the simplest graph representation of a set of contacts that
takes into account their duration and their temporal ordering [44, 19]. A time-
varying graph is an ordered sequence ofM graphs{G1,G2, . . . ,GM} defined over
N nodes, where each graphGm in the sequence represents the state of the network,
i.e., the configuration of links, in the time-window[tm, tm+∆ tm], m= 1, . . . ,M.
In this notation, the quantitytM +∆ tM − t1 is the temporal length of the observa-
tion period. In general the graphs in the sequence can correspond to any ordered
sequence of times such thatt1 < t1+∆ t1 = t2 < t2+∆ t2 = t3< .. . < tM +∆ tM [12].
In the following we assume, without loss of generality, thatt1 = 0 andtM = T and,
at the same time, that the sequence of snapshots is uniformlydistributed over time,
i.e., tm+1 = tm+∆ t, ∀m= 1, . . . ,M −1 [44]. In compact notation, we denote the
graph sequence forming a time-varying graph asG ≡ G[0,T]. Each graph in the se-
quence can be either undirected or directed, according to the kind of relationship
represented by contacts. Consequently, the time-varying graphG is fully described
by means of a time-dependent adjacency matrixA(tm), m= 1, . . . ,M, whereai j (tm)
are the entries of the adjacency matrix of the graph at timetm, which is in general a
non-symmetric matrix.
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Fig. 3 Two time-varying graphs corresponding to the set of contacts in Figure 1. Panel a): the
four snapshot obtained setting∆t = 60min; Panel b): the eight snapshots of the time-varying graph
constructed using∆t = 30min. The smaller the size of the time-window, the higher the probability
that a snapshot contains no edges (this happens for the snapshot t7 in Panel b).

Notice that, by tuning the size of the time-window used to construct each snap-
shot, it is possible to obtain different representations ofthe system at different tem-
poral scales. In Figure 3 we present two time-varying graphsobtained from the same
set of contacts in Fig. 1 but using two different lengths for the time-window. The
graph on the top panel is constructed by setting∆ t = 60min, and consists of four
snapshots, while the graph on the bottom panel corresponds to a time-window of
∆ t = 30min and has eight snapshots. It is usually preferable to set the size of the
time-window to the maximum temporal resolution available.For instance, if the du-
ration of contacts is measured with an accuracy of one second(such as in the case
of email communications or phone calls), it makes sense to construct time-varying
graphs using a time-window∆ t = 1s.

In the limit case when∆ t → 0, we obtain an infinite sequence of graphs, where
each graph corresponds to the configuration of contacts at a given instantt. This
sequence of graphs might include a certain number of empty graphs, corresponding
to periods in which no contacts are registered. On the contrary, if we set∆ t = T,
the time-varying graph degenerates into the correspondingunweighted aggregated
graph, where all the temporal information is lost.
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3 Reachability, Connectedness and Components

In a static graph thefirst neighboursof a nodei are the nodes to whichi is connected
by an edge, i.e., nodesj such thatai j = 1. We say that the neighbours ofi aredirectly
reachablefrom i. If k is a neighbour ofj and j is in turn a neighbour ofi, then the
nodek is indirectly reachable fromi, i.e., by following first the edge connecting
i to j and then the one which connectsj to k. In general, the direct and indirect
reachability of nodes is important to characterise the global structure of a network
and to investigate the dynamics of processes occurring overit. For instance, if node
i has got a contagious disease, then there is a high probability that the disease will
sooner or later be transmitted to the nodes that are directlyreachable fromi (its
first neighbours). However, if a disease starts from a nodei, also the nodes which
are not directly connected toi but are still indirectly reachable fromi have a finite
probability to get the disease through a chain of transmissions.

The reachability between nodes is related to the concept ofwalk. In a static graph
a walk is defined as an ordered sequence ofℓ edges{ai0,i1,ai1,i2, . . . ,aiℓ−1,iℓ} such
thataik,ik+1 = 1,k = 0,1, . . . , ℓ−1. Thelengthof a walk is equal to the number of
edges traversed by the walk. We say that the nodej is reachablefrom i if there
exists a walk which starts ati and ends up atj. If each vertex in a walk is traversed
exactly once, then the walk is called asimple walkor a path. For instance, in the
graph shown in Figure 2 the sequence of nodes[2,4,5,2,1,4] is a walk of length 5
which starts at node 2 and ends at node 4, while the sequence[3,2,5] is a path of
length 2 going from node 3 to node 5 passing by node 2. In a static graph the length
of the shortest path connecting two nodes is calledgeodesic distance.

Since the definitions of walk and path depend on the adjacencyof nodes, and
given that node adjacency is a function of time in time-varying graphs, an appropri-
ate extension of these concepts is necessary in order to define node reachability and
components in time-varying graphs.

