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Abstract 21 

 22 

Global wind patterns affect flight strategies in many birds, including pelagic seabirds, many of 23 

which use wind-powered soaring to reduce energy costs during at-sea foraging trips and 24 

migration. Such long-distance movement patterns are underpinned by local interactions between 25 

wind conditions and flight behaviour, but these fine-scale relationships are far less well-26 

understood. Here we show that remotely-sensed ocean wind speed and direction are highly 27 

significant predictors of soaring behaviour in a migratory pelagic seabird, the Manx shearwater 28 

(Puffinus puffinus). We used high-frequency GPS tracking data (10Hz) and statistical behaviour 29 

state classification to identify two energetic modes in at-sea flight, corresponding to flap-like and 30 

soar-like flight. We show that soaring is significantly more likely to occur in tailwinds and 31 

crosswinds above a wind speed threshold of around 8ms
-1

, suggesting that these conditions 32 

enable birds to reduce metabolic costs by preferentially soaring over flapping. Our results 33 

suggest a behavioural mechanism by which wind conditions may shape foraging and migration 34 

ecology in pelagic seabirds, and thus indicate that climate change-driven shifts in wind patterns 35 

shifts driven by climate change could impact this and other species. They also emphasise the 36 

emerging potential of high-frequency GPS biologgers to provide detailed quantitative insights 37 

into fine-scale flight behaviour in free-living animals. 38 

 39 

Keywords: movement ecology, seabirds, tracking, remote sensing, wind, soaring 40 
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1. Introduction 46 

 47 

The effects of global-scale environmental variables (e.g. temperature, precipitation) on animal 48 

ecology are well-known, but similar relationships with wind have been much less extensively 49 

studied. Wind conditions affect phenology, migration routes, ecological interactions and foraging 50 

success in many volant animals including birds, bats and insects (e.g. [1–4]). Recent GPS 51 

tracking studies have shown that global winds affect long-distance patterns of foraging and 52 

migration behaviour in various wide-ranging bird species [5–8], however much less is known 53 

about the effect of more localised wind conditions. Understanding such fine-scale interactions 54 

between flight behaviour and the environment is key to understanding how individual 55 

behavioural responses to wind scale up to shape movement patterns at large spatial scales and 56 

over evolutionary time, such as the evolution of stable migration routes [8,9]. In a conservation 57 

context, such knowledge is also important to predict how shifts in atmospheric conditions under 58 

climate change [10–12] may impact many migratory birds. 59 

 60 

Pelagic seabirds are top marine predators that regularly travel hundreds or thousands of 61 

kilometres during foraging and migration [13], making them particularly reliant on ocean wind 62 

patterns [14–17]. During these journeys many albatrosses and shearwaters (Procellariiformes) 63 

engage in specialised modes of wind-powered soaring behaviour, thought to be metabolically 64 

less metabolically costly than flapping flight [18–20]. Data from GPS and accelerometer tags are 65 

now providing insights into soaring in free-living albatrosses and other birds [21–23], however 66 

much remains unknown about the fine-scale relationship between local winds and soaring 67 

behaviour. In this study we use very high-frequency GPS tracking (10Hz) to show that wind 68 

speed and direction, measured via satellite remote sensing, are highly significant predictors of 69 

soaring behaviour in a migratory pelagic seabird, the Manx shearwater (Puffinus puffinus). Manx 70 
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shearwaters are small (~400g), burrow nesting, pelagic seabirds. They are Amber listed in the 71 

UK [24] where most (~80%) of the global Manx shearwater population nests. They forage from 72 

breeding colonies around the UK coastline each summer before migrating to overwinter off 73 

southern Argentina, making an annual round trip of over 20,000km [9, 25–27]. 74 

 75 

We tracked breeding adults during at-sea foraging trips using custom GPS loggers that record 76 

bursts of 3D location fixes at 10Hz, and distinguished flight behaviour from each burst's 77 

mechanical energy characteristics. A bird's total mechanical energy at any time consists of the 78 

two components kinetic (related to speed) and gravitational potential energy (related to altitude). 79 

