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Abstract: We demonstrate that stimulated Raman amplification can be enhanced by more
than four orders of magnitude in a silicon metasurface consisting of a periodic distribution
of specially engineered photonic crystal (PhC) cavities in a silicon PhC slab waveguide. In
particular, by designing the PhC cavities so as they possess two optical modes separated by the
Raman frequency of silicon, one can achieve large optical field enhancement at both the pump
and Stokes frequencies. As a consequence, the effective Raman susceptibility of the nonlinear
metasurface, calculated using a novel homogenization technique, is significantly larger than
the intrinsic Raman susceptibility of silicon. Implications to technological applications of our
theoretical study are discussed, too.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Metasurfaces, which are artificial optical thin films structured at subwavelength scale, have become
widely used tools to engineer in unique ways light-matter interaction at the nanoscale [1–5].
These developments have been primarily facilitated by recent advancements in nanofabrication
techniques, and have made possible to achieve planar structures that resonantly interact with light
at specific frequencies. Compared to three-dimensional (3D) metamaterials, two-dimensional
(2D) metasurfaces allow the manipulation of light using more compact devices [6] and exhibit
lower optical power loss [7]. In addition, key nonlinear optical functionalities can be more easily
implemented using metasurfaces [8–11], since usually one does not have to be concerned with
satisfying phase-matching conditions. These and other unique optical properties of metasurfaces
have been opening up new avenues to pursue promising applications in areas such as quantum
information processing [12, 13] and photonic integrated circuits [14, 15].

There are two main approaches towards nonlinear metasurfaces, namely metasurfaces based on
metallic (plasmonic) [8, 10, 16–18] and dielectric [4, 19–21] materials. Plasmonic metasurfaces
can generate strong optical near-field enhancement, a key feature for nonlinear optics applications.
This comes, however, at the price of relatively large optical losses, which reduces their conversion
efficiency. Dielectric metasurfaces, on the other hand, are characterized by small optical losses
but their limitations stem from the fact that the enhancement of the optical near-field is smaller
than that achieved with plasmonic metasurfaces. In order to overcome this shortcoming of
all-dielectric metasurfaces, one could engineer their primary building blocks so that they possess
resonant optical modes with high quality- (Q) factor. These specially engineered modes are
different in nature from Mie resonances of dielectric particles [22, 23], which are characterized
by relatively small Q-factor. Due to the large set of parameters that can be tuned to optimize
their Q-factor, photonic crystal (PhC) cavities represent an excellent choice for designing optical
resonators with high Q-factor, although other solutions, such as whispering-gallery modes of
resonators made of silica or other dielectric materials, are possible, too.

In order to illustrate this idea, in this paperwe demonstrate that the effectiveRaman susceptibility
of a metasurface consisting of a periodic array of PhC cavities in a silicon PhC slab waveguide
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can be enhanced by more than 4 orders of magnitude, as compared to the intrinsic Raman
susceptibility of silicon. This is achieved by designing a silicon PhC cavity that possesses
two high-Q optical modes separated spectrally by the Raman frequency of silicon, Ω/2π =
15.6 THz [24]. The effective Raman susceptibility of the metasurface is calculated using a
new homogenization procedure based on the effective-medium theory, an approach that is valid
beyond the subwavelength unit cell regime. Importantly, this procedure can be applied to other
multi-wavelength nonlinear optical interactions, such as four-wave mixing, optical parametric
amplification, and second-harmonic generation, simply by designing PhC cavities that possess
optical modes at the required frequencies. The paper is organized as follows. In the next section
we present the geometrical configuration and optical properties of the nonlinear metasurface.
Then, in Sec. 3 we introduce the homogenization method used to calculate the effective Raman
susceptibility of the metasurface, whereas in Sec. 4 we present and discuss the main results.
Finally, in Sec. 5 the main conclusions are summarizad.