3.1 Time-respecting Walks and Paths

In a time-varying graph, atemporal walkfrom nodei to node j is defined as a
sequence ofL edges[(nr0,nr1),(nr1,nr2), . . . ,(nrL−1,nrL)], with nr0 ≡ i, nrL ≡ j, and
an increasing sequence of timestr1 < tr2 < .. . < trL such thatanrl−1,nrl

(tr l ) 6= 0 l =
1, . . . ,L [44, 12]. A path (also calledtemporal path) of a time-varying graph is a
walk for which each node is visited at most once. For instance, in the time-varying
graph of Figure 3a, the sequence of edges[(5,2),(2,1)] together with the sequence
of timest1, t3 is a temporal path of the graph. This path starts at node 5 at time t1
and arrives at node 1 at timet3. Notice that the aggregated static graph flattens down
most of the information about temporal reachability. In fact, if we look at the static
aggregated graph corresponding to this time-varying graph(shown in Figure 2a),
there are different paths going from node 1 to node 5 and viceversa; however, if we
look at the time-varying graphs of Figure 3 we notice that in both of them there is



Graph Metrics for Temporal Networks 9

no temporal path connecting node 1 to node 5. The reason is that node 5 could be
reached from node 1 only by passing through either node 2 or node 4, but node 1
actually is connected to both these nodesafter they have been in contact to node 5.

3.2 Temporal Connectedness and Node Components

The concept of connectedness is fundamental in complex network theory. A mes-
sage, a piece of information or a disease can be transferred from one node to all
the other nodes to which it is connected, but will never be conveyed to nodes that
are disconnected from it. For this reason, the study of node connectedness and node
components is the very basic tool to investigate the structure of a graph.

In a static undirected graph two nodes are said to be connected if there exists a
path between them. In this particular case connectedness isan equivalence relation:
it is reflexive(i.e., i is connected to itself),symmetric(i.e., if i is connected toj then
j is connected toi) andtransitive(i.e., if i is connected toj and j is connected tok,
theni is also connected tok). Instead, in a directed graph, due to the directionality
of the edges, symmetry is broken and the existence of a path from i to j does not
guarantee that a path fromj to i does indeed exist. For this reason, the notions of
strong and weak connectedness are introduced. In a word, twonodesi and j of a
static directed graph are said to bestrongly connectedif there exist a path fromi
to j and a path fromj to i, while they areweakly connectedif there exists a path
connecting them in the underlying undirected graph, i.e., in the static graph obtained
from the original by discarding edge directions.

Starting from the definitions of temporal walk and path, it ispossible to define
temporal connectedness (in a weak and in a strong sense) for pairs of nodes in a
time-varying graph. A nodei of a time-varying graphG[0,T] is temporally connected
to a nodej if there exists a temporal path going fromi to j in [0,T]. Due to the
temporal ordering of edges, this relation is trivially not symmetric, so that ifi is
temporally connected toj, in generalj can be either temporally connected or dis-
connected toi. Two nodesi and j of a time-varying graph arestrongly connectedif
i is temporally connected toj and alsoj is temporally connected toi.

Temporal strong connectedness is a reflexive and symmetric relation, so that ifi
is strongly connected toj, then j is strongly connected toi. However, strong con-
nectedness still lacks transitivity, and, therefore, it isnot an equivalence relation. In
fact, if i and j are strongly connected andj and l are strongly connected, nothing
can be said, in general, about the connectedness ofi andl . For instance, in the time-
varying graph shown in Figure 3a, node 5 and 2 are strongly connected and also 2
and 1 are strongly connected, but nodes 5 and 1 are not strongly connected because,
as we have already explained above, there exists no temporalpath that connects
node 1 to node 5.

Similarly to the case of static directed graphs, it is possible to define weak con-
nectedness among nodes. Given a time-varying graphG , we consider the underlying
undirected time-varying graphG u, which is obtained fromG by discarding the di-
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rectionality of the links of all the graphs{Gm}, while retaining their time ordering.
Two nodesi and j of a time-varying graph areweakly connectedif i is temporally
connected toj and alsoj is temporally connected toi in the underlying undirected
time-varying graphG u. Also weak connectedness is a reflexive and symmetric rela-
tion, but not transitive.

It is worth noting that strong and weak connectedness propagate over different
time scales. In fact, if we consider two time-varying graphsobtained from the same
set of contacts by using two different time-windows, such asfor instance∆ t1 for
the graphG1 and∆ t2 > ∆ t1 for G2 (as in the two time-varying graphs of Figure 3),
then it is easy to prove that ifi and j are strongly connected inG1 then they are
also strongly connected inG2. The contrary is trivially not true. Thanks to this prop-
erty, strong and weak connectedness in time-varying graphsare consistent with the
corresponding definitions given for static graphs. In fact,as a limiting case, if two
nodes are strongly (weakly) connected in a time-varying graph, then they are also
strongly (weakly) connected in the corresponding aggregated static graph, which is
the degenerate time-varying graph obtained by setting∆ t = T.

By using reachability, strong and weak connectedness, different definitions of
node components can be derived. For instance, thetemporal out-component of node
i (resp.in-component), denoted as OUTT(i) (resp. INT(i)), is the set of vertices
which can be reached fromi (resp. from whichi can be reached) in the time-varying
graphG . Similarly thetemporal strongly connected component of a node i(resp.
weakly connected component), denoted as SCCT(i) (resp. WCCT(i)), is the set of
vertices from which vertexi can be reached, and which can be reached fromi, in the
time-varying graphG (resp. in the underlying undirected time-varying graphG u).

In general, temporal node components have quite heterogeneous composition and
sizes, and reveal interesting details about the structure of the graph. For instance, the
out-component of node 3 in the two graphs of Figure 3 containsonly nodes 1, 2, 4
and node 3 itself, since there is no way for node 3 to reach node5. Conversely, in
the corresponding aggregated graphs (as shown in Figure 2) the out-components of
all the nodes are identical and contain all the nodes of the graph.

