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Lattice Boltzmann (LB) models provide asystematic formulation o effedive-field computational
approaches to the cdculation d multiphase flow by repladng the mathematicad surface of
separation between the vapor and liquid with a thin transition region, aaosswhich all magnitudes
change cntinuowsly. Many existing multiphase models of this ©rt do nd satisfy the rigorous
hydrodynamic constitutive laws. Here, we extend the two-dimensional, seven-spead Swift et al LB
model® to redangular grids (nine speals) by using symbolic manipulation (Mathematical) and
comparing the LB model predictions with benchmark problems, in order to evauate its merits.
Particular emphasis is placal on the stresstensor formulation. Comparison with the two-phase
analogue of the Couette flow and with a flow involving shea and advedion d a droplet
surrouncked by its vapor reveds that additional terms have to be introduced in the definition o the
stresstensor in order to satisfy the Navier-Stokes equation in regions of high density gradients.
The use of Mathematicaobviates many of the difficulti es with the cdculations "by-hand"*, alowing
at the same time more flexibility to the computational analyst to experiment with geometricad and
physical parameters of the formulation.

1. Introduction

Coarse-grained (mesoscopic) models of multi-component fluid flow and phase change @nstitute
an intermediate step towards engineaing design of thermo-fluid systems, situated between
moleaular dynamics and Navier-Stokes models. Lattice Boltzmann (LB) methods, which are based
on a broad classof such discrete models, share the physicd resolution of the microscopic and the
eoonomy of the maaoscopic worlds, and provide a ©nvenient way to incorporate @mplex
interfadal physics in an ab-initio fashion. Although aready popular in condensed matter physics,
these methods are dowly being introduced in the study of problems on the scde of gasliquid
interfacewidth, cf. Chen® , Shan®, and He". Dired-simulation Monte-Carlo, another coarse-grained
modeling technique, was recently extended by Carey and Hawks’® to model evaporation of
microdroplets.

In addition to incorporating corred physics, acarracy is of paramount importance in
predictive simulations. LB methods have been proven to be euivaent to second-order finite-
difference @proximations of Navier-Stokes flows in complex domains, cf. Noble et al®. In
addition to high numericd efficiency owing to parallelizaion, LB methods can acoommodate
complex interfada physics while still alowing time integration on the scde of mean-free time-
which istwo orders of magnitude faster than what moleaular dynamics methods all ow. Two recent
schemes have been reported for two-dimensional two-phase flows: Swift et al* simulated gas-li quid
interfaces of avan der Wads fluid with a LB model, while Jasnow and Vinals’ simulated thermo-
caoill ary induced flows by coupling the Cahn-Hilli ard with the extended Navier-Stokes equations.
In order to explore the first scheme further, the LB scheme is revisited here by performing the
formulation steps via symbadlic computation, isolating the truncation error, and assssng the
importance of this error by comparing with limiting two-phase flows.

2. Method
LB models are based on cdculating the probability distribution f; (x,t) , which is associated with

the probability that a particle & location x and time t is moving with velocity e;q. The velocity
vedor subscript o is used to distinguish between the different classes of velocity vedors and for a



sguare lattice aumes values of O for stationary, 1 for vedors aligned with the Cartesian axes, and
2 for diagonal vedors. Thei subscript denotes the spedfic diredion of ead vedor ranging from 1
to 4for the two non-zero velocity classes, and the a subscript denotes the vedtor components. To
obtain physicd quantiti es, statisticd mechanics concepts are enployed. The density p and velocity
vector | are determined by evaluating moments of the probability distribution

p= z fc:i (1)
PUq = z fc:i €gia (2)

Once these maaoscopic quantities are evaluated, an evolution step is carried out using the lattice
Boltzmann evolution equation

foi(X + e"%Ax,HAt)—f(,(x, t)= —%(fci -f2) (3)

where fc‘,)i is the eguilibrium distribution, At the time step, Ax the lattice spadng, ¢ the

computational speed of sound (Ax/At), and T a non-dimensional relaxation time which dictates the
rate a& which the system deceys toward equili brium relative to the time step. After the allision,
the modified distributions advance to other neighboring sites (advection step).

