
Learning to Coordinate
Coördineren kun je leren — dedicated to Farhad Arbab on the occasion of his retirement

Gerco van Heerdt1, Bart Jacobs2, Tobias Kappé1, and Alexandra Silva1

1 Department of Computer Science, University College London
2 Institute for Computing and Information Sciences, Radboud University Nijmegen

Abstract. Reo is a visual language of connectors that originated in component-
based software engineering. It is a flexible and intuitive language, yet powerful
and capable of expressing complex patterns of composition. The intricacies of the
language resulted in many semantic models proposed for Reo, including several
automata-based ones.
In this paper, we show how to generalize a known active automata learning
algorithm — Angluin’s L* — to Reo automata. We use recent categorical insights
on Angluin’s original algorithm to devise this generalization, which turns out to
require a change of base category.

1 Introduction

In the last two decades, with the widespread use and development of software, there
has been a focus on promoting reusability of software code. Component-based software
engineering and service-oriented computing are two examples of paradigms that were
developed around this idea. Many languages appeared to enable flexible and expressive
ways to compose software components. One of those languages is Reo — a language
offering a visual approach, where connectors are used to compose components into a
system. The language is modular, offering ways to compositionally build more complex
connectors from basic ones, which makes it possible to capture intricate patterns of
interaction such as input synchronization, mutual-exclusion, or state-dependent behavior.

Reo serves as a prime example of a language in which interaction is treated as
a first-class concept that allows direct specification and manipulation of protocols.
The treatment of interaction as a central concept and the development of rigorous
mathematical tools and techniques for its study has occupied most of Farhad’s career.
In this paper we make a modest contribution to Farhad’s toolkit — a generalization of
Angluin’s algorithm to Reo automata, one of many semantic models developed for Reo.

Automata are used in modeling and verification of systems and protocols in Computer
Science. Typically, the behavior of the system is modeled by a finite state machine and
then desired properties, encoded in an appropriate logic, are checked against the model.
Unfortunately, models are not always available and rapid changes in the system require
frequent adaptations. This has lead to the development of automata learning algorithms,
which enable inferring or learning a model from a given system just by observing its
behavior or response to certain queries. One of the first algorithms was proposed by
Dana Angluin [2] and though it only worked for deterministic finite automata it had an

interesting range of applications, such as in verification of software systems and security
protocols (a recent survey can be found here [11]).

Category theory provides an abstract framework to study structures in mathematics
and computer science. In this paper, we explore the power of abstraction and recast the
main ingredients of Angluin’s algorithm using basic categorical concepts, from algebra
and coalgebra, which open the door to instantiations to other types of automata and in
other categories.

Section 2 is a refinement of a section we included in a previous paper [7]. Compared
to [7], we added fully categorical characterizations of the data structures and hypothesis
automata involved in Angluin’s algorithm. Using these ingredients, we made our proof
of minimality of these automata completely abstract, which also fixes a gap present in the
old proof. The application to Reo automata is entirely new and illustrates an important
feature of the framework — the ability to have a learning algorithm in a different category.
Angluin’s algorithm for Reo automata operates in the category Posets. This might not be
surprising for Farhad and those familiar with the semantics of Reo and the idiosyncrasies
of the semantics of interaction and concurrency — the order of actions (and signal flows)
is an important part of correctly capturing the behavior of a Reo connector. However,
this pleasantly surprised the authors, as it provided a simple yet non-trivial, outside
the category Sets, application of the categorical understanding and generalization of
Angluin’s algorithm. In order to obtain the algorithm we had to understand Reo automata
as coalgebras for a functor. In this process, we show that they are essentially automata in
the category Posets. We will define a poset of interactions to be used as the alphabet for
the (categorical) Reo automaton — this highlights the algebraic structure of the actions
(signal flows) in Reo and exposes the fact that interaction is a first-class concept.

Organization of the paper. The rest of the paper is organized as follows. In Section 2,
we recall the basic ingredients of Angluin’s algorithm for deterministic automata and
show how we can recast them in a categorical language. In Section 3, we change the
base category in which the automata are considered from Sets to Posets, obtaining in
this manner an algorithm for Reo automata [6].

2 Automata Learning: The Basic Algorithm

In this section we explain the ingredients of Angluin’s original algorithm for learning
deterministic finite automata and rephrase them using basic categorical constructs.

Let us first introduce some notation and basic definitions. Let A be a finite set of
symbols, often called an alphabet, and A∗ the set of finite words over A. We use λ to
denote the empty word and, given two words u, v ∈ A∗, uv denotes their concatenation.

A language over A is a subset of words in A∗, that is L ∈ 2A∗ . We often switch
between the representation of a language as a set and as its characteristic function. Given
a language L and a word u ∈ A∗, we write L(u) to denote 1 if u ∈ L and 0 otherwise.

Given two languages U and V , we will denote by U · V (or simply UV) the concate-
nation of the two languages U · V = {uv | u ∈ U, v ∈ V}. Given a language L and a ∈ A
we can define its left and right derivative by setting

a−1L = {u | au ∈ L} and La−1 = {u | ua ∈ L}.

2

A language L is prefix-closed (resp. suffix-closed) if La−1 ⊆ L (resp. La−1 ⊆ L) for all
a ∈ A. We use ↓u (resp. ↑u) to denote the set of prefixes (resp. suffixes) of a word u ∈ A∗.

↓u = {w ∈ A∗ | w is a prefix of u} ↑u = {w ∈ A∗ | w is a suffix of u}

For the rest of this paper we fix a language L ∈ 2A∗ to be learned: the master language.
This learning means that we seek a finite deterministic automaton that accepts L. Many
definitions and results are parametric in L but we do not always make this explicit.

2.1 Observation Tables

Angluin’s algorithm incrementally constructs an observation table with Boolean entries.
Rows are labeled by words in S ∪ S · A, where S is a finite prefix-closed language, and
columns by a finite suffix-closed language E. Both S and E contain the empty word λ.

