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Abstract

Motivation: Timely identification of Mycobacterium tuberculosis (MTB) resistance to existing

drugs is vital to decrease mortality and prevent the amplification of existing antibiotic resistance.

Machine learning methods have been widely applied for timely predicting resistance of MTB given

a specific drug and identifying resistance markers. However, they have been not validated on a

large cohort of MTB samples from multi-centers across the world in terms of resistance prediction

and resistance marker identification. Several machine learning classifiers and linear dimension re-

duction techniques were developed and compared for a cohort of 13 402 isolates collected from 16

countries across 6 continents and tested 11 drugs.

Results: Compared to conventional molecular diagnostic test, area under curve of the best machine

learning classifier increased for all drugs especially by 23.11%, 15.22% and 10.14% for pyrazinamide,

ciprofloxacin and ofloxacin, respectively (P< 0.01). Logistic regression and gradient tree boosting found

to perform better than other techniques. Moreover, logistic regression/gradient tree boosting with a

sparse principal component analysis/non-negative matrix factorization step compared with the classifier

alone enhanced the best performance in terms of F1-score by 12.54%, 4.61%, 7.45% and 9.58% for ami-

kacin, moxifloxacin, ofloxacin and capreomycin, respectively, as well increasing area under curve for

amikacin and capreomycin. Results provided a comprehensive comparison of various techniques and

confirmed the application of machine learning for better prediction of the large diverse tuberculosis data.

Furthermore, mutation ranking showed the possibility of finding new resistance/susceptible markers.

Availability and implementation: The source code can be found at http://www.robots.ox.ac.uk/

davidc/code.php
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1 Introduction

Tuberculosis (TB) is one of the leading causes of mortality across the

world (World Health Organization et al., 2016). In 2016, there

were 600 000 new cases with resistance to rifampicin (RIF), the

most effective first-line drug, including 490 000 cases of multi-drug-

resistant TB (MDR-TB) (World Health Organization et al., 2016).

Hence, TB drug resistance is an urgent public health concern in the

field of infectious disease. In TB, drugs are usually grouped into

first-line drugs [isoniazid (INH), RIF, ethambutol (EMB) and pyra-

zinamide (PZA)] and second line drugs [streptomycin (SM),

fluoroquinolones-ofloxacin (OFX), moxifloxacin (MOX), cipro-

floxacin (CIP), kanamycin (KAN), amikacin (AK) and capreomycin

(CAP)] (Jnawali and Ryoo, 2013). Conventional whole genome

sequencing (WGS) methods are based on identifying a number of

variants (i.e. single nucleotide polymorphisms, insertions or dele-

tions) and interpreting them as associated (or not) with conferring

resistance to each individual drug (Schleusener et al., 2017). Hence,

they relies on a library of previously identified resistance-associated

variants (Coll et al., 2015; Georghiou et al., 2012; Walker et al.,

2015). Such techniques can result in lower performance particularly

for less-studied drugs e.g. PZA and second-line drugs due to high

dimensionality and improper composition of the library.

In addition to methods based on known mutations, machine learn-

ing models have been applied to determine drug resistance, e.g. logistic

regression (LR), support vector machine (SVM) and random forest

(RF) (Farhat et al., 2016; Yang et al., 2018; Zhang et al., 2013). Such

models have been shown to perform similarly to the variant-based as-

sociation rules for well-studied drugs, e.g. INH, RIF and EMB while

outperforming them for less-studied drugs, e.g. PZA. However, to date

few studies have investigated machine learning methods for TB resist-

ance prediction and they have used a limited number of isolates.

