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Abstract

Over the past few decades, there has been substantial interest in evolution equations that involve a

fractional-order derivative of order α ∈ (0, 1) in time, commonly known as subdiffusion, due to their many

successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to

develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and

the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical

schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical

analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus

on the following topics of the subdiffusion model: regularity theory, Galerkin finite element discretization

in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space-time

variational formulations, and compare the results with that for standard parabolic problems. Further,

these aspects are showcased with illustrative numerical experiments and complemented with perspectives

and pointers to relevant literature.

Keywords: time-fractional evolution, subdiffusion, nonsmooth solution, finite element method,

time-stepping, initial correction, error estimates, space-time formulation

1. Introduction

Diffusion is one of the most prominent transport mechanisms found in nature. The classical diffusion

model ∂tu − ∆u = f , which employs a first-order derivative ∂tu in time and the Laplace operator ∆u

in space, rests on the assumption that the particle motion is Brownian. One of the distinct features of

Brownian motion is a linear growth of the mean squared particle displacement with the time t. Over the5
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last few decades, a long list of experimental studies indicates that the Brownian motion assumption may

not be adequate for accurately describing some physical processes, and the mean squared displacement can

grow either sublinearly or superlinearly with the time t, which are known as subdiffusion and superdif-

fusion, respectively, in the literature. These experimental studies cover an extremely broad and diverse

range of important practical applications in engineering, physics, biology and finance, including electron10

transport in Xerox photocopier [1], visco-elastic materials [2, 3], thermal diffusion in fractal domains [4],

column experiments [5] and protein transport in cell membrane [6] etc. The underlying stochastic process

for subdiffusion and superdiffusion is usually given by continuous time random walk and Lévy process,

respectively, and the corresponding macroscopic model for the probability density function of the particle

appearing at certain time instance t and location x is given by a diffusion model with a fractional-order15

derivative in time and in space, respectively. We refer interested readers to the comprehensive surveys

[7, 8, 9] and the monograph [10] for an extensive list of practical applications and physical modeling in

engineering, physic, and biology.

The present work surveys rigorous numerical methods for subdiffusion. The prototypical mathematical

model for subdiffusion is as follows. Let Ω ⊂ Rd (d = 1, 2, 3) be a convex polygonal domain with a boundary

∂Ω, and consider the following fractional-order parabolic problem for the function u(x, t):
∂αt u(x, t)−∆u(x, t) = f(x, t) (x, t) ∈ Ω× (0, T ],

u(x, t) = 0 (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = v(x) x ∈ Ω,

(1.1)

where T > 0 is a fixed final time, f ∈ L∞(0, T ;L2(Ω)) and v ∈ L2(Ω) are given source term and initial

data, respectively, and ∆ is the Laplace operator in space. Here ∂αt u(t) denotes the Caputo fractional

derivative in time t of order α ∈ (0, 1) [11, p. 70]

∂αt u(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αu′(s)ds, (1.2)

where Γ(z) is the Gamma function defined by

Γ(z) =

∫ ∞
0

sz−1e−sds, <(z) > 0.

It is named after geophysicist Michele Caputo [2], who first introduced it for describing the stress-strain

relation in linear elasticity, although it was predated by the work of Armenian mathematician Mkhitar20

Djrbashian [12]. So more precisely, it should be called Djrbashian-Caputo fractional derivative. Note that

the fractional derivative ∂αt u recovers the usual first-order derivative u′(t) as α → 1−, provided that the

function u is sufficiently smooth [13, p. 100]. Thus the model (1.1) can be viewed as a fractional analogue

of the classical parabolic equation. Therefore, it is natural and instructive to compare its analytical and

numerical properties with that of standard parabolic problems.25

Remark 1.1. All the discussions below extend straightforwardly to a general second-order coercive and

symmetric elliptic differential operator, given by ∇ · (a(x)∇u(x))− q(x)u(x) with q ≥ 0 a.e.
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Motivated by its tremendous success in the mathematical modeling of many important physical prob-

lems, over the last two decades there has been an explosive growth in the numerical algorithms, and

mathematical analysis of the subdiffusion model. More recently this interest has been extended to related30

research areas, e.g., optimal control, inverse problems and stochastic fractional models. The literature on

the topic is vast, and the list is still fast growing in the community of scientific and engineering computa-

tion, and more recently also in the community of numerical analysis; see, e.g., the recent special issues on

the topic at Journal of Computational Physics [14] and Computational Methods in Applied Mathematics

[15], for some important progress in the area of numerical methods for fractional evolution equations.35

It is impossible to survey all important and relevant works in a short review. Instead, in this paper,

we aim at only reviewing relevant works on the numerical methods for the subdiffusion model (1.1) with

nonsmooth problem data in the sense that the initial data v belongs only to L2(Ω) or the source term

f is not compatible with the initial data or boundary condition. First, this choice allows us to highlight

some distinct features common to many nonlocal models, especially how the smoothness of the problem40

data influences the solution and the corresponding numerical methods. It is precisely these features that

pose substantial new mathematical and computational challenges when compared with standard parabolic

problems, and extra care has to be taken when developing and analyzing relevant numerical methods. In

particular, since the solution operators of the fractional model have limited smoothing property, a numerical

method that requires high regularity of the exact solution will impose severe restrictions (compatibility45

conditions) on the data and generally does not work well and thus substantially limits its scope of potential

applications. Finally, nonsmooth data analysis is fundamental to the rigorous error analysis of areas related

to various applications, e.g., optimal control, inverse problems, and stochastic fractional diffusion (see, e.g.,

[16, 17, 18, 19]).

Amongst the numerous possible choices, we shall focus the review on the following four topics:50

(i) Regularity theory in Sobolev spaces;

(ii) Spatial discretization via finite element methods (FEMs), e.g., standard Galerkin, lumped mass and

finite volume element methods;

(iii) Temporal discretization via time-stepping schemes;

(iv) Space-time formulations (Galerkin or Petrov-Galerkin type).55

In each aspect, we describe some representative results and leave most of technical proofs to the references.

Further, in order to illustrate the distinct features of fractional diffusion, we compare the results with that

for standard parabolic problems (see, e.g., [20]) and give some numerical illustrations of the mathematical

theory. Finally, we complement each part with comments on future research problems and further refer-

ences. The goal of the overview is to give readers a flavor of the numerical analysis of nonlocal problems60

and potential pitfalls in developing efficient numerical methods. The main contributions of the review
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include summarizing known results that are otherwise dispersed in the vast literature (often in different

notation), and offering some perspectives on unsolved issues.

Nonlocal models involving nonlocality in either time or space have evolved into a huge and extremely

active and fruitful research area in recent years, due to the joint efforts of researchers in mathematical65

analysis, partial differential equation theory, numerical analysis, stochastic analysis, and many applied

disciplines. The subdiffusion model (1.1) represents only one example in the zoology of nonlocal problems.

We refer interested readers to the excellent surveys for other nonlocal problems and applications, namely, on

problem involving fractional (spectral and integral) Laplacian [21, 22], on inverse problems with anomalous

diffusion [18, 23], on regularity theory of nonlocal elliptic equations in bounded domains [24], and on70

nonlocal problems arising in peridynamics [25]. For an early overview on the numerical methods for

fractional-order ordinary differential equations, we refer to the paper [26].

The rest of the paper is organized as follows. For the model (1.1), in Section 2, we describe the

regularity theory and in Sections 3 and 4, we discuss the finite element methods and two popular classes

of time stepping schemes, i.e., convolution quadrature and L1 type schemes, respectively. Then, in Section75

5, we describe two space-time formulations for problem (1.1) with v = 0. We conclude the overview with

some further discussions in Section 6. Throughout, the discussions focus on the case of nonsmooth problem

data, and only references directly relevant are given. Obviously, the list of references is not meant to be

complete in any sense, and strongly biased by the personal taste and limited by the knowledge of the

authors. Throughout, the notation c denotes a generic constant which may change at each occurrence, but80

it is always independent of the discretization parameters h and τ etc. In the paper we use the standard

notation on Sobolev spaces (see, e.g., [27]).

2. Regularity of the solution

First, we describe some regularity results for the model (1.1), which are crucial for rigorous numerical

analysis. To this end, we need suitable function spaces. The most convenient one for our purpose is the

space Ḣs(Ω) defined as follows [20, Chapter 3]. Let {λj}∞j=1 and {ϕj}∞j=1 be respectively the eigenval-

ues (ordered nondecreasingly with multiplicity counted) and the L2(Ω)-orthonormal eigenfunctions of the

negative Laplace operator −∆ on the domain Ω with a zero Dirichlet boundary condition. Then {ϕj}∞j=1

forms an orthonormal basis in L2(Ω). For any real number s ≥ −1, we denote by Ḣs(Ω) the Hilbert space

consisting of the functions of the form

v =

∞∑
j=1

λ
s
2
j 〈v, ϕj〉ϕj ,

where 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω), and it coincides with the usual L2(Ω)

inner product (·, ·) if the function v ∈ L2(Ω). The induced norm ‖ · ‖Ḣs(Ω) is defined by

‖v‖2
Ḣs(Ω)

=

∞∑
j=1

λsj〈v, ϕj〉2.
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Then, ‖v‖Ḣ0(Ω) = ‖v‖L2(Ω) = (v, v)
1
2 is the norm in L2(Ω) and ‖v‖Ḣ−1(Ω) = ‖v‖H−1(Ω) is the norm in

H−1(Ω). Besides, it is easy to verify that ‖v‖Ḣ1(Ω) = ‖∇v‖L2(Ω) is also an equivalent norm in H1
0 (Ω) and85

‖v‖Ḣ2(Ω) = ‖∆v‖L2(Ω) is equivalent to the norm in H2(Ω) ∩H1
0 (Ω), provided the domain Ω is convex [20,

Section 3.1]. Note that the spaces Ḣs(Ω), s ≥ −1, form a Hilbert scale of interpolation spaces. Motivated

by this, we denote Hs
0(Ω) to be the norm on the interpolation scale between H1

0 (Ω) and L2(Ω) when s is in

[0, 1] and Hs
0(Ω) to be the norm on the interpolation scale between L2(Ω) and H−1(Ω) when s is in [−1, 0].

Then, the norms ‖ · ‖Hs0 (Ω) and ‖ · ‖Ḣs(Ω) are equivalent for s ∈ [−1, 0] by interpolation.90

There are several different ways to analyze problem (1.1). We outline one approach to derive regularity

results by means of Laplace transform below. We denote the Laplace transform of a function f : (0,∞)→ R

by f̂ below. The starting point of the analysis is the following identity on the Laplace transform ∂̂αt (z) of

the Caputo fractional derivative ∂αt u(t), 0 < α < 1 [11, Lemma 2.24, p. 98]

∂̂αt u(z) = zαû(z)− zα−1u(0).

By viewing u(t) as a vector-valued function, applying Laplace transform to both sizes of (1.1) yields

zαû(z)−∆û(z) = f̂(z) + zα−1u(0),

i.e.,

û(z) = (zα −∆)−1(f̂(z) + zα−1u(0)).