For arbitrary U,V ⊆ A∗, define row : U → 2V by row(u)(v) = L(uv). Since row
is fully determined by L, we will from now on refer to an observation table as a pair
(S , E), leaving L implicit. Formally, an observation table is a triple (S , E, row), where
row : (S ∪S ·A)→ 2E . Note that ∪ here is used for language union and not coproduct, but
it will be convenient for us to split the function into row : S → 2E and rowA : S ·A→ 2E ;
handling the overlap between those efficiently is merely a practical consideration.

We can capture this structure more abstractly by observing that L induces a unique
coalgebra homomorphism l : A∗ → 2A∗ , as shown in the following diagram.

A∗ c //

L

��

l
��

(A∗)A

lA

��

2 2A∗λ?oo ∂ // (2A∗)A

Let us define the unknown ingredients in this diagram. On top we have A∗ with a
transition structure given by appending a letter to the end of the word:

c(u)(a) = ua.

On the bottom we have 2A∗ , the set of languages over A, with a transition structure given
by the Brzozowski/left derivative of a language:

∂(L)(a) = a−1L = {u | au ∈ L}.

The map λ? determines the inclusion of the empty word in the language: λ?(L) = L(λ).
The set 2A∗ , together with these two functions, is the final coalgebra of the functor
2× (−)A on Sets. The map of coalgebras l : A∗ → 2A∗ thus exists and is unique by finality.
More concretely, it is given for all u, v ∈ A∗ by

l(u)(v) = L(uv). (1)

Note that we used the functional view on L here. The set A∗, together with the map c
and the empty word λ : 1→ A∗, is the initial algebra of the functor 1 + A × −; we could
equivalently define l through initiality by regarding L as an element of 2A∗ .

3

In the following lemma we use the inclusion map n : S ↪→ A∗ and the function
k : 2A∗ → 2E defined by k(L)(e) = L(e) for every L ∈ 2A∗ and e ∈ E. These can be seen
as representations of the subsets S and E. Furthermore, it is convenient to use the curried
version Λ(rowA) : S → (2E)A of rowA given by Λ(rowA)(s)(a) = rowA(sa).

Lemma 1. Given S and E, the observation table is defined by row = k ◦ l ◦ n : S → 2E

and Λ(rowA) = kA ◦ ∂ ◦ l ◦ n : S → (2E)A.

Proof. For all s ∈ S and e ∈ E, we have

(k ◦ l ◦ n)(s)(e) = (k ◦ l)(s)(e) definition of n

= l(s)(e) definition of k
(1)
= L(se)

and for each a ∈ A,

(kA ◦ ∂ ◦ l ◦ n)(s)(a)(e) = k((∂ ◦ l ◦ n)(s)(a))(e)

= (∂ ◦ l ◦ n)(s)(a)(e) definition of k

= (l ◦ n)(s)(ae) definition of ∂

= l(s)(ae) definition of n
(1)
= L(sae).

Thus, this yields row(s)(e) = L(se) and rowA(sa)(e) = Λ(rowA)(s)(a)(e) = L(sae),
which is precisely the original definition. ut

There are two crucial properties of the observation table that play a key role in the
algorithm of [2], allowing for the construction of a deterministic automaton from an
observation table: closedness and consistency.

Definition 1 (Closed and Consistent Table [2]). An observation table (S , E) is closed
if for all t ∈ S · A there exists an s ∈ S such that rowA(t) = row(s). An observation table
(S , E) is consistent if whenever s1 and s2 are elements of S such that row(s1) = row(s2),
for all a ∈ A, rowA(s1a) = rowA(s2a).

In many categories each map f : A → B can be factored as f = (A � •� B), de-
scribing f as an epimorphism followed by a monomorphism. In the category Sets of sets
and functions epimorphisms (resp. monomorphisms) are surjections (resp. injections).
Using these factorizations we come to the following categorical reformulations.

Lemma 2. An observation table (S , E) is closed (resp. consistent) if and only if there
exists a necessarily unique map i (resp. j) such that the diagram on the left (resp. right)
commutes.

S · A
i
))

rowA

$$

• //
m // 2E

S
e

55 55

row

;;

2E

S

row
++

e // //

Λ(rowA)
22

•
55

m 55

j))
(2E)A

closed consistent

4

Proof. Suppose the table is closed according to Definition 1. Then, for every t ∈ S · A
there exists an s ∈ S such that row(s) = rowA(t). We define i by i(t) = e(s). It remains to
show that m ◦ i = rowA.

(m ◦ i)(t) = (m ◦ e)(s) definition of i

= row(s) factorization of row

= rowA(t) closedness assumption.

The uniqueness of i is immediate using that m is monic.
Conversely, suppose that there exists i such that m ◦ i = rowA and let t ∈ S · A. Take

s such that e(s) = i(t) (which exists since e is epi). We need to show row(s) = rowA(t).

row(s) = (m ◦ e)(s) factorization of row

= (m ◦ i)(t) assumption e(s) = i(t)

= rowA(t) assumption m ◦ i = rowA.

Suppose the table is consistent according to Definition 1. That is, if s1, s2 ∈ S are such
that row(s1) = row(s2) then, for all a ∈ A, it holds that rowA(s1a) = rowA(s2a). We
define j by j(e(s)) = Λ(rowA)(s), using that e is epi. By definition, j ◦ e = Λ(rowA). It
remains to show that j is well-defined. Let s1, s2 be such that e(s1) = e(s2). We need to
show Λ(rowA)(s1) = Λ(rowA)(s2).

e(s1) = e(s2) ⇒ row(s1) = row(s2) definition of row

⇒ ∀a ∈ A. rowA(s1a) = rowA(s2a) consistency assumption

⇒ Λ(rowA)(s1) = Λ(rowA)(s2) definition of Λ.

The uniqueness of j follows directly from the fact that e is epi.
Conversely, suppose that there exists j such that j ◦ e = Λ(rowA), and let s1, s2 ∈ S

be such that row(s1) = row(s2). Note that this is equivalent to e(s1) = e(s2) because
m is monic. We need to show rowA(s1a) = rowA(s2a) for all a ∈ A, or, equivalently,
Λ(rowA)(s1) = Λ(rowA)(s2).