Zhang et al. (Zhang et al., 2013) used LR to investigate 161 isolates

from China to try to discover new genes associated with resistance to

seven drugs. Yang et al. (Yang et al., 2018) considered 1839 UK bac-

terial isolates and compared a number of classification models for eight

drugs (CAP, AK and KAN excluded from their analysis due to insuffi-

cient resistant samples). Farhat et al. (Farhat et al., 2016) used a more

geographically diverse dataset to investigate the performance of RF

using 1397 isolates. Considering a small dataset from a limited com-

munity can lead to over-fitted models. Although considering cross-

validation and regularization terms can help with over-fitting, a larger

more diverse dataset should be considered to confirm the performance

of them for resistance prediction and also have a more general trained

model that can better predict the future samples. In addition, as the fea-

ture space dimensionality grows, it becomes sparser and sparser (as the

high dimensional genomic information from WGS). Consequently, fit-

ting a separable hyperplane can be easier but the classifier then tries to

learn the specific instances and outliers of the training dataset. It then

could fail to perform well for the unseen data. Furthermore, dimension

reduction techniques can be used to reduce the curse of dimensionality,

noise and improve the computational cost.

Here, our aim is to confirm the application of machine learning

methods considering a more general dataset and also to check the ef-

fect of reducing the dimension on final results. Hence, as an exten-

sion of previous work, a number of machine learning models were

developed and evaluated for resistance prediction. We studied a data-

base of 13 402 isolates that is a more diverse and much larger dataset

compared to reported machine learning TB studies. Similar to previ-

ous work, this dataset has some missing data and more susceptible

isolates than resistant ones (in particular, being highly imbalanced

for some drugs i.e. CAP and AK). Moreover, some other ensemble

learning techniques were developed and compared with the basic ma-

chine learning and RF models mainly used in other studies (Farhat

et al., 2016; Yang et al., 2018; Zhang et al., 2013). These methods

were considered here as they have been shown to be accurate and ef-

fective classification models in several applications in other areas

(Ehrentraut et al., 2016; Li et al., 2018). Moreover, they reduce the

variance by considering several independent/sequentially-built learn-

ers that are especially useful for the complex dataset in this study.

Subsequently, highly ranked features from the top performing classi-

fiers were represented and compared with the library of known

mutations. The effect of two linear dimension reduction techniques

on performance was also investigated especially for less-studied drugs

in which not all resistance-associated mutations are known. As a

summary, our results confirm the application of machine learning

algorithms to drug resistance prediction for the diverse TB dataset

considered here. Moreover, results show that ranked variants include

known resistance/susceptible markers, resistance co-occurrence, lin-

eage associated mutations and unknown mutations possibly as new

resistance/susceptible markers.

2 Materials and methods

2.1 WGS and drug susceptibility test
For details of DNA sequencing refer to the work presented by

(CRyPTIC Consortium and the 100 000 Genomes Project, 2018) and

(Walker et al., 2015). Sequenced reads were aligned to the reference

Mycobacterium tuberculosis (MTB) strain. Then nucleotide bases

were filtered based on the sequencing and alignment quality and per

base coverage. Hence, low confident nucleotide bases were denoted as

null calls and not considered in our analysis. We had several ways to

treat a null call in an isolate: (i) remove the sample completely from

the analysis which drastically reduce the sample size (34% of isolates

have one or more null calls in the genetic regions of interest) and

generalizability, (ii) consider the null calls as no variant (i.e. 0) which

is a conservative option and means that performance will be an under-

estimate of true performance if all variants known and (iii) consider

null values as missing and impute their values, either singly or multi-

ply. We chose the second option (assume absence of variant) because

the total number of positions across the genetic regions of interest

(5919 positions) across all isolates (13 402) with null calls were very

small [150958/79326438(¼5919�13402) (0.19%)] and because of

the complexity of multiple imputation models based on the 5919 posi-

tions. (ii) Is effectively a single hard (conservative) imputation. On all

isolates, drug susceptibility testing was performed for up to 11 drugs

through an initial phenotypic drug susceptibility testing using culture

and confirmed using Lowenstein Jensen methods.

2.2 Baseline methods
Existing baseline methods classify drug resistance as present or absent

based on a number of predetermined library of variants from the lit-

erature. The method denoted direct association (DA) uses an ‘OR’

rule to classify an isolate against a given drug: the isolate is labelled as

resistant if any of its mutations is a resistant variants. Otherwise, it is

classified as susceptible if only susceptible variants exist in the isolate.

The library described by Walker et al. in 2015 (Walker et al., 2015)

was used throughout the classification comparison.

2.3 Linear dimension reduction
Dimensionality reduction plays an important role in machine learning

mainly for a dataset with thousands of features, such as the TB data.