By inverse Laplace transform and the convolution rule, the solution u(t) can be formally represented by a

Duhamel type formula:

u(t) = F (t)v +

∫ t

0

E(t− s)f(s)ds, (2.1)

where the solution operators F (t) and E(t) are respectively defined by

F (t) :=
1

2πi

∫
Γθ,δ

eztzα−1(zα −∆)−1 dz and E(t) :=
1

2πi

∫
Γθ,δ

ezt(zα −∆)−1 dz,

with integration over a contour Γθ,δ in the complex plane C (oriented counterclockwise), defined by

Γθ,δ = {z ∈ C : |z| = δ, | arg z| ≤ θ} ∪ {z ∈ C : z = ρe±iθ, ρ ≥ δ}.

Throughout, we fix θ ∈ (π2 , π) so that zα ∈ Σαθ ⊂ Σθ := {0 6= z ∈ C : arg(z) ≤ θ}, for all z ∈ Σθ. Recall

the following resolvent estimate for the Laplacian ∆ with a homogenous Dirichlet boundary condition [28,

Example 3.7.5 and Theorem 3.7.11]:

‖(z −∆)−1‖ ≤ cφ|z|−1, ∀z ∈ Σφ, ∀φ ∈ (0, π), (2.2)

where ‖ · ‖ denotes the operator norm from L2(Ω) to L2(Ω).

Equivalently, using the eigenfunction expansion {(λj , ϕj)}∞j=1, these operators can be expressed as

F (t)v =

∞∑
j=1

Eα,1(−λjtα)(v, ϕj)ϕj and E(t)v =

∞∑
j=1

tα−1Eα,α(−λjtα)(v, ϕj)ϕj .
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Here Eα,β(z) is the two-parameter Mittag-Leffler function defined by [11, Section 1.8, pp. 40-45]

Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
∀z ∈ C.

The Mittag-Leffler function Eα,β(z) is a generalization of the familiar exponential function ez appearing in

normal diffusion, and it can be evaluated efficiently (via contour integral and asymptotic expansion) [29, 30].

Since the solution operators involve only Eα,β(z) with z being a negative real argument, the following decay

behavior Eα,β(z) is crucial to the smoothing properties of F (t) and E(t): for any α ∈ (0, 1), the function95

Eα,1(−λtα) decays only polynomially like t−α as t → ∞ [11, equation (1.8.28), p. 43], which contrasts

sharply with the exponential decay for e−λt appearing in normal diffusion. These important features

directly translate into the limited smoothing property in both space and time for the solution operators

E(t) and F (t).

Next, we state a few regularity results. The proof of these results can be found in, e.g., [31, 32, 33] (see,100

e.g., [33, Theorem 2.1 and Corollary 2.7] for part (i), and [31], [32, Theorem 3], and [34, Theorem 2.3] for

part (ii)). All these results can be proven directly using the resolvent estimate (2.2).

Theorem 2.1. Let u(t) be the solution to problem (1.1). Then the following statements hold.

(i) If v ∈ Ḣs(Ω) with s ∈ (−1, 2] and f = 0, then u(t) ∈ Ḣs+2(Ω) and

‖∂(m)
t u(t)‖Ḣp(Ω) ≤ ct

(s−p)α
2 −m‖v‖Ḣs(Ω)

with 0 ≤ p− s ≤ 2 and any integer m ≥ 0 .

(ii) If v = 0 and f ∈ Lp(0, T ;L2(Ω)) with 1 < p <∞, then there holds

‖u‖Lp(0,T ;Ḣ2(Ω)) + ‖∂αt u‖Lp(0,T ;L2(Ω)) ≤ c‖f‖Lp(0,T ;L2(Ω)).

Moreover, if f ∈ L∞(0, T ;L2(Ω)), we have for any ε ∈ (0, 1)

‖u(t)‖Ḣ2−ε(Ω) ≤ cε
−1tεα‖f‖L∞(0,t;L2(Ω)).

(iii) If v = 0 and f ∈ Cm−1([0, T ];L2(Ω)),
∫ t

0
(t− s)α−1‖∂(m)

s f(s)‖L2(Ω)ds <∞, then there holds

‖∂(m)
t u(t)‖L2(Ω) ≤ c

m−1∑
k=0

tα−(m−k)‖∂(k)
t f(0)‖L2(Ω) +

∫ t

0

(t− s)α−1‖∂(m)
s f(s)‖L2(Ω)ds.

The estimate in Theorem 2.1(i) indicates that for homogeneous problems, the solution u(t) is smooth

in time t > 0 (actually analytic in a sector in the complex plane C [33, Theorem 2.1]), but has a weak

singularity around t = 0. The strength of the singularity depends on the regularity of the initial data v:

the smoother is v (measured in the space Ḣs(Ω)), the less singular is the solution u at the initial layer.

Interestingly, even if the initial data v is very smooth, the solution u is generally not very smooth in time
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in the fractional case, which also differs from the standard parabolic case. By now, it is well known that

smooth solutions are produced by a small class of data [35]. The condition 0 ≤ p − s ≤ 2 in Theorem

2.1(i) represents an essential restriction on the smoothing property of the solution operator F (t) in space

of order two. This restriction contrasts sharply with that for the standard diffusion equation: the following

estimate

‖∂(m)
t u(t)‖Ḣp(Ω) ≤ ct

s−p
2 −m‖v‖Ḣs(Ω)

holds for any t > 0 and any p ≥ s,m ≥ 0 (see, e.g. [20, Lemma 3.2, p. 39]). This means that the solution105

operator for standard parabolic problems is infinitely smoothing in space, as long as t > 0. The limited

smoothing property in space of the model (1.1) represents one very distinct feature, which is generic for

many other nonlocal (in time) models.

The first inequality in Theorem 2.1(ii) is often known as maximal Lp regularity, which is very useful in

the mathematical and numerical analysis of nonlinear problems (see, e.g., [36, 37] for standard parabolic110

problems and [38] for subdiffusion). Theorem 2.1(iii) asserts that the temporal regularity of the solution

u(t) is essentially determined by that of the right hand side f . The solution u(t) usually still has weak

singularity near t = 0, even for a very smooth source term f , which differs again dramatically from

standard parabolic problems. In order to have the mth order temporal differentiability in time t, for the

inhomogeneous problem, it is necessary to impose the following (rather restrictive) compatibility conditions:115

∂
(k)
t f(0) = 0, k = 0, . . . ,m − 1. In the numerical analysis, it is important to take into account the initial

singularity of the solution u(t), which represents one of the main challenges in developing robust numerical

methods.

Now we illustrate the results for the homogeneous problem.

Example 2.1. Consider problem (1.1) on the unit interval Ω = (0, 1) with120

(i) v = sin(πx) and f = 0;

(ii) v = δ0.5(x), with δ0.5(x) the Dirac δ function concentrated at x = 0.5, and f = 0.

The solution u(t) in case (i) is given by u(t) = Eα,1(−π2tα) sin(πx). Since sin(πt) is a Dirichlet eigen-

function of the negative Laplacian −∆ on Ω, it is easy to see that for any s ≥ 0, v ∈ Ḣs(Ω), but the

solution u(t) has limited temporal regularity for any α ∈ (0, 1): as t → 0, Eα(−π2tα) ∼ 1 − π2

Γ(α+1) t
α,125

which is continuous at t = 0 but has an unbounded first-order derivative. This observation clearly reflects

the inherently limited smoothing property in time t of problem (1.1). It contrasts sharply with the standard

parabolic case, α = 1, for which the solution u(t) is given explicitly by u(t) = e−π
2t sin(πx) and is C∞[0, T ]

in time. In Fig. 1, we show the solution profiles for α = 0.5 and α = 1 at two different time instances

for case (ii). Observe that the solution profile for α = 1 decays much faster than that for α = 0.5. For130

any t > 0, the solution u(t) is very smooth in space for α = 1, but it remains nonsmooth for α = 0.5. In

the latter case, the kink at x = 0.5 in the plot shows clearly the limited spatial smoothing property of the

solution operator F (t), and it remains no matter how long the problem evolves.
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t = 0.15 t = 0.2 t = 0.3

Figure 1: The solution profiles for Example 2.1(ii) at three time instances for α = 0.5 and 1.

The analytical theory of problem (1.1) has been developed successfully in the last two decades, e.g.,

[31, 39, 40, 41, 42, 33, 43, 38, 44, 45, 46, 47]; see also the monograph [48] for closely related evolutionary135

integral equations. Eidelman and Kochubei [39] derived fundamental solutions to problem in the whole

space using Fox H-functions, and derived various estimates, see also [49, 50];. Luchko [40] studied the

existence and uniqueness of a strong solution. Sakamoto and Yamamoto [33] analyzed the problem by

means of separation of variables, reducing it to an infinite system of fractional-order ODEs, studied the

existence and uniqueness of weak solutions, and proved various regularity results including the asymptotic140

behavior of the solution for t → 0 and t → ∞. We note that the Laplace transform technique described

above is essentially along the same line of reasoning. The important issue of properly interpreting the

initial condition (for α close to zero) was discussed in [50, 51].

It is worth noting that techniques like separation of variables and Laplace transform are most conve-

nient for analyzing time-independent elliptic operators. For time-dependent elliptic operators or nonlinear145

problems, e.g., time-dependent diffusion coefficients and Fokker-Planck equation, energy arguments [52]

or perturbation arguments [53] can be used to show existence and uniqueness of the solution. However,

the slightly more refined stability estimates, needed for numerical analysis of nonsmooth problem data,

often do not directly follow and have to be derived separately. This represents one of the main obstacles in

extending the numerical methods and their analysis below for the model problem (1.1) to these important150

classes of applied problems.

3. Spatially semidiscrete approximation

Now we describe several spatially semidiscrete finite element schemes for problem (1.1) using the stan-

dard notation from the classical monograph [20]. Semidiscrete methods are usually not directly imple-

mentable and rarely used in practical computations, but they are important for understanding the role of

the regularity of problem data and also for the analysis of some space-time formulations and spectral, and

rational approximations. Let {Th}0<h<1 be a family of shape regular and quasi-uniform partitions of the

domain Ω into d-simplexes, called finite elements, with the mesh size h denoting the maximum diameter
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of the elements. An approximate solution uh is then sought in the finite element space Xh ≡ Xh(Ω) of

continuous piecewise linear functions over the triangulation Th, defined by

Xh = {χ ∈ C0(Ω) : χ|τ ∈ P1(τ), ∀τ ∈ Th} . (3.1)

where P1(τ) denotes the space of linear polynomials on τ . To describe the schemes, we need the L2(Ω)

projection Ph : L2(Ω) → Xh and Ritz projection Rh : Ḣ1(Ω) → Xh, respectively, defined by (recall that

(·, ·) denotes the L2(Ω) inner product)

(Phψ, χ) = (ψ, χ) ∀χ ∈ Xh, ψ ∈ L2(Ω),

(∇Rhψ,∇χ) = (∇ψ,∇χ) ∀χ ∈ Xh, ψ ∈ Ḣ1(Ω).