2. Geometrical configuration and properties of the nonlinear metasurface

The nonlinear photonic metasurface and the homogenization procedure used to compute the
corresponding effective Raman susceptibility are schematically illustrated in Fig. 1. It comprises
of a rectangular array of PhC cavities in a PhC slab waveguide made of silicon (nSi = 3.4).
The slab waveguide consists of a 2D hexagonal lattice of air holes in a silicon slab, with lattice
constant, a, hole radius, r = 0.29a, and slab thickness, t = 0.6a. Moreover, in this study we
use L5 PhC cavities, namely they are formed by filling in 5 consecutive holes located on a
line oriented along the ΓK symmetry axis of the lattice. The center-to-center distance between
adjacent PhC cavities along the longitudinal (x) and transverse (y) directions is dl = 17a and
dt = 6

√
3a, respectively. In order to increase the Q-factor of the optical modes of the cavity the

end holes are shifted by sl = 0.15a [25].
The photonic band structure of the PhC slab waveguide and the frequencies of the cavity

modes were computed using RSoft’s BandSOLVE [26] and are presented in Fig. 2, whereas the
Q-factors of the cavity modes were determined using MEEP [27], a freely available software that
implements the finite-difference time-domain algorithm. Thus, the PhC cavity possesses two
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Fig. 1. Schematic of a silicon nonlinear metasurface for enhancement of stimulated Raman
scattering. The metasurface consists of a rectangular array of PhC cavities in a hexagonal
PhC slab waveguide made of silicon. Also illustrated is the homogenization procedure used
to compute the corresponding effective Raman susceptibility, χ(3),eff

R
, of a homogeneous

slab with the same thickness, t, from the intrinsic Raman susceptibility of silicon, χ(3)
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Fig. 2. (a) Schematic diagram of stimulated Raman scattering: a pump photon with
frequency ωp interacts with a Raman-active optical medium and generates a Stokes photon
with frequency ωS and a phonon with frequency Ω = ωp − ωS . (b) Transverse-magnetic
band structure of the photonic crystal and the two cavity modes. The field profile of the
cavity modes are shown in the right panels.

optical modes with normalized frequencies (measured in units of 2πc/a) of ω̄p = 0.2778 and
ω̄S = 0.2605 and Q-factors of Qp = 1804 and QS = 1.12 × 105. These cavity modes lie in the
transverse-magnetic band-gap of the PhC slab waveguide, as per Fig. 2(b), the field profiles of the
two optical modes being shown in this figure, too. Moreover, if the lattice constant is a = 333 nm,
the frequencies of the two cavity modes are ωp = 1572.5 THz and ωS = 1474.6 THz, that is they
are separated by the Raman frequency of silicon, ωp − ωS = Ω = 2π × 15.6 THz. Under these
circumstances, the PhC cavity can be viewed as a “meta-molecule” possessing strong Raman
response, as schematically illustrated in Fig. 2(a).
Consider now that such PhC cavities are arranged in a rectangular 2D array, such that one

creates a nonlinear metasurface that can potentially generate strongly enhanced stimulated Raman
scattering as compared to that of intrinsic silicon. This is so because the existence of the two
cavity modes ensures an effective optical coupling between the incident optical wave and the
cavity mode at the pump frequency and provides an efficient mechanism for the Raman signal to
be radiated in the continuum via the excitation of the cavity mode at the Stokes frequency. We
have computed the effective Raman susceptibility of such a nonlinear optical metasurface using a
newly developed homogenization technique, which we present in the next section.

3. Homogenization approach for calculation of the effective Raman susceptibil-
ity of the nonlinear metasurface

The most common approach to homogenize a metasurface is based on the effective-medium
theory [28–31]. Generally speaking, this approach amounts to averaging the electromagnetic
field over the unit cells of the metasurface. Through the homogenization procedure, the photonic
system is reduced to a slab of homogeneous optical medium characterized by effective electric
permittivity and magnetic permeability [32–34]. On the other hand, in the nonlinear case, the
nonlinear effective susceptibilities are calculated form a spatial overlap integral among fields
excited in the structure by probing waves at pump and higher-harmonics, weighted by the local
nonlinear susceptibility tensor and averaged over the volume of the unit cell [35–38].
Before describing our homogenization method, we would like to point out that whereas the