As the Boltzmann evolution equation suggests, the form of the equili brium distribution
governs the maaoscopic evolution process To determine the euili brium distribution for the
square lattice two-phase using Swift's model, a general form is initially assumed.

foi = Ag + Bosialla* Coll” + Dy i €4ipUg U + Goap €iq Euip (4)

Next, to determine the wefficients Ag, Bg Cs, Do , and Ggep Of the eguilibrium distribution,
constraints are placed on the form of the first three moments

> fa=p (5)
a,l
ch?iecicx = PUq (6)
a,l
ch?i ecicxeciB = P(1|3 +puau[3 (7)
a,l
Pup = P(P)Bqg + k(34 P)(0;P) (8)
k 2
P(p) = Po ~kpdy,p == [0y0 9)

where Pyg is the presaure tensor, py is the van der Wads presaure, and K is a parameter related to
the interfacethickness The motivation for the doice of the first two momentsis to conserve both
mass and momentum in the ollision process The third moment, known as the stresstensor is
consistent with a statisticad mechanics concepts of momentum flux and pressure. Phase separation
occurs as result of the dhoice of presaure tensor, which is constructed so as to minimize afree
energy functional corresponding to a van der Wads fluid. Mathematicall, a symbadlic
manipulation software program, proves useful in performing the tensor cdculations for the three
moments. The three moments constraints alone ae not enough to determine the equili brium
coefficients, requiring additional constraints as detailed byédaly.

With this LB model, the results of standard tests performed by Swift et al* can be
confirmed. One standard test is to determine if a fluid obeys Laplace’s Law



(0}
AP=— 10
= (10)

where AP is the dhange in presaure from the vapor to the fluid phase, o is the surfacetension, and
R isthe radius of curvature of the interface As Swift et al* demonstrate, the surfacetension can be
determined from the flat interface by

o= kJ'(axp)zdx (11)

Results of this test at a temperature T=0.55 with k=0.01AarD.5 are shown in Fig. 1. The
surface tension is calculated using Eq.(11) on a flat interface profile.
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Fig. 1. Confirmation of Laplace’s Law. The solid line has a slope equal to the surface tension.

Figure 1 shows good correlation between the measured changes in presaure and those predicted by
Laplacées law. Other results, not shown here, for tests sich as capillary wave simulation and
coexistence curves of flat interfaces confirm Swift's results as well.

Severd difficulties with satisfying Galil ean invariance in two-phase flows indicaed in
|later literature’, motivate us to formulate alditional benchmark test for validating the acaracy of
LBM. First we nedal to elaborate on the Chapman-Enskog procedure, which is a method for
solving the Boltzman evolution equation via asymptotic analysis. Again Mathematical is used to
aid in the analysis. The procedure starts by performing an asymptotic expansion of a Taylor series
expansion of the Boltzmann evolution equation. Spedficdly, a particle distribution expansion and
a multi-scale time expansion are performed in terms of a Knudsen paradmefimed as

AtU
o =—— 12
i (12)

and
fo =fO +8fL +8%f2+....... (13)
O, =0y, +80, +8°0; *...o.... (14)

where At is the time step, U and L are the dharaderistic velocity and length respedively, and
0, =d/0ot indicaes a time derivative. From moments of the resulting ordered equations,



maaoscopic evolution equations can be adieved. Further detail s of this procedure & applied to
the square lattice are described by tdoai®.