Then by means of duality, the operator Ph can be boundedly extended to Ḣs(Ω), s ∈ [−1, 0]. The following

approximation properties of Rh and Ph are well known:

‖Phψ − ψ‖L2(Ω) + h‖∇(Phψ − ψ)‖L2(Ω) ≤ chq‖ψ‖Hq(Ω) ∀ψ ∈ Ḣq(Ω), q = 1, 2, (3.2)

‖Rhψ − ψ‖L2(Ω) + h‖∇(Rhψ − ψ)‖L2(Ω) ≤ chq‖ψ‖Hq(Ω) ∀ψ ∈ Ḣq(Ω), q = 1, 2. (3.3)

By multiplying both sides of equation (1.1) by a test function ϕ ∈ H1
0 (Ω), integrating over the domain

Ω and then applying integration by parts formula yield the following weak formulation of problem (1.1):

find u(t) ∈ H1
0 (Ω) for t > 0 such that

(∂αt u(t), ϕ) + a(u(t), ϕ) = (f, ϕ), ∀ϕ ∈ H1
0 (Ω), t > 0,with u(0) = v, (3.4)

where a(u, ϕ) = (∇u,∇ϕ) for u, ϕ ∈ H1
0 (Ω) denotes the bilinear form for the elliptic operator A = −∆

(with a zero Dirichlet boundary condition). Then the spatially semidiscrete approximation of problem

(1.1) is to find uh(t) ∈ Xh such that

[∂αt uh(t), χ] + a(uh(t), χ) = (f, χ), ∀χ ∈ Xh, t > 0,with uh(0) = vh, (3.5)

where vh ∈ Xh is an approximation of the initial data v, and the notation [·, ·] refers to a suitable inner

product on the space Xh, approximating the usual L2(Ω) inner product (·, ·). Following Thomée [20],

we take vh = Rhv in case of smooth initial data v ∈ Ḣ2(Ω) and vh = Phv in case of nonsmooth initial

data, i.e., v ∈ Ḣs(Ω), −1 ≤ s ≤ 0. Moreover, the spatially semidiscrete variational problem (3.5) can be

rewritten into an operator form as

∂αt uh(t) +Ahuh(t) = fh, ∀χ ∈ Xh, t > 0,with uh(0) = vh,

where Ah is a discrete approximation to the elliptic operator A on the space Xh, and will be given below.

With the help of the abstract form (3.5), we shall present three main finite element type discretization

methods in space, i.e., standard Galerkin finite element (SG) method, lumped mass (LM) method and155

finite volume element (FVE) method. In passing, we note that in principle any other spatial discretization
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methods, e.g., finite difference methods [54, 55], collocation, and spectral methods [54, 56] can also be used.

Our choice of the FEMs is motivated by nonsmooth problem data, for which FEMs are most convenient

for analysis.

3.1. Standard Galerkin finite element.160

The SG method is obtained from (3.5) when the approximate inner product [·, ·] is chosen to be the

usual L2(Ω) inner product (·, ·). The SG method was first developed and rigorously analyzed for nonsmooth

data in [57, 58, 34] for problem (1.1) on convex polygonal domains, and in [59] for nonconvex domains.

Upon introducing the discrete Laplacian ∆h : Xh → Xh defined by

−(∆hψ, χ) = (∇ψ,∇χ) ∀ψ, χ ∈ Xh,

and fh = Phf , we may write the spatially semidiscrete problem (3.5) as

∂αt uh(t)−∆huh(t) = fh(t) for t ≥ 0 with uh(0) = vh. (3.6)

Now we introduce the semidiscrete analogues of F (t) and E(t) for t > 0:

Fh(t) :=
1

2πi

∫
Γθ,δ

eztzα−1(zα −∆h)−1 dz and Eh(t) :=
1

2πi

∫
Γθ,δ

ezt(zα −∆h)−1 dz.

Then the solution uh(t) of the semidiscrete problem (3.6) can be expressed by:

uh(t) = Fh(t)vh +

∫ t

0

Eh(t− s)fh(s) ds. (3.7)

Now we give pointwise-in-time L2(Ω) error estimates for the semidiscrete Galerkin approximation uh.

Theorem 3.1. Let u be the solution of problem (1.1) and uh be the solution of problem (3.6), respectively.165

Then with `h = | log h|, for any t > 0, the following error estimates hold:

(i) If f ≡ 0, v ∈ L2(Ω), and vh = Phv, then

‖(u− uh)(t)‖L2(Ω) ≤ ch2`ht
−α‖v‖L2(Ω).

(ii) If f ≡ 0, v ∈ Ḣ2(Ω), vh = Rhv, then

‖(u− uh)(t)‖L2(Ω) ≤ ch2‖∆v‖L2(Ω).

(iii) If f ∈ L∞(0, T ;L2(Ω)) and v ≡ 0, then

‖(u− uh)(t)‖L2(Ω) ≤ ch2`2h‖f‖L∞(0,t;L2(Ω)).

Proof. We only briefly sketch the proof for part (i) to give a flavor, and refer interested readers to [57, 34]

for further details. In a customary way, we split the error uh(t)− u(t) into two terms as

uh − u = (uh − Phu) + (Phu− u) := ϑ+ %.
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By the approximation property of the L2(Ω) projection Ph and Theorem 2.1, we have for any t > 0

‖%(t)‖L2(Ω) ≤ ch2‖u(t)‖H2(Ω) ≤ ch2t−α‖v‖L2(Ω).

So it remains to obtain proper estimates on ϑ(t). Obviously, Ph∂
α
t % = ∂αt Ph(Phu − u) = 0 and using the

identity ∆hRh = Ph∆ [20, equation (1.34), p. 11], we deduce that ϑ satisfies:

∂αt ϑ(t)−∆hϑ(t) = −∆h(Rhu− Phu)(t), t > 0, ϑ(0) = 0.

Then with the help of Duhamel’s formula (3.7), ϑ(t) can be represented by

ϑ(t) = −
∫ t

0

Eh(t− s)∆h(Rhu− Phu)(s) ds

=

∫ t

0

(−∆h)1−εEh(t− s)(−∆h)ε(Rhu− Phu)(s) ds,

where the constant ε ∈ (0, 1) is to be chosen below, and (−∆h)ε is the fractional power of −∆h defined

in the spectral sense. That is, if (λhj , φ
h
j ) are the eigenvalues and eigenfunctions of −∆h, then for v ∈ Xh,

(−∆h)εv =
∑
j(λ

h
j )ε(v, φhj )φhj . Consequently,

‖ϑ(t)‖L2(Ω) ≤
∫ t

0

‖(−∆h)1−εEh(t− s)‖‖(−∆h)ε(Rhu− Phu)(s)‖L2(Ω)ds.

Now recall the following smoothing property of the semidiscrete solution operator Eh(t)

‖(−∆h)sEh(t)‖ ≤ ct−1+(1−s)α ∀s ∈ [0, 1],

which follows directly from the resolvent estimate (2.2) (for ∆h), and the inverse estimate for FEM functions

‖(−∆h)s(Rhu− Phu)(t)‖L2(Ω) ≤ ch−2s‖(Rhu− Phu)(t)‖L2(Ω) ∀s ∈ [0, 1].

Thus, by the triangle inequality and the approximation properties of Rh and Ph, cf. (3.2) and (3.3), we

deduce

‖(Rhu− Phu)(t)‖L2(Ω) ≤ ‖(Rhu− u)(t)‖L2(Ω) + ‖(Phu− u)(t)‖L2(Ω) ≤ ch2‖u(t)‖H2(Ω).

The preceding estimates together with Theorem 2.1 imply

‖ϑ(t)‖L2(Ω) ≤ ch2−2ε

∫ t

0

(t− s)εα−1‖u(s)‖H2(Ω) ds

≤ ch2−2ε‖v‖L2(Ω)

∫ t

0

(t− s)εα−1s−α ds

≤ cε−1h2−2εt−α‖v‖L2(Ω).

The desired assertion follows by choosing ε = 1/`h.

Remark 3.1. The error estimates in Theorem 3.1 are stated directly with respect to the regularity of

problem data, i.e., the initial condition v and the source term f , which can both be nonsmooth (e.g., in
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L2(Ω) only) and do not need to satisfy any compatibility condition (e.g., with zero boundary condition).170

The results do not directly assume any regularity on the solution u, although the proof relies crucially on

sharp regularity estimates in Theorem 2.1. This clearly shows the central role of regularity analysis in the

nonsmooth data analysis.

It is instructive to compare the error estimate in Theorem 3.1 with that for standard parabolic problems.

For example, in the latter case, for the homogeneous problem with v ∈ L2(Ω), the following error estimate

holds [20, Theorem 3.5, p. 47]:

‖(u− uh)(t)‖L2(Ω) ≤ ch2t−1‖v‖L2(Ω).

This estimate is comparable with that in Theorem 3.1(i), apart from the log factor `h, which can be overcome

using an operator trick due to Fujita and Suzuki [60]. Hence, in the limit α→ 1−, the result in the fractional175

case essentially recovers that for the standard parabolic case. The log factor `h in the error estimate for the

inhomogeneous problem in Theorem 3.1(iii) is due to the limited smoothing property, cf. Theorem 2.1(ii).

It is unclear whether the factor `h is intrinsic or due to the limitation of the proof technique.

Upon extension, the following error estimate analogous to Theorem 3.1(i) holds for very weak initial

data, i.e., v ∈ H−s(Ω), 0 ≤ s ≤ 1 [58, Theorem 2]:

‖(u− uh)(t)‖L2(Ω) ≤ ch2−s`ht
−α‖v‖H−s(Ω).

3.2. Two variants (lumped mass and finite volume) of Galerkin method.

Now we discuss two variants of the standard Galerkin FEM, i.e., lumped mass FEM and finite volume180

element method. These methods have also been analyzed for nonsmooth data, but less extensively [57,

34, 61, 62]. These variants are essential for some applications: the lumped mass FEM is important for

preserving qualitative properties of the approximations, e.g., positivity [63, 64], while the finite volume

method inherits the local conservation property of the physical problem.

First, we describe the lumped mass FEM (see, e.g. [20, Chapter 15, pp. 239–244]), where the mass

matrix is replaced by a diagonal matrix with the row sums of the original mass matrix as its diagonal

elements. Specifically, let zτj , j = 1, . . . , d+ 1 be the vertices of a d-simplex τ ∈ Th. Consider the following

quadrature formula

Qτ,h(f) =
|τ |
d+ 1

d+1∑
j=1

f(zτj ) ≈
∫
τ

fdx ∀f ∈ C(K).

where |K| denotes the area/volume of the simplex K. Then we define an approximate L2(Ω)-inner product

(·, ·)h in Xh by

(w,χ)h =
∑
τ∈Th

Qτ,h(wχ).

The lumped mass FEM is to find ūh(t) ∈ Xh such that

(∂αt ūh, χ)h + a(ūh, χ) = (f, χ) ∀χ ∈ Xh, t > 0, with ūh(0) = Phv.

12



Then we introduce the discrete Laplacian −∆̄h : Xh → Xh, corresponding to the inner product (·, ·)h,

defined by

−(∆̄hψ, χ)h = (∇ψ,∇χ) ∀ψ, χ ∈ Xh.

Remark 3.2. For a rectangular domain Ω, first partitioned into a uniform square mesh and then triangu-185

lated into a mesh by connecting the lower left corner with the upper right corner of each square, the discrete

Laplacian ∆̄h is identical with the canonical five-point finite difference approximation of the Laplace opera-

tor. Such a relation may allow extending the error analysis below to various finite difference approximations

of problem (1.1).

Also, we introduce an approximate L2(D) projection operator P̄h : L2(Ω)→ Xh by

(P̄hf, χ)h = (f, χ), ∀χ ∈ Xh.