Λ(rowA)(s1) = (j ◦ e)(s1) assumption Λ(rowA) = j ◦ e

= (j ◦ e)(s2) assumption e(s1) = e(s2)

= Λ(rowA)(s2) assumption Λ(rowA) = j ◦ e. ut

Closed and consistent observation tables are important in the algorithm of [2] because
they can be translated into a deterministic automaton. We first describe the construction
concretely and subsequently more abstractly using our categorical reformulation.

Definition 2 (Automaton associated with an observation table [2]). Given a closed
and consistent observation table (S , E) one can construct a deterministic automaton
M(S , E) = (Q, q0, δ, F) where Q is a finite set of states, F ⊆ Q is a set of final states,
q0 ∈ Q is the initial state, and δ : Q × A→ Q is the transition function. These are given
by:

Q = {row(s) | s ∈ S } q0 = row(λ)

F = {row(s) | s ∈ S , row(s)(λ) = 1} δ(row(s), a) = rowA(sa).

5

To see that this is a well-defined automaton we need to check two facts: that F is a
well-defined subset and that δ is a well-defined function.

Suppose s1 and s2 are elements of S such that (?) row(s1) = row(s2). We must show

row(s1) ∈ F ⇐⇒ row(s2) ∈ F and (2)
δ(row(s1), a) = δ(row(s2), a) ∈ Q, for all a ∈ A. (3)

We have:

row(s1) ∈ F ⇐⇒ row(s1)(λ) = 1
(?)
⇐⇒ row(s2)(λ) = 1 ⇐⇒ row(s2) ∈ F.

This concludes the proof of (2) above. Since the observation table is consistent, we have
for each a ∈ A that (?) implies rowA(s1a) = rowA(s2a), and hence we can calculate

δ(row(s1), a) = rowA(s1a) = rowA(s2a) = δ(row(s2), a).

It remains to show that rowA(s1a) ∈ Q. Since the table is closed, there exists an s ∈ S
such that row(s) = rowA(s1a). Hence, rowA(s1a) ∈ Q and (3) above holds.

In our categorical reformulation of the construction of the automaton Q we use that
epis/surjections and monos/injections in the category Sets form a factorization system
(see e.g. [5]). This allows us to use the diagonal-fill-in property in the next result.

Lemma 3. The transition function δ of the automaton associated with a closed and
consistent observation table can be obtained as the unique diagonal in the following
diagram,

S e // //

Λ(i)
��

Q

j
��

δ

||

QA // mA
// (2E)A

Proof. The function δ obtained by diagonalization above satisfies:

δ(e(s))(a) = Λ(i)(s)(a) = i(sa).

This is the same as the above definition of δ, since e(s) and i(sa) represent, respectively,
row(s) and rowA(sa). ut

Finally, the definitions of the initial and final states can be recovered from properties
reminiscent of our reformulations of closedness and consistency.

Lemma 4. The initial and final states can be obtained as the necessarily unique maps
init and final making the diagrams below commute.

1 init

((

k ◦ l ◦ λ

##

Q // m // 2E

S
e

66 66

row

<<

2E

S

row
++

e // //

λ? ◦ l ◦ n

44

Q 66
m 66

final)) 2

6

Proof. We define init(∗) = e(λ) and final(e(s)) = row(s)(λ) for all s ∈ S . These are
equivalent to q0 and F given in Definition 2 and satisfy

(m ◦ init)(∗) = (m ◦ e)(λ) definition of init

= row(λ) factorization of row

= (k ◦ l ◦ n)(λ) Lemma 1

= (k ◦ l ◦ λ)(∗) n(λ) = λ = λ(∗)

and for all s ∈ S ,

(final ◦ e)(s) = row(s)(λ) definition of final

= (k ◦ l ◦ n)(s)(λ) Lemma 1

= (l ◦ n)(s)(λ) definition of k

= (λ? ◦ l ◦ n)(s) definition of λ?.

Uniqueness is again necessary because m is monic and e is epic. ut

2.2 Minimal Conjectures

So far we have ignored the prefix-closedness of S and the suffix-closedness of E as they
were not relevant for the construction of the automaton. The minimality result of [2],
however, does depend on them. We encode these properties in two maps:

ρ : S → 1 + S × A σ : 2 × (2E)A
→ 2E

ρ(λ) = ∗ σ(v, f)(λ) = v

ρ(sa) = (s, a) σ(v, f)(ae) = f (a)(e).

The main point of these maps is that they come equipped with inductive principles
corresponding to induction on the length of prefix- and suffix-closed words.

Lemma 5. For each algebra [χ1, χA] : 1 + X × A → X there exists a unique function
f : S → X making the diagram below on the left commute, and for every coalgebra
〈υ2, υA〉 : Y → 2 × YA there is a unique function g : Y → 2E making the diagram below
on the right commute.

1 + S × A
id1 + f × idA // 1 + X × A

[χ1, χA]

��

S

ρ

OO

f
// X

Y
g

//

〈υ2, υA〉

��

2E

2 × YA id2 × gA
// 2 × (2E)A

σ

OO

Proof. The requirement f = [χ1, χA] ◦ (id1 + f × idA) ◦ ρ = [χ1, χA ◦ (f × idA)] ◦ ρ
corresponds to a definition of f by induction on the length of words in S , thus providing
existence and uniqueness:

f (λ) = ([χ1, χA ◦ (f × idA)] ◦ ρ)(λ) = [χ1, χA ◦ (f × idA)](∗) = χ1(∗)

f (sa) = ([χ1, χA ◦ (f × idA)] ◦ ρ)(sa) = [χ1, χA ◦ (f × idA)](s, a) = χA(f (s), a).