2 S.Kouchaki et al.
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Moreover, they have been shown to improve classification performance

in many applications by reducing unimportant and redundant features

(Benetos et al., 2006; Malhi and Gao, 2004). Principal components ana-

lysis (PCA) as a common linear dimensionality reduction technique, is

easy to understand and use in real applications and also helps to improve

the classification results. It projects the data into a lower dimensional

space using singular value decomposition (SVD), X ¼ URVT where U

and V are singular vectors and R represents singular values (Eckart and

Young, 1936; Golub and Van Loan, 2012). Input to SVD can have

mixed-signs and there is no constraint on the factors’ signs. Non-

negative matrix factorization (NMF) restricts factors to be non-negative

and can be used when the input data is non-negative. Hence, it works

based on putting a non-negativity constraint on the extracted compo-

nents, Xþ ¼WþHþ where ð:Þþ represents the non-negativity of all ele-

ments of the input data and also components. Binary matrix

factorization is another extension of NMF for the binary data by con-

straining components to be binary, X0�1 ¼W0�1H0�1 where ð:Þ0�1

represents the binary elements. Sparsity constraints (by constraining

factorized components’ norm) can be added to the optimization of PCA

and NMF to enhance interoperability and stability of components

(SPCA/SNMF) (Hoyer, 2004; Zou et al., 2006). Sparsity constraints are

particularly important for our data due its sparse nature. Here, our

results focus on linear techniques; as adding the binary constraint did not

improve our results Supplementary Material I, only SPCA and SNMF

were reported. A total of 100 components were kept as experiments

show that 100 components keep the maximum variance for all drugs.

2.4 Classification methods
We investigated three basic machine learning classifiers; SVM, LR

and product-of-marginals (PM), based on the original feature space or

the feature space after dimension reduction. Three ensemble learning

methods, RF, Adaboost and gradient tree boosting (GBT) were also

considered. Details of each method, parameter settings and pros and

cons of each method are shown in Supplementary Material A.

3 Results

3.1 Data description
The dataset used in this paper contains 13 402 isolates collected from

across the world. Twenty-three genes which contain previously-found re-

sistance-associated variants (Walker et al., 2015) were targeted. For each

isolate, the presence/absence of a mutation was represented by a binary

variable, with 1 indicating the presence and 0 indicating the absence. The

mean of variants per isolate was 14, ranging between 1 and 132. In total,

5919 variants were found in the 23 candidate genes across the isolates.

Hence, a binary vector of 5919 was formed and considered fully or par-

tially for the feature space (3.2 Feature spaces). For each drug and isolate,

a binary label of resistance/susceptible was considered. The phenotypic in-

formation was available for up to 11 anti-TB drugs as shown in Table 1

(not all samples were tested against all drugs, leading to missing labels).

Around 98% of isolates were tested for phenotypic resistance to

INH and RIF, 96% for EMB, 81% for PZA, 52% for SM, less than a

quarter for OFX, CAP, AK, KAN and MOX and only 4% for CIP

showing more missing labels for second-line drugs. All 11 drugs had

substantially more susceptible than resistant isolates; more than 87%

of isolates were susceptible for EMB and PZA and 72% for INH and

RIF, leading to a highly imbalanced dataset. Moreover, resistance to

some drugs commonly co-occurred with others, as expected, e.g. 715

isolates were co-resistant to INH, PZA, RIF and EMB.

3.2 Feature spaces
Following the work presented by (Yang et al., 2018) and to evaluate

the performance of the different classifiers, three feature sets were

considered: (i) F1 was the baseline feature space is all variants found

within the 23 candidate genes, (ii) F2 was the predetermined

resistance-associated variants as listed in (Walker et al., 2015)

(Supplementary Material G) and (iii) F3 was a subset of F1 including

only resistance-associated genes for the particular drug [genes with

resistance-determinants specific to each drug can be found at

(Walker et al., 2015)].

3.3 Training and testing
For all experiments, the classification was performed by training a

balanced training dataset and then tested over an imbalanced dataset.