Then with fh = P̄hf , the lumped mass FEM can be written in an operator form as

∂αt ūh(t)− ∆̄hūh(t) = fh(t) for t ≥ 0 with ūh(0) = Phv. (3.8)

Next, we describe the finite volume element (FVE) method (see, e.g., [65]). It is based on a discrete

version of the local conservation law∫
V

∂αt u(t)dx−
∫
∂V

∂u(t)

∂n
ds =

∫
V

f(t) dx, for t > 0, (3.9)

valid for any V ⊂ Ω with a piecewise smooth boundary ∂V , with n being the unit outward normal vector

to the boundary ∂V . The FVE requires the identity (3.9) to be satisfied for V = Vj , j = 1, . . . , N , which

are disjoint and known as control volumes associated with the nodes Pj of the triangulation Th. Then the

discrete problem reads: find ũh(t) ∈ Xh such that∫
Vj

∂αt ũh(t) dx−
∫
∂V

∂ũh(t)

∂n
ds =

∫
Vj

f(t) dx, for t ≥ 0, with ũh(0) = Phv, (3.10)

Following [66, 67], it can be recast as a Galerkin method, by letting

Yh =
{
ϕ ∈ L2(Ω) : ϕ|Vj = constant, j = 1, 2, ..., N ; ϕ = 0 outside ∪Nj=1 Vj

}
,

introducing the interpolation operator Jh : C(Ω) → Yh by (Jhv)(Pj) = v(Pj), j = 1, . . . , N , and then

defining an approximate L2(Ω) inner product 〈χ, ψ〉h = (χ, Jhψ) for all χ, ψ ∈ Xh, the FVE method (3.10)

can be reformulated by

〈∂αt ũh(t), χ〉h + a(ũ(t), χ) = (f(t), Jhχ) for t ≥ 0 with ũh(0) = Phv ∈ Xh.

In order to be consistent with the abstract form (3.5), we slightly perturb the right hand side to (f(t), χ).

Then the FVE is to find ũh ∈ Xh such that

〈∂αt ũh(t), χ〉h + a(ũ(t), χ) = (f(t), χ) for t ≥ 0 with ũh(0) = Phv. (3.11)
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Thus, it corresponds to (3.5) with [·, ·] = 〈·, ·〉h. By introducing the discrete Laplacian −∆̃h : Xh → Xh,

corresponding to the inner product 〈·, ·〉, defined by

−〈∆̃hψ, χ〉h = (∇ψ,∇χ) ∀ψ, χ ∈ Xh,

and a projection operator P̃h : L2(Ω)→ Xh defined by

〈P̃hf, χ〉h = (f, χ) ∀χ ∈ Xh.

In this way, the FVE method (3.11) can be written with fh = P̃hf in an operator form as

∂αt ũh(t)− ∆̃hũh(t) = fh(t) for t ≥ 0 with ũh(0) = Phv. (3.12)

For the convergence analysis of the LM and FVE methods, we recall a useful quadrature error operator

Qh : Xh → Xh defined by

(∇Qhχ,∇ψ) = εh(χ, ψ) := [χ, ψ]− (χ, ψ) ∀χ, ψ ∈ Xh. (3.13)

The operator Qh represents the quadrature error in a special way. It satisfies the following error estimate;190

see [68, Lemma 2.4] for LM method and [67, Lemma 2.2] for FVE method.

Lemma 3.1. Let Ah be −∆̄h or −∆̃h, and Qh be the operator defined by (3.13). Then there holds

‖∇Qhχ‖L2(Ω) + h‖AhQhχ‖L2(Ω) ≤ chp+1‖∇pχ‖L2(Ω) ∀χ ∈ Xh, p = 0, 1.

Furthermore, if the meshes are symmetric (for details and illustration, see [68, Section 5, Fig. 2 and 3]),

then there holds

‖Qhχ‖L2(Ω) ≤ ch2‖χ‖L2(Ω) ∀χ ∈ Xh. (3.14)

Theorem 3.2. Let u be the solution of problem (1.1) and ūh be the solution of problem (3.8) or (3.12),

respectively. Then under condition (3.14), the following estimates are valid for t > 0 and `h = | lnh|.

(i) If f ≡ 0, v ∈ L2(Ω) and vh = Phv, then

‖(ūh − u)(t)‖L2(Ω) ≤ ch2`ht
−α‖v‖L2(Ω). (3.15)

(ii) If v ≡ 0, f ∈ L∞(0, T ; Ḣq(Ω)), −1 < q ≤ 0, and fh = Phf , then

‖(ūh − u)(t)‖L2(Ω) ≤ ch2+q`2h‖f‖L∞(0,t;Ḣq(Ω)).

Proof. We only sketch the proof for part (i). For the analysis, we split the error ūh(t)− u(t) into

ūh(t)− u(t) = uh(t)− u(t) + δ(t)
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with δ(t) = ūh(t) − uh(t) and uh(t) being the standard Galerkin FEM solution, cf. (3.6). Upon noting

Theorem 3.1 for ‖(uh − u)(t)‖L2(Ω), it suffices to show

‖δ(t)‖L2(Ω) ≤ ch2`ht
−α‖v‖L2(Ω).

It follows from the definitions of uh(t), ūh(t), and Qh that

∂αt δ(t) +Ahδ(t) = −AhQh∂αt uh(t) for t > 0, with δ(0) = 0,

where the operator Ah denotes either −∆̄h or −∆̃h. By Duhamel’s formula (3.7), δ(t) is given by

δ(t) = −
∫ t

0

Eh(t− s)AhQh∂αt uh(s)ds

= −
∫ t

0

A1−ε
h Eh(t− s)AεhQh∂αt uh(s)ds.

Then the smoothing property of Eh, the inverse estimate and the quadrature error assumption (3.14) imply

‖δ(t)‖L2(Ω) ≤
∫ t

0

‖Eh(t− s)A1−ε
h ‖‖AεhQh∂αt uh(s)‖L2(Ω)ds

≤ ch−2ε

∫ t

0

(t− s)εα−1‖Qh∂αt uh(s)‖L2(Ω)ds

≤ ch2−2ε

∫ t

0

(t− s)εα−1‖∂αt uh(s)‖L2(Ω)ds.

Last, the (discrete) stability result ‖∂αt uh(t)‖L2(Ω) ≤ ct−α‖vh‖L2(Ω) (which follows analogously as Theorem

2.1(i)) and the L2(Ω)-stability of Ph imply

‖δ(t)‖L2(Ω) ≤ ch2−2ε

∫ t

0

(t− s)εα−1s−α‖uh(0)‖L2(Ω)ds

≤ cε−1h2−2εt−α‖vh‖L2(Ω) ≤ cε−1h2−2εt−α‖v‖L2(Ω).

Then the desired assertion follows immediately by choosing ε = 1/`h.

Remark 3.3. The quadrature error condition (3.14) is satisfied for symmetric meshes [68, Section 5]. If195

condition (3.14) does not hold, we are able to show only a suboptimal O(h)-convergence rate for L2(Ω)-

norm of the error [57, Theorem 4.5], which is reminiscent of that in the classical parabolic case, e.g. [68,

Theorem 4.4].

Generally, the FEM analysis in the fractional case is much more delicate than the standard parabolic

case due to the less standard solution operators and the limited smoothing property. Nonetheless, the200

results in the two cases are largely comparable, and the overall proof strategy is often similar. The

Laplace approach described above represents only one way to analyze the spatially semidiscrete schemes.

Recently, Karaa [69] gave a unified analysis of all three methods for the homogeneous problem based on

an energy argument, which generalizes the corresponding technique for standard parabolic problems in

[20, Chapter 3]. However, the analysis of the inhomogeneous case by the energy argument is still missing.205
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The energy type argument is generally more tricky in the fractional case. This is due to the nonlocality

of the fractional derivative ∂αt u and consequently that many powerful PDE tools, like integration by parts

formula and product rule, are either invalid or require substantial modification. See also [70, 71] for some

results on a related subdiffusion model.

3.3. Illustrations and outstanding issues on semidiscrete methods210

Now we illustrate the three spatially semidiscrete methods with very weak initial data.

Example 3.1. Consider problem (1.1) on the unit square Ω = (0, 1)2 with f = 0 and very weak initial

data v = δΓ, with Γ being the line segment { 1
2} × [ 1

4 ,
3
4 ] and 〈δΓ, φ〉 =

∫
Γ
φ(s)ds. One may view (v, χ) for

χ ∈ Xh ⊂ H−
1
2−ε(Ω) as duality pairing between the spaces H−

1
2−ε(Ω) and Ḣ

1
2 +ε(Ω) for any ε > 0 so that

δΓ ∈ H−
1
2−ε(Ω). Indeed, it follows from Hölder’s inequality and trace theorem [27] that

‖δΓ‖
H−

1
2
−ε(Ω)

= sup
06=φ∈Ḣ

1
2
+ε(Ω)

|
∫

Γ
φ(s)ds|

‖φ‖
H

1
2
+ε(Ω)

≤ |Γ| 12 sup
06=φ∈Ḣ

1
2
+ε(Ω)

‖φ‖L2(Γ)

‖φ‖
H

1
2
+ε(Ω)

.

Table 1: The errors ‖(u − uh)(t)‖L2(Ω) of the FEM approximation uh(t) (by three semidiscrete schemes) for Example 3.1

with α = 0.5, at t = 0.001, 0.01, 0.1, discretized on a uniform mesh, h = 1/M .

(a) Galerkin FEM

M 10 20 40 80 160 rate

t = 0.001 9.01e-3 3.14e-3 8.85e-4 2.44e-4 6.63e-5 ≈ 1.87 (1.50)

t = 0.01 2.45e-3 1.14e-3 3.13e-4 8.47e-5 2.27e-5 ≈ 1.90 (1.50)

t = 0.1 7.43e-4 3.98e-4 1.08e-4 2.88e-5 7.66e-6 ≈ 1.91 (1.50)

(b) lumped mass method

M 10 20 40 80 160 rate

t = 0.001 6.77e-2 2.29e-2 8.38e-3 3.01e-3 1.07e-3 ≈ 1.48 (1.50)

t = 0.01 2.21e-2 7.29e-3 2.66e-3 9.54e-4 3.40e-4 ≈ 1.48 (1.50)

t = 0.1 7.07e-3 2.31e-3 8.41e-4 3.02e-4 1.08e-4 ≈ 1.48 (1.50)

(c) finite volume element method

M 10 20 40 80 160 rate

t = 0.001 1.89e-2 5.56e-3 1.95e-3 6.87e-4 2.42e-4 ≈ 1.50 (1.50)

t = 0.01 5.81e-3 1.76e-3 6.17e-4 2.17e-4 7.66e-5 ≈ 1.50 (1.50)

t = 0.1 1.80e-3 5.63e-4 1.97e-4 6.90e-5 2.43e-5 ≈ 1.51 (1.50)

The reference solution used for computing the L2(D) error is computed by a fully discrete scheme based

on the standard Galerkin method in space with h = 1/1280 and BDF3 convolution quadrature in time
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with τ = T/1000, cf. (4.4) below. The numerical results obtained by standard Galerkin method, lumped

mass method and finite volume element method are given in Table 1 (a), (b) and (c), respectively. In the215

tables, the numbers in the bracket in the last column refer to the theoretical rate from Remark 3.1. The

empirical convergence rate for the very weak data δΓ agrees well with the theoretical rate; Interestingly, for

the standard Galerkin scheme, the L2(Ω)-norm of the error exhibits super-convergence. This is attributed

to the fact that the singularity of the solution is supported on the interface Γ and it is fully aligned with

the mesh. It is observed that for all three semidiscrete schemes, the error increases as the time t → 0+,220

which concurs with the weak solution singularity at the initial time t = 0.