The importance of temporal node components has been pointedout in Ref. [36],
which reports the results of temporal component analysys ontime-varying graphs
obtained from three different data sets. The authors compared the size of node tem-
poral in- and out-components in these time-varying graphs with the size of the giant
component of the corresponding aggregated graphs, and theyfound that in general
temporal node components are much smaller than the giant component of the ag-
gregated graph, and exhibit a high variability in time. Thisis another example of the
fact that time-varying graphs are able to provide additional information that is not
captured by aggregated graphs.
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Fig. 4 Affine graph associated to the time-varying graph of Figure 3a. Pairs of strongly connected
nodes are linked by an edge, and the cliques of the affine graphcorrespond to the strongly con-
nected components of the associated time-varying graph.

3.3 Graph Components and Affine Graphs

Differently from the case of directed static graphs, it is not possible to define the
strongly (weakly) connected components of a time-varying graph starting from the
definition of connectedness for pairs of nodes. Formally, this is due to the fact that
strong and weak connectedness are not equivalence relations. For this reason, the
following definition of strongly connected component of a time-varying graph has
been proposed [36]: a set of nodes of a time-varying graphG is a temporal strongly
connected component ofG if each node of the set is strongly connected to all the
other nodes in the set. A similar definition exists for weaklyconnected components.
These definitions enforce transitivity but have the drawback that in order to find the
strongly connected components of a time-varying graph, it is necessary to check the
connectedness between all pairs of nodes in the graph. In Ref. [36] it has been shown
that the problem of finding the strongly connected components of a time-varying
graph is equivalent to the well-known problem of finding the maximal-cliques of
an opportunely constructed static graph. We define such graph as theaffine graph
corresponding to the time-varying graph. The affine graphGG is defined as the graph
having the same nodes as the time-varying graphG , and such that two nodesi
and j are linked inGG if i and j are strongly connected inG . In Fig. 4 we report
the affine graph corresponding to the time varying graph shown in Fig. 3a. In this
graph, node 1 is directly connected to nodes{2,3,4}, since it is temporally strongly
connected to them in the time-varying graph. Similarly, node 2 is connected to nodes
{1,3,4,5}, node 3 is connected to{1,2}, node 4 is connected to{1,2,5} and node 5
is connected to{2,4}. Hence, the affine graphGG has only 7 of the 10 possible links,
each link representing strong connectedness between two nodes. By construction, a
clique of the affine graphGG contains only nodes which are strongly connected to
each other, so that themaximal-cliquesof the affine graph, i.e., all the cliques which
are not contained in any other clique, are temporal stronglyconnected components
(SCCT ) of G . Similarly, all themaximum-cliquesof the affine graphGG , i.e., its
largest maximal-cliques, are the largest temporal strongly connected components
(LSCCT ) of G .
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We notice that the problem of finding a partition ofG that contains the minimum
number of disjoint strongly connected components is equivalent to the well–known
problem of finding a partition of the corresponding affine graph GG in the smallest
number of disjoint maximal-cliques [15]. Unfortunately, this problem is known to
be NP–complete, and in practice can be exactly solved only for small graphs. In the
case of the affine graph reported in Figure 4, it is possible tocheck by hand that
there are only three possible partitions ofGG into maximal-cliques, namely

1. {1,2,3}
⋃

{4,5}
2. {1,2,4}

⋃

{3}
⋃

{5}
3. {2,4,5}

⋃

{1,3}

The second partition contains two isolated nodes, which areindeed degenerated
maximal-cliques. Therefore, the original time-varying graph admits only two differ-
ent partitions into a minimal number of non-degenerated strongly connected com-
ponents, namely into two components containing at least twonodes each. This is a
quite different picture from that we obtain using static aggregated graphs. In fact,
all the static aggregated representations of the same time-varying graph (see Fig-
ure 2) are composed by just one strongly connected componentwhich includes all
the nodes.

We notice that in general the largest temporal strongly connected components
of a time-varying graph can be much smaller than the giant connected component
of the corresponding aggregated graph. For instance, in Ref. [36] the authors per-
formed temporal component analysis on time-varying graphsconstructed from three
different time-stamped data sets (i.e. the MIT Reality Mining project, co-location at
INFOCOM 2006 and Facebook communication), and they found that despite the gi-
ant connected component of the corresponding aggregated graphs usually included
almost all the nodes in the network, the maximal cliques of the affine graphs were in-
deed much smaller. Particularly interesting was the case ofthe Facebook communi-
cation data set: the giant connected components of the aggregated graphs contained
from 104 to 105 nodes, while the largest temporal strongly connected components
counted around one hundred nodes at most. Disregarding suchdiscrepancies could
result in misleading conclusions. For example, the potential number of individu-
als infected by a disease which spreads through the system isin the order of tens
if we correctly take into account temporal correlations, but could be erroneously
estimated to be thousand times larger if one considers the aggregated graph.

4 Distance, Efficiency and Temporal Clustering

One of the most relevant properties of static complex networks is that they exhibit,
on average, a surprising small geodesic distance between any pairs of nodes, where
the geodesic distance betweeni and j is defined as the length of the shortest path
connecting them. The average geodesic distance is important to characterise how
fast (for example, in terms of number of hops), a message can be transmitted from
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a node to another in the network; therefore, it is related to the overall efficiency of
communication among nodes. Having a small average geodesicdistance (where the
average is computed over all the pairs of connected nodes) isa desirable property
when one wants to spread a message throughout the network; conversely, small
geodesic distance becomes a problem if we want to control thepropagation of a
disease.