This was run over 100 iterations of 5-fold cross validation. In each

fold, 20% of the data was considered as the test set. Within the

remaining 80% of the data, susceptible samples were sub-sampled

randomly to make the number of resistant and susceptible samples

equal (i.e. create a balanced set) and then split 80:20 into training and

validation sets. The performance in terms of accuracy, sensitivity, spe-

cificity, F1-score and area under curve (AUC) was calculated for the

validation sets (for parameter setting) and test sets (for final compari-

son) and averaged over iterations; mean and SD were reported.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN

Sensitivity ¼ TP

TPþ FN
; Specificity ¼ TN

TNþ FP

precision ¼ TP

TPþ FP
; F1� score ¼ 2

precision � sensitivity

precisionþ sensitivity
;

(1)

where TP, TN, FP and FN are true positive, true negative, false pos-

itive and false negative, respectively. Considering a probability esti-

mate as the output of each classifier for the validation set and setting

various thresholds to categorize this output as resistant/susceptible

could result in different TP, FP, FN and TN rates. Alternatively, a

receiver operating characteristic (ROC) curve showing the sensitiv-

ity as a function of 1–specificity for different thresholds; each point

in the curve indicates a specific value for sensitivity, specificity and

accuracy. AUC is the area under the ROC curve. Here, the ‘internal’

cross-validation on the 80% training dataset was used to select a de-

cision threshold that maximizes the accuracy. The parameters of the

models (kernel parameters for SVM or number of ensembles for RF)

were also optimized through the internal cross-validation on the

train data. This was done by a grid search over a range of values and

Table 1. The phenotype profile; the number of isolates that are resistant or susceptible

Drug INH EMB RIF PZA SM KAN AK CAP CIP OFX MOX

Susceptible 9620 11 322 10 359 9806 5105 1925 2690 2741 529 2618 1249

Resistant 3457 1571 2808 1262 1729 242 273 315 77 458 262

Total tested 13 077 12 893 13 167 11 068 6834 2167 2963 3056 606 3076 1511

Missing 325 509 235 2334 6568 11 235 10 439 10 346 12 796 10 326 11 891

TB drug resistance prediction 3
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selecting parameters that generated the best AUC. The workflow of

examined classifiers can be seen in Supplementary Material F.

3.4 Classification results
Figure 1 compares machine learning techniques in terms of AUC

considering F1 for 11 drugs (Supplementary Material C for F1-F3).

Different classifiers led to similar AUC performances except for

(F1þPM) for INH, SM, AK, MOX, OFX and KAN. AUC was

much higher for PZA, MOX, OFX considering F1 compared to F2-

F3, e.g. 93.89% considering F1 for PZA compared to 69.59% and

88.69% considering F2-F3 for the same drug.

Figure 2 provides AUC considering (F1þ SPCA/SNMF); 100

components were considered here for all drugs. Considering SNMF

led to the best performing model for INH, EMB, RIF, PZA, SM

(with GBT for classification) while SPCA for AK, CAP (with LR-L2

for classification), MOX, OFX, CIP (with GBT for classification)

and KAN (with RF for classification). (F1þ SNMFþPM) was per-

formed better for RIF, SM and CAP and (F1þ SPCAþPM) for PZA

and AK in comparison with (F1þ SNMFþLR-L2). With SNMF,

only ensemble methods had the highest AUC for AK, MOX, OFX

and KAN while with SPCA only (F1þ SPCAþPM/LR-L1) did not

perform well for them. Overall, (F1þ SPCA/SNMFþGBT) was the

top performing model for most drugs in terms of AUC (Fig. 2).

Table 2 provides a comparison of DA and the best performing model

obtained by applying machine learning techniques on test sets considering

F1–F3 for 11 drugs. Compared to DA, considering F1 with or without a

dimension reduction stage improved AUC and sensitivity for all drugs,

significantly (Wilcoxon signed-rank P<0.01). The AUC especially

increased by 23.11% for PZA, 15.22% for CIP, over 8.68% for AK,

MOX, OFX and CAP and 5.16% for EMB, SM and KAN. Sensitivity

increased by 44.29% for PZA, 30.42% for CIP, more than 12% for AK,

MOX and OFX, 8% for EMB and KAN and 4% for SM and CAP.