Final results of a Chapman-Enskog analysis for mass conservation are

9, p+0,(pu,) =0(3") (15)

and intermediate results for the conservation of momentum are
1 a
0.(pua) +05 118 - At -0, N +0,(fS e, Cuneus )| 20E 6
with
ﬂgB = Z f ot €oic €sip - (17)
o,

If the fourth moment of the equilibrium distribution is evaluated, a substitution in Eq.(16) can be
made

2
c
0, (18 oy Coia 8o = (0 (0Ua) + 0 (puig) +0, (pu )30 (18)
Rewriting Eq.(15) now yields

2 —
%(OB (aB (puy )+ 04 (puB) +av (puv)éaﬁ)) (19)

+0t -2 5,(0,, % )+ O

Further simplifications can be made to the momentum equation in two ways. The first is the
introduction of a kinematic shear viscosity tetnas

b= (Bx)? (21-1)

0¢(puq ) +0g(PugUg) = —05Pyg +

20
6At (20)
The second simplification is an expression JQOrﬂ(O,B as
O, Hgﬁ =01, Pyp +04, (pua UB)
= -[(apPaB)av (puv)] —[uuay Psy, +Up0yPyy +9, (PUg UBUV)] (21)

If it is assumed that the kinematic bulk viscosity is equal to the kinematic shear viscosity, then the
momentum equation takes on the form of

01(PU4)+ 05 (PU Ug) = ~0gPog +0(2pp(05 (Ua) +0a (Up) +0,, (0,8 (22)

+U(65(ua aB(p) + u[}aa (p) + uVaV (p)éo‘ﬁ))

-3v
C_zaﬁ(uaavpﬁv *+Updy Py +0y (PUg UBUV))

;—?ag((appag)ay(puv))+ 015

The top line of the momentum equation is the dasscd Navier-Stokes equation. All other terms
are the error of LB model.

For a single-phase hydrodynamic model, the density gradients are small and consequently
so are the aror terms of Eq(22). However, the density gradients can be of order one in two-phase



flows, and the eror terms can not beignored. In particular, the terms on the second line of Eq.(22)
are of the same order as the shea force axd momentum advedion terms of the Navier-Stokes
equation. These error terms are a source of non-Galilean invariance for the model.
Having identified the formal error terms in the momentum equation, the task arises for
eliminating these terms or simply reducing them to the potential asymptotic acwracy of the model.
The first step of this task is to evaluate the relative magnitudes of eat of the eror terms. From
the static simulations nea the aiticd poaint, it is known that the presaure variations from one phase
to the next is generally small in comparison to the momentum of simple flows. Spedficdly,
assume the gradient of presaure to be & most of order (u). Additionally, if v is of order one, then
the eror of the third and fourth lines of Eq.(22) are & most of order of the Mach number squared.
Upon this basis, the terms that remain to be mnsidered are those on the second line of Eq.(22).
One fina comment about these dominant errors is that they result from defining the second
equili brium moment as the momentum and consequently are endemic to ather models using this
definition. A method for accounting for these errors is revealed if Eq.(22) is recast as

01(pu4) +05 (M%) = 0(259{0p (Ua) + 0 (ug) +0, ()30 (23)

+u(aB(uaaB(p) +Ugdq (p) U, 0, (p)6aB)) o

This form of the momentum equation shows that to corred for the eror terms on the second line,
the equilibrium stress tensor should be modified

M% = Pug +PUq Uy +0(uqdp(0) + Ugdy (0)+ 3, (P)3p) (24)

By choaosing this form for the eguilibrium momentum tensor, the leading error terms of the
momentum equation are diminated at the small cost of introducing rew lower order error terms.
Applying the Chapman-Enskog procedure again produces the following momentum equation

a1: (pua ) + aﬁ(pua UB) = _aBPuB + U(aﬁp(ag (ucx ) + acx (UB) + ay (uy)éaﬁ)) (25)
-3v

C—ZaB(u(,avPBv +Ug0, Py +0, (PU, uBuy))

;—zaﬁ((appuﬁ)ay(puy))

—3\)2
=0, (uuay (upy () + 1y 95(0) + Uy 5 ()3 ))

-3v?
=000y (140, 9) U, )+ 130, (P13 )

2
+i—\2} 03(0t0 (UGGB(P) +Ugdg (P) +u,0, (p)éaB)) +0(5)

The new momentum error terms are found in the last threelines of Eq.(25). Now, ead of the eror
terms can be shown to be & most of order of the Mach number squared. Owing to the lower
formal error of the new momentum tensor, this modified model is used for comparison with the
original model in the following sections.