We end this section with some future research problems. Despite the maturity of the FEM analysis,

there are still a few interesting questions on the FEMs for the model (1.1) which are not well understood

and await further research:

(i) So far the analysis is mostly concerned with a time-independent coefficient, which can be treated225

conveniently using the semigroup type techniques. The time dependent case requires different tech-

niques, and the nonlocality of the operator ∂αt u prevents a straightforward adaptation of known

techniques for standard parabolic problems [72]. Encouraging results in this direction were estab-

lished in a recent work of Mustapha [73], where optimal error estimates for the homogeneous problem

were obtained using an energy argument.230

(ii) All existing works focus on linear finite elements, and there seems to be no study on high-order

finite elements for nonsmooth problem data. It is unclear whether there are similar nonsmooth data

estimates, as in the parabolic case [20, Chapter 3] (see, e.g., [74, p. 397] for smooth data). This

problem is interesting in view of the limited smoothing property of the solution operators in space in

Theorem 2.1, which has played a major role in the error analysis. Thus it is of substantial interest235

to develop and to analyze high-order schemes in space.

(iii) The study on nonlinear subdiffusion models is rather limited, and there seems to be no error estimate

with respect to the data regularity, especially for nonsmooth problem data. The recent progress

[36, 32] in discrete maximal `p regularity results may provide useful tools for this purpose, which

have proven extremely powerful for the study of nonlinear parabolic problems [37]. One outstanding240

issue seems to be sharp regularity estimates for general problem data.

4. Fully discrete schemes by time-stepping

One outstanding challenge for solving the subdiffusion model lies in the accurate and efficient discretiza-

tion of the fractional derivative ∂αt u. Roughly speaking, there are two predominant groups of numerical

methods for time stepping, i.e., convolution quadrature and finite difference type methods, e.g., L1 scheme245

and L1-2 scheme. The former relies on approximating the (Riemann-Liouville) fractional derivative in the
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Laplace domain (i.e., symbol), whereas the latter approximates the Caputo derivative directly by piecewise

polynomials. These two approaches have their pros and cons: convolution quadrature (CQ) is quite flexible

and often much easier to analyze, since by construction, it inherits excellent numerical stability property

of the underlying schemes for ODEs, but it is often restricted to uniform grids. The finite difference type250

methods are very flexible in construction and implementation and can easily generalize to nonuniform

grids, but often challenging to analyze, especially for nonsmooth problem data. Generally, these schemes

are only first-order accurate when implemented straightforwardly, unless restrictive compatibility condi-

tions are fulfilled. Hence, suitable corrections to the straightforward implementation are needed in order

to restore the desired high-order convergence.255

In this section, we review these two popular classes of time-stepping schemes on uniform grids. Specif-

ically, let {tn = nτ}Nn=0 be a uniform partition of the time interval [0, T ], with a time step size τ = T/N .

The case of general nonuniform time grids is also of interest, e.g., in resolving initial or interior layer, but the

analysis seems not well understood at present; we refer interested readers to the references [62, 75, 76, 77]

for some recent progress on nonuniform grids.260

4.1. Convolution quadrature

Convolution quadrature (CQ) was first proposed by Lubich in a series of works [78, 79, 80] for discretizing

Volterra integral equations. It has been widely applied in discretizing the Riemann-Liouville fractional

derivative (see, e.g., [81, 82, 83]). One distinct feature is that the construction requires only that Laplace

transform of the kernel be known. Specifically, CQ approximates the Riemann-Liouville derivative ∂αt ϕ(tn),

which is defined by

R∂αt ϕ :=
d

dt

1

Γ(1− α)

∫ t

0

(t− s)−αϕ(s)ds,

(with ϕ(0) = 0) by a discrete convolution (with the shorthand notation ϕn = ϕ(tn))

∂̄ατ ϕ
n :=

1

τα

n∑
j=0

bjϕ
n−j . (4.1)

The weights {bj}∞j=0 are the coefficients in the power series expansion

δτ (ζ)α =
1

τα

∞∑
j=0

bjζ
j , (4.2)

where δτ (ζ) = δ(ζ)/τ is the characteristic polynomial of a linear multistep method for ODEs, with δ(ζ) =

δ1(ζ). There are several possible choices of the characteristic polynomial, e.g., backward differentiation

formula, trapezoidal rule, Newton-Gregory method and Runge-Kutta methods. The most popular one is

the backward differentiation formula of order k (BDFk), k = 1, . . . , 6, for which δ(ζ) is given by

δτ (ζ) :=
1

τ

k∑
j=1

1

j
(1− ζ)j , j = 1, 2, . . . .
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The special case k = 1, i.e., the backward Euler convolution quadrature, is commonly known as Grünwald-

Letnikov approximation in the literature [84] and the coefficients bj are given explicitly by the following

recurrence relation

b0 = 1, bj = −α− j + 1

j
bj−1.

Generally, the weights bj can be evaluated efficiently via recursion or discrete Fourier transform [85, 86].

The CQ discretization first reformulates problem (1.1) by the Riemann-Liouville derivative R∂αt ϕ, using

the defining relation for the Caputo derivatives [11, p. 91] ∂αt ϕ(t) = R∂αt (ϕ− ϕ(0)), into the form

R∂αt (u− v)−∆u = f.

Then the time stepping scheme based on the CQ for problem (1.1) is to seek approximations Un to the

exact solution u(tn) by

∂̄ατ (U − v)n −∆Un = f(tn), n = 1, . . . , N, (4.3)

with U0 = v. It can be combined with spatially semidiscrete schemes described in Section 3 to arrive

at fully discrete schemes, which are implementable on computers. Our discussions below focus on the

temporal error for time-stepping schemes, and omit the spatial error.265

If the exact solution u is smooth and has sufficiently many vanishing derivatives at t = 0, then the

approximation Un converges at a rate of O(τk) uniformly in time t [79, Theorem 3.1]. However, it generally

only exhibits a first-order accuracy when solving fractional evolution equations even for smooth v and f

[87, 83], since the requisite compatibility condition is usually not satisfied. This loss of accuracy is one

distinct feature for most time stepping schemes, since they are usually derived under the assumption that270

the solution u is sufficiently smooth, which holds only if the problem data satisfy certain rather restrictive

compatibility conditions. In summary, they tend to lack robustness with respect to the regularity of

problem data.

This observation on accuracy loss has motivated some research works. For fractional ODEs, one suc-

cessful idea is to use starting weights [78] to correct the CQ in discretizing ∂αt ϕ(tn) by

∂̄ατ ϕ
n = τ−α

n∑
j=0

bn−jϕ
j +

M∑
j=0

wn,jϕ
j ,

where M ∈ N and the weights wn,j depend on the fractional order α and the convergence order k. The

purpose of the starting term
∑M
j=0 wn,jϕ

j is to capture all leading singularities so as to recover a uniform275

O(τk) rate. The weights wn,j have to be computed at every time step, which involves solving a linear

system with Vandermonde type matrices and may lead to instability issue (if a large M is needed, which

is likely the case when α is close to zero). This idea works well for fractional ODEs (see, e.g., [88]);

however, its extension to fractional PDEs essentially seems to boil down to expanding the solution into

(fractional-order) power series in t, which would impose certain strong compatibility conditions on the280

source f .
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The more promising idea for the model (1.1) is initial correction. It corrects only the first few steps

of the schemes. This idea can at least be traced back to the work [89], where a correction of the BDF2

CQ was developed for an integro-differential equation with a positive memory term. Then it was applied

as an abstract framework in [87] for BDF2 CQ in order to achieve a uniform second-order convergence for285

semilinear fractional diffusion-wave equations (which is slightly different from the model (1.1)) with smooth

data. Further, BDF2 CQ was extended to subdiffusion and diffusion wave equations in [83] and very recently

also general BDFk [90]. In particular, in the work [90], by a careful analysis of the error representation in

the Laplace domain, a set of simple algebraic criteria was derived for constructing correction schemes. In

the following, we describe the correction scheme for the BDF CQ derived in [90].290

To restore the kth-order accuracy for BDFk CQ, the scheme in [90] corrects the starting k− 1 steps by

(as usual, the summation disappears if the upper index is smaller than the lower one)
∂̄ατ (U − v)n −∆Un = a(k)

n (∆v + f(0)) + f(tn) +

k−2∑
`=1

b
(k)
`,nτ

`∂
(`)
t f(0), 1 ≤ n ≤ k − 1,

∂̄ατ (U − v)n −∆Un = f(tn), k ≤ n ≤ N.

(4.4)

where the coefficients a
(k)
n and b

(k)
`,n are given in Table 2. When compared with the vanilla CQ scheme (4.3),

the additional terms are constructed so as to improve the overall accuracy of the scheme to O(τk) for an

initial data v ∈ D(∆) and a possibly incompatible right-hand side f [90]. The only difference between the

corrected scheme (4.4) and the standard scheme (4.3) lies in the correction terms at the starting k−1 steps

for BDFk. Hence, the scheme (4.4) is easy to implement. The correction is also minimal in the sense that295

there is no other correction scheme which uses fewer correction steps while attaining the same accuracy.

The corrected scheme (4.4) satisfies the following error estimates [90, Theorem 2.4].

Theorem 4.1. Let f ∈ Ck−1([0, T ];L2(Ω)) and
∫ t

0
(t−s)α−1‖∂(k)

s f(s)‖L2(Ω)ds <∞. Then for the solution

Un to (4.4), the following error estimates hold for any tn > 0.

(i) If ∆v ∈ L2(Ω), then

‖Un − u(tn)‖L2(Ω) ≤cτk
(
tα−kn ‖f(0) + ∆v‖L2(Ω) +

k−1∑
`=1

tα+`−k
n ‖∂(`)

t f(0)‖L2(Ω)

+

∫ tn

0

(tn − s)α−1‖∂(k)
s f(s)‖L2(Ω)ds

)
.

(ii) If v ∈ L2(Ω), then

‖Un − u(tn)‖L2(Ω) ≤ cτk
(
t−kn ‖v‖L2(Ω) +

k−1∑
`=0

tα+`−k
n ‖∂(`)

t f(0)‖L2(Ω)

+

∫ tn

0

(tn − s)α−1‖∂(k)
s f(s)‖L2(Ω)ds

)
.

Remark 4.1. Note that similar to Theorem 3.1, the error estimates in Theorem 4.1 depend only on

the regularity of the source term f and the initial condition v, which can be incompatible or nonsmooth,
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rather than the regularity of the solution u. For nonsmooth initial data v, e.g., v ∈ L2(Ω), the term

∆v is no longer in the space L2(Ω), and so the scheme (4.4) (and the scheme (4.8) below) should be

interpreted in a distributional sense or the scheme is stated for the spatially discrete operator. Further,

although no restrictive condition on the spatial regularity of the source term f , in order to achieve high-

order temporal convergence of any scheme, it necessarily possess suitable temporal regularity, as indicated by

f ∈ Ck−1([0, T ];L2(Ω)) and
∫ t

0
(t−s)α−1‖∂(k)

s f(s)‖L2(Ω)ds <∞. Should these conditions fail, the temporal

convergence rate deteriorates accordingly, due to a lack of necessary solution regularity, cf. Theorem 2.1.

Theorem 4.1 implies that for any fixed tn > 0, the rate is O(τk) for BDFk CQ. In order to have a uniform

O(τk) rate, the following compatibility conditions are needed:

f(0) + ∆v = 0 and ∂
(`)
t f(0) = 0, ` = 1, . . . , k − 1.