7

The condition g = σ ◦ (id2 × gA) ◦ 〈υ2, υA〉 = σ ◦ 〈υ2, gA ◦ υA〉 gives a definition of g
by induction on the length of words in E:

g(y)(λ) = (σ ◦ 〈υ2, gA ◦ υA〉)(y)(λ) = υ2(y)

g(y)(ae) = (σ ◦ 〈υ2, gA ◦ υA〉)(y)(ae) = (gA ◦ υA)(y)(a)(e) = g(υA(y)(a))(e). ut

One might wonder what the unique such maps into the initial algebra and out of the
final coalgebra are. Our next result will be that these are precisely n and k, respectively,
but first we need to be more explicit about what the initial algebra is. The reason
that we can identify it with the maps λ and c is that the currying operation extends
from concatenated languages to arbitrary products and has an inverse Ψ (uncurrying).
Moreover, given f : W → X, g : X × A→ Y , and h : Y → Z, we have

hA ◦ Λ(g) ◦ f = Λ(h ◦ g ◦ (f × idA)). (4)

Explicitly, the initial algebra is the set A∗ together with [λ, Ψ (c)] : 1 + A∗ × A → A∗,
where Ψ (c)(u, a) = c(u)(a) for all u ∈ A∗ and a ∈ A.

Lemma 6. The following diagrams commute.

1 + S × A
id1 + n× idA // 1 + A∗ × A

[λ, Ψ (c)]
��

S

ρ

OO

n // A∗

2A∗ k //

〈λ?, ∂〉
��

2E

2 × (2A∗)A id2 × kA
// 2 × (2E)A

σ

OO

Proof. Suppose f is the unique coalgebra-to-algebra morphism S → A∗ provided by
Lemma 5. Using the calculations in that lemma (?) we prove by induction on the length
of words in S that f = n:

f (λ)
(?)
= λ(∗) = λ = n(λ)

f (sa)
(?)
= Ψ (c)(f (s), a)

(IH)
= Ψ (c)(n(s), a) = n(s)a = n(sa).

Similarly, let g be the unique coalgebra-to-algebra morphism 2A∗ → 2E . Using induction
on the length of words in E, we find that g = k:

g(L)(λ)
(?)
= λ?(L) = L(λ) = k(L)(λ)

g(L)(ae)
(?)
= g(∂(L)(a))(e)

(IH)
= k(∂(L)(a))(e) = ∂(L)(a)(e) = L(ae) = k(L)(ae).

ut

An automaton is minimal if all states are reachable from the initial state and if no two
different states recognize the same language (this property is referred to as observability).

Following this characterization that goes back to Kalman and was subsequently
generalized by Arbib and Manes [9,3], these two properties can be nicely captured in
the following diagram, where in the middle we have our automaton constructed from the

8

observation table.
1
λ
��

init

''

2

A∗ r //

c

��

Q

final
77

o //

δ

��

2A∗
λ?
OO

∂

��

(A∗)A rA
// QA oA

// (2A∗)A

(5)

Recall that the structure on the left is the initial algebra. The map r thus exists and is
unique by initiality; it sends every word to the state it reaches. The map o exists and is
unique by finality; it assigns to every state the language it accepts.

Reachability and observability can now be rephrased in terms of properties of the
functions r and o in (5): the automaton Q is reachable if r : A∗ → Q is epic/surjective
and it is observable if o : Q→ 2A∗ is monic/injective.

Theorem 1. The automaton associated with a closed and consistent observation table
is minimal.

Proof. We prove observability first because it is relatively straightforward. Note first
that

mA ◦ δ ◦ e = j ◦ e = Λ(rowA) = kA ◦ ∂ ◦ l ◦ n, (6)

using, from left to right, Lemma 3, Lemma 2, and Lemma 1. Now observe that the
diagram below on the left commutes by Lemma 6 and the definition of o,

Q o //

〈final, δ〉

��

2A∗ k //

〈λ?, ∂〉
��

2E

2 × QA id2 × oA
// 2 × (2A∗)A id2 × kA

// 2 × (2E)A

σ

OO Q m //

〈final, δ〉

��

2E

2 × QA id2 ×mA
// 2 × (2E)A

σ

OO

and that the diagram on the right commutes because

σ ◦ (id2 × mA) ◦ 〈final, δ〉 ◦ e

= σ ◦ 〈final ◦ e,mA ◦ δ ◦ e〉

= σ ◦ 〈λ? ◦ l ◦ n,mA ◦ δ ◦ e〉 Lemma 4
(6)
= σ ◦ 〈λ? ◦ l ◦ n, kA ◦ ∂ ◦ l ◦ n〉

= σ ◦ (id2 × kA) ◦ 〈λ?, ∂〉 ◦ l ◦ n

= k ◦ l ◦ n Lemma 6

= row Lemma 1

= m ◦ e factorization of row

and e is epic. From Lemma 5 it then follows that k ◦ o = m, and hence o is monic.
For reachability we would like to do a similar proof, but as a result of a coalgebraic

bias in some of our definitions the proof of

m ◦ Ψ (δ) ◦ (e × idA) = k ◦ l ◦ c ◦ (n × idA) (7)

9

needs a little more work. In particular, it follows by using several times that Ψ and Λ are
inverse to each other:

m ◦ Ψ (δ) ◦ (e × idA) = Ψ (Λ(m ◦ Ψ (δ) ◦ (e × idA)))
(4)
= Ψ (mA ◦ Λ(Ψ (δ)) ◦ e)

= Ψ (mA ◦ δ ◦ e)
(6)
= Ψ (kA ◦ ∂ ◦ l ◦ n)

= Ψ (kA ◦ lA ◦ Λ(c) ◦ n) definition of l
(4)
= Ψ (Λ(k ◦ l ◦ c ◦ (n × idA)))

= k ◦ l ◦ c ◦ (n × idA).