3. Results

Three flows demonstrate the neead to acount for the dominant error terms of the momentum
equation Eq.(23). These flows are Couette flow, pure shea of a droplet, and advedion of a
droplet. For ead flow, results obtained using the modified momentum tensor are cmpared with



those obtained using the origina momentum tensor. Each simulation is performed with the
parameters k=0.01, a=9/49, b=2/21, Ax =0.5, At =0.3, and T =1 at a temperature T=0.55. Walls
are modeled to mee the definitions of locd density Eq.(1) and velocity Eq.(2) with the velocity
perpendicular to thewall being zero®. With the dhoiceof T =1, the single particle distribution after
the olli sion processequals the equili brium distribution. Therefore, conditions at the wall are fully
constrained. Finally, it is useful to introduce the dimensionless values

+

X

(26)

y+
where L is the flow field size.

The first flow examined is Couette flow with the flow diredion and fluid-vapor interface
paralé to the y-axisin Fig. 2. A domain size nx=41 and ny=6 isused. The density profile is as
shown in Fig. 2. This profile is consistent with static results in each of the simulations.

< r|x

(27)
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Fig. 2. Dimensionless density profile Couette flow simulation obtained by LBM. Key values are
Pmin=4.895 an@ma=2.210.

Two cases of Couette flow are run with this st-up . Case A is with the left plate fixed and right
plate moving at a velocity (u,/c)(x"=1)=0.4, and case B with the right plate fixed and the left plate
moving with a velocity (u,/c)(x"=0)=-0.4. Velocity results are found in Fig. 3. The exad velocity
profile for this flow, assuming a Newtonian fluid, satisfies

Tshea= CONStant vpo, u, (28)
Therefore, cases A and B are the same physicd problem, only solved in reference frames moving

at different constant velocities. The finite difference solution found in Fig. 3 is obtained from
Eq.(28) using the density profile as determined by the LB models.
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Fig 3. Couette flow velocity profiles for case A original model(-7 7 --), case A modified model( +
), case B original model(--A--), and case B modified model( o ). The solid line is the finite
difference solution.

Both case A and case B velocity profil es for the original model show highly non-physicd trendsin
the interface Also, these trends differ between the two cases: the slope of the velocity profile
reverses sgn at the interface The presence and nature of this non-physicd fluctuations is
attributed to the dominant momentum error term

va, (U, 0y (p)) = O(1) (29)
The modified LB model takes into acmurt this term and therefore yields velocity profiles for case
A and B that are not only in agreament with the finite difference solution but also in agreement
with ead other. Since these velocity profiles are independent of the velocity of the reference
frame, the modified model is Galilean invariant.

Shea stress profiles indicae how acairately the two LB models smulate Newtonian
fluids. Figure 4 is a plot of the local non-dimensional shear stress
Tehear L

o+
Vwauymw _uymin) (30)

+
Tshear =
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Fig 4. Couette flow shear stress profiles for case A original madel(-- --), case A modified
model( + ), case B original model(--A--), and case B modified model( o ). The solid line is the

finite difference solution.

As mentioned previoudly, the shea stress $ould remain constant throughout the flow field.
Although the modified model predictions do not match the exad profile (obtained via finite-
difference gproximation) in the interfaceregion, the shea stresserrors in this region are notably
lesserror than those of the origind model. More importantly however, the shea stresss in the
bulk fluid regions obtained by the modified model match that predicted by the finite difference
method in both cases A and B, whereas those obtained by the original model show considerable
disagreement. This error of the shea stresses in the bulk fluid regions also play alarge role in the
shearing and advection of a droplet, as will be seen below.