Otherwise, the estimate deteriorates as t→ 0, in accordance with the regularity theory in Theorem 2.1: the300

solution (and its derivatives) exhibits weak singularity at t = 0.

Remark 4.2. The case k = 1 corresponds to the backward Euler CQ, and it does not require any correction

in order to achieve a first-order convergence.

In passing, we note that not all CQ schemes require initial correction in order to recover high-order

convergence. One notable example is Runge-Kutta CQ; see [91] for semilinear parabolic problems and305

[92] for the subdiffusion model as well as its fast implementation. Further, a proper weighted average of

shifted standard Grunwald-Letnikov approximations can also lead to high-order approximations [93]. CQ

schemes can exhibit superconvergence at points that may be different from the grid points, which can also

be effectively exploited to develop high-order schemes. For example, the Grunwald-Letnikov formula is only

first-order accurate at the grid point t = tn, but it is actually second-order accurate at the intermediate310

point t = tn − α
2 τ [94], which results in a scheme analogous to the classical Crank-Nicolson scheme for

standard parabolic equations. However, the corrected versions of these approximations have not yet been

developed for the general case, except for a fractional variant of Crank-Nicolson scheme [95].

4.2. Piecewise polynomial interpolation

Now we describe time stepping schemes based on piecewise polynomial approximation, especially inter-

polation. These schemes are essentially of finite difference nature, and the most prominent one is the L1
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Table 2: The coefficients a
(k)
j and b

(k)
`,j [90, Tables 1 and 2].

BDFk a
(k)
1 a

(k)
2 a

(k)
3 a

(k)
4 a

(k)
5

k = 2 1
2

k = 3 11
12 − 5

12

k = 4 31
24 − 7

6
3
8

k = 5 1181
720 − 177

80
341
240 − 251

720

k = 6 2837
1440 − 2543

720
17
5 − 1201

720
95
288

BDFk b
(k)
`,1 b

(k)
`,2 b

(k)
`,3 b

(k)
`,4 b

(k)
`,5

k = 3 ` = 1 1
12 0

k = 4 ` = 1 1
6 − 1

12 0

` = 2 0 0 0

k = 5 ` = 1 59
240 − 29

120
19
240 0

` = 2 1
240 − 1

240 0 0

` = 3 1
720 0 0 0

k = 6 ` = 1 77
240 − 7

15
73
240 − 3

40 0

` = 2 1
96 − 1

60
1

160 0 0

` = 3 − 1
360

1
720 0 0 0

` = 4 0 0 0 0 0

scheme. The L1 approximation of the Caputo derivative ∂αt u(tn) is given by [54, Section 3]

∂αt u(tn) =
1

Γ(1− α)

n−1∑
j=0

∫ tj+1

tj

∂u(s)

∂s
(tn − s)−α ds

≈ 1

Γ(1− α)

n−1∑
j=0

u(tj+1)− u(tj)

τ

∫ tj+1

tj

(tn − s)−αds

=

n−1∑
j=0

bj
u(tn−j)− u(tn−j−1)

τα

= τ−α[b0u(tn)− bn−1u(t0) +

n−1∑
j=1

(bj − bj−1)u(tn−j)] =: Ln1 (u),

(4.5)

where the weights bj are given by

bj = ((j + 1)1−α − j1−α)/Γ(2− α), j = 0, 1, . . . , N − 1.

In essence, it approximates the function u by a continuous piecewise linear interpolation, in a manner

similar to the backward Euler method. Thus it can be viewed as a fractional analogue of the latter. It was
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shown in [54, equation (3.3)] and [96, Lemma 4.1] that the local truncation error of the L1 approximation

is bounded by

|∂αt u(tn)− Ln1 (u)| ≤ c(u)τ2−α, (4.6)

where the constant c(u) depends on ‖u‖C2([0,T ]). Thus, it requires that the solution u be twice continuously

differentiable in time. Since its first appearance, the L1 scheme has been widely used in practice, and

currently it is one of the most popular and successful numerical methods for solving the model (1.1). With

the L1 scheme in time, we arrive at the following time stepping scheme: Given U0 = v, find Un ∈ Ḣ1(Ω)

for n = 1, 2, . . . , N

Ln1 (U)−∆Un = f(tn). (4.7)

We have the following temporal error estimate for the scheme (4.7) [97, 38]. This is achieved by means315

of discrete Laplace transform, and it is rather technical, since the discrete Laplace transform of the weights

bj involves the fairly wieldy polylogarithmic function. See also [98] for a different analysis via an energy

argument. Formally, the error estimate is nearly identical with that for the backward Euler CQ. Thus, in

stark contrast to the O(τ2−α) rate expected from the local truncation error (4.6) for smooth solutions, the

L1 scheme is generally only first-order accurate, even for smooth initial data or source term.320

Theorem 4.2. Let u and Un be the solutions of problems (1.1) and (4.7), respectively. Then for any

β ∈ [0, 2], there holds

‖u(tn)− Un‖L2(Ω) ≤ cτtβα/2−1
n ‖u0‖Ḣβ(Ω) + cτ

(
tα−1
n ‖f(0)‖L2(Ω) +

∫ tn

0

(tn − s)α−1‖f ′(s)‖L2(Ω)ds

)
.

Very recently, a corrected L1 scheme was developed by Yan et al [99] (see also [100, 101] for related

works from the group). The corrected scheme is given byL1
1(U)−∆U1 − 1

2∆U0 = f(t1) + 1
2f(0), n = 1

Ln1 (U)−∆Un = f(tn), n ≥ 2.
(4.8)

It is noteworthy that it requires only correcting the first step, and incidentally, the correction term is

identical with that for BDF2 CQ, one special case of the scheme (4.4) [83]. The following error estimate

holds for the corrected scheme. Note that the stated regularity requirement on the source term f may be

not optimal for α > 1/2.

Theorem 4.3. Let u and Un be the solutions of problems (1.1) and (4.8), respectively. Then for any

β ∈ [0, 2], there holds

‖u(tn)− Un‖L2(Ω) ≤ cτ2−α
(
t(β/2+1)α−2
n ‖v‖Ḣβ(Ω) + t2α−2

n ‖f(0)‖L2(Ω) + t2α−1
n ‖f ′(0)‖L2(Ω)

+

∫ tn

0

(tn − s)2α−1‖f ′′(s)‖L2(Ω)ds

)
.
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There have been several important efforts in extending the L1 scheme to high-order schemes by using325

high-order local polynomials [102, 103, 104] and superconvergent points [105]. For example, the L1-2 scheme

due to Gao et al [103] applies a piecewise linear approximation on the first subinterval, and a quadratic

approximation on the other subintervals to improve the numerical accuracy. However, the performance of

these time stepping schemes for nonsmooth data is not even fully examined numerically, not to mention

rigorous theoretical analysis.330

Besides, Mustapha and McLean developed several discontinuous Galerkin methods [106, 107, 108] for

a variant of the model (1.1):

∂tu− R∂1−α
t ∆u = f,

together with suitable boundary and initial conditions. Formally, this model can be derived from (1.1)

by applying the Riemann-Liouville operator R∂1−α
t to both sides of the equation and then redefining

the source term f̃ = R∂1−α
t f . The resulting schemes are similar to piecewise polynomial interpolation

described above. However, the nonsmooth error estimates are mostly unavailable, except for the piecewise

constant discontinuous Galerkin method (for the homogeneous problem) [109, 110]; see also [111] for a335

Crank-Nicolson type scheme for a related model.

4.3. Illustrations and outstanding issues

Now we illustrate the performance of the corrected time stepping schemes, i.e., (4.4) and (4.8), with

both smooth and nonsmooth initial data. In order to observe the convergence rate for high-order BDF CQs,

we employ Multiprecision Computing Toolbox for MATLAB (https://www.advanpix.com, last accessed340

on September 10, 2018) in the computation.

Example 4.1. Consider problem (1.1) on Ω = (0, 1) with v = x sin(2πx) ∈ Ḣ2(Ω) and f = 0.

In this example, the initial data v is smooth. The numerical results, i.e., the L2(Ω) error ‖uh(tN ) −

uNh ‖L2(Ω) at tN = 1, by the vanilla BDFk CQ schemes are presented in Table 3 (a), where the reference

solution uh(tN ) is computed using the corrected BDF6 CQ scheme with a much finer temporal mesh with345

τ = T/3200. The numerical results show only a first-order empirical convergence rate, for all vanilla BDFk

CQ, k ≥ 2, which shows clearly the lack of robustness of the naive CQ scheme (4.3) with respect to problem

data regularity, despite the good regularity of the initial data v (actually it belongs to the space Ḣ2(Ω)). In

sharp contrast, the corrected scheme (4.4) can achieve the desired convergence rate; see Table 3(b). These

observations remain valid for the L1 scheme and its corrected version; see Tables 4. These results agree350

well with the theoretical predictions from Theorems 4.1 and 4.3. It is worth noting that the desired rate

for the corrected L1 scheme only kicks in at a relatively small time step size, and its precise mechanism

remains unclear. These results show clearly the effectiveness of the idea of initial correction for restoring

the desired high-order convergence.
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Table 3: The L2-norm error for Example 4.1 at tN = 1, by the BDFk CQ with h = 1/100.

(a) uncorrected BDFk

α N 50 100 200 400 800 rate

BDF2 4.94e-3 2.48e-3 1.24e-3 6.20e-4 3.10e-4 ≈ 1.00 (1.00)

BDF3 4.99e-3 2.49e-3 1.24e-3 6.21e-4 3.11e-4 ≈ 1.00 (1.00)

0.5 BDF4 4.99e-3 2.49e-3 1.24e-3 6.21e-4 3.11e-4 ≈ 1.00 (1.00)

BDF5 4.99e-3 2.49e-3 1.24e-3 6.21e-4 3.11e-4 ≈ 1.00 (1.00)

BDF6 4.96e-3 2.49e-3 1.24e-3 6.21e-4 3.11e-4 ≈ 1.00 (1.00)

(b) Corrected BDFk

α k\N 50 100 200 400 800 rate

2 5.87e-5 1.45e-5 3.59e-6 8.95e-7 2.23e-7 ≈ 2.00 (2.00)

3 2.39e-6 2.88e-7 3.53e-8 4.38e-9 5.45e-10 ≈ 3.00 (3.00)

0.25 4 1.49e-7 8.72e-9 5.27e-10 3.24e-11 2.01e-12 ≈ 4.02 (4.00)

5 1.33e-8 3.57e-10 1.06e-11 3.22e-13 9.91e-15 ≈ 5.02 (5.00)

6 1.12e-5 1.54e-9 2.68e-13 4.02e-15 6.16e-17 ≈ 6.04 (6.00)

2 1.77e-4 4.34e-5 1.08e-5 2.68e-6 6.69e-7 ≈ 2.00 (2.00)

3 7.85e-6 9.44e-7 1.16e-7 1.43e-8 1.78e-9 ≈ 3.01 (3.00)

0.5 4 5.23e-7 3.04e-8 1.83e-9 1.12e-10 6.97e-12 ≈ 4.02 (4.00)

5 4.86e-8 1.30e-9 3.85e-11 1.17e-12 3.60e-14 ≈ 5.03 (5.00)

6 2.82e-5 2.99e-9 1.01e-12 1.51e-14 2.32e-16 ≈ 6.05 (6.00)

2 4.58e-4 1.12e-4 2.78e-5 6.92e-6 1.73e-6 ≈ 2.00 (2.00)

3 2.39e-5 2.85e-6 3.49e-7 4.31e-8 5.36e-9 ≈ 3.01 (3.00)

0.75 4 1.80e-6 1.04e-7 6.22e-9 3.81e-10 2.36e-11 ≈ 4.02 (4.00)

5 2.51e-7 4.90e-9 1.44e-10 4.35e-12 1.34e-13 ≈ 5.03 (5.00)

6 1.65e-3 4.20e-7 4.17e-12 6.10e-14 9.31e-16 ≈ 6.06 (6.00)

Example 4.2. Consider problem (1.1) on Ω = (0, 1) with v = χ(0,1/2)(x) ∈ Ḣ 1
2−ε(Ω) (with χS being the355

characteristic function of the set S) and f = 0.