Details of comparison of all methods, drugs and features can be

found in Supplementary Material B. In general, using F1 improved sen-

sitivity and AUC while specificity was lower than DA. Classification

on the reduced dimension (SNMF/SPCAþF1) compared to F1 resulted

in better AUC for AK and CAP and similar AUC for other drugs

(Supplementary Material B). Similarly, the sensitivity increased slightly

for EMB, PZA, MOX, INH and SM using dimension reduction.

F1-Score is also reported and compared with DA. The best

model based on integrating dimension reduction with the classifica-

tion stage improved the F1-Score more than 9% for PZA, CAP and

CIP and 7% for KAN compared to considering whole F1. More

details can be found in Supplementary Material C.

3.5 Mutation ranking
Table 3 shows the top 10 important features selected for each drug by

considering the top performing models (Supplementary Material D

shows the mutation for LR-L1, LR-L2 and GBT models). Mutations

that were associated with resistance to the specific drug in the

INH EMB RIF PZA SM AK MOX OFX KAN CAP CIP
Drug
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Fig. 1. Classification performance (AUC%) considering six machine learning classifiers (LR with L1 and L2 regularization terms, SVM with Linear and RBF kernels,

RF, Adaboost, PM and GBT) across 11 anti-TB drugs and F1 feature space
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Fig. 2. Classification performance (AUC%) considering six machine learning classifiers across 11 anti-TB drugs with (a) SNMF-F1 and (b) SPCA-F1
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library are indicated in boldface. Results indicated that machine

learning methods could also rank several known mutations as

important especially for well-studied drugs. There are also some lin-

eage defining mutations ranked as important for AK, OFX, KAN,

CAP and CIP (indicated by � in Table 3). However, there were sev-

eral mutations selected as important that were not in the library and

not lineage defining some with gene related to each considered drug

(for EMB, PZA, SM, AK, OFX, MOX and CAP indicated by o in

Table 3). Moreover, there was high overlap between selected muta-

tions based on all three methods for RIF, OFX and MOX, LR-L1

and LR-L2 for EMB and KAN and LR-L2 and GBT for INH and

EMB. Furthermore, some mutations found to be important for more

than one drug.

4 Discussion

Developing machine learning techniques is especially important to im-

prove TB resistance prediction, mainly sensitivity for less-studied drugs.

Table 2 and Supplementary Material B indicate that machine learning

techniques generally improved AUC and sensitivity but resulted in

lower specificity compared to a clinical algorithm (DA). This is because

machine learning techniques can tune the optimal operational point to

balance sensitivity and specificity, while DA cannot. The performance

is especially improved for less-studied drugs, e.g. for PZA, the 2015

DA method resulted in relatively low sensitivity (43.14%), AUC

(70.78%) and F1-Score (55.55%) which was improved by using

(F1þLR-L2) to 88.12%, 93.89% and 64.36%, respectively. The

results indicate the effectiveness of machine learning methods is based

on the input feature space. There may be several reasons for this

including the existence of additional resistance-associated mutations to

the ones reported in the literature or co-occurrence of resistance to

multiple drugs within the 23 genes considered in this paper.

However, mutations within known genes contributed more to

identify resistance to each drug. Hence, F3 feature set contains

enough information to solve the classification performance in terms

of F1-Score (Supplementary Material B and C). On other hand, F1

feature space resulted in higher AUC and sensitivity but lower speci-

ficity (Supplementary Material B). It could be that there are some

resistance-related variants and interactions from not only genes sus-

pected to be related to resistance of each drug, but also the remain-

ing of the 23 genes. Lower specificity means more susceptible

isolates were falsely classified to be resistant possibly due to the re-

sistance co-occurrence pattern dominating the classification. The

lower performance for CAP, MOX, AK and CIP (although still high-

ly improved in comparison with DA) is mainly because there were

very few labelled isolates especially resistant cases for them. It could

be also due to the underlying resistance co-occurrence pattern.

In comparison with the former work published by (Yang et al.,

2018) that showed higher AUC using F1–F3 depending on the drug,

our results showed that F1 had better AUC. It can mainly be due to

more cases of resistance co-occurrence, existence of additional muta-

tions to reported resistance-determinants or complex interaction of

mutations for our more complex dataset. It also shows the potential of

using machine learning to work directly with high dimensional WGS.