The diagram below on the left commutes by Lemma 6 and the definition of r,

1 + S × A
id1 + n× idA// 1 + A∗ × A

id1 + r× idA//

[λ, Ψ (c)]

��

1 + Q × A

[λ, Ψ (δ)]

��

S

ρ

OO

n // A∗ r // Q

1 + S × A
id1 + e× idA// 1 + Q × A

[init, Ψ (δ)]

��

S

ρ

OO

e // Q

and for the diagram on the right we simply note that

m ◦ [init, Ψ (δ)] ◦ (id1 + e × idA) ◦ ρ

= [m ◦ init,m ◦ Ψ (δ) ◦ (e × idA)] ◦ ρ
(7)
= [m ◦ init, k ◦ l ◦ c ◦ (n × idA)] ◦ ρ

= [k ◦ l ◦ λ, k ◦ l ◦ c ◦ (n × idA)] ◦ ρ Lemma 4

= k ◦ l ◦ [λ, c] ◦ (id1 + n × idA) ◦ ρ

= k ◦ l ◦ n Lemma 6

= row Lemma 1

= m ◦ e factorization of row

and m is monic. From Lemma 5 it follows that r ◦ n = e, so r must be epic. ut

2.3 The Learning Algorithm

We present the algorithm of [2] in Figure 1. In the algorithm, there is a teacher which has
the capacity of answering two types of questions: yes/no to the query on whether a word
belongs to the master language and yes/no to the question whether a certain guess of the
automaton accepting the master language is correct. In the case of a negative answer of
the latter question, the teacher also provides a counter-example. The learner builds an
observation table by asking the teacher queries of membership of words of increasing
length. Once the table is closed and consistent, the learner tries to guess the master
language. We explain every step by means of an example, over the alphabet A = {a, b}.

10

Input: Minimally Adequate Teacher of the master language L.
Output: Minimal automaton accepting L.
1: function Learner
2: S ← {λ}; E ← {λ}.
3: repeat
4: while (S , E) is not closed or not consistent do
5: if (S , E) is not consistent then
6: find s1, s2 ∈ S , a ∈ A, and e ∈ E such that
7: row(s1) = row(s2) and L(s1ae) , L(s2ae)
8: E ← E ∪ {ae}.
9: end if

10: if (S , E) is not closed then
11: find s1 ∈ S , a ∈ A such that
12: rowA(s1a) , rowA(s), for all s ∈ S
13: S ← S ∪ {s1a}.
14: end if
15: end while
16: Make the conjecture M(S , E).
17: if the Teacher replies no to the conjecture, with a counter-example t then
18: S ← S∪ ↓t.
19: end if
20: until the Teacher replies yes to the conjecture M(S , E).
21: return M(S , E).
22: end function

Fig. 1. Angluin’s algorithm for deterministic finite automata [2]

Imagine the Learner receives as input a Teacher for the master language

L = {u ∈ {a, b}∗ | the number of a’s in u is divisible by 3}.

In the first step of the while loop it builds a table for S = {λ} and E = {λ}.

Step 1

λ

λ 1

a 0

b 1

(S , E) consistent? X (S , E) closed?
No, rowA(a) = (λ 7→ 0) , (λ 7→ 1) = row(λ)
Then, S ← S ∪ {a} and we go to Step 2.

We extend row index set S and we again check for closedness and consistency.

Step 2

λ

λ 1

a 0

b 1

aa 0

ab 0

(S, E) consistent? X (S, E) closed? X
Then, we guess the automaton:

q0 q1
a

b a, b

Teacher replies with counter-example aaa.
S ← S ∪ {λ, a, aa, aaa} and we go to Step 3.

where q0 = row(λ) = (λ 7→ 0)

q1 = row(a) = (λ 7→ 1)

11

In the second step we managed to build a closed and consistent table which enabled us
to make a first guess on the automaton. The guess was wrong so the Teacher provided a
counter-example, which we use to extend the row index set, generating a larger table.

Step 3

λ

λ 1

a 0

aa 0

aaa 1

b 1

ab 0

aab 0

aaaa 0

aaab 1

(S , E) consistent?
No, row(a) = row(aa) but rowA(aa) , rowA(aaa).
Then E ← E ∪ {a} and we go to (Step 4).

In the third step the test of consistency failed for the first time and hence we extend the
column index set E from {λ} to {λ, a}. This extension allows to distinguish states (that is,
rows of the table) that were indistinguishable in the previous step though they could be
differentiated after an a step.

Step 4

λ a

λ 1 0

a 0 0

aa 0 1

aaa 1 0

b 1 0

ab 0 0

aab 0 1

aaaa 0 0

aaab 1 0

(S , E) consistent? X (S , E) closed? X
We make another guess:

q0 q1

q2

b b

b

a

aa

The Teacher replies yes.

In the last step, we again constructed a closed and consistent table, which allowed us to
make another guess of the automaton accepting the master language. This second guess
yielded the expected automaton.

3 Application to Reo automata

We now apply the categorical generalization of Angluin’s algorithm derived in the
previous sections to learn coordination protocols. Specifically, the type of automata that
we learn will be Reo automata [6], one of the many semantics for the Reo coordination
language. This presents a different generalization made possible by our formulation of
Angluin’s algorithm, namely by varying the base category for the coalgebra.

12

We need to find a suitable encoding of Reo automata; let us first recall their definition.

Definition 3. Let Σ be a finite set of ports. A Reo automaton is a tuple (Q,→, q0) where

– Q is a finite set of states, with q0 ∈ Q the initial state
– → ⊆ Q × 2Σ × 2Σ × Q is a relation

When (q,U,V, q′) ∈ →, we write q U |V
−−−→ q′. Furthermore,

– if q U |V
−−−→ q′, then U ⊆ V (reactivity)

– if q U |V
−−−→ q′ and U ⊆ V ′ ⊆ V, then q U |V ′

−−−→ q′ (uniformity)

For the sake of simplicity, we work with normalized Reo automata; every Reo automaton
can be transformed into an equivalent normalized Reo automaton [6].