During flight, total energy can increase either through flapping, when stored chemical energy is 80 

converted to power in the wing muscles, or through input from an external energy source, e.g. 81 

wind [28]. Relative changes to the kinetic and potential energy components are determined both 82 

by the magnitude of energy input and the bird's current mode of movement. Different flight 83 

behaviours therefore show markedly different patterns of mechanical energy change over time, 84 

which can be calculated from high-frequency 3D GPS positional data (e.g. [22]). During soaring, 85 

tracked albatrosses show large cyclical variations in both potential (derived from altitude) and 86 

kinetic energy (derived from ground speed) as they ascend and descend through the shear wind 87 

gradient above the sea surface [22]. Although Manx shearwaters are 'flap-gliders', mixing 88 

intermittent wingbeat pulses with gliding and soaring [13], we hypothesised that wind-powered 89 

soaring in this species would show similar variations in energy and ground speed. 90 

 91 

We therefore aimed to assess the prevalence of wind-powered soaring in Manx shearwaters and 92 

how this may vary under different environmental conditions. If, as might be expected, wind 93 

conditions play a role in how frequently soaring can occur, and soaring represents an 94 

energetically favourable mode of flight, then this has implications for the cost of movement 95 



Gibb et al - Remotely-sensed wind speed predicts soaring (manuscript) 

 

5 

during travel and foraging. This can have knock-on effects upon how much effort is expended 96 

during reproduction, which has been demonstrated to impact breeding success in subsequent 97 

years [29]. Furthermore, quantifying the impacts of environmental conditions on the energetics 98 

of movement has potential implications for understanding the timing and success of migration 99 

and stopover [9]. This study also represents a proof of concept, demonstrating the potential of 100 

high-frequency GPS to analyse predictive relationships between movement and environmental 101 

conditions, with implications for understanding distribution, space-use and conservation of 102 

seabird species. 103 

 104 

2. Methods 105 

 106 

2.1. GPS tracking procedure 107 

 108 

 We tracked breeding adult birds during the chick-rearing season, between 12th and 25th August 109 

2012 at the study colony on Lundy Island, Devon, UK (51.1781° N, 4.6673° W). We deployed 110 

our own custom GPS loggers (mataki.org [30]) on 8 birds. Devices were positioned on the back 111 

above the bird's centre of gravity and attached to feathers with marine tape, ensuring that if 112 

loggers could not be retrieved they would loosen and fall off within 2-3 weeks (see details in 113 

[25,31]). Study individuals weighed between 415 and 470g, and complete mass of devices 114 

including tape was less than 17g, under 3.6% of body mass. To maximise the proportion of 115 

foraging trips recorded, devices were programmed to record 10Hz bursts of GPS fixes for up to 116 

60 seconds, at 30 minute intervals. Each fix recorded latitude, longitude and altitude, so each 117 

discrete sequence of 10Hz fixes (hereafter ‘burst’) forms a detailed track of the bird’s movement 118 

through its environment. All loggers were retrieved from recaptured birds and data were 119 

downloaded for analysis. One bird remained in its burrow for the study duration, so at-sea GPS 120 
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tracks were obtained from 7 birds (Table 1). These birds recorded 7Seven complete foraging 121 

trips were recorded from these birds, with durations of 17.1 to 53.5hrs (mean 44.9 ± 23.8hrs), 122 

and 4 incomplete foraging trips during which the device battery expired before the bird returned 123 

to the colony. 124 

  125 

 126 

Table 1: Summary tracking statistics for all 7 birds, including proportion of recorded bursts 127 

classified as soar-like, flap-like, sitting and colony-associated, and average wind speed (mean ± 128 

sd) encountered during the tracking period. 129 

 130 

 131 

2.2. Track processing and movement analysis 132 

 133 

All analyses were carried out in R v. 3.1.2 [32]. Complete GPS tracks were filtered to exclude 134 

fixes with erroneous timestamps and those derived using fewer than four satellites, the minimum 135 

required for a precise three-dimensional location and time fix [25]. Each bird’s track was split 136 

into its constituent bursts and each burst’s the median latitude and longitude of each burst were 137 

assigned as its location. Since this study concerns at-sea activity, colony-associated bursts 138 

(within 1500m radius around Lundy, n=84) were excluded, as were information-poor bursts of 139 

fewer than 20 points (n=35), leaving a total of n=475 at-sea bursts. Within each burst we 140 

calculated distance and ground speed (velocity with respect to Earth’s surface) between 141 

ID Number 

of bursts 
Body mass 

before 

tracking (g) 

Tracking 

time (hr) 
Total 

distance 

(km) 

Flap-

like % 
Soar-

like % 
Sitting  

% 
Colony  

% 
Wind speed 

(mean±sd) (ms-1) 