Moreover, reported AUC in their work was higher for eight reported

drugs except for SM compared to our reported results (Supplementary

Material K) potentially as a result of considering a larger more complex

dataset here and lack of generalizability of the resistance co-occurrence

predictions. Moreover, LR-L1 was not among the top performing clas-

sifiers and GBT was not considered in their analysis, whereas they were

top performing methods especially considering F1 for our data. One

possible reason could be the diversity of the data that was available for

the training stage in our data. As a result, it could lead to less over-

fitting and a more generalizable conclusion. Furthermore, LR can work

well with binary target, usually has low variance and is less prone to

over-fitting by using regularization terms. GBT is an accurate and effect-

ive classification model in several applications and is robust to outliers

in the output space by considering a robust loss function. Consequently,

both methods could work for this complex and noisy dataset. In add-

ition, only RF was considered by (Farhat et al., 2016) for 13 drugs.

Considering drugs analyzed in both papers, we had better sensitivity for

EMB, PZA, SM, KAN, CAP and CIP and higher or similar specificity

for INH, EMB and OFX (Supplementary Material K).

Regarding mutations ranking, machine learning methods ranked

not only the known mutations as important but also some other

mutations in genes associated with resistance to other drugs. It can

be because that there are some commonly extracted mutations for

some drugs due to several cases of MDR-TB and hence a limitation

of the feature ranking based on the single-label drug resistance clas-

sification. It also can reflect known accumulation of drug resistance

mutations as patients take second-line drugs after first-line drugs.

Moreover, there are some mutations for some drugs that are not in

the library as associated to that drug, are not in the list of lineage

defining mutations and have genes known to be associated to that

drug. Hence, they can be considered as drug-associated mutations

found by machine learning methods. Consequently, it shows the

Table 2. Comparing the best machine learning classifier and DA considering 11 drugs

Drugs DA Best method

Sensitivity Specificity AUC Feature setþClassifier Sensitivity Specificity AUC

INH 91.95 6 1.04 98.71 6 0.22 94.95 6 0.54 F1þLR – L2 92.19^6 0.94 98.38 6 0.29 97.89^6 0.38

EMB 83.31 6 1.62 95.17 6 0.38 89.24 6 0.85 F1þLR – L2 92.12^6 0.98 91.89 6 0.84 96.25^6 0.54

RIF 91.70 6 1.19 98.73 6 0.22 95.22 6 0.59 F1þLR – L2 92.27^6 1.25 97.45 6 0.63 98.08^6 0.32

PZA 43.11 6 2.97 98.46 6 0.27 70.78 6 1.46 F1þLR – L2 88.12^6 2.65 88.91 6 1.66 93.89^6 0.80

SM 82.80 6 1.90 97.19 6 0.44 89.99 6 0.99 F1þLR – L2 87.40^6 1.98 94.15 6 1.23 95.15^6 0.56

AK 65.21 6 5.32 99.70 6 0.24 82.46 6 2.70 F1þ SPCAþLR – L2 77.23^6 6.96 89.84 6 3.05 91.37^6 2.36

MOX 62.97 6 6.60 98.80 6 0.68 80.89 6 3.32 F1þGBT 76.84^6 9.29 87.19 6 8.21 90.27^6 2.96

OFX 65.07 6 3.92 99.31 6 0.28 82.19 6 1.98 F1þGBT 79.06^6 6.94 90.88 6 6.38 92.33^6 1.49

KAN 72.31 6 5.40 97.61 6 0.65 84.96 6 2.68 F1þLR – L2 80.41^6 6.48 93.48 6 4.93 92.49^6 2.93

CAP 59.68 6 5.84 93.87 6 0.88 76.78 6 2.96 F1þ SPCAþLR – L2 64.44^6 6.02 92.74 6 2.52 85.46^6 2.02

CIP 46.65 6 10.10 99.24 6 0.89 72.95 6 5.17 F1þLR – L2 79.86^6 9.98 85.37 6 7.65 89.53^6 4.06

Note: Sensitivity, specificity and AUC (mean 6 standard error) is reported. Wilcoxon signed-rank test was used to calculate the P-value of each method com-

pared with the DA and ^ indicate s P< 0.01.
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application of machine learning to find new important mutations.