Each transition of a Reo automaton represents an interaction allowed by the Reo
circuit, as well as the necessary change in (internal) state. In a transition q U |V

−−−→ q′, the
set U represents the ports fired in the interaction, while V represents the ports available
at that point in time. Reactivity guarantees that only available ports are fired, while
uniformity ensures that unfired but available ports becoming unavailable will not change
the availability of the interaction, or the resulting state change [6].

A Reo automaton M = (Q,→, q0) defines a language LM(q) for every state q ∈ Q as
follows: for all q ∈ Q, it holds that λ ∈ LM(q); furthermore, (U,V)w ∈ LM(q) if and only
if there exists a q′ ∈ Q such that q U |V

−−−→ q′ and w ∈ LM(q′). We write LM for LM(q0).
To encode Reo automata coalgebraically, we switch the base category of the dis-

cussion in this section to Posets, the category of partially ordered sets and monotone
functions. If X is a poset, we write ≤X for the accompanying partial order. We use 2
to denote the two-element poset {0, 1}, in which 0 ≤2 1. It is not hard to see that this
category is Cartesian closed, that is, it comes with a terminal object (the singleton poset
1), products (the product poset X × Y) and exponentials (the poset of monotone functions
XY , ordered pointwise). We also have an analogue of the powerset functor: 2X is the set
of all monotone functions from X to 2, or, equivalently, the poset of all ≤X-upclosed
subsets of X, ordered by inclusion. We can verify that for a fixed poset A, the mappings
FX = A × X and FX = XA are functorial, as is FX = 2X; the actions of the former two
on monotone functions can be lifted from Sets, while the latter sends f : X → Y to the
function 2 f , mapping ≤X-upclosed subsets of X to ≤Y -upclosed subsets of Y:

2 f (U) = {y ∈ Y : ∃x ∈ U. f (x) ≤ y}

We now have the ingredients to define a coalgebraic version of Reo automata, which
takes the form of a deterministic automaton in Posets over a special alphabet, as follows.

Definition 4. The poset of interactions, denotedA, is {(U,V) : ∅ , U ⊆ V ⊆ Σ}, ordered
by the partial order ≤A, in which (U,V) ≤A (U′,V ′) if and only if U = U′ and V ′ ⊆ V.

A Reo coalgebra is a coalgebra for the functor FX = 2 × XA.

In what follows, we denote the elements (U,V) of A by writing U |V . We further
abbreviate by denoting U and V as strings, i.e., when U = {A,B} and V = {A,B,C}, we
write AB|ABC for (U,V). Words over A are written as letters separated by semicolons,
e.g., we write A|A;B|B for the word ({A}, {A})({B}, {B}) ∈ A∗.

13

Let us fix a Reo automaton M = (Q,→, q0). We can represent → as a function
δ : Q → (2Q)A, by setting δ(q)(a) = {q′ ∈ Q : q a

−→ q′}. If we equip Q with the
discrete order, δ is monotone. Furthermore, for q ∈ Q, δ(q) : A→ 2Q is monotone as a
consequence of uniformity. Now, δ gives rise to δ] : 2Q → (2Q)A, given by

δ](U)(a) = {q′ ∈ Q : ∃q ∈ U. q a
−→ q′}

We note that δ] is again monotone. In general, a monotone δ] : 2Q → (2Q)A can be
constructed from any monotone δ : Q→ (2Q)A, by recognizing that 2(−) is a monad on
Posets, and choosing for δ] the Kleisli extension of δ.

Our Reo automaton M now gives rise to a Reo coalgebra (2Q, 〈ε], δ]〉), where 2Q and
δ] are as above, and ε] : 2Q → 2 is given by ε(U) = 1 if and only if U , ∅.

We proceed to recover the language semantics of Reo automata from a Reo coal-
gebra, by finality. For this, we equip A∗ with the pointwise extension of ≤A, i.e.,
a0a1 · · · an−1 ≤A∗ a′0a′1 · · · a

′
m−1 if and only if n = m, and for i ∈ {0, 1, . . . , n − 1} it

holds that ai ≤A a′i . This is equivalent to defining A∗ =
∐

i∈N A
i, using the coproducts

and products of Posets. We know from the work of Arbib and Manes [3, Section 2.2]
that A∗ (resp. 2A

∗

) defined as such provides the desired notion of reachability (resp.
observability). Specifically, we have the exact same situation as in (5), but with A instead
of A and with Q being a Reo coalgebra with an initial state in Posets. Reachability and
observability maps are defined in complete analogy to their definition for a DFA.

The relation between the the language semantics of a Reo automaton and its encoding
into a Reo coalgebra can now be formulated as follows.

Lemma 7. Let M = (Q,→, q0) be a Reo automaton, and let (2Q, 〈ε], δ]〉) be the Reo
coalgebra obtained from it. Furthermore, let h be the unique homomorphism into the
final Reo coalgebra (2A

∗

, 〈λ?, ∂〉). If U ∈ 2Q, then

h(U) =
⋃
q∈U

LM(q)

Proof. Let w ∈ A∗; we proceed by induction on |w|. In the base, where w = λ, we have
that λ ∈ h(U) if and only if U , ∅, which holds precisely when λ ∈

⋃
q∈U LM(q).

For the inductive step, let w = av for a ∈ A and v ∈ A∗. In that case, av ∈ h(U) if
and only if v ∈ h(d(U)(a)); by induction, the latter holds if and only if v ∈ LM(q′) for
some q′ ∈ d(U)(a), i.e., v ∈ LM(q′) for some q ∈ U with q a

−→ q′, which is equivalent to
av ∈ LM(q), which in turn is equivalent to av ∈

⋃
q∈U LM(q).

To learn Reo coalgebras using the framework outlined earlier, we define an observa-
tion table in this setting. Consider finite subsets S and E ofA∗, with all ordering inherited
from A∗,3 S prefix-closed, and E suffix-closed. Note that if s, s′ ∈ S and e, e′ ∈ E are
such that s ≤S s′ and e ≤E e′, then row(s)(e) ≤2 row(s′)(e′) by monotonicity. Thus, if
row(s)(e) = 1, we can immediately conclude row(s′)(e′) = 1 without having to query the
latter; similarly, row(s)(e) = 0 whenever row(s′)(e′) = 0. A similar optimization applies

3 What follows works also for discrete orders on S and E. Acknowledging the additional structure,
however, allows us to explicitly save queries by exploiting the monotonicity of the row function.