1 114 445 79 625.1 21.9 26.3 35.1 16.7 11.05 ± 1.6 

2 115 430 85.8 483.7 11.3 9.6 72.2 6.9 6.54 ± 3.59 

3 56 440 46.8 282.6 17.8 25.0 51.8 5.3 10.97 ± 2.52 

4 33 470 25.9 200.8 21.2 9.1 48.5 21.2 1.9 ± 0.25 

5 44 465 28.5 123.1 22.7 4.5 43.2 29.5 7.09 ± 0.15 

6 101 450 94.9 700.8 26.7 2.9 58.4 11.9 4.82 ± 3.0 

7 96 440 76.9 462.8 8.3 31.3 37.5 22.9 10.58 ± 1.76 
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successive fixes. Fixes with speeds exceeding 40 ms
-1

 were excluded as likely GPS errors [25]. 142 

To reduce the effect of any small GPS positional errors or missed fixes, we smoothed ground 143 

speed and altitude along each burst by applying a 15-point (1.5sec) rolling mean.  144 

 145 

Following [23], from each fix's ground speed and altitude we calculated mechanical energy 146 

components kinetic (EK), gravitational potential (EP) and total energy (ET = EK + EP), and also 147 

mechanical power (P), which measures the rate of ET change across each between-fix time 148 

interval. These describe a bird's in-flight mechanical energy relative to the earth's surface (as 149 

inertial frame of reference), and their relative changes across a 60-second tracked burst describe 150 

flight dynamics in detail [22]. Although not directly related to metabolic energy expenditure, 151 

power values in excess of 0 indicate a net increase in mechanical energy over time, which could 152 

either be due to metabolic energy input (from wing muscles) or from the wind [28]. There is an 153 

upper limit to the power a bird can generate by flapping, therefore high power values and very 154 

large variation in EK and power are strongly suggestive of wind energy input [22]. Further detail 155 

on track processing is provided in supplementary material (S1). 156 

 157 

Tracking data are inherently statistically non-independent, with an animal's movement at any 158 

time being influenced by its recent activities, internal state and environment [33,34]. However, 159 

between-burst time intervals were sufficiently large (minimum 31.08min) to allow each to be 160 

treated as functionally independent. We therefore compared bursts by calculating the following 161 

summary parameters for each burst: (i) beeline distance (straight-line distance between burst start 162 

and end points); (ii) mean ground speed (‘mean speed’); (iii) standard deviation of kinetic energy 163 

(‘EK variance’); (iv) standard deviation of power (‘power variance’); and (v) straightness index 164 

(beeline distance divided by total path length), a measure of path tortuosity ranging from 165 

completely straight (SI=1) to randomly oriented (SI=0) [35].  166 
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 167 

Clusters in the distribution of summary parameters corresponding to putative flight modes were 168 

identified by fitting multivariate Gaussian mixture models (GMMs) by expectation-maximisation 169 

(EM), using mclust v.4.4 [36,37]. GMMs estimate the probability of each observation belonging 170 

to each cluster, and as such are a useful framework for identifying energetic modes from 60-171 

second bursts of tracked flight, which often contain mixtures of flap-powered and wind-powered 172 

flight rather than single discrete behaviours. All variables were transformed to have mean 0 and 173 

standard deviation 1 before model fitting. 174 

 175 

2.3. Modelling behavioural responses to environment 176 

 177 

Metop/ASCAT remotely-sensed wind data (24-hour averaged at 0.25° resolution) were obtained 178 

from CERSAT (http://www.ifremer.fr/cersat). For each burst location this provided both total 179 

wind speed and separate zonal and meridional components, from which we calculated wind 180 

direction. Each burst’s flight direction relative to wind (‘flight direction’) was calculated as the 181 

difference between burst beeline bearing and wind direction, and categorised as ‘tailwind’ (a 182 

difference of 0° to 50°), ‘crosswind’ (50° to 130°) or ‘headwind’ (130° to 180°), following [13]. 183 

We also obtained remotely-sensed data for sea surface chlorophyll a concentration (CHL), net 184 

primary productivity (NPP) and sea surface temperature (SST), to test possible relationships 185 

between flight mode and ocean productivity as proxy for prey abundance (see supplementary 186 

material S2). CHL and SST from Aqua and Terra MODIS were obtained from NASA 187 

OceanColor (4km, 8640 x 4320, 8-day composite, http://oceancolor.gsfc.nasa.gov/cms/). Aqua 188 

and Terra values were averaged where both were available, and missing data values were 189 

removed. Modelled NPP was obtained from Oregon State University Ocean Productivity (2160 x 190 