We note if there are some highly correlated features, any of them

may be selected with no preference of one over others. After select-

ing one of such a set of highly correlated features, the importance of

other correlated features is decreased. From the point of view of

classification, this is actually useful as it removes the features

described by others. However, for feature selection it may lead to a

conclusion that one feature is important in comparison to others

while in fact they are all highly correlated. Moreover, the ranked lin-

eage associated mutations e.g. rpob_C-61T appeared in lineages

with a large number of isolates such as Central Asian sub-lineage.

Therefore, the classifier may select them as important as they may

improve the classification for a large number of isolates. Hence,

ranking them as important could be due to limitations of machine

learning based feature selection (due to points explained above).

SPCA/SNMF can avoid the curse of dimensionality while keeping

most variance in the data, hence leading to similar or higher perform-

ance (up to 1%, Supplementary Material H). Here, results considering

100 components were reported for all drugs (check Supplementary

Material J for 50 and 150 components). We found that the dimension

reduction step improved the performance of ensemble methods espe-

cially GBT for AK, MOX, OFX and KAN drugs while basic machine

learning methods could not perform well for them. The trees cannot

sum the effect of multiple variables and work considering one variable

at a time. They run out of data instances before taking all necessary

variables into account. Hence, SPCA/SNMF and similar methods can

be helpful since they aggregate the information from multiple varia-

bles. Dimensionality reduction can also serve as regularization in

order to prevent over-fitting. In addition, for less studied drugs the

available catalog of resistance-associated mutations has not been

studied completely. Hence, considering all available variants and

allowing machine learning methods to reduce the dimension can im-

prove the performance as seen in our results for CAP and AK. In

terms of computational cost, all dimension reduction stages impose

some time complexity to factorize the data. If we note n as the num-

ber of isolates and m as the number of features (variants),

tmax ¼ maxðm; nÞ, and tmin ¼ minðm;nÞ, then the time complexity of

PCA is O(tmax2tmin) and SPCA is O(mnk) for extracting top K com-

ponents. Similar time complexity can also be seen for NMF and

SNMF. However, this time will be compensated later by passing

fewer features to the classifiers to learn the susceptibility/resistance.

Here, we did not optimize the number of SPCA/SNMF components

for each drug as the feature space (eigen vectors). Optimizing the

number of components could improve the performance for each drug

further. However, such techniques have a limitation that they cannot

be used for feature selection/mutation identification.

Finally, we note that there are several limitations regarding our

analysis including the error in phenotypes, assumption of resistance in-

dependence for each drug (labels learned independently), independence

of feature space for classification, considering all variants to have the

same importance, ignoring missing labels and considering null calls in

an isolate as no variant. Moreover, there might be some lineage related

mutations as well as frequently appeared mutations ranking as import-

ant. LR-L2 (without the dimension reduction stage) or GBT (by adding

it) could be two possible classifiers to be considered in the real practice

or for the study of any drugs that was not reported here.

5 Conclusion

Several machine learning classifiers were investigated for TB resist-

ance classification. Developed techniques were able to improve theT
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classification of resistance from genetic data and show potential in

the analysis of a large dataset with high dimensionality. Three feature

spaces were considered, in which F1/SPCA-F1 for AUC and sensitivity

and F3 for F1-score were more informative. The best performing clas-

sifier outperformed the assessed DA method in terms of F1-Score,

AUC and sensitivity. We also showed the dimension reduction step

can improve the performance of resistance classification for some

drugs. Consequently, this work shows that machine learning methods

can perform well considering a large number of isolates and genetic

variations and results are more promising for less studied drugs.

Analyzing importance of variants using machine learning techniques

also shows the possibility of finding new drug-associated mutations.

Considering the whole genome sequences including positions outside

23 genes and deep networks for non-linear classification and dimen-

sion reduction and also optimizing the number of SPCA/SNMF com-

ponents can be considered as the future work.
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