14

to computing the function rowA. Note that the assumption of a prefix-closed language
enables another optimization for the computation of these functions: if s, s′ ∈ S and
e, e′ ∈ E are such that s′e′ is a prefix of se, then row(s′)(e′) = 1 whenever row(s)(e) = 1,
and row(s)(e) = 0 whenever row(s′)(e′) = 0.

Since Posets is locally finitely presentable, it admits strong epi-mono factoriza-
tions [1,10]. There is no difference between closedness and consistency for learning
a regular language over the alphabet A and closedness and consistency in the present
setting. Furthermore, like the notions of reachability and observability, the encodings of
prefix-closedness and suffix-closedness as performed in Section 2.2 translate directly, as
do Lemmas 5 and 6. Theorem 1 is therefore valid also in this setting.

It remains to show how we can obtain a Reo automaton from an observation table.

Definition 5. For (S , E) closed and consistent, we define M = (Q+,→, q0) as follows

Q+ = {row(s) : s ∈ S , row(s)(λ) = 1} q0 = row(λ)

row(s) a
−→ row(t) ⇐⇒ row(t) ≤2E rowA(sa)

The fact that M is well-defined is a consequence of closedness and consistency as
before. Additionally, we remark that reactivity follows from the definition of A, and
uniformity is a consequence of the monotonicity of row. It remains to show that the
translation above is faithful, i.e., that the languages of the states of this Reo automaton
correspond to the interpretation of (Q, 〈final, δ〉) in the final Reo-coalgebra.

Lemma 8. Let (S , E) be a closed and consistent observation table, obtained by learning
the language of a Reo automaton, and let M = (Q+,→, q0) be the Reo automaton
obtained from this table. Let h be the unique homomorphism from (Q, 〈final, δ〉) into the
final Reo coalgebra. For q ∈ Q+, we have that LM(q) = h(q).

Proof. We start by proving that if w ∈ h(q), then final(q) = 1; the proof proceeds by
induction on |w|. In the base, where w = λ, we know that 1 = h(q)(λ) = final(q). For the
inductive step, write w = av and assume the claim holds for v. Since v ∈ h(δ(q)(a)), we
find that final(δ(q)(a)) = 1 by induction. But then

1 = final(δ(q)(a)) = rowA(sa)(λ) = L(sa) ≤2 L(s) = row(s)(λ) = final(q)

in which L(sa) ≤2 L(s) follows from prefix-closure of L. Consequently, final(q) = 1.
For the main claim, we should verify that for w ∈ A∗ and q ∈ Q+ it holds that

LM(q)(w) = h(q)(w). Note that there exists an s ∈ S such that q = row(s). The proof
again proceeds by induction on |w|. In the base, where w = λ, we have that λ ∈ LM(q),
as well as λ ∈ h(q), since q ∈ Q+ and therefore final(q) = row(s)(λ) = 1.

For the inductive step, let w = av for a ∈ A and v ∈ A∗. On the one hand, if
w ∈ LM(q), then there exists a q′ ∈ Q such that q a

−→d q′ and v ∈ LM(q′). By definition of
→d, we find that q′ ∈ Q+ and q′ ≤2E rowA(sa). By induction and monotonicity:

v ∈ h(q′) ⊆ h(rowA(sa)) = h(δ(row(s))(a)) = ∂(h(row(s)))(a)

allowing us to conclude that w = av ∈ h(row(s)) = h(q).
On the other hand, if w ∈ h(q), then v ∈ ∂(h(q))(a) = h(δ(q)(a)). By the first part

of this proof, final(δ(q)(a)) = 1, and so δ(q)(a) ∈ Q+. We then find by induction that
v ∈ LM(d(q)(a)). Since q a

−→d δ(q)(a), we conclude that w = av ∈ LM(q).

15

3.1 Learning a Reo circuit

We now review how the algorithm in Figure 1 would work as applied to Reo automata.
Imagine that the Learner receives as input a Teacher for the Reo circuit in Figure 2,
which represents what is called a “lossy FIFO” in Reo literature. The intended behavior
of this circuit is as follows. When the buffer is empty, A can fire, and fill the buffer. If the
buffer is full, three possibilities exist:

(i) the buffer is emptied by firing B, or
(ii) the buffer is emptied and immediately filled by firing A and B concurrently, or

(iii) A fires, but the input is discarded (and the first token remains in the buffer).

Important to note is that the last option should not be available when B is enabled; that
is, data is only discarded when the buffer is full and the token in the buffer cannot be
handed off through B. This distinction makes the circuit in Figure 2 a prime example for
learning a Reo automaton, since transitions carry information about ports fired and ports
available [6]; if we compute the semantics of this circuit using Constraint Automata [4],
this behavior cannot be modeled.

A B

Fig. 2. The Reo circuit being learned

Before we dive into learning the circuit, let us first take a brief look at the poset of
interactions we will be working with. Given that Σ = {A,B}, we can compute

A = {A|A,A|AB,B|B,B|AB,AB|AB}

As for ≤A, there are only two (non-trivially) related pairs of letters; they are:

A|AB ≤A A|A B|AB ≤A B|B

The algorithm starts off by building a table for S = {λ} and E = {λ}. Here, a
membership query of U1|V1;U2|V2; · · · ;Un|Vn should be interpreted as as “can I fire
these ports, while these ports are available, in this order?”. In this case, the entry for
rowA(A|A)(λ) is 1 because, in the initial configuration, we can fire A if it is available,
while the entry for rowA(B|B)(λ) is 0 because B cannot be fired in the initial configuration
even if it is available.

Step 1

λ

λ 1

A|A 1

A|AB 1

B|B 0

B|AB 0

AB|AB 0

(S , E) consistent? X (S , E) closed?
No, rowA(B|B) , row(λ)

Then, S ← S ∪ {B|B}.
We continue with Step 2.