linear effective optical constants, such as the electric permittivity and magnetic permeability, can
be calculated in an unambiguous way, in the case of the effective nonlinear susceptibilities the large
number of nonvanishing components of these tensor quantities could lead to certain ambiguity
in how they are defined and calculated. To be more specific, in most cases homogenization



methods for nonlinear metasurfaces rely on the condition that the averaged nonlinear polarization
of the metasurface is equal to the nonlinear polarization in the nonlinear homogenized slab of
material. As mentioned, this approach results in ambiguities in the determination of the effective
nonlinear susceptibility because three relations that ensure that the two nonlinear polarizations
are identical must be used to determine a much larger number of components of the nonlinear
susceptibility tensor. The key novel aspect of our homogenization approach is that the calculated
effective nonlinear susceptibility is unique. This is achieved by imposing the condition that
the averaged nonlinear polarization of the metasurface and the nonlinear polarization in the
homogenized slab are term-wise identical when expressed in terms of the components of the
nonlinear susceptibilities and the electric field components.
The Raman nonlinear optical response of the metasurface is determined by the nonlinear

Raman polarization at the Stokes frequency, ωS [39]:

PR(ωS; r) =
3
2
ε0χ

(3)
R (r)

...E(ωp; r)E∗(ωp; r)E(ωS; r), (1)

where χ(3)R (r) is the Raman susceptibility, PR(ωS ; r) is the Raman polarization atωS , andE(ωp; r)
and E(ωS ; r) are the optical fields at the pump and Stokes frequencies, respectively. These fields
correspond to plane-wave excitation at the two frequencies, such that standard experimental
conditions are replicated. In order to avoid unnecessary complications, we assume that the
cavities are distributed in a 2D rectangular array, with the symmetry axes of the array coinciding
both with the x- and y-coordinates and with the principal axes of silicon. Then, the nonzero
components of χ(3)R are χ(3)R,i ji j = χ

(3)
R, ji ji = χ

(3)
R, jii j = χ

(3)
R,i j ji , with i, j = x, y, z and i , j, the value

at resonance of the only independent component being χ(3)
R,1212 = −i11.2 × 10−18 m2 V−2 [40].

The position-dependent Raman polarization defined by Eq. (1) can be used to calculate the
spatially averaged effective Raman polarization:

PR,eff(ωS) =
1
V

∫
V

PR(ωS; r)dr, (2)

where the volume integration is taken over the unit cell of the metasurface. On the other hand, if
one replaces the metasurface with a homogenized slab of nonlinear optical medium with the
same thickness as that of the PhC slab, the corresponding effective Raman polarization can be
written in terms of an effective Raman susceptibility, χ(3),eff

R , as:

P̄R,eff(ωS) =
3
2
ε0χ

(3),eff
R

...Ēeff(ωp)Ē∗eff(ωp)Ēeff(ωS). (3)

In this equation and in what follows, the bar symbol indicates that the field corresponds to the
homogenized medium. Moreover, we stress that in Eq. (3) the fields Ēeff(ωp) and Ēeff(ωS) are
the effective optical fields at the pump and Stokes frequencies, respectively, generated by an input
field that is equal to the field that excites the metasurface. They are given by:

Ēeff(ωα) =
1
V

∫
V

Ē(ωα; r)dr, (4)

where α = p,S.
The nonlinear optical response of the metasurface and homogenized slab are identical if the

effective Raman polarizations described by Eqs. (2) and (3) are equal, which leads to three
equations (one for each component). Note, however, that in the general case the effective Raman
susceptibility tensor, χ(3),eff

R , has 81 independent components, so that the corresponding system
of equations is overdetermined. In order to circumvent this issue, we impose the condition that



the r.h.s. of Eqs. (2) and (3) are term-wise identical. Using this constraint, it can be seen that
the components of the effective Raman susceptibility tensor are determined by the following
relations:

χ
(3),eff
R,i jkl

=

1
V

∫
V

χ
(3)
R,i jkl

(r)Ej(ωp; r)E∗k (ωp; r)El(ωS; r)dr

Ēj ,eff(ωp)Ē∗k ,eff(ωp)Ēl,eff(ωS)
. (5)

Note that the components of χ(3),eff
R and χ(3)R cancel for the same set of indices i, j, k, and l.