4320, 8-day composite, http://www.science.oregonstate.edu/ocean.productivity/). We modelled 191 
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relationships between flight mode, wind and ocean productivity using logistic mixed-effects 192 

regression (lme4 v.1.1-7 [38]).  193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

Figure 1: Distribution of Manx shearwaters foraging around Lundy Island (white circle), tracked 214 

between 12th and 25th August 2012 (n=7). Black points denote 60-second bursts of tracked 215 

movement (n=475) and are shown relative to the underlying bathymetry, accessed from National 216 

Oceanic and Atmospheric Administration (NOAA) via marmap [39]. 217 

 218 

 219 

3. Results 220 

 221 

3.1. Flight mode classification 222 

 223 

Foraging was mostly concentrated locally around Lundy and northwest towards Wales (Figure 1; 224 

mean distance from colony 33.0 ± 35.4km). Track processing yielded a final dataset of at-sea 225 

10Hz bursts (n=475) (Figure 2; for more examples see supplementary material S4). Although 226 

most recorded for a full 60 seconds, some bursts were shorter due to device error (burst length 227 
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mean 43.9sec, median 59.9sec). We were only interested in bursts recorded during flight, so 228 

following [25], we first classified bursts as either in-flight (n=193) or sitting on sea surface 229 

(n=282) by fitting a two-component GMM to the bimodal distribution of mean speeds (BIC=-230 

625.7, log-lik=-297.44; Figure S5). Flight bursts showed high mean speed (10.89 ± 3.31 ms
-1

) 231 

while sitting bursts showed low mean speed and variance (1.33 ± 0.61 ms
-1

). Sitting bursts were 232 

excluded from subsequent analysis. 233 

 234 

For all flight bursts (n=193) we identified clusters in the distribution of mean speed, power 235 

variance and EK variance by iteratively fitting trivariate GMMs with an increasing number of 236 

clusters. Although Bayesian Information Criterion (BIC) was maximised with a 3-component 237 

model, by far the greatest BIC increase was observed between 1 and 2 component models, 238 

identifying a clear knee-point [40]. We therefore selected a mixture of 2 ellipsoidal Gaussian 239 

components as most parsimonious (BIC=-1270.09, log-lik=-585.05, df=19). The first 240 

component’s high speed and low energetic variance was consistent with powered flapping flight, 241 

while the second component showed high speed and high energetic variance, consistent with 242 

wind-powered soaring (Figure 3a). Each flight burst was classified to either flap-like (n=115) or 243 

soar-like (n=78) by maximum probability. Bursts classified with under 95% probability (low-244 

certainty bursts, n=74) were of intermediate energetic variance and visual inspection suggested 245 

that most contained mixtures of flight modes, although the GMM classified the majority as flap-246 

like (n=55). However, the resolution of the available environmental covariates meant that it 247 

would not be possible to resolve finer-scale relationships between the environment and within-248 

burst variations in flight mode. We therefore decided to classify bursts in their entirety to either 249 

flap-like or soar-like for subsequent analyses.  250 

 251 
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Summary energetic parameter values for flap-like and soar-like bursts classified with over 95% 252 

probability (high-certainty bursts) are reported in Table 2. High-certainty flap-like and soar-like 253 

bursts contained markedly different distributions of fine-scale in-flight power and ground speed 254 

(Figure 3b-c). Energetic dynamics within soar-like bursts generally consisted of large oscillations 255 

in power, often due to rapid EK gains. There were large differences in the amount of time that 256 

different individuals spent engaging in different behaviours (Table 1). There were overlaps in 257 

foraging areas between birds, but no obvious visible spatial trends in the at-sea distribution of 258 

flap-like and soar-like flight (Figure S3). 259 

 260 

 261 

Figure 2: A high-frequency GPS flight burst. The bird’s 3D path through space (A) is shown 262 

with track shaded by total mechanical energy (ET), with arrows showing wind direction (large) 263 

and flight direction (small). Separate graphs show mechanical energy components ET, EP and EK 264 

(B) and power (C) against time. This burst contains both low-power flapping and spikes in power 265 

suggesting wind energy input. 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 
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 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

Figure 3: Energetic characteristics of flap-like and soar-like flight. The (A) relationship 290 