4.1 Temporal Distance and Efficiency

When we consider time-varying graphs, the temporal dimension is an essential ele-
ment of the system, so that the concept of geodesic distance cannot be limited to the
number ofhopsseparating two nodes but should also take into account the temporal
ordering of links. As a matter of fact, any path in a time-varying graph is charac-
terised by two different lengths:a) a topological length, measured as the number of
edges traversed by the path, andb) a temporal lengthor duration, measured as the
time interval between the first and the last contact in the path.

Both the topological and the temporal lengths of a path usually depend on the
time at which the path starts. Consider for instance two of the paths connecting node
5 to node 3 in Figure 3a. The first path starts from 5 at snapshott1 which traverses
the edge(5,2) at(t1) and arrives at node 3 following the edge(2,3) at time(t2). The
second one starts from 5 at timet2 and arrives at node 3 at timet4, after traversing
the edges(5,4) at t2, (4,1) and(1,2) at t3 and finally(2,3) at t4. The first path has a
topological length equal to 2 and a temporal length of two snapshots (e.g., 2 hours),
while the second path has a topological length equal to 4 and atemporal length
equal to three snapshots (e.g., 3 hours).

The temporal shortest pathfrom nodei to node j is defined as the temporal
path connectingi to j which has minimum temporal length. Similarly, thetemporal
distance di, j betweeni and j is the temporal length of the temporal shortest path
from i to j. In the example discussed above, the temporal shortest pathconnecting
node 5 to node 3 is the one starting att1 and having temporal length equal to two
snapshots.

The natural extension of the average geodesic distance to the case of time-varying
graphs is thecharacteristic temporal path length[44, 42], which is defined as the
average temporal distance over all pairs of nodes in the graph:

L =
1

N(N−1)∑
i j

di j (4)

It is also possible to define thetemporal diameterof a graph as the largest tem-
poral distance between any pair of nodes:

D = maxi j di j (5)
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However, in real time-varying graphs it is quite common to have many pairs of
temporally disconnected nodes. The problem is that if a nodej is not temporally
reachable fromi, thendi j = ∞, and the characteristic temporal path length diverges.
In order to avoid such divergence, thetemporal global efficiency[44, 42] of a time-
varying graph has been defined as follows:

E =
1

N(N−1)∑
i j

1
di j

(6)

The temporal global efficiency is the straightforward generalisation of the global
efficiency already defined for static graphs [22], and has been successfully employed
to study and quantify the robustness of temporal graphs (seefor instance Ref. [38]
and [41] in this book).

4.2 Edge Persistence and Clustering

The characteristic temporal path length and the temporal efficiency provide a quan-
titative representation of the global structure of a graph in terms of the average tem-
poral distance among any pair of nodes. However, in time-varying systems contacts
are usuallybursty, meaning that the distribution of the time between two contacts
has a heavy tail, andpersistent, i.e., if two nodes are connected at a timet, there
is a non-negligible probability that they will still be connected at timet +∆ t. This
characteristic can be quantified in the following way. If we consider a nodei and
two adjacent snapshots of a time-varying graph, respectively starting at timetm and
tm+1 = tm+∆ t, we can define thetopological overlapof the neighbourhood ofi in
[tm, tm+1] as:

Ci(tm, tm+1) =
∑ j ai j (tm)ai j (tm+1)

√

[

∑ j ai j (tm)
][

∑ j ai j (tm+1)
]

(7)

and theaverage topological overlapof the neighbourhood of nodei as the aver-
age ofCi(tm, tm+1) over all possible subsequent temporal snapshot, i.e.:

Ci =
1

M−1

M−1

∑
m=1

Ci(tm, tm+1) (8)

The average topological overlap of a nodei is a natural extension of the concept
of local clustering coefficient which includes temporal information. In fact, while
in a static graph the local clustering coefficient of a node measures the probability
that its neighbours are in turn connected by an edge, the average topological overlap
estimates the probability that an edge fromi to one of its neighboursj persists across
two consecutive time-windows. In a word, it is a measure of the temporal clustering
of edges, i.e., of their tendency to persist across multiplewindows. The average of
Ci computed over all the nodes in the network, namely the quantity:
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C=
1
N ∑

i
Ci (9)

is calledtemporal-correlation coefficient[44], and is a measure of the overall aver-
age probability for an edge to persist across two consecutive snapshots. Notice that
C = 1 if and only if all the snapshots of the time-varying graphs have exactly the
same configuration of edges, while it is equal to zero if none of the edges is ever
observed in two subsequent snapshots.

C Crand L Lrand E Erand

α 0.44 0.18 (0.03) 3.9 4.2 0.50 0.48
β 0.40 0.17 (0.002) 6.0 3.6 0.41 0.45
γ 0.48 0.13 (0.003) 12.2 8.7 0.39 0.37
δ 0.44 0.17 (0.003) 2.2 2.4 0.57 0.56

d1 0.80 0.44 (0.01) 8.84 6.00 0.192 0.209
d2 0.78 0.35 (0.01) 5.04 4.01 0.293 0.298
d3 0.81 0.38 (0.01) 9.06 6.76 0.134 0.141
d4 0.83 0.39 (0.01) 21.42 15.55 0.019 0.028

Mar 0.044 0.007 (0.0002) 456 451 0.000183 0.000210
Jun 0.046 0.006 (0.0002) 380 361 0.000047 0.000057
Sep 0.046 0.006 (0.0002) 414 415 0.000058 0.000074
Dec 0.049 0.006 (0.0002) 403 395 0.000047 0.000059