The remaining physical quantities needed to calculate the effective Raman susceptibility
given in Eq. (5) are the effective fields in the homogenized slab. They can be calculated
analytically (see the Appendix), but before this one needs to determine the effective electric
permittivity of the slab. This can be calculated by imposing the condition that the spatially
averaged electric displacement in the metasurface, Di(ωα) = (1/V)

∑
j

∫
V
εi j(r)Ej(ωα; r)dr,

where εi j(r) = ε0n2
Siδi j and εi j(r) = ε0δi j for r in the silicon and air regions, respectively, with δi j

being the Kronecker delta, is equal to the effective electric displacement in the homogenized slab,
D̄i(ωα) = (1/V)

∑
j ε̄

eff
i j (ωα)

∫
V

Ej(ωα; r)dr. If the two electric displacement fields are equal on
a term by term basis, the effective permittivity is given by:

ε̄eff
i j (ωα) =

∫
V

εi j(r)Ej(ωα; r)dr∫
V

Ej(ωα; r)dr
. (6)

This equation implies that the effective electric permittivity of the homogenized slab is described
by a diagonal matrix, but the diagonal elements are not necessarily the same.
Finally, the effective permittivity in Eq. (6) is used to determine analytically the effective

electric field in the homogenized slab. The details of these calculations are provided in the
Appendix, so that here we only give the final result:

Ēi,eff =
i(1 + ρi)

kit

(
1 −

1 − σi + 2σieiki t

e−iki t + σieiki t

)
Ei,0. (7)

Here, Ei,0, i = x, y, is the amplitude of the incident field and

σi =
Z0 − Zi

Z0 + Zi
, ρi =

(
Z2
i − Z2

0
)

tan(kit)

2iZiZ0 +
(
Z2
i + Z2

0

)
tan(kit)

, (8)

where Z0 =
√
µ0/ε0 is the vacuum impedance, Zi =

√
µ0/ε̄

eff
ii , and ki(ωα) = ωα

√
µ0ε̄

eff
ii .

Before we move on to illustrate how this homogenization method can be applied to our meta-
surface, we stress that although the method can be successfully used to describe metasufaces with
period comparable or larger than the wavelength of the interacting beams, the resulting effective
permittivity and effective nonlinear Raman susceptibility would depend on the polarization of
the interacting beams and the angle of incidence. Thus, it is known that when the wavelength
is comparable to the characteristic length of a photonic structure, e.g. the lattice constant of
a PhC, physical quantities related to the spatial average of the microscopic electromagnetic
field depend not only on the frequency but also on the wave vector, k. This means that, for
example, the dispersion relation of the electric permittivity has a more complex form, ε = ε(ω,k).
This is valid for the nonlinear optical response of photonic structures, too, so that the nonlinear
susceptibilities depend on the direction of propagation and polarization of the interacting fields.
This is expected because when the wavelength is comparable to the characteristic length of a
photonic structure the local fields, which determine the nonlinear polarization of the medium,
depend on the direction of propagation and polarization of the incident fields.



4. Results and discussion

We have applied the homogenization procedure described in the preceding section to our nonlinear
metasurface. The first step in our analysis was to compute the field distribution at the pump and
signal frequencies of the corresponding cavity modes under plane-wave excitation conditions.
The calculations were performed using the frequency-domain finite element method implemented
in CST Studio, a commercially available software [41]. Thus, we first determined the spectral
response of the metasurface and then, using a normally incident plane-wave excitation source
polarized at π/4 with respect to the x-axis and with excitation frequency equal to the pump and
Stokes frequencies we determined the field profiles at the corresponding resonance frequencies.
The spectral response of the metasurface has been determined in the frequency domain ranging
from 200 THz to 300 THz, that is a spectral domain that contains the two resonances of interest, by
determining the frequency dependence of the electric field at an arbitrary point in the metasurface.
Despite the fact that the spectrum varies with the position of the point in the metasurface where
the electric field is probed, the location of the resonances does not depend on this choice.