Relationship between burst summary parameters power variance and mean speed,  is shown in 291 

(A) with ellipses showing modelled Gaussian components (mean+sd). (B) Density curves show 292 

within-burst distributions of fine-scale power (B) and ground speed (C) for flap-like (grey) and 293 

soar-like flight (white), produced by combining 10Hz points from all bursts classified to either 294 

mode with over 95% probability. The distribution of ground speeds across all flight bursts (both 295 

flap-like and soar-like) was trimodal (histogram in C). 296 

 297 

 298 

 299 

 300 

 301 

Table 2: Summary mechanical energymovement and energetic characteristics of bursts classified 302 

to flap-like and soar-like with over 95% probability (n=119). Values reported are mean ± sd. 303 

Asterisks denote a significant difference between flap-like and soar-like bursts (p < 0.0001), 304 

tested using either two-sided t-test (*) or Wilcoxon sum-ranks (**). 305 

 306 

 307 

Flight mode number 

of bursts 
mean ground 

speed (ms-1) 
power variance 

(W) (*) 
EK variance (J) 

(*) 
beeline 

distance (m) 
straightness 

index (**) 

Flap-like 60 11.46 ± 2.23 7.22 ± 2.63 4.98 ± 2.74 422.3 ± 268.3 0.88 ± 0.12 

Soar-like 59 11.97 ± 3.84 30.62 ± 10.5 27.29 ± 10.68 418.0 ± 299.5 0.72 ± 0.25 
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 308 

3.2. Environmental predictors of soaring 309 

 310 

Wind speed data were accessed for 189 bursts (data for 4 bursts were missing from the 311 

METOP/ASCAT dataset, possibly because of cloud cover). Tracked birds encountered wind 312 

speeds between 1.41 and 13.69 ms
-1

, with each bird experiencing a range of wind speeds during 313 

tracking (Table 1; Figure S10). Wind speed had a clear strong effect on power variance, with 314 

soar-like bursts with high power variance almost exclusively observed in winds above 8 ms
-1

 315 

(Figure 4a). Mean ground speeds were mostly concentrated between 11 and 15 ms
-1

 in low 316 

winds, becoming more variable at higher wind speeds (Figure S9). Birds were more often 317 

recorded flying in crosswind (n=99) than headwind (n=57) or tailwind (n=33) (Figure 4b).  318 

 319 

We modelled the relationship between wind speed, flight direction and flight mode using logistic 320 

mixed-effects regression, including an interaction between wind speed and flight direction and 321 

including individual and day as random effects (n=189, AIC=204.1, model outputs are reported 322 

in supplementary materials). Model deviance was significantly reduced with wind speed and 323 

flight direction included as predictors, compared to an intercept-only null model (ΔAIC=19.5; 324 

χ
2
=29.5, null–residual deviance 217.57–188.11, df=5, p<0.0001). The model showed a highly 325 

significant effect of wind speed on flight mode, with likelihood of soaring increasing at higher 326 

wind speeds (Figure 4bFigure 4c). There was also a significant interaction between wind speed 327 

and flight direction, with soaring occurring less frequently in strong headwinds than in tailwinds 328 

or crosswinds (for separate plots for each flight direction, see supplementary material). The 329 

strength and significance of both these relationships increased and model fit improved when low-330 

certainty bursts were excluded (n=119, AIC=93.9, residual deviance=77.9). The second model 331 

additionally showed a significant effect of flight direction on flight mode, with reduced soaring 332 



Gibb et al - Remotely-sensed wind speed predicts soaring (manuscript) 

 

14 

in headwind compared to crosswind and tailwind. We found no significant relationships between 333 

flight mode and oceanic productivity (supplementary material S2). 334 

 335 

 336 
 337 

Figure 4: The relationship between flight and wind conditions, for all flight bursts for which 338 

wind data were available (n=189). (A) Relationship between wind speed and burst power 339 

variance, with flap-like bursts shown in black and soar-like bursts in white. (B) Histogram of the 340 

per-burst difference in degrees between the bird's flight direction (beeline bearing) and wind 341 

direction, where a value of 0° denotes no difference (i.e. flight direction is the same as wind 342 

direction). For modelling, flight direction was categorised as headwind (shown in red), 343 

crosswind (grey) or tailwind (blue). (C) Wind speed is a highly significant predictor of soar-like 344 

flight (logistic mixed-effects regression controlling for individual and day), with soaring less 345 

likely to occur in strong headwind than tailwind or crosswind. Grey histograms show density of 346 

wind speeds for all bursts classified as either flap-like (bottom) or soar-like (top).  347 