16

At this point, we note that we have made a membership query that could in prin-
ciple have been skipped: the fact that rowA(A|A)(λ) = 1 follows from the fact that
rowA(A|AB)(λ) = 1, since A|AB ≤A A|A, and rowA is monotone.

To make the table closed, we add B|B to S , and end up with the following table. Here,
the row label “B|B;−” represents all rows labeled B|B;a for a ∈ A; the value for entries
in these rows is always 0, by prefix closure of the target language.

Step 2

λ

λ 1

B|B 0

A|A 1

A|AB 1

B|AB 0

AB|AB 0

B|B;− 0

(S , E) consistent? X (S , E) closed? X
Then, we guess the automaton

q0 q1
A|A

A|AB

AB|AB
B|AB
B|B

−|−

Teacher replies with counter-example: A|A;A|AB

Then, S ← S ∪ {λ,A|A,A|A;A|AB}.
We continue with Step 3.

The counterexample given by the Teacher here tells us that, after firing A|A, our
circuit ends up in a different state, since firing A|AB should not be possible (i.e., we
should not be able to fire A but not B while both are available). Our current automaton
does not account for this possibility: A|AB can be fired after A|A, and this brings us to an
accepting state; the counterexample is therefore justified.

Extending the table with the new contents of S , we find the following

Step 3

λ

λ 1

A|A 1

B|B 0

A|A;A|AB 0

A|AB 1

B|AB 0

AB|AB 0

B|B;− 0

A|A;A|A 1

A|A;B|B 1

A|A;B|AB 1

A|A;AB|AB 1

A|A;A|AB;− 0

(S , E) consistent?
No, because row(λ) = row(A|A),
while rowA(A|AB) , rowA(A|A;A|AB).

Then, E ← {A|AB}.
We continue with Step 4.

Filling in the table with the updated E, we arrive at the following.

17

Step 4

λ A|AB

λ 1 1

A|A 1 0

B|B 0 0

A|A;A|AB 0 0

A|AB 1 0

B|AB 0 0

AB|AB 0 0

B|B;− 0 0

A|A;A|A 1 0

A|A;B|B 1 1

A|A;B|AB 1 1

A|A;AB|AB 1 0

A|A;A|AB;− 0 0

(S , E) consistent? X (S , E) closed? X
Then, we guess the automaton

q0 q1

q2

AB|AB
B|AB
B|B

A|A
A|AB

B|B
B|AB

A|A
AB|AB

A|AB

−|−

The Teacher replies yes.

In the last step, the algorithm stops, as the conjectured automaton faithfully represents
the description of the lossy FIFO given at the start of this example. In particular, q1
models a circuit with a full buffer: the edge towards q0 represents firing B (emptying the
buffer), while the loop back to q1 represents the possibility of firing A (discarding an
incoming token) or firing both A and B (shifting the incoming token into the emptied
buffer); lastly, the edge towards q2 encodes that A cannot be fired when B is also available.

4 Discussion

We have presented a categorical reformulation of Angluin’s learning algorithm, originally
defined for deterministic finite automata. The categorical reformulation enables us to
explore two avenues of generalization: varying the functor (giving for instance different
input/output for the automaton) and varying the category under study (changing for
instance the type of computations involved). In a previous paper [7] we explored the
former avenue and derived algorithms for Moore and Mealy machines, which generalize
the output set of DFAs. The application we concretely considered in the present paper
explored the latter avenue, yielding an algorithm for Reo automata — essentially, finite
automata in the category Posets. What makes the change in category interesting is
that it precisely captures the algebraic structure of the actions (signal flows) in Reo
and highlights the fact that interaction is a first-class concept by defining a poset of
interactions to be used as the alphabet for the Reo automaton.

We would like to explore linking this algorithm to other work of Farhad on compila-
tion [8] to learn Reo patterns. The work in this paper enables us to learn a Reo automaton
of the global connector. However, in order to learn the components of the connector
we would have to compile the global automaton into the composition of smaller Reo
automata that would in turn correspond to basic Reo connectors. For scalability, it would
be ideal to integrate part of the splitting into the learning algorithm.

18

References

1. Adámek, J., Rosický, J.: Locally presentable and accessible categories. Cambridge University
Press (1994)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2),
87–106 (1987)

3. Arbib, M.A., Manes, E.G.: Adjoint machines, state-behavior machines, and duality. Journal
of Pure and Applied Algebra 6(3), 313–344 (1975)

4. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in reo by
constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006), https://doi.org/10.
1016/j.scico.2005.10.008

5. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Berlin (1985), revised and
corrected version available from www.cwru.edu/artsci/math/wells/pub/ttt.html

6. Bonsangue, M.M., Clarke, D., Silva, A.: Automata for context-dependent connectors. In: Proc.
Coordination Models and Languages. pp. 184–203 (2009)

7. Jacobs, B., Silva, A.: Automata learning: A categorical perspective. In: van Breugel, F.,
Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash
Panangaden - Essays Dedicated to Prakash Panangaden on the Occasion of His 60th Birthday.
Lecture Notes in Computer Science, vol. 8464, pp. 384–406. Springer (2014), https://doi.
org/10.1007/978-3-319-06880-0_20

8. Jongmans, S.T.Q., Arbab, F.: Global consensus through local synchronization: A formal
basis for partially-distributed coordination. Sci. Comput. Program. 115-116, 199–224 (2016),
https://doi.org/10.1016/j.scico.2015.09.001

9. Kalman, R.: On the general theory of control systems. IRE Transactions on Automatic Control
4(3), 110–110 (1959)

10. Milius, S.: A sound and complete calculus for finite stream circuits. In: Proceedings of
the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July
2010, Edinburgh, United Kingdom. pp. 421–430 (2010), https://doi.org/10.1109/
LICS.2010.11

11. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017), http://doi.acm.
org/10.1145/2967606

19