We present in Fig. 3 the spectrum calculated using this approach, as well as the profiles of the
field amplitude corresponding to the two cavity modes located at the pump and Stokes frequencies.
These are the same modes shown in the inset of Fig. 2(b) and, as mentioned, were calculated
using BandSOLVE. It can be seen that the spectral separation between the two resonances is
equal to the Raman frequency, ∆ν = νR = 15.6 THz, a result that validates our design approach.

Due to the symmetry properties of the metasurface and the orientation of the cavity array with
respect to the principal axes of silicon, the only non-zero component of the effective Raman
susceptibility is χ(3),eff

R,1212. Therefore, in order to compute it, one only needs to calculate the effective
permittivity components ε̄eff

i j , i, j = x, y. Note that the effective permittivity must be calculated
both at the pump and Stokes frequencies. The effective permittivity is determined using Eq. (6), the
results being ε̄xx(ωs) = 8.777 + 0.367i, ε̄yy(ωs) = 9.034 − 0.003i, ε̄xx(ωp) = 9.000 + 0.044i,
ε̄yy(ωp) = 8.921 + 0.049i, and ε̄xy(ωs) = ε̄yx(ωs) = ε̄xy(ωp) = ε̄yx(ωp) = 0. As expected, the
effective permittivity is a complex, diagonal matrix, and the diagonal elements are not identical.
The last step of the homogenization procedure is to use Eq. (5) to calculate the effective

Raman susceptibility of the metasurface, χ(3),eff
R,1212. For the nonlinear metasurface made of L5

PhC cavities described in Fig. 1 our calculations show that χ(3),eff
R,1212 = −i18.8 × 10−14 m2 V−2,

Fig. 3. Spectrum of the optical response of the metasurface.



Fig. 4. The enhancement of the effective Raman susceptibility of the nonlinear metasurface
relative to the intrinsic Raman susceptibility of silicon vs. the number of holes located along
the x-direction between the end of the nanocavity and the boundary of the unit cell.

that is the effective Raman susceptibility is enhanced by η = |χ(3),eff
R,1212/χ

(3)
R,1212 | = 1.67 × 104

as compared to that of silicon. Interestingly enough, similar values of the enhancement of the
Raman interaction in silicon photonic structures have been observed in the case of silicon PhC
waveguides operated in the slow-light regime [42].

In order to understand the dependence of the effective Raman susceptibility on the size of the
unit cell of the metasurface, we varied the number of holes, N , located along the x-direction
between the end of the cavity and the boundary of the unit cell. As illustrated in Fig. 4, in
which we plot this dependence, the effective Raman susceptibility of the nonlinear metasurface
decreases when N increases and remains practically unchanged for N ≥ 4.5. The maximum
enhancement is η = 4.22 × 104, that is an additional increase by a factor of about 3. This
dependence is readily explained by the fact that as N decreases there are more cavities per unit
area and consequently the nonlinear optical response of the metasurface increases. It should be
noted, however, that as the cavities are more closely packed together the mutual optical coupling
can lead to a frequency shift of the resonance frequencies of the modes and thus to a decrease of
the efficiency of the Raman interaction. This can be avoided by simply designing the cavity such
that the frequency difference between the modes differs from the Raman frequency by exactly the
frequency shift induced by the optical coupling between the cavities.

5. Conclusions

In conclusion, by designing a nonlinear optical metasurface made of a two-dimensional periodic
array of silicon photonic crystal cavities, we have demonstrated that the effective nonlinear
Raman susceptibility of the metasurface can be enhanced by more than 4 orders of magnitude
as compared to that of silicon. In order to achieve this dramatic enhancement of the nonlinear
optical response of the metasurface, the photonic crystal cavities are designed so as to possess
two optical cavity modes spectrally separated by the Raman frequency of silicon. Importantly,
the linear and nonlinear optical response of the metasurface have been quantified using a new
homogenization method, which is valid even when the period of the metasurface is comparable or
larger than the wavelength of the interacting beams. The ideas presented in this paper have wide
applicability, as they can be easily extended to other nonlinear optical interactions of practical
interest, including second- and third-harmonic generation, four-wave mixing, and sum- and
difference-frequency generation.