 348 
 349 

 350 

4. Discussion 351 

 352 

Ocean wind patterns are important drivers of seabird ecology and evolution [13,41], and recent 353 

research integrating information from multiple biologger types has revealed that winds are exert 354 

a key major influence on timing and distribution of foraging and migration in many species 355 

[1,8,14,15]. The relationship we demonstrate between flight behaviour and local wind conditions 356 

illuminates some of the behavioural mechanisms that underpin these large-scale patternsOur 357 

results show a relationship between flight behaviour and local wind conditions that sheds light on 358 

the behavioural mechanisms underpinning these larger-scale ecological trends. Crosswinds and 359 
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tailwinds above a wind speed threshold of around 8ms
-1

 are highly significant predictors of soar-360 

like behaviour in foraging Manx shearwaters. While we emphasise that these results come from a 361 

population sample of 7 individuals, they support the inference that suitable wind conditions 362 

enable birds to engage in soar-like flight, which is likely to reduce overall energy costs during 363 

journeys. While sStatistical behaviour state classification is increasingly used to analyse animal 364 

tracking data [26,33,42]. However,, to our knowledge this is the first time such an approach has 365 

been used to both identify distinct modes of flight behaviour and demonstrate their predictive 366 

relationship to environmental conditions. 367 

 368 

4.1. Tracking and modelling of flight behaviour 369 

 370 

The effect of tags on study animals is a key consideration in tracking research. Previous tests 371 

with devices of equal weight reported minimal impacts on movement and reproductive success 372 

in Manx shearwaters [42], however we tracked movement at much finer temporal resolution than 373 

any previous study, and it is impossible to rule out the effects that a device weighing up to 4% of 374 

body mass could have on behaviour (e.g. [43]). Nonetheless, we observed the same responses to 375 

wind speed across several individuals that encountered both low and high winds during tracking. 376 

We suggest that although tag weight may impact flight to some degree, this is unlikely to 377 

significantly alter overall behavioural trends. 378 

 379 

Using mean ground speed, kinetic energy (EK) and power as variables in the GMM offered 380 

several advantages for distinguishing wind-powered from flap-powered flight behaviour. 381 

Although the relative 3D positional accuracy of successive GPS fixes is very high, absolute GPS 382 

accuracy is more reliable horizontally (used to calculate ground speed and EK; absolute error of ± 383 

2.5m) than vertically (used to calculate potential energy EP). Visually inspecting all flight bursts 384 
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showed no abrupt changes in altitude that were obviously artefacts, however we opted to exclude 385 

absolute EP values (which are derived from absolute altitude) from the GMM in order to 386 

minimise any potential effects of GPS error. Mechanical power measures the rate of energy 387 

change across each between-fix time interval t (P = (ΔEK + ΔEP) / t), so by including power 388 

(derived from change in altitude) as an input variable we ensured that the GMM still 389 

incorporated relative changes in EP, an important aspect of soaring flight. For additional model 390 

validation we also independently hand-classified bursts as soar-like or flap-like based on visual 391 

inspection of their shape, and the results closely resembled model outputs (Figure S7), improving 392 

our confidence that the clusters identified by the GMM correspond to these behaviours. 393 

 394 

The GMM clearly distinguished majority bursts that contained mostly flap-like and or soar-like 395 

burstsmovement, due to their markedly different mechanical characteristics. However, it 396 

appeared slightly biased towards classifying low-certainty bursts (those classified with under 397 

95% probability) as flap-like (n=55) rather than soar-like (n=17), despite visual inspection 398 

suggesting that most were mixed-mode. These intermediate energy bursts mostly occurred in 399 

wind speeds above the soaring threshold (Figure S8) suggesting that our models may slightly 400 

underestimate use of soaring in wind speeds above 8 ms
-1

. This emphasises that although a 401 

behavioural state framework is a useful abstraction for modelling relationships between flight 402 

mode and environment, Manx shearwater flight is complex and responsive to local heterogeneity 403 

in wind and wave conditions. 60-second tracked flight bursts exist on a continuum of mixed 404 

behaviours, ranging from mostly flap-like to mostly soar-like (e.g. Figure 2). This variability 405 

reflects the smaller wingspan and flap-gliding flight of this species compared to that of large 406 

soaring specialists such as albatrosses, which travel long distances without flapping their wings. 407 