In this example, the initial data v is nonsmooth. It is observed that the uncorrected schemes, e.g.,

BDFk CQ and L1 scheme, can only achieve a first-order convergence (at any fixed tN ); see Table 6 for

an illustration. In contrast, both corrected BDFk CQ in (4.4) and corrected L1 scheme (4.8), can achieve

the desired convergence rate, cf Tables 5 and 6, agreeing excellently with the theoretical predictions in360

Theorem 4.1 and 4.3. These results clearly illustrate the potential of initial correction for restoring high-

order convergence and robustness of the schemes.
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Table 4: The L2-norm error for Example 4.1 at tN = 0.01, by the L1 scheme (4.4) with h = 1/100 and N = 1000× 2k.

scheme α\k 1 2 3 4 5 6 rate

0.3 1.28e-4 6.38e-5 3.19e-5 1.59e-5 7.97e-6 3.99e-6 ≈ 1.00 (1.00)

L1 0.5 1.99e-4 9.94e-5 4.96e-5 2.47e-5 1.24e-5 6.17e-6 ≈ 1.00 (1.00)

0.7 2.86e-3 1.41e-4 6.98e-5 3.46e-5 1.72e-5 8.34e-6 ≈ 1.01 (1.00)

0.3 7.94e-8 2.79e-8 9.67e-9 3.28e-9 1.09e-9 3.56e-10 ≈ 1.63 (1.70)

corrected L1 0.5 1.90e-6 6.93e-7 2.50e-7 8.95e-8 3.19e-8 1.14e-8 ≈ 1.49 (1.50)

0.7 1.97e-5 8.06e-6 3.29e-6 1.34e-6 5.44e-7 2.21e-7 ≈ 1.30 (1.30)

Table 5: The L2-norm error for Example 4.2 at tN = 1, by the corrected scheme (4.4) with h = 1/100.

α k\N 50 100 200 400 800 rate

2 5.70e-5 1.41e-5 3.49e-6 8.70e-7 2.17e-7 ≈ 2.00 (2.00)

3 2.31e-6 2.78e-7 3.42e-8 4.24e-9 5.27e-10 ≈ 3.01 (3.00)

0.25 4 1.44e-7 8.40e-9 5.08e-10 3.12e-11 1.93e-12 ≈ 4.02 (4.00)

5 1.28e-8 3.44e-10 1.02e-11 3.09e-13 9.57e-15 ≈ 5.02 (5.00)

6 1.10e-5 1.59e-9 2.57e-13 3.84e-15 7.51e-17 ≈ 5.87 (6.00)

2 1.75e-4 4.30e-5 1.07e-5 2.66e-6 6.63e-7 ≈ 2.00 (2.00)

3 7.75e-6 9.32e-7 1.14e-7 1.41e-8 1.76e-9 ≈ 3.01 (3.00)

0.5 4 5.14e-7 2.99e-8 1.80e-9 1.11e-10 6.86e-12 ≈ 4.02 (4.00)

5 4.77e-8 1.28e-9 3.78e-11 1.15e-12 3.53e-14 ≈ 5.03 (5.00)

6 2.98e-5 2.83e-9 9.90e-13 1.48e-14 2.04e-16 ≈ 6.12 (6.00)

2 4.79e-4 1.17e-4 2.91e-5 7.23e-6 1.80e-6 ≈ 2.00 (2.00)

3 2.52e-5 3.01e-6 3.68e-7 4.55e-8 5.65e-9 ≈ 3.01 (3.00)

0.75 4 1.91e-6 1.10e-7 6.60e-9 4.04e-10 2.50e-11 ≈ 4.02 (4.00)

5 2.88e-7 5.23e-9 1.53e-10 4.64e-12 1.43e-13 ≈ 5.03 (5.00)

6 1.65e-3 3.25e-7 4.47e-12 6.51e-14 9.44e-16 ≈ 6.10 (6.00)

We conclude this section with two research directions on time stepping schemes that deserve further

investigation.

(i) Nonsmooth error analysis for time-stepping schemes is still in its infancy. So far all known results365

are only for uniform grids, and although not presented, all the proofs rely essentially on Laplace

transform and its discrete analogue. It is of immense interest to develop energy type arguments that

yield nonsmooth data error estimates, which, among the potential advantages, might allow deriving

results for nonuniform grids. Likewise, correction schemes are also only developed for uniform grids.

This is partially due to the fact that the current construction of corrections essentially relies on370
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Table 6: The L2-norm error for Example 4.2 at tN = 0.01, by the L1 scheme (4.4) with h = 1/100 and N = 1000× 2k.

scheme α\k 1 2 3 4 5 6 rate

0.3 1.20e-4 5.97e-5 2.99e-5 1.49e-5 7.46e-6 3.73e-6 ≈ 1.00 (1.00)

L1 0.5 1.70e-4 8.50e-5 4.22e-5 2.10e-5 1.05e-5 5.25e-6 ≈ 1.00 (1.00)

0.7 1.83e-4 9.06e-5 4.50e-5 2.24e-5 1.11e-5 5.55e-6 ≈ 1.01 (1.00)

0.3 9.32e-8 3.43e-8 1.20e-8 4.05e-9 1.34e-9 4.34e-10 ≈ 1.61 (1.70)

corrected L1 0.5 1.90e-6 6.90e-7 2.48e-7 8.87e-8 3.16e-8 1.12e-8 ≈ 1.49 (1.50)

0.7 9.83e-6 4.01e-6 1.64e-6 6.66e-7 2.71e-7 1.10e-7 ≈ 1.30 (1.30)

Laplace transform of the kernel and its discrete analogue.

(ii) The error estimates are only derived for problems with a time-independent elliptic operator, and there

are no analogous results for time-dependent elliptic operators, including time-dependent coefficient

and certain nonlinear problems.

5. Space-time formulations375

Due to the nonlocality of the fractional derivative ∂αt u, at each time step one has to use the numerical

solutions at all preceding time levels, which incurs huge storage issues. Thus, in terms of storage, the

advantages of time stepping schemes, when compared to space-time schemes, are not as pronounced as

in the case of standard parabolic problems, and it is very natural to consider space-time discretization.

Naturally, any such construction would rely on a proper weak formulation of the fractional derivative,380

which is only well understood for the Riemann-Liouville derivative R∂αt u at present. Thus, the idea so far

is mostly restricted to problem (1.1) with v = 0, for which the Riemann-Liouville and Caputo derivatives

coincide, and we shall not distinguish the two fractional derivatives in this section. It is noteworthy that

there is a very large body of literature on space-time formulations for time fractional evolution equations

(or more general space-time fractional models), and we shall only mention two such formulations below.385

However, the theoretical understanding of these formulations remains rather limited in the context of

nonsmooth problem data, and there is a huge demand on developing rigorous theoretical analysis.

Throughout, let I = (0, T ), and the space H̃s
L(I) consists of functions whose extension by zero belong to

Hs(−∞, T ). On the cylindrical domain QT = Ω× I, we denote the L2(QT )-inner product by (·, ·)L2(QT ).

5.1. Standard Galerkin formulation390

In an influential work, Li and Xu [112] proposed one first rigorous space-time formulation for problem

(1.1), which was extended and refined by many other researchers (see, e.g., [56, 113, 114, 115, 116] and the

references therein). For any s ∈ [0, 1], we denote by

Bs(QT ) = Hs(I;L2(Ω)) ∩ L2(I;H1
0 (Ω)),
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with a norm defined by

‖v‖Bs(QT ) = (‖v‖2Hs(I;L2(Ω)) + ‖v‖2L2(I;H1(Ω)))
1/2.

The foundation of the method is the following important identity [112, Lemma 2.6]

(R0∂
α
t w, v)L2(I) = (R0∂

α
2
t w,

R
t∂

α
2

T v)L2(I) ∀w ∈ H̃1
L(I), v ∈ H̃

α
2

L (I), (5.1)

where R
0∂
γ
t w and R

t∂
γ
Tw denote the left-sided and right-sided Riemann-Liouville fractional derivatives, re-

spectively, and for γ ∈ (0, 1), and are defined by

R
0∂
γ
t w(t) =

d

dt

1

Γ(1− γ)

∫ t

0

(t− s)−γw(s)ds,

R
t∂
γ
Tw(t) = − d

dt

1

Γ(1− γ)

∫ T

t

(s− t)−γw(s)ds.

By multiplying both sides of problem (1.1) with v ∈ B α
2 (QT ), integrating over the cylindrical domain QT ,

applying the formula (5.1) in time and integration by parts in space, we obtain the following bilinear form

on the space B
α
2 (QT ):

a(u, v) = (R0∂
α
2
t u,

R
t∂

α
2

T v)L2(QT ) + (∇u,∇v)L2(QT ).

Hence, the weak formulation of problem (1.1) is given by: for f ∈ L2(QT ), find u ∈ B α
2 (QT ) such that

a(u, v) = (f, v)L2(QT ) ∀v ∈ B α
2 (QT ). (5.2)

Clearly, the bilinear form a(·, ·) is not symmetric, since the Riemann-Liouville derivatives R
0∂
γ
t u(t) and

R
t∂
γ
T u(t) differ. Nonetheless, it is continuous on the space B

α
2 (QT ). Further, since the inner product

(R0∂
α
2
t v,

R
t∂

α
2

T v)L2(I) involving Riemann-Liouville derivatives actually induces an equivalent norm on the

space H
α
2 (I) (e.g., by means of Fourier transform) (see, e.g., [112, Lemma 2.5] and [117, Lemma 4.2]):

(R0∂
α
2
t v,

R
t∂

α
2

T v)L2(I) ≥ ‖v‖2H α
2 (I)

,

we have the following coercivity of the bilinear form a(·, ·)

a(u, u) ≥ c‖u‖2
B
α
2 (QT )

.

Then the well-posedness of the weak formulation (5.2) follows directly from Lax-Milgram theorem.

To discretize the weak formulation, Li and Xu [112] employed a spectral approximation for the case of

one-dimensional spatial domain Ω. Specifically, let PN (I) (respectively PM (Ω)) be the polynomial space of

degree less than or equal to N (respectively M) with respect to t (respectively x) (not to be confused with

the L2(Ω) projection operator Ph on the FEM space Xh in Section 3). For the spectral approximation in

space, the authors employ the space P 0
M (Ω) := PM (Ω)∩H1

0 (Ω), and since v = 0, it is natural to construct

the approximation space (in time):

PEN (I) := {v ∈ PN (I) : v(0) = 0}.
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Then for a given pair of integers M,N , let L := (M,N) and the tensor product space SL := P 0
M (Ω) ⊗

PEN (I) ⊂ B α
2 (QT ). The space-time spectral Galerkin approximation to problem (1.1) reads: find uL ∈ SL

such that

a(uL, vL) = (f, vL)L2(QT ) ∀vL ∈ SL.

The well-posedness of the discrete problem follows directly from Lax-Milgram theorem as the continuous

case. The authors also provided optimal error estimates in the energy norm. However, the L2(QT ) error

estimate for the approximation remains unclear, since the regularity of the adjoint problem is not well un-

derstood (interestingly, a similar issue arises when applying the Galerkin FEM to two-point boundary value395

problems involving either the Riemann-Liouville or Caputo derivative [118, 117]). Clearly the construction

extends directly to rectangular domains.

Note that in order to achieve high-order convergence, the standard polynomial approximation space

requires high regularity of the solution u in time (in usual Sobolev spaces), which is nontrivial to ensure a

priori, in view of the limited smoothing property of the solution operators. Hence, recently, there has been400

immense interest in developing schemes that can take care of the solution singularity directly or indirectly.

In the context of space-time formulations, singularity enriched trial and/or test spaces, e.g., generalized

Jacobi polynomials [119] (including Jacobi poly-fractonomials [120]) and Müntz polynomials [115], are

extremely promising and have demonstrated very encouraging numerical results. However, the rigorous

convergence analysis of such schemes can be very challenging, and is strikingly missing for nonsmooth405

problem data.

5.2. Petrov-Galerkin formulation

Now we introduce a Petrov-Galerkin formulation recently developed in [121]. Let V (QT ) = L2(I;H1
0 (Ω))

and by V ∗(QT ) its dual, and for any 0 < s < 1, define the space Bs(QT ) by

Bs(QT ) = H̃s
L(I;H−1(Ω)) ∩ L2(I;H1

0 (Ω)).

The space is endowed with the norm

‖v‖Bs(QT ) = (‖∂st v‖2V ∗(QT ) + (∇v,∇v)L2(QT ))
1/2.

Here we have slightly abused the notation Bs(QT ) since it differs from that in Section 5.1. Then we define

the bilinear form a(·, ·) : Bα(QT )× V (QT )→ R by

a(v, φ) := (∂αt v, φ)L2(QT ) + (∇u,∇v)L2(QT ).

The Petrov-Galerkin weak formulation of problem (1.1) reads: find u ∈ Bα(QT ) such that

a(u, φ) = (f, φ)L2(QT ) ∀φ ∈ V (QT ). (5.3)
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The bilinear form a(·, ·) is continuous on Bα(QT )× V (QT ), and it satisfies the following inf-sup condition

sup
φ∈V (QT )

a(v, φ)

‖φ‖V (QT )
≥ ‖v‖Bα(QT ) ∀v ∈ Bα(QT )

and a compatibility condition, i.e., supv∈Bα(QT ) a(v, φ) > 0 for any 0 6= φ ∈ V (QT ) [121, Lemma 2.4]. Thus

the well-posedness of the space-time formulation (5.3) follows directly from the Babuska-Brezzi theory.

Now a Petrov-Galerkin method can be derived as follows. Let Xh be the FEM space defined in (3.1).

Also, take a uniform partition of the time interval I with grid points tn = nτ , n = 0, . . . , N , and time

step-size τ = T/N . Following [122], define a set of “fractionalized” piecewise constant basis functions φn(t),

n = 1, . . . , N , by

φn(t) = (t− tn−1)αχ[tn−1,T ](t).

(recall χS denotes the characteristic function of the set S.) It is easy to verify that

φn(t) = Γ(α+ 1)0I
α
t χ[tn−1,T ](t) and ∂αt φk(t) = Γ(α+ 1)χ[tn−1,T ](t).

Clearly, φk ∈ H̃α+s
L (0, T ) for any s ∈ [0, 1/2). One benefit of this construction is to build the poten-410

tial singularity of form tα into the basis functions directly, which may allow resolving common solution

singularities effectively.

Further, we introduce the following two spaces

Vτ = span({φn(t)}Nn=1) and Wτ := span({χ[tn−1,T ](t)}Nn=1).

Then the solution space Bαh,τ ⊂ Bα(QT ) and the test space Vh,τ (QT ) ⊂ V (QT ) are respectively defined by

the tensor product spaces Bαh,τ (QT ) := Xh⊗Vτ and Vh,τ (QT ) := Xh⊗Wτ . The space-time Petrov-Galerkin

FEM problem of (1.1) reads: given f ∈ V ∗(QT ), find uhτ ∈ Bαh,τ (QT ) such that

a(uhτ , φ) = (f, φ)L2(QT ) ∀φ ∈ Vh,τ (QT ). (5.4)

Algorithmically, it leads to a time-stepping like scheme, and thus admits an efficient practical implemen-

tation. The existence and the stability of the solution uhτ follows from the discrete inf-sup condition [121,

Lemma 3.3]

sup
φ∈Vh,τ (QT )

a(v, φ)

‖φ‖V (QT )
≥ cα‖v‖Bα(QT ) ∀v ∈ Bαh,τ (QT ).

This condition was shown using the L2(I) stability of the projection operator from Vτ to Wτ . It is

interesting to note that the constant in the L2(I)-stability of the operator depends on the fractional order

α and deteriorates as α → 1. Note that for standard parabolic problems (α = 1), it depends on the time415

step size τ , leading to an undesirable CFL-condition, a fact shown in [123]. This indicates one significant

difference between the fractional model and the standard parabolic model in the context of space-time

formulations. In passing, we also note a different Petrov-Galerkin formulation proposed very recently
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in [124], whose numerical realization, however, has not been carried out yet and needs computational

verification.420

Next, we give two error estimates for the space-time Petrov-Galerkin approximation uhτ obtained by

(5.4), [121, Theorems 5.2 and 5.3], in Hs
L(0, T ;L2(Ω))- and L2(QT )-norms, respectively.

Theorem 5.1. Let f ∈ H̃s
L(0, T ;L2(Ω)) with 0 ≤ s ≤ 1, and u and uhτ be the solutions of (5.3) and (5.4),

respectively. Then there holds

‖u− uhτ‖Bα(QT ) ≤ c(τs + h)‖f‖H̃sL(0,T ;L2(Ω)),

‖u− uhτ‖L2(QT ) ≤ c(τα+s + h2)‖f‖H̃sL(0,T ;L2(Ω)).

Remark 5.1. The time stepping schemes in Section 4 rely on sampling the governing equation at time grids

and approximation(s) of the derivatives at these grid points, which implicitly assumes f ∈ C([0, T ];L2(Ω)).

In contrast, the space-time formulations can still be well defined for f ∈ L2(0, T ;Hs(Ω)) for any s ≥ 0,425

which hence allows treating problems with very weak source term provided that the relevant integrals can be

evaluated with requisite accuracy.

5.3. Numerical illustrations, comments and research questions

Now we present some numerical results to show the performance of the space-time Petrov-Galerkin

FEM, cf. (5.4) with nonsmooth data.430

Example 5.1. Consider problem (1.1) on the unit square domain Ω = (0, 1)2 with v ≡ 0 and

(a) f = sin(t)χ{x≤ 1
2}

(x, y) ∈ H̃1
L(0, T ; Ḣβ(Ω)) with β < 0.5;

(b) f = t−0.2χ{x≤ 1
2}

(x, y) ∈ H̃s
L(0, T ; Ḣβ(Ω)) with β < 0.5 and s < 0.3.

To compute the numerical solution uhτ , we fix the spatial mesh size h at h = 1/160 and set the temporal

step size τ to τ = T/N , where the reference solution uh is computed using a much finer temporal mesh,435

i.e., τ = T/2560. The error ‖uh − uhτ‖L2(QT ) with T = 1 is presented in Table 7. Irrespective of the

compatibility of the source term with the initial data, we observe a convergence rate in the L2(QT )-norm

of order O(τα+1) and O(τα+0.3) for cases (a) and (b), respectively, which fully supports the theoretical

results in Theorem 5.1.

We conclude this sections with two important research problems on space-time formulations.440

(i) The development of space-time formulations relies crucially on proper variational formulations for the

fractional derivative, and this is relatively well understood only for the Riemann-Liouville fractional

derivative but not yet for the Caputo one. This is largely the main reason for the restriction to the

case of a zero initial data in our discussions. Thus, it is of significant interest to develop proper

techniques for handling nonsmooth initial data in the Caputo case. Nonetheless, sufficiently smooth445

initial data, e.g., v ∈ Ḣ2(Ω), can be easily accommodated as follows: let w := u− v, then w satisfies

w(0) = 0 and ∂αt w −∆w = f + ∆v, for which both space-time formulations apply directly.
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Table 7: The L2(QT )-norm error for Example 5.1 with T = 1, by the space-time Petrov-Galerkin FEM scheme with τ = T/N

and h = 1/160.

α\N 20 40 80 160 320 640 rate

0.3 1.46e-2 5.97e-3 2.47e-3 1.04e-3 4.51e-4 2.00e-4 ≈ 1.23 (1.30)

(a) 0.5 7.14e-1 2.62e-1 9.59e-2 3.54e-2 1.35e-2 5.48e-3 ≈ 1.41 (1.50)

0.7 5.45e-3 1.84e-3 5.97e-4 1.89e-4 6.10e-5 2.10e-5 ≈ 1.61 (1.70)

0.3 1.59e-1 1.25e-1 9.71e-2 7.53e-2 5.78e-2 4.31e-2 ≈ 0.40 (0.60)

(b) 0.5 1.52e-1 1.06e-1 7.23e-2 3.18e-2 2.05e-2 1.33e-2 ≈ 0.62 (0.80)

0.7 1.21e-1 6.93e-2 3.75e-2 1.96e-2 1.01e-2 5.23e-3 ≈ 0.95 (1.00)

(ii) Nonpolynomial type approximation spaces for trial and test functions lead to interesting new schemes,

supported by extremely promising numerical results. However, the performance may depend strongly

on the exponent of the fractional powers, and it would be of substantial interest to analyze the450

precise influence and to develop strategies to adapt the algorithmic parameter(s) automatically. Many

theoretical questions, e.g., unique solvability, stability and optimal convergence rates, surrounding

such schemes, of either Galerkin or Petrov-Galerkin type, are largely open.

6. Concluding remarks

In this paper, we have concisely surveyed relevant results in the area of numerical methods for the455

subdiffusion problem with nonsmooth problem data, with a focus on the state of the art of the following

topics: regularity theory, finite element discretization, time-stepping schemes and space-time formulations.

We compared the theoretical results with that for standard parabolic problems, and also provided illus-

trative numerical results. We also outlined a few interesting research problems that would lead to further

developments and deeper theoretical understanding, and pointed out the most relevant references. Thus,460

it may serve as a brief introduction to this fast growing area of numerical analysis.

The subdiffusion model represents one of the simplest models in the zoology of fractional diffusion or

anomalous diffusion. The authors believe that many of the analysis may be extended to more complex

nonlocal-in-time models, e.g., diffusion wave model, multi-term, distributed-order model, tempered subd-

iffusion, nonsingular Caputo-Fabrizio fractional derivative, and space-time fractional models. Up to now,465

these more complex models have received little attention in numerical analysis, have scarcely been studied

in the context of nonsmooth problem data, and their distinct features remain largely to be explored both

analytically and numerically, in spite of the explosion of their use in mathematical modeling.
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