Appendix: Average electric field in a homogeneous slab of material

In this Appendix we present a derivation for the averaged electric field in a slab of homogeneous
material. The corresponding electromagnetic structure and field configuration are presented in
Fig. 5. Thus, we assume that a homogeneous slab, Medium 2, with permittivity ε2 is sandwiched
in-between two media, Medium 1 and Medium 3, which have permittivities ε1 and ε3, respectively.
For simplicity, we assume that all media have the same permeability, µ1 = µ2 = µ3 = µ0.
Moreover, incident on the slab is a plane wave propagating along the z-axis, with the electric and
magnetic fields written as E1i(z) = îE1ieik1z and H1i(z) = ĵ(E1i/Z1)eik1z , respectively, where
Z1 =

√
µ0/ε1 and k1 = ω

√
µ0ε1. Note that in this derivation we assume that ε2 is diagonal but

the diagonal elements are not necessarily equal. Under these circumstances, the fields in the
three regions can be written as:
Medium 1:

E1(z) = E1i(z) + E1r (z) = î
(
E1ieik1z + E1re−ik1z

)
, (9)

H1(z) = H1i(z) +H1r (z) = ĵ
1
Z1

(
E1ieik1z − E1re−ik1z

)
. (10)

Medium 2:

E2(z) = E2+(z) + E2−(z) = î
(
E2+eik2(z−t) + E2−e−ik2(z−t)

)
, (11)

H2(z) = H1+(z) +H1−(z) = ĵ
1
Z2

(
E2+eik2(z−t) − E2−e−ik2(z−t)

)
. (12)

Medium 3:

E3(z) = E3t (z) = îE3teik3z, (13)

H3(z) = H3t (z) = ĵ
E3t
Z3

eik3z . (14)

To simplify the notations, let us introduce the reflection coefficients at z = 0, Γ(0) = E1r/E1i ,
and at z = t, Γ(t) = E2−/E2+. Then, the fields in Medium 1 and Medium 2 can be expressed as:

E1(z) = îE1i

(
eik1z + Γ(0)e−ik1z

)
, (15)

H1(z) = ĵ
E1i
Z1

(
eik1z − Γ(0)e−ik1z

)
, (16)

E2(z) = îE2+

(
eik2(z−t) + Γ(t)e−ik2(z−t)

)
, (17)

H2(z) = ĵ
E2+
Z2

(
eik2(z−t) − Γ(t)e−ik2(z−t)

)
. (18)

The continuity of the tangent components of the fields at z = 0 and z = t requires that:

Γ(0) =
Z2(Z3 − Z1) − i(Z2

2 − Z1Z3) tan(k2t)

Z2(Z3 + Z1) − i(Z2
2 + Z1Z3) tan(k2t)

; Γ(t) =
Z3 − Z2
Z3 + Z2

. (19)

In addition, using Eqs. (9)–(12) and the continuity of the electric field at z = 0, one can fiend the
amplitude of the electric field in Medium 2

E2+ =
1 + Γ(0)

e−ik2t + Γ(t)eik2t
E1i, (20)



Fig. 5. Wave configuration corresponding to a homogeneous slab (Medium 2) with thickness,
t, sandwiched in-between two media (Medium 1 and Medium 3).

and subsequently the z-dependent electric field in Medium 2

E2(z) = î
1 + Γ(0)

e−ik2t + Γ(t)eik2t

[
eik2(z−t) + Γ(t)e−ik2(z−t)

]
E0, (21)

where we redefined E0 = E1i .
Finally, the effective electric field in Medium 2 is defined as:

Ē2,eff =
1
t

∫ t

0
E2(z)dz. (22)

Inserting Eq. (21) in the equation above and performing the integral one obtains Eq. (7) with the
notations given in Eq. (8).
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