Soar-like bursts occasionally showed regular EP and EK oscillations resembling those observed in 408 

albatrosses, albeit with shorter soar cycle lengths (5sec compared to 15sec) [22], however such 409 
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stereotyped movement was relatively uncommon (see supplementary material S4). The 410 

resolution of the available environmental covariates meant that it was not feasible to model the 411 

effect of environment on within-burst variability in flight behaviour. However, in future, either 412 

accessing wind data at a higher spatiotemporal resolution (e.g. collected using on-animal tags) or 413 

recording much longer high-frequency GPS bursts (e.g. 5-10 minutes or above) could potentially 414 

facilitate analysis of the effect of wind on flight behaviour at an even finer scale.   415 

 416 

4.2. Flap-like and soar-like flight characteristics 417 

 418 

Birds engaging in powered flapping flight are predicted to minimise net energy expenditure by 419 

travelling close to maximum range velocity (Vmr), the speed at which maximum distance is 420 

covered per unit of fuel [28]. Previous studies tracked Manx shearwaters at mean ground speeds 421 

of 10–11 ms
-1

, slower than their estimated Vmr of 14 ms
-1

, suggesting some use of wind while 422 

travelling [25,27]. Our results confirm this, and show that soar-like flight enables shearwaters to 423 

travel at equivalent mean ground speeds as flapping (Table 2). Within flap-like bursts the highest 424 

density of ground speeds occurred between 12 and 14 ms
-1

 Within flap-like bursts we observed a 425 

clear ground speed peak between 12 and 14 ms
-1

 (Figure 3c), with birds apparently maximising 426 

efficiency by travelling close to Vmr. The relationship between ground speed and airspeed varies 427 

with flight direction relative to wind; we hypothesise that birds maintain airspeeds close to Vmr 428 

throughout flapping, and that much of the observed within-burst variability in ground speed is 429 

due to birds flying with or against the wind, as indeed is the broader distribution of mean ground 430 

speeds observed in high winds (Figure S9). 431 

 432 

In contrast, during soar-like flight regular kinetic energy boosts from the wind generate power 433 

levels far exceeding those available through flapping alone (Figure 3b), with maximum available 434 
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power appearing to increase as a function of wind speed (Figure 4a). Accelerating and slowing 435 

repeatedly as they change flight path and body orientation relative to wind, soaring birds cover a 436 

far broader range of ground speeds (Figure 3c) along significantly more tortuous flight paths 437 

(Table 2). Soar-like flight in Manx shearwaters involves more flapping activity than in 438 

albatrosses [13], whose metabolic costs while soaring are extremely low [18]. Nonetheless, we 439 

find that soaring shearwaters cover equivalent distances as in flap-like flight (Table 2) while 440 

spending much more time flying at closer to their estimated minimum power velocity (Vmp) of 441 

7.5 ms
-1

 (Figure 3c), which strongly suggests that energy expenditure is lower during soar-like 442 

flight. The second smaller peak between 0 and 2.5 ms
-1

 emphasises the distinction between 443 

ground speed and airspeed; it corresponds to phases during soaring when birds ascend into 444 

oncoming wind, sharply decreasing in ground speed but simultaneously increasing in airspeed 445 

[22].  Birds were also more likely to soar in suitably strong tailwinds and crosswinds than 446 

headwinds, although the relative coarseness of our wind data (24-hour averaged vectors) means 447 

that these categorised directions may be inexact. This nonetheless makes intuitive sense, since 448 

soaring against strong headwind is both time-inefficient and metabolically costly [18,20]. 449 

 450 

More broadly, these insights emphasise the emerging potential of high-frequency GPS 451 

biologgers, either solo or paired with other sensor types [20,44], as tools for studying fine-scale 452 

movement behaviour in wild animals. Tri-axial accelerometers are typically used to quantify 453 

metabolic energy expenditure in tracked animals (e.g. [45,46]). However, since these measure 454 

body acceleration rather than an individual's position in space they can present challenges for 455 

studying soaring and gliding in birds, in which body posture often remains relatively fixed and 456 

much muscle work is isometric [44]. In future, combining high-resolution GPS with co-deployed 457 

accelerometer tags would enable more precise estimation of the relative metabolic costs of 458 
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different flight modes in this and other bird species, providing even more detailed insights into 459 