The second of the threeflows examined is pure shea of adroplet. For this smulation, a
developed droplet is placal between two pates which accéerate to the velocities
(u/c)(y"=1)=0.06 and (u,/c)(y"=0)=-0.06 as sown in Fig.(5). Simulations are performed on agrid
with nx=39 and ny=39. The flow field is alowed to develop urtil the changes in density and
velocity have converged to a given tolerance. A plot showing the airve crresponding to a density
of 3.5 is shown for the original and modified models in Fig. 5.
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Fig. 5. Single density contours for the partial shearing of a drop. The solid line is the result for
the modified model developed here, and the dashed line for the original model.

This figure indicaes that the droplet undergoes a larger shape deformation with the modified
model than with the original model. Variations as this can be expeded based on the Couette flow
case A, where the shea stressfor the original model was lower throughout the bulk regions of the
fluid.

The final simulation reported here is that of the advedion (trandation) of a droplet. The
setup is identicd to the éove with the exception that both the top and batom plates are moved
with a constant velocity (u,/c)= 0.06. For this smulation, it is useful to introduce the following
non-dimensional values

tu
t+ = xwall 31
ol (3D
u
up = (32)
Uxwall

In this simulation, the velocities as well as the shape of the drop are of interest. The first results
show the velocity of the drop centroid versus time as calculated by two methods in Fig. 6. One
velocity is calculated by taking the displacement of the centroid over ten time steps. The other is
the local fluid velocity at the centroid given directly by the LB models.
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t+
Fig.6. Droplet centroid velocity versus time where original model displacement rate is dort

dashes, original model locd fluid velocity is medium dashes, modified model displacement is
mixed dashes, and modified model local fluid velocity is the solid line.

The origina model results of Fig. 6. show a large scde divergence in the ceitroid velocity
depending on how it is evaluated, and consequently both sets do not approach the velocity of the
plates. Results for the modified model on the other hand are in close ajreement and approach the
velocity of the plates. For further insight into what is physicdly happening in this smulation,
constant densiti es contours and centerline (y*=0.5) velocities are provided at threedifferent times
in Figs. 7a and 7b.
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Fig. 7 Density contours and centerline vel ocities for the original model(a) and modified model (b),

where solid lines indicate adensity of 3.5, dashed lines indicate center line velocity u,(y"=0.5),
and x is the location of the center of the drop at time t.

The original model results exhibit a non-physicd distortion of the droplet, and locd velociti es that
show large variation even at the fully developed stage. This discrepancy can be explained based
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on the Chapman-Enskog procedure results. The original model is conserving massand momentum
locdly, yet it does not satisfy the Navier-Stokes equation. The system satisfies conservation of
mass by allowing high welocities in the vapor region and low velocities in the liquid region.
However, since mnservation of momentum is not satisfied, the drop daes not adved corredly, but
rather forms a “standing wave” of mass In contrast, results for the modified model indicae the
drop maintains its dape, the velocities throughout the flow field approach the velocity of the
plates, and are fairly constant in the fully developed stage.

4. Conclusions

Based on the results of the benchmark flows and discusson presented, three main conclusions can
be drawn. First, the two-phase flow LB model introduced by Swift et al* exhibits non-physica
aberrations (manifested by ladk of Galil ean invariance) owing to the truncation of non-negligible
terms in the momentum equation expansion. This has been addressed in a preliminary fashion by
Osborn et al®. Sewnd, it is possble to incorporate these terms in the formal expansion by re-
defining the stress tensor and thus recover Galilean invariance  Our results with the three
benchmark flows demonstrate that the modified LB model closely approximates the Navier-Stokes
equations in regions of high density gradients (typicd of two-phase flow). Similarly, this
correcion method could be gplied to reduce other sources of error as in flow domains exhibiting
large pressure gradients.
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