Table 1 Temporal-correlation, characteristic temporal path length and efficiency for brain func-
tional networks (in four different frequency bands) [9], for the social interaction networks of INFO-
COM’06 (time periods between 1pm and 2:30pm, four differentdays)[39], and for messages over
Facebook online social network (four different months of year 2007)[48]. Results are compared
with the averages measured over 1000 time-varying graphs obtained by reshuffling the sequences
of snapshots. The values in parenthesis next toCrand are the respective standard deviations. The
values ofL andLrand are computed considering only the connected pairs of nodes.Table adapted
from [44]

In Ref. [44] the authors considered time-varying graphs constructed from three
data sets, namely functional brain networks [9], the co-location at INFOCOM
2006 [39] and personal messages exchanged among Facebook users [48]. They com-
pared the characteristic temporal path length and the temporal correlation coefficient
of these temporal graphs with those obtained from the same data sets by reshuffling
the sequence of snapshots. Notice that by reshuffling the snapshots one destroys
all the existing temporal correlations while retaining theaverage connectivity of
each node and the configuration of edges in the correspondingaggregated graph.
They showed that the original time-varying graphs usually exhibit both a relatively
smaller characteristic temporal path length and a relatively higher temporal cor-
relation coefficient, when compared with those measured on reshuffled sequences
of snapshots. This finding is the temporal analogous to the small–world effect ob-
served in static complex networks, and has consequently been namedsmall–world
behaviour in time-varying graphs. Table 1 reports the results obtained for the three
different data sets.
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5 Betweenness, Closeness and Spectral Centrality

The structural properties of a complex network usually reveal important information
about its dynamics and function. This is particularly true if we take into account the
relationship between the position occupied by a node in a static graph and therole
played by the node for the evolution of a dynamic process. Forinstance, not all
nodes have the same impact on the transmission of a disease (or the spreading of a
rumour) over a network: intuitively, the nodes having a higher number of neighbours
should contribute much more to the spreading than nodes having few connections.
However, if we perform a deeper analysis, we observe that notjust the number of
edges is important to identify good spreaders, since also the actual organisation of
these edges has an impact on the speed of the spreading process. In fact, nodes
mediating a large number of shortest paths are indeed those that contribute the most
to the transmission of diseases and information over a network. The identification
of nodes that play a central role, i.e., nodes having highcentrality, has been a quite
active research field in complex network theory. Here we review some standard
centrality measures and their extension to the case of time-varying graphs.

5.1 Betweenness and Closeness Centrality

Two basic centrality measures based on shortest paths arebetweennesscentrality
andclosenesscentrality. The betweenness centrality of a nodei in a static graph is
defined as follows:

CB
i = ∑

j∈V
∑
k∈V
k6= j

σ jk(i)

σ jk
(10)

whereσ jk is the number of shortest paths from nodej to nodek, while σ jk(i) is the
number of such shortest paths that pass through the nodei. The higher the number
of shortest paths passing throughi, the higher the value ofCB

i . Betweenness central-
ity can be also defined for single edges, by counting the fraction of shortest paths
between any pair of nodes to which a given edge participate.

A simple way to extend betweenness centrality to time-varying graphs consists
in counting the fraction of temporal shortest paths that traverse a given node. The
formula would be exactly the same as Eq. 10, with the only difference thatσ jk and
σ jk(i) will be, respectively, the total number of temporal shortest paths betweenj
andk and the number of those paths which make use of nodei.

Sometimes it can be important to take into account not only the number of tempo-
ral shortest paths which pass through a node, but also the length of time for which
a node along the shortest path retains a message before forwarding it to the next
node [43]. For example, let us consider the simple case of nodesi and j being con-
nected by just one shortest path which consists of the two edges(i,k)tℓ and(k, j)tm.
This means that the edge connectingi to k appears at timetℓ, while the edge con-
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nectingk to j appears at timetm. Since the path throughk is the only way fori to
temporally reachj, then we would say thatk plays an important mediatory role and
is ”central” for communication betweeni and j. Nevertheless, the vulnerability of
nodek heavily depends on the interval[tℓ, tm]: the longer this temporal interval, the
higher the probability that a message forwarded tok is lost if k is removed from
the network. In order to take into account the effect of waiting times, thetemporal
betweenness centrality[43] of the nodei at timetm is defined as:

CB
i (tm) =

1
(N−1)(N−2) ∑

j 6=i
∑
k6= j
k6=i

U(i, tm, j,k)
σ jk

(11)

whereσ jk is the number of temporal shortest path fromj to k, andU(i, tm, j,k) is
the number of temporal shortest paths fromi to j in which nodei is traversed from
the path in the snapshottm or in a previous snapshott ′ < tm, so that the next edge
of the same path will be available at a later snapshott ′′ > tm. Theaverage temporal
betweennessof nodei is defined as the average ofCB

i (tm) over all the snapshots:

CB
i =

1
M ∑

m
CB

i (tm) (12)

The closeness centrality of a nodei is a measure of how closei is to any other
node in the network. It can be measured as the inverse of the average distance from
i to any other node in the network:

CC
i =

N−1

∑ j di j
(13)

wheredi j is the distance betweeni and j in a static graph. Thetemporal closeness
centrality is defined in an analogous way, the only difference being thatfor time-
varying graphsdi j denotes the length of the temporal shortest path fromi to j.

As shown in Ref. [43] and elsewhere in this book [41], temporal closeness and
betweenness centrality have proven useful to identify key spreaders and temporal
mediators in corporate communication networks. In particular, it was found that
traders indeed played an important mediatory role in time-varying graphs con-
structed from the ENRON email communication data set, beingconsistently ranked
among the first ones both for temporal betweenness and for temporal closeness cen-
trality. This result is qualitatively and substantially different from the one obtained
by computing betweenness and closeness centrality in the corresponding aggregated
graph, where the most central nodes are the people who interacted with the most
number of other people, i.e., a secretary and a managing director. This apparently
unimportant discrepancy between the centrality rankings actually turns out to be
fundamental for the spreading of information (or diseases)throughout the system.
In fact, simulation reported in Ref. [43] confirmed that whena spreading process is
initiated at the nodes having the highest temporal closeness centality the number of
other nodes reached by the spreading was higher and the time needed to reach them
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was smaller than in the case in which the spreading starts at nodes having higher
static closeness centrality.

5.2 Spectral Centrality and Communicability

The total number of shortest paths passing through a node is not always the best way
of measuring its centrality, especially because the shortest paths are not always the
most relevant for a process. For instance, a disease could propagate through any path
(not just through the shortest ones), and the rumours usually follow walks which
are much longer (and somehow less efficient) than shortest paths. Consequently,
other definitions of centrality exist which take into account walks instead of shortest
paths. The classic example for static graphs is representedby the so calledKatz
centrality[28]. The basic ides is that the propensity for nodei to communicate with
node j can be quantified by counting how many walks of lengthℓ = 1,2,3, . . . lead
from i to j. The importance of a walk of lengthℓ = 1 (i.e., the direct edge(i, j))
is higher than that of a walk of lengthℓ = 2, which in turn is higher than that of a
walk of lengthℓ = 3 and so forth. For this reason, it makes sense to appropriately
rescale the contribution of longer walks. The original proposal consisted into scaling
walks of lengthℓ by a factorαℓ, whereα is an appropriately chosen real value. We
notice that the elementaℓi j of theℓth power of the adjacency matrix corresponds to
the number of existing walks of lengthℓ betweeni and j. Consequently, the entrysi j

of the matrix sumS= I +αA+α2A2+ . . . measures the propensity ofi to interact
with j (notice thatI is theN×N identity matrix). It is possible to prove that the
sumSconverges to(I −αA)−1 if α < ρ(A), whereρ(A) is the spectral radius of the
adjacency matrix. In this case, the Katz centrality of nodei is measured as the sum
of the ith row of S:

CK
i = ∑

j

[

(I −αA)−1]

i j (14)

Katz centrality can be extended to the case of time-varying graphs by using a
similar reasoning [12]. We notice that each entry of the product of the adjacency
matrices corresponding to an increasing sequence ofℓ snapshots[tr1, tr2, . . . , trℓ ] rep-
resents the number of temporal walks in which the first edge belongs to the snapshot
tr1, the second edge totr2 and so on. So, in order to count all the possible temporal
walks of any length we should sum over all possible products of the form:

αkA(tr1)A(tr2) · · ·A(trk), tr1 ≤ tr2 ≤ ·· · ≤ trk (15)

for any value of the lengthk. It is possible to prove that ifα < mintm ρ(A(tm)) then
the sum of all these products can be expressed as:

Q≡ [I −αA(t0)]
−1 [I −αA(t1)]

−1 · · · [I −αA(tm)]
−1 (16)

The matrixQ is calledcommunicability matrix. Starting from this matrix one can
define thebroadcast centrality:
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CBroad
i = ∑

j

Qi j (17)

which quantifies how well nodei can reach all the other nodes in the time-varying
graph, and thereceive communicability:

CRecv
i = ∑

j
Q ji (18)

which is an estimation of how well nodei can be reached from any other node in
the network. In Ref. [12] it has been found that broadcast andreceive communica-
bility can be useful to spot the most influential spreaders indifferent time-evolving
communication networks.

6 Meso-scale Structures

Real static networks differ from random graphs in many ways.In fact, together with
heterogeneous distributions of node properties (e.g. degree and centrality) and with
specific global characteristics (e.g. high average clustering and small average path
length), complex networks show a non-trivial organisationof subsets of their nodes
and exhibit a variety of meso-scale structures, includingmotifsandcommunities.
The characterisation of the abundance of specific motifs hashelped to explain why
biological and technological networks are relatively resilient to failures [25, 24],
while the analysis of communities has revealed that there exists a tight relationship
between structure of a network and its functioning [10]. In the following we discuss
how motifs analysis can be performed also in time-varying graphs and we present
the extension of the modularity (a function for measuring the quality of a parti-
tion in communities, defined for static graphs by Newman in Ref. [34]) to temporal
communities.

6.1 Temporal Motifs

In static graphs amotif is defined as a class of isomorphic subgraphs. We recall
that two graphsG′ andG′′, having adjacency matricesA′ andA′′, are isomorphic
if there exists a permutation of the labels of the nodes ofA′ such that, after the
permutation,A′ ≡ A′′. A permutation is represented by a matrixP that has the effect
of swapping the rows and columns of the matrix to which it is applied. If A′ andA′′

are isomorphic, then there exists a permutation matrixP such that:

P−1A′P= A′′ (19)
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If two graphs are isomorphic then they are topologically equivalent, i.e., the ar-
rangement of the edges in the two graphs is exactly the same, up to an appropriate
relabelling of the nodes. Consequently, a motif can be thought as the typical repre-
sentative of a class of subgraphs sharing the same arrangement of edges. It has been
shown that in real networks, especially in biological ones,motifs are not uniformly
distributed and some motifs are over-represented while others are rare [25, 24].

As for all the metrics described so far, the extension ofmotifs to time-varying
graphs has to take into account time in a meaningful way. In a recent paper Kovanen
et al. [20] propose an extension of motifs to time-varying graphs, based on the def-
inition of ∆τ-adjacency and∆τ-connectedness of contacts1. For practical reasons,
the authors made the simplifying assumption that each node can be involved in no
more than one contact at a time. This assumption is in generaltoo restrictive, but it
could be valid in some cases, e.g. when the contacts represent phone calls or when
the durationδ t of a contact is so small that the probability for a node to havetwo
simultaneous contacts is negligible.

We say that two contactsca = (i, j, ta,δ ta) andcb = (k, ℓ, tb,δ tb) are∆τ-adjacent
if they have at least one node in common and the time difference between the end
of the first contact and the beginning of the second one is no longer than∆τ. We
assume, without loss of generality, thatta < tb, so thatca andcb are∆τ-adjacent if
0 ≤ tb − ta− δ ta ≤ ∆τ. We say that an ordered pair of contacts(ca,cb) is feasible
if ta < tb. Notice that∆τ-adjacency is defined only for the subset of feasible pairs
of contacts. Two contactsca andcb are∆τ-connected if there exists a sequence of
m contactsS= {ca = cn0,cn1,cn2, . . . ,cnm = cb} such that each pair of consecutive
contacts inS is feasible and∆τ-adjacent. From∆τ-connectedness, we derive the
definition ofconnected temporal subgraph, which is a set of contacts such that all
feasible pairs of contacts in the set are∆τ-connected.

For the definition of temporal motifs, we restrict ourselvesto the subset ofvalid
temporal subgraphs. A temporal subgraph is considered valid if all the∆τ-adjacent
contacts of the nodes in the subgraph are consecutive. This means that if a nodej ap-
pears in the pair of∆τ-adjacent contactsca = (i, j, ta,δ ta) andcb = ( j,k, tb,δ tb) of
the subgraph, then does not exist any contactcx = ( j,k, tx,δ tx) such thatta < tx < tb.
In Figure 5 we report two temporal subgraphs of three nodes obtained from the set
of contacts in Figure 1 considering∆τ = 30min. The subgraph of Panel a) corre-
sponds to the sequence of contactsS1 = {c1 = (2,4,0,40),c3 = (2,3,70,20)}, and
is not valid because node 2 is involved in another contact, namelyc2 = (2,5,50,10)
after c1 and beforec3. Conversely, the connected temporal subgraph reported in
Panel b) and corresponding to the pair of contactsS2 = {c4 = (4,5,60,50),c6 =
(1,4,140,35)}, is valid, since node 4 is not involved in any contact betweenc4 and
c6.

A temporal motifis a class of isomorphic valid temporal subgraphs, where two
temporal subgraphs are considered isomorphic if they are topologically similar (i.e.,

1 In order to avoid confusion with the size∆t of the time-window used to define the temporal
snapshot of a time-varying graph, here we preferred to use∆τ instead of the original∆t proposed
by the authors of [20]. Also, notice that the the authors use to call eventswhat we have called here
contacts.
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Fig. 5 Connected temporal subgraphs and motifs. The subgraph in panel a) is not a valid temporal
subgraph, because node 2 is involved in another contact after the contact with node 4 at timeta and
before the contact with node 3 at timetb. Conversely, the subgraph in Panel b) is valid. Panel c)
shows the motif associated to the valid subgraph in Panel b).

the organisation of the links in the subgraph is equivalent up to an appropriate rela-
belling of the nodes) and represent the same temporal pattern, i.e., the order of the
sequence of contacts is the same. The typical element of the temporal motif corre-
sponding to the graph reported in Figure 5b is shown in Figure5c, where the labels
on the edges of the graph correspond to the ordering of contacts. In Ref. [20] the au-
thors report also an algorithm to discover temporal motifs,and discuss the problems
connected with the estimation of the significance of motifs.

6.2 Temporal Communities and Modularity

The identification of communities, i.e., groups of tightly connected nodes, has al-
lowed to reveal the richness of static graphs and has helped to understand their or-
ganisation and function. The simplest way to partition a graph is by dividing it into a
set ofM non-overlapping groups, so that each node of the graph is assigned to one
of theM communities. The quality of a non-overlapping partition incommunities
can be measured by themodularity function. This function, originally proposed by
Newman in Ref. [34], estimates the difference between the fraction of edges among
nodes belonging to the same community and the expected fraction of such edges in
a null-model graph with no communities. More formally, it isdefined as follows:

Q=
1

2K ∑
i j

(ai j −Pi j )δ (ci ,c j) (20)

whereai j are the elements of the adjacency matrix,Pi j is the expected number of
edges betweeni and j in the null-model graph,ci is the community to which node
i belongs,δ (ci ,c j) = 1 if and only if nodei and nodej belong to the same com-
munity andK is the total number of edges in the graph. The simplest null-model is
represented by a configuration model graph, where all the nodes of the graph have
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the same degree as in the real graph but edges are placed at random. In this case the
modularity function reads:

Q=
1

2K ∑
i j

(

ai j −
kik j

2K

)

δ (ci ,c j ) (21)

whereki is the degree of nodei. Different extensions of the modularity function have
been proposed for directed graphs, weighted graphs and graphs with overlapping
communities [32, 3, 23, 35].

The extension of modularity for time-varying graphs is based on an interesting
result valid for the modularity of static graphs and presented in Ref. [21], which
connects the modularity function with the dynamics of a random walk over the
graph. The authors of Ref. [21] show that the modularity function can be considered
a particular case of a class of functions that measure the dynamical stability of a
partitionP, where the stability ofP at timet is defined as:

R(t) = ∑
C∈P

P(C , t)−P(C ,∞) (22)

Supposing that the random walk has reached the stationary state2, thenP(C , t) is the
probability that a random walker which starts from a node in the communityC is
found in a node ofC after timet. Similarly,P(C ,∞) is the probability that a random
walker that started from a node inC is found inC after an infinite number of steps;
when the walk has reached the stationary state, this corresponds to the probability
that two independent random walks are found inC at the same time. It is possible
to show that if we consider a discrete-time random walk, in which a walker jumps
from a node to another at equally-spaced time-steps of length ∆τ, then the stability
of a partition at one stepR(t = ∆τ) is identical to the modularity function.

In Ref. [27] Mucha et. al propose an extension of modularity to multi-slice graphs
which exploits the connection between the modularity function and the stability
of a random walk on the multi-slice graph. Indeed, a time-varying graph can be
considered a multi-slice graph if we connect each node of a snapshot with the other
instances of itself in neighbouring snapshots by means ofmulti-slice edges. For
brevity, we give here the definition of the modularity function for multi-slice graphs,
which corresponds to the stability at one step of a random walk on the multi-slice
graph, but we omit the derivation of the formula3. The modularity for multi-slice
graphs reads:

Qmulti =
1

2µ ∑
i jsr

[(

ai j (s)− γs
ki(s)k j (s)

2ms

)

δsr+Cjsrδi j

]

δ (gis,g jr ) (23)

2 It is possible to prove that a random walk on a graph always converges towards a stationary state,
independently of the initial condition, if the adjacency matrix of the graph is primitive, which is
the case for the vast majority of real graphs.
3 The interested reader can find the derivation of Eq. 23 in Ref.[27] and in the Supplemental
Information of the same paper.
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The indicesi and j are used for nodes while the indicesr ands indicate different
slices. Hereai j (s) are the elements of the adjacency matrix of slices, ki(s) represents
the degree of nodei in slices (i.e., the number of neighbours to withi is connected
in that slice) andms =

1
2 ∑i ki(s) is the total number of edges in the slices. The term

Cjsr is the weight of the link that connects nodej in slices to itself in slicer, and
γs is a resolution parameter. The termsδi j an δrs indicate the Kronecker function
andδ (gis,g jr ) is equal to 1 only if nodei in slice s and nodej in slice r belong
to the same community. The definition looks a bit complicatedbut it is essentially
composed of two parts. The term in parentheses represents the standard modularity
for the graph at slices (the only difference being the resolution parameterγs), while
the termCjsr accounts for inter-slice connections. Once we have defined modularity
for multi-slice networks, the search for the best partitioncan be performed by using
one of the standard methods for modularity optimisation [10].

This definition of modularity is quite general, works well for any kind of multi-
slice network, and is also applicable to assess the quality of a partition of a time-
varying graph, which can be considered a multi-slice network. However, when us-
ing Eq. 23 one should take into account that in order to deriveit as the stability
of a random walk on the graph, the edges connecting differentslices have to be
undirected4. Consequently, this definition of modularity in invariant under inversion
of the sequence of slices which, in the particular case of time-varying graphs, im-
plies invariance under time inversion. This means that Eq. 23 gives the same result
on the time-varying graphG[0,T] and on the graphG[T,0] in which the sequence of
time-windows is given in the opposite order.

In general, invariance under time inversion is not a desirable property for a met-
ric used to characterise the structure of time-varying graphs, because most of the
interesting characteristics of time-evolving systems, including temporal correlation
of links and reachability, are due to the asymmetry introduced by thearrow of time.
Time-invariance disregards this asymmetry completely, washing out most of the
richness of time-varying systems. Consequently, we believe that the definition of ap-
propriate metrics for the evaluation of community structures in time-varying graphs
is still an open field of investigation.

7 Final Remarks

The description of temporal networks in terms of time-varying graphs and the anal-
ysis of their structural properties is still in its infancy but has already produced
many encouraging results, showing that complex networks theory is a quite flexible
and promising framework for the characterisation of different real systems. There
are still some open problems to be tackled, such as the definition of appropriate
methods to detect temporal communities and the construction of analytical meth-
ods to assess how the structure of a time-varying graph can affect the dynamics of

4 This is required to ensure the existence of a stationary state for the Laplacian dynamics on the
graph.
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processes occurring over it, including spreading, synchronisation and evolutionary
games. However, even if the community has not yet converged towards a unified
notation and a fully consistent set of definitions and approaches is still lacking, the
metrics and concepts devised so far for time-varying graphsconstitute a valid and
consistent alternative to the standard methods for the study of time-evolving sys-
tems, and will certainly represent a fundamental contribution to our understanding
of complex systems in general.
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