dynamic relationships between flight behaviour and the local environment. 460 

 461 

4.3. Ecological relevance and future directions 462 

 463 

Global wind patterns affect migration strategies in many migratory birds [6,7,14] and as well as 464 

affecting the foraging ecology in of pelagic seabirds [1,8]. Breeding and migration success may 465 

depend on minimising energy costs during these trips [1,28]. Our results support the inference 466 

that soaring in tailwinds and crosswinds above an 8ms
-1 

threshold enables Manx shearwaters to 467 

reduce flight energy expenditure, and therefore suggest a local-scale behavioural mechanism by 468 

which the wind conditions experienced by birds during flight modulate the net cost of at-sea 469 

journeys. Wind conditions are therefore likely to affect route choice, for example sufficiently 470 

high speed crosswinds and tailwinds may provide low-cost soaring corridors to foraging areas. 471 

This may contribute to the costs of foraging during reproduction, and may be an important factor 472 

to consider in future analysis of carry-over effects, e.g. [29]. Such a mechanism may also 473 

underpin some of the considerable variety in foraging routes observed during several years’ 474 

tracking of Manx shearwaters around the UK [27], as well as the flexible route choice strategies 475 

of other seabirds in response to wind [15,16]. Our data provide some support for this, in that the 476 

tracked birds travelling furthest northwest towards Wales were those that encountered the 477 

strongest winds and soared the most (Table 1).  478 

 479 

Migratory birds are predicted to evolve migration strategies that minimise energetic costs [28]. 480 

Following favourable conditions for soaring may be one behavioural mechanism by which long-481 

term trends in oceanic wind patterns, including the persistence of stable atmospheric features, 482 

affect the evolution of migration routes and timing in the Manx shearwater and other seabirds 483 
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[8]. By identifying the wind conditions that favour soar-like flight, our results therefore present 484 

opportunities for a more predictive approach to understanding seabird life histories. We suggest 485 

that a future research direction, applying our model outputs, would be to combine global-scale 486 

wind data with the multiple years of geolocator and GPS migration tracks now collected for this 487 

species [26,27], in order to further understand assess how local behavioural responses to wind 488 

influence its global spatial distribution and migratory routes. Such an approach may also have 489 

conservation management implications for this and other seabirds. For example, although Manx 490 

shearwaters are generally considered low risk for collision with offshore wind turbines due to 491 

their relatively low-altitude flight [47], applying similar methods to assess the predictive 492 

relationship between wind conditions, flight behaviour and route choice in other, more 493 

vulnerable species may assist in predicting regions of present and future collision risk. 494 

 495 

Our results also suggest that climate change-driven wind pattern shifts [10] have the potential to 496 

affect the costs of long-distance journeys in this species. Recent wind changes in the Southern 497 

Ocean have affected foraging routes and life history traits in wandering albatrosses [1], 498 

suggesting fitness impacts but also some behavioural plasticity in response to changing 499 

atmospheric conditions. However, as much smaller birds reliant on favourable winds for both 500 

foraging and migration [5], Manx shearwaters may be highly sensitive to such changes. If future 501 

global wind pattern shifts result in either increased energy expenditure during flight or extended 502 

travel times while at sea, this could have long-term population impacts on survival and 503 

reproductive success [8]. Similar impacts could may also be expected for otherin other pelagic 504 

seabird species, whose populations are already in global decline due to human impacts on the 505 

marine environment [48].  506 

 507 

Conclusions 508 



Gibb et al - Remotely-sensed wind speed predicts soaring (manuscript) 

 

21 

 509 

Data from on-board biologgers are fast improving our understanding of free-living animal 510 

movement. Using high-frequency GPS, here we have shown for the first time that wind speed, 511 

measured via satellite remote sensing, is an accurate predictor of soar-like flight in a wide-512 

ranging pelagic seabird. Tailwinds and crosswinds above an 8 ms
-1

 wind speed threshold predict 513 

significantly increased likelihood of soaring flight. Both wind speed and direction are therefore 514 

likely to modulate flight costs during at-sea trips, suggesting a mechanism by which oceanic 515 

wind conditions could affect population-level foraging and migration strategies in this and other 516 

species. Our results highlight that high-frequency GPS should be considered within an emerging 517 

toolbox of tracking technologies that enable detailed quantitative study of the interactions 518 

between animal movement and the environment. 519 
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