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SUMMARY

Cell-cell heterogeneity can facilitate lineage choice
during embryonic development because it primes
cells to respond to differentiation cues. However,
remarkably little is known about the origin of hetero-
geneity or whether intrinsic and extrinsic variation
can be controlled to generate reproducible cell type
proportioning seen in vivo. Here, we use experimen-
tation andmodeling inD. discoideum to demonstrate
that population-level cell cycle heterogeneity can be
optimized to generate robust cell fate proportioning.
First, cell cycle position is quantitatively linked to
responsiveness to differentiation-inducing signals.
Second, intrinsic variation in cell cycle length en-
sures cells are randomly distributed throughout the
cell cycle at the onset of multicellular development.
Finally, extrinsic perturbation of optimal cell cycle
heterogeneity is buffered by compensatory changes
in global signal responsiveness. These studies thus
illustrate key regulatory principles underlying cell-
cell heterogeneity optimization and the generation
of robust and reproducible fate choice in devel-
opment.

INTRODUCTION

Tissue patterning and cell type proportioning are robust and

reproducible. However, cell-cell heterogeneity can prevent

cell populations from behaving in a coordinated fashion.

Much research has focused on how this variation is tolerated.

For example, many developmental systems are regulative and

can correct errors (Lawrence and Levine, 2006). Gene networks

underlying cell fate choice can also buffer fluctuations (Aver-

bukh et al., 2017; Levy and Siegal, 2008). Recent studies, how-

ever, suggest that heterogeneity can increase the spectrum of

differentiation capabilities of cells in a uniform environment

(Altschuler and Wu, 2010; Balázsi et al., 2011). Most notably,
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this leads to random ‘‘salt-and-pepper’’ differentiation where

reproducible proportions of different cell types still arise. Exam-

ples range from competence in B. subtilis (Maamar et al., 2007)

to lineage specification in the mouse blastocyst (Dietrich and

Hiiragi, 2007).

Although the molecular mechanisms underlying salt-and-

pepper differentiation are poorly understood, general princi-

ples are emerging. First, heterogeneity is thought to prime

some cells to adopt a particular lineage (Canham et al.,

2010; Chang et al., 2008). For example, priming could affect

the likelihood that a cell will respond to signals that trigger dif-

ferentiation, even if all cells receive the signals (i.e., it affects

the threshold of responsiveness) (Canham et al., 2010; Chang

et al., 2008). Alternatively, in cases where differentiation is

cell-autonomous and achieved in the absence of an external

cue, primed cells may simply express different amounts of

key regulators of the differentiation program (Maamar et al.,

2007). Second, the primed state is thought to be unstable

and transient (Canham et al., 2010; Filipczyk et al., 2015;

S€uel et al., 2006). For example, when primed cells are isolated

and regrown, the heterogeneous population is rapidly recon-

stituted (Canham et al., 2010; Chang et al., 2008). Despite

this emerging framework, it is unclear how the expression of

lineage priming genes affects the threshold of responsiveness

or cell fate choice at the molecular level. Furthermore,

because few lineage priming genes have been identified, it

is unknown how lineage priming dynamics or the number of

lineage-primed cells is controlled. Addressing these questions

will be crucial to understanding how this mechanism can

achieve robust cell type proportioning.

Stochastic lineage priming dynamics provide one method of

achieving robust developmental outcomes (Schultz et al.,

2007). This is because even though the behavior of one cell

may be unpredictable, the probability of a proportion of cells

within a population being in a primed state can be fixed. Alter-

natively, there is evidence that lineage priming dynamics can

be governed by an underlying oscillatory mechanism that

reproducibly drives cells in and out of a primed state (Soufi

and Dalton, 2016). For example, studies of human embryonic

stem cell (hESC) differentiation have revealed a relationship be-

tween the cell cycle and lineage potential (Li and Kirschner,
e Author(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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2014; Pauklin and Vallier, 2013; Roccio et al., 2013). Differenti-

ation of hESCs is favored in the G1 phase of the cell cycle, with

endoderm fate favored in early G1 and neuroectoderm fate in

late G1. However, induction of neuroectoderm and endoderm

occurs in response to positional signals during gastrulation,

rather than in a salt-and-pepper distribution (Rossant and

Tam, 2009). Consequently, how these cell culture observations

relate to differentiation in vivo is unknown. Despite these limita-

tions, these studies demonstrate that cell cycle position allows

an asynchronous population of cells to exhibit differential re-

sponses to a uniform stimulus and thus provides an attractive

candidate mechanism for robust salt-and-pepper differentiation

in vivo.

To address this possibility, we have utilized the social

amoeba Dictyostelium discoideum. Individual Dictyostelium

amoebae grow and divide when nutrients are present. Howev-

er, when nutrient supplies are exhausted, approximately 105

cells aggregate to form a multicellular mound, which undergoes

a program of cell type differentiation and morphogenesis. It is

thought that although growing cells are undifferentiated, they

are dynamically and unstably primed toward future develop-

mental fates (Chattwood et al., 2013). Differences in cell cycle

position (Araki et al., 1994; Gomer and Firtel, 1987; Thompson

and Kay, 2000a; Weijer et al., 1984), intracellular calcium con-

centration (Kubohara et al., 2007; Schaap et al., 1996), intracel-

lular pH (Gross et al., 1983; Kubohara et al., 2007), and nutri-

tional history (Leach et al., 1973; Thompson and Kay, 2000a)

of growing cells have all been shown to bias cell fate choice

and vary dynamically within populations of cells. Furthermore,

it has been shown that these biases modulate the threshold

of responsiveness to diffusible developmental signals, such

as cAMP and DIF-1 (Chattwood et al., 2013; Thompson and

Kay, 2000a), which only accumulate to high levels following

starvation and aggregation (Kay and Thompson, 2001). Cell

type differentiation thus takes place at the mound stage.

DIF-1 promotes the differentiation of prestalk populations

including ecmA-expressing pstAO cells and ecmB-expressing

pstB cells (Keller and Thompson, 2008; Thompson and Kay,

2000b) (Figure S1). cAMP promotes the differentiation of pre-

spore cells, which express the pspA gene. As all cells within

the mound are uniformly exposed to these signals, it has

been proposed that intrinsic differences in thresholds of

responsiveness result in salt-and-pepper differentiation (Chatt-

wood et al., 2013; Thompson et al., 2004b). Crucially, multicel-

lular development in Dictyostelium is extremely robust, with cell

type proportioning reproducible between multicellular aggre-

gates and over a wide range of total cell numbers (Bonner,

1957; Ràfols et al., 2001). One possibility is that initial symmetry

breaking is noisy but stabilized by feedback loops in which

DIF-1 is synthesized by prespore cells and degraded by pre-

stalk cells to ensure DIF-1 levels reach an equilibrium and

maintain prestalk-prespore proportioning (Kay and Thompson,

2001). Alternatively, initial symmetry could be precise and result

in near correct proportioning that only requires correction if the

system is severely perturbed. We, therefore, reasoned that Dic-

tyostelium was an ideal system to address whether variation in

cell cycle position can provide sufficiently robust population-

level information to generate reproducible cell type propor-

tioning in vivo.
RESULTS

Single-Cell RNA-Seq Reveals Cell Cycle Position as the
Major Driver of Cell-Cell Gene Expression Variation
In Dictyostelium, a clonal cell population can break symmetry

and undergo robust cell fate choice and proportioning. We,

therefore, reasoned that the major drivers of lineage priming

should be detectable as variation in gene expression between

growing cells. Moreover, we would expect the proportion of cells

exhibiting distinct gene expression states to reflect the cell type

proportions seen in development (the approximate ratio of pre-

spore to prestalk cells is 70:30). To investigate this, we took an

unbiased approach in which single-cell RNA sequencing (RNA-

seq) was carried out on 81 log-phase vegetative cells to identify

genes with highly variable expression patterns. Out of 11,319

expressed genes, we identified 1,619 significantly variable

genes (p value = 0.01) by fitting a Michaelis-Menten model

(K = 5.94). These differentially expressed genes (DEGs) revealed

the presence of two large groups of cells, cluster A (25 cells) and

cluster B (56 cells). For each gene, we next determinedwhether it

could be used as a marker gene for cluster A or cluster B (or a

subgroup thereof). Of the 1,619 DEGs, 1,602 genes had an

AUC higher than 0.8, indicating that they are specific for either

cluster A (901 genes; Figure 1A), or cluster B (701 genes;

Figure 1A). 493 of these genes also show variation within

cluster B, but expression within that cluster is still higher than

the expression in cluster A. Because almost all significantly var-

iable genes are also marker genes for these two clusters, this

shows these genes are the main difference between the two

groups. Finally, a principal-component analysis (PCA) using the

500 most variable genes also divided the cells into the same

two groups (Figure 1B), and the percentage of cells in each group

(31%and 69%) roughly corresponded to the ratio of prestalk and

prespore cells seen during development.

Tounderstand themolecular basis of this geneexpression vari-

ation, we first performed Gene Ontology (GO) analyses. Cluster

A genes showed enrichment for GO terms including ‘‘myosin II

filament organization,’’ ‘‘mitotic cytokinesis,’’ and ‘‘cytokinesis’’

(Data S1). Marker genes for cluster Bwere enriched for GO terms

including ‘‘oxidative phosphorylation,’’ ‘‘translation,’’ and various

biosynthetic processes (Data S1). This raised the possibility that

differences in cell-cycle-dependent gene expression could un-

derlie the clusters, with cells in cluster A preparing to divide, un-

dergoing, or having just undergonemitosis (M/S phase) and cells

in cluster B actively growing (G2 phase). To test this, we used

cells synchronized by cold shock to determine the Dictyostelium

cell-cycle-dependent transcriptome. Cold shock likely arrests

cells in late G2, because most cells undergo mitosis within

2–3 hr after cold shock release (Maeda, 1986; Strasser et al.,

2012). BrdU incorporation reveals these cells then directly enter

S phase (there is little or no G1 in Dictyostelium). Indeed, genes

associated with M/S phase are up-regulated shortly after cold

shock release (Strasser et al., 2012). Cells then undergo G2,

with the second round of less synchronous mitosis typically

observed around 8 hr after cold shock release. We used gene

expression data from cells collected at hourly time points after

cold shock release to capture one complete cell cycle. After

filtering to remove poorly expressed genes, the remaining 6,121

geneswere screened for significant expression peaks at different
Developmental Cell 47, 494–508, November 19, 2018 495
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Figure 1. Dictyostelium Cells Exhibit Cell Cycle Heterogeneity

(A) Gene expression heatmap for 1,602 marker genes reveals two clusters of vegetative cells. DEG analysis split the 81 vegetative cells into two groups.

Expression values for each gene were mean-centered and scaled.

(B) Principal-component analysis of 81 vegetative cells. The 500 most variable genes were used for PCA. Colors correspond to highlighted cells in (A). Normal

data ellipse for each cluster is shown.

(C) Cell cycle profiles of 6,228 genes. Cell cycle profiles from cold shock synchronized cells for 6,228 genes were extracted and normalized to percent expression

(see STAR Methods). Genes that deviate more than 1.5 median absolute deviations (MADs) were binned according to the time point of their highest expression.

Profiles for each bin were separated (a)–(h). The blue line denotes the mean.

(D) Cell cycle profile of marker genes for cluster A and cluster B. A hypergeometric test was used to identify genes from cluster A (901 genes) and cluster B (701

genes) that were over-represented in the hourly cell cycle bins described in Figure 1C. Cluster A and cluster B genes show higher expression 5–7 and 3 hr after

cold shock release, respectively.

(E and F) Cell cycle length correlations. Cell cycle lengths of sister (E) ormother and daughter cells (F) were plotted. Blue line depicts the linear regression line (gray

shaded area: 95% CI).

(G) Cell divisions become rapidly de-synchronized in cell populations. Starting with one cell, 1,000 population simulations were run for 96 hr, and the number of

cells dividing in each hour plotted (solid line: mean, dashed lines: 95%CI). Themean converges against a value of 0.11, which is indicative of de-synchronous cell

cycle lengths.
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time points (see STAR Methods) and binned accordingly (Fig-

ure 1C and Data S2). GO analyses revealed strong cell cycle sig-

natures, e.g., a significant over-representation of the terms ‘‘DNA

replication,’’ ‘‘chromosome segregation,’’ and ‘‘nuclear division’’

1 hr and 5–7 hr after cold shock release, which supports the idea

that themajority of these cells are indeed inM/S phase or prepar-

ing to undergomitosis (DataS2).Most importantly, using a hyper-

geometric test to identify over-representation, we found that

cluster A genes were significantly enriched for genes with peaks

in late G2 (p < 0.05; 5–7 hr after cold shock release) and then fall

sharply after Sphase (8 hr) (Figure 1D). It is also interesting to note

that only a small number of cluster A genes have increased tran-

scription 1 hr after cold shock release, which likely reflects the

fact that cold shock specific perturbations affect the first M/S

phase these cells undergo. The second M/S phase after cold

shock therefore likely better reflects a normal cell cycle. Markers

of cluster B, on the other hand, were significantly enriched for

genes that peak 3 hr after cold shock release (p = 3.24 3 10�31;

Figure 1D). For example, most ribosomal proteins exhibited this

transcription pattern, which is indicative of cell growth. Conse-

quently, our single cell analyses reveal that gene expression

variation between individual Dictyostelium cells is likely a conse-

quence of a strong cell cycle signature.

Stochastic Cell Cycle Variation Results in Robust and
Rapid De-synchronization of Dictyostelium Cell
Populations
If cell cycle position underlies cell fate decisions inDictyostelium,

for proportioning to be reproducible, cells must be predictably

distributed (on a population scale) throughout the cell cycle

when differentiation is induced. Consequently, the Dictyostelium

cell cycle must exhibit sufficient stochastic cell-cell variation to

drive rapid population asynchrony and robust convergence to

a steady-state distribution of cells in different positions in the

cell cycle. To test this, we used time-lapse microscopy to mea-

sure cell cycle variation. This revealed sister cell divisions are

correlated yet still somewhat variable (Figure 1E). However, no

correlation was observed between mother and daughter cell cy-

cle length (Figure 1F). Using these data, we next built a mathe-

matical simulation to determine the number of cell divisions

that would be required to completely de-synchronize a popula-

tion of Dictyostelium cells that arises from a single cell (see

STAR Methods). This revealed de-synchronization would occur

within 40 hr, or five cell divisions (i.e., 32 cells) (Figure 1G). A sin-

gle fruiting body is typically composed of more than 10,000 cells,

and fruiting bodies of less than 1,000 cells can only be generated

under very specific laboratory conditions (Konijn and Raper,

1961). This suggests synchrony would be lost long before cell

differentiation. Therefore, if cell cycle position determined cell

fate, the decision made by each cell would be unpredictable

because it is based on a stochastic process. However, the

average behavior of the population, due to the fast convergence

to a steady-state cell cycle position distribution, would result in

precise cell fate proportions.

Cell Cycle Position Results in Oscillatory Cell Fate
Choice Probabilities
To address whether cell cycle position is quantitatively linked to

cell fate, we developed a high-throughput live imaging method to
track cells during vegetative growth and differentiation (Figure 2A).

Differentiation was induced by starvation for 18 hr in conditioned

medium containing a cocktail of differentiation-inducing signals.

To validate this method, fluorescence-activated cell sorting

(FACS) quantification was used to determine the number of cells

expressing markers of the major prespore (pspA-GFP) and

prestalk (ecmAO-RFP or ecmB-RFP) cell types. As expected, the

markers showed a dose-dependent response to the prestalk

inducer DIF-1 (Figure 2B). Furthermore, at a dose of 10 nM

DIF-1,which is thought tobeclose tophysiological levels, thenum-

ber of prestalk and prespore cells was similar to those seen in vivo

(16%ecmB, 22%ecmAO, and 62%pspAexpressing) (Figure 2C).

For most cells, it was possible to unambiguously assign cell fate

because less than 1%of the cells co-expressed twomarkers (Fig-

ure 2C). Finally, most cells differentiated, and less than 10%of the

cells expressed no marker (Figure 2C).

To determine whether there is a relationship between cell cy-

cle stage and prestalk or prespore fate choice, growing cells

were filmed at low density for 12–14 hr. Under these conditions,

cells have an average cell cycle length of 8.3 hr, and all cells can

be tracked through at least one cell division (Video S1). Further-

more, analysis of PCNA-RFP expressing cells allowed us to

confirm that the timing of the last cell division can be used to pre-

dict cell cycle position accurately. Almost all cells that underwent

mitosis accumulated a PCNA-RFP dot in the nucleus within

20 min (76% within 20 min, 98% within 30 min; n = 93 cells)

(Video S2). BrdU incorporation has previously revealed this coin-

cides with late S phase (Muramoto and Chubb, 2008). This con-

firms previous observations that Dictyostelium cells have little or

no G1 and that cells immediately enter S phase after mitosis,

before cells enter G2. Once the growth medium was removed,

and cell type differentiation induced, little further cell division

was observed (6% of cells). Consequently, the timing of the

last division relative to the addition of signals was used to define

the cell cycle position of each cell when induced to differentiate.

Finally, after 18 hr, a fluorescence image was taken to determine

whether each cell had adopted a prespore (pspA-GFP) or pre-

stalk (no fluorescence) fate (Video S1).

Cell type differentiation was found to follow an oscillatory

pattern. Prespore cell differentiation peaked in cells that under-

went mitosis 6–7 hr before removal of growth medium (i.e.,

induced to differentiate in mid G2) (Figure 2D). The probability

of prestalk cell differentiation was highest when cells had just un-

dergone mitosis (i.e., in S phase). Prestalk or prespore cell differ-

entiation was not restricted to specific cell cycle phases. For

example, significant numbers of prestalk cells differentiated

when cells divided 2–3 hr before the addition of differentiation

signals. These cells cannot be in S phase because PCNA-RFP

localization measurements reveal S phase length to be 37 min

on average (m = 37.4 min, s = 5.1 min) and a maximum of

50min (Figure 3A). Finally, cells at the end of G2were also slightly

stalkier than cells in the rest of G2 (Figure 2D). This suggested

that the probability of prestalk cell differentiation increases in

G2 but only just before cells enter mitosis. Indeed, cells with a

significantly longer than average cell cycle length, which are

more likely to divide within the next hour, are relatively stalky.

Together, these findings suggest that the cell cycle acts as a

probabilistic cell fate oscillator that regulates the threshold of

responsiveness to differentiation signals.
Developmental Cell 47, 494–508, November 19, 2018 497
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Figure 2. A Probabilistic Relationship be-

tween Cell Fate and Cell Cycle Position

(A) Schematic of high-throughput, low-density

growth and differentiation assay.

(B) Dose-responsive induction and repression of

prestalk and prespore marker gene expression.

AX3 cells transformed with pspA-RFP, ecmAO-

RFP, or ecmB-RFP cell type-specific reporters

were incubated with indicated DIF-1 concentra-

tions, and number of expressing cells determined

by FACS.

(C) Cell type differentiation at 10-nM DIF-1. AX3

cells co-transformed with pspA, ecmAO, or ecmB

cell type specific reporters were incubated with

10-nM DIF-1 and the number of expressing cells

determined by FACS (see STAR Methods).

(D) Cell type differentiation is cell-cycle-depen-

dent. 448 cells were tracked during growth and

differentiation. Percentages of cells that differen-

tiated as prespore or prestalk cells (ecmAO or

ecmB expressing) were calculated for cells

dividing within each hourly time interval before

induction. The likely cell cycle position is high-

lighted.
Nutritional History Affects Cell Cycle Length and Cell
Fate Choice
Our findings suggest that the Dictyostelium cell cycle is an

exampleof adynamic systemthat reliesonstochasticity (in cell cy-

cle length) to ensure robust cell type proportioning. One problem,

however, is that extrinsic disruption of population heterogeneity,

oscillator period, or amplitude would have a deleterious effect on

development. Indeed, extrinsic environmental perturbations,

such as pH, temperature, or metabolic changes, affect cell fate

choice. However, it is unknown whether these effects are due to

changes incell cycledynamics orother changes incell physiology.

To test this, we further studied the behavior of cells grown inmedia

containing lowglucose (G�), which are biased toward the prestalk

cell fate (Leach et al., 1973; ThompsonandKay, 2000a; Figure 4A).

We found G� cells have a significantly longer cell cycle than
498 Developmental Cell 47, 494–508, November 19, 2018
G+cells (t test; p = 6.183 10�6; Figure 3A).

However, not all cell cycle phases increase

in length. PCNA-RFP localization revealed

no difference in M/S phase length (t test;

p = 0.56; Figure 4A), whereas G2 was

significantly lengthened (t test; p = 6.253

10�6; Figure 3A). This finding initially

appeared counterintuitive because mid-

G2 cells tend to differentiate as prespore

cells. However, our single cell analyses

did reveal that the small numberofG+cells

with a significantly longer than average

cell cycle are biased toward the prestalk

cell fate (Figure 2D). This raised the possi-

bility that G� grown cells (and G+ cells

with a longer than average cell cycle

length) may be similar to M/S phase cells.

To test this, we usedRNA-seq to compare

the gene expression profile of G+ and G�
grown cells. This revealed 324 DEGs
(DataS3).Asexpected,G� cells showedhighexpressionofgenes

associated with gluconeogenesis and the glutamate metabolic

process (e.g., fbp,pckA), rather thanglycolysis.However,G�cells

also exhibited changes in cell-cycle-dependent gene expres-

sion (e.g., cdc20, aurK, cdc45, top2). Most importantly, genes

with peaks associated with M/S phase following cold shock

release are over-represented, with a corresponding decrease

in G2-associated gene expression (Figure 3B). This suggested

that metabolic status affects cell cycle dynamics, with G� cells

stalled in late G2 phase when M/S-associated transcription

increases, thus resulting in a prestalk fate bias (Figure 3C). To

confirm this, we used the single cell growth and differentiation

assay to determine the lineage potential of G� grown cells

at different cell cycle phases. This revealed G� grown cells with

a longer than average G2 phase do exhibit a prestalk fate bias
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Figure 3. G– Growth Affects Cell Fate Choice due to Changes in Cell Cycle Dynamics

(A) G� cells have a longer G2 phase. S and G2 phase lengths were determined from PCNA localization (Muramoto and Chubb, 2008). Only total cell cycle length

and G2 phase length of G�-grown cells are significantly longer.

(B) Differentially expressed genes between G+ and G� cells exhibit strong cell cycle profiles. A hypergeometric test was used to identify over-representation of

DEGs between AX3 G+ and AX3 G� in the hourly cell cycle profiles (Figure 1C).

(C) G� cells are biased toward prestalk cell fate. The percentage of prestalk and prespore cells was significantly different in G+ and G� cells in the low-density

differentiation assay (t test; p = 5.5 3 10�8; p = 6 3 10�7; p = 3 3 10�7).

(D) Stalk cell propensity increases in G� cells with a longer than average cell cycle length. Percentages of prespore and prestalk cells were plotted for G+ cells

(solid line; see Figure 2D) and G� cells (dashed line) at different cell cycle positions. G� cells with a longer than average cell cycle (>8 hr) showed a much higher

propensity to differentiate into prestalk cells.
(Figure 3D), thus supporting the idea that the coupling of cell cycle

phase to differentiation propensity underlies cell type propor-

tioning in Dictyostelium. However, they also illustrate that cells

are susceptible to extrinsic environmental perturbation of these

cell cycle dynamics.

Ras Activity Rescues the Stalk Bias Caused by G–
Growth without Affecting Cell Cycle Dynamics
Developmental mechanisms should result in reproducible cell

type proportioning (within normal parameter space). We, there-
fore, hypothesized that robustness in Dictyostelium develop-

ment would be facilitated if extrinsic environmental fluctuations

that perturb cell cycle dynamics could be buffered. Increases

or decreases in buffering activity would therefore be expected

to rescue or exacerbate the effects of growth in the absence of

glucose, but without altering cell cycle dynamics. Previous

studies suggested that the putative Ras-GEF gefE might act in

this way. For example, gefE knockout results in a sporey bias

in G+ cells, and can rescue the stalk bias caused by G� growth

(Figure 4; Chattwood et al., 2013), but without affecting growth.
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Consequently, regulation of the levels of Ras activity provided a

standout candidate for a buffering system.

The Dictyostelium genome encodes 11 putative Ras homo-

logs, but only three of these (rasC, rasD, and rasG) are expressed

at appreciable levels during multicellular developmental stages,

when cell fate choice is made (Rosengarten et al., 2015). To

further explore the connection between Ras signaling, cell fate

choice, and buffering, we compared the effects of knocking

out gefE with other genetic manipulations that should result in

Ras pathway attenuation or hyper-activation. First, we gener-

ated rasC, rasD, and rasG gene knockouts in the AX3 genetic

background used in this study. We found that rasD� knockout

mutant cells phenocopied the gefE� mutant and exhibited a

spore bias in chimera or forced wild-type cells to adopt stalky

fates (Figure 4A). As previously reported, rasC� mutant cells

are blocked during aggregation when clonally developed (Lim

et al., 2001) or when in the majority in chimera. However, this

defect is non-cell-autonomous, and labeled rasC� mutant cells

efficiently enter chimeric development whenmixed with a major-

ity of wild-type cells. This revealed that rasC�mutant cells, unlike

the rasD� mutant, do not exhibit a cell fate bias and are distrib-

uted evenly throughout chimeric slugs. Finally, we tested the ef-

fects of knocking out rasG. rasG� mutant slugs are smaller than

wild-type when developed clonally or in the majority. Most

importantly, however, rasG� mutant cells actually show the

opposite phenotype to the rasD mutant, as they exhibit a stalk

bias, forcing wild-type cells to adopt the prespore cell fate.

This is consistent with the fact that rasG� mutant cells express

higher levels of activated RasD (Khosla et al., 2000). Alterna-

tively, this may be because rasG� mutant cells, like G� cells,

exhibit a longer cell division time than wild-type cells (Tuxworth

et al., 1997). These findings thus support the idea that Ras family

members play different roles during Dictyostelium development

and that RasD activation is dependent on GefE. Indeed, gefE�

mutant cells exhibit decreased RasD activation, whereas RasC

or RasG are unaffected (Chattwood et al., 2013).

To confirm this idea, we also generated strains in which consti-

tutively active G12T versions of RasC, RasD, or RasG were ex-

pressed under the control of a tetracycline-inducible promoter.

This allowed expression to be transiently induced during growth.

When labeled wild-type cells were mixed with cells transiently

induced to express activated Ras, expression of constitutively
Figure 4. RasD Activity Affects Cell Fate Choice but Not Cell Cycle Dy

(A) Ras activity and nutrition affect cell fate choice in chimeric development. Left p

wild-type cells. G� cells predominantly sort to the collar and back in chimera with

results in partial rescue of the G� effect (Chattwood et al., 2013). Middle panel: la

rasD� cells exhibit a sporey bias (black arrows), forcing wild-type cells to adopt p

develop when in the majority. They co-aggregate when wild-type cells are in the

cells were mixed with unlabeled cells induced to express constitutively active ras

effect, forcing cells toward the collar and back fate (i.e., opposite to the rasD� o

(B) RasD activity and nutrition affect stalk cell differentiation in monolayer cultu

differentiation at 10-nM DIF-1 (3 replicates). In contrast, increased RasD activity

p = 0.0088; p = 0.0012; p = 0.0001).

(C) Cell cycle length is not affected by RasD activity. The growth rate of wild-type

bars are standard error of mean of 3 replicates.

(D) Cell cycle phase lengths are unaffected by RasD activity. PCNA localizatio

in S phase lengths, whereas total cell cycle and G2 phase lengths of G�-grown

(E and F) Stalk cell propensity decreases in gefE� G+ and gefE� G� cells. gefE�

become prespore cells. gefE� G� cell (F) propensity to become prespore cells i
active RasDG12T resulted in a strong stalky fate bias (i.e., oppo-

site to the rasD� knockout). We also found that conditional

expression of constitutively active RasGG12T or RasCG12T tended

to push cells toward the prestalk fate. However, the effect was

much weaker than that seen for RasDG12T. These findings sup-

port earlier studies that showed Ras proteins can exhibit a de-

gree of functional overlap when overexpressed (Khosla et al.,

2000). However, when knockout and overexpression studies

are taken together, our results suggest that GefE acts through

RasD to promote prestalk cell fate choice. This idea is supported

by monolayer culture assays, where rasD� mutant cells formed

fewer stalk cells than wild-type, and transient activation of

RasDG12T increased stalk cell differentiation (Figure 4B).

Chimeric development and monolayer differentiation assays

suggest that GefE specifically controls RasD to ensure correct

cell fate choice. Therefore, we next tested whether these effects

were due to changes in the response threshold (which is consis-

tent with a buffering mechanism), rather than changes in cell cy-

cle dynamics. The doubling time of wild-type cells (7.4 hr) was

indistinguishable from gefE� (7.8 hr), rasD� (7.3 hr), or RasD(G12T)

(7.8 hr) cells (Figure 4C). Furthermore, we found that the lengths

of M/S and G2 phases were indistinguishable in gefE� mutant

and wild-type cells (Figure 4D; Student’s t test, total: p = 0.27;

M/S: p = 0.18; G2: p = 0.28), whether cells were grown in the

presence or absence of glucose (Figure 4D). Together, these re-

sults suggest that nutritional history affects cell cycle phase

lengths and thus the amount of time cells spend in a signal sen-

sitive state. In contrast, the effects of altering RasD activity are

due to changes in the cellular response threshold to differentia-

tion-inducing signals. Indeed, we found that gefE� knockout af-

fects the responsiveness to prestalk inducing signals during all

phases of the cell cycle (Figures 4E and 4F).

Cell Cycle Dynamics and Ras-Dependent Signal
Threshold Are Negatively Coupled
Changes in cell cycle dynamics or RasD-dependent changes in

the response threshold to differentiation signals can affect cell

fate choice and proportioning. Therefore, we next tested

whether changes in cell cycle dynamics that increase the num-

ber of prestalk cells result in a compensatory decrease in

RasD activity (i.e., favoring prespore cell differentiation) to

attempt to rebalance cell fate proportioning. RNA-seq gene
namics

anel: gefE� cells exhibit a prespore and tip bias (black arrows) in chimera with

G+ cells. gefE� G� cells are also found in the spore region (red arrows), which

beled wild-type cells were mixed with unlabeled rasC�, rasD�, or rasG� cells.

restalk fates (white arrows). rasG� cells exhibit a stalky bias. rasC� cells do not

majority but do not show a cell fate preference. Right panel: labeled wild-type

C(G12T), rasD(G12T), or rasG(G12T). rasD(G12T) expression resulted in the strongest

r gefE� mutant phenotype).

res. Decreased Ras activity (rasD� or gefE�) significantly reduced stalk cell

(AX3rasD[G12T]) significantly increased the percentage of prestalk cells (t test:

AX3, gefE�, rasD� mutant, and RasDG12T cells was measured in culture. Error

n was used to determine S and G2 length. There is no significant difference

cells in wild-type and gefE� are significantly longer.

G+ cells (E) that divided up to 2 hr before induction have a higher propensity to

s higher than AX3 G� cells at almost all time points or cell cycle phases.
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expression profiling was first used to identify genes associated

with high RasD activity (wild-type) or low RasD activity (gefE�).
This revealed 45 DEGs (Figure 5A and Data S3). We next used

these genes to determine whether Ras activity was increased

or decreased when cells were grown in prestalk biased G� or

prespore biased G+ conditions. We found a highly significant

proportion of RasD-dependent genes (36 out of 45; hyper-

geometric test; p = 4 3 10�15) were also affected by nutritional

history (>1.53 increase or decrease in expression). Most impor-

tantly, when the level of expression of these genes was

compared, prestalk-biased G�-grown cells were more similar

to prespore-biased low RasD gefE� cells (Figure 5A). Therefore,

these data suggest that when cells are subjected to growth in

conditions that affect the cell cycle and make cells more likely

to differentiate as prestalk cells, they also exhibit a gene expres-

sion profile that is associated with the prespore-biased lowRasD

gene state. This behavior is consistent with a cell fate buffering

mechanism.

To further test this idea, we studied the behavior of represen-

tative Ras-dependent genes from the putative buffering network.

rigA and rrgA were chosen because they exhibit representative

(average) changes in response to gefE mutation and glucose

(Figure 5A). Furthermore, their relatively high levels of vegetative

expression in wild-type cells (Data S3) enabled us to confirm

these data by different methods (see below). For example, we

examined relative transcript abundance and thus gefE-depen-

dent gene activity in single cells by RNA-fluorescence in situ hy-

bridization (FISH). This revealed that the relative expression of

both genes is similar in most cells (Figures 5B and 5C). However,

a significant number of cells express one gene at higher levels. In

wild-type, this tends to be rigA (Figures 5B and 5C). In RasDG12T

cells, the number of cells expressing high levels of rigA increases

further, whereas in gefE� and rasD� mutant cells the number of

cells expressing high levels of rrgA is increased (Figures 5B

and 5C).

Although RNA-seq was performed on growing cells, we

found that genes in the RasD-dependent gene network are

maximally expressed during multicellular stages when cell

fate choices are made (Figure 5D). Similarly, GO annotation re-

veals enrichment for plasma membrane and transmembrane

proteins (p = 0.03), as well as secreted proteins (p = 0.01),

which is consistent with a role in cell-cell signaling. Therefore,
Figure 5. Ras Activity-Dependent Gene Expression Is Coupled to Chan

(A) RNA-seq reveals reciprocal genes expression changes in response to GefE an

Ras-dependent genes were identified by comparing gene expression of gefE� G

also show a >1.5 3 FC in expression between AX3 G+ and AX3 G� (hypergeom

shows that stalky nutritional bias results in sporey low Ras gene activity. Candid

(B) RNA-FISH of rrgA and rigA. rrgA and rigA are heterogeneously expressed, an

(C) Quantification of rrgA and rigA RNA-FISH. The relative expression of each gene

of 1 or 0 represent only rrgA or rigA expression, respectively.

(D) Ras-dependent genes are maximally expressed during multicellular developm

seq data at different time points during development.

(E) rrgA and rigA mutant behavior in stalk cell induction monolayer assays. rrgA kn

rrgA�/gefE� double mutant rescues gefE� mutant prespore bias (see suppleme

affect stalk cell differentiation, whereas the rigA/AX3rasD(G12T) strain shows sign

values are the mean of three replicates, and error bars depict the SEM.

(F) Behavior of RasD-dependent gene knockouts in chimeric development. Label

rrgB single mutants do not significantly affect cell fate choice. rrgA� and rrgB kno

single mutant. The dictyBase: DDB_G0247655 and rigB single mutants do not sign

strains show significantly reduced collar and back stalk cell differentiation bias c
we next tested whether rrgA and rigA are required for normal

cell fate choice. Knockout mutant lines were created in other-

wise wild-type cells (i.e., ‘‘normal’’ RasD activity), cells in which

the level of RasD activity was reduced through disruption of

gefE� or elevated through expression of constitutively activated

RasDG12T. The behavior of these cells was tested in monolayer

cell culture or in chimeric development with wild-type cells.

Knockout of rrgA in a gefE� background (which normally results

in higher expression of rrgA) is sufficient to rescue the prespore

cell fate bias (tip and prespore in chimeric slugs) seen in low

gefE� mutant cells (Figures 5E and 5F). Similarly, knockout of

rigA in an AX3rasD(G12T) background (which normally results

in higher expression of rigA) is sufficient to rescue the prestalk

cell fate bias (collar and back in chimeric slugs) caused by

expression of constitutively active RasDG12T (Figures 5E and

5F). In both cases, no phenotype is seen in rrgA or rigA single

mutants (Figure 5). This finding is not specific to these genes.

We also generated knockouts in two other RasD-dependent

genes and found their changes in expression in response to

gefE gene disruption (rrgB increases, and rigB decreases)

could also predict their effects on cell fate choice. Therefore,

consistent with their patterns of expression, genes in this

network are required for normal cell fate choice when cells

are forced into low or high RasD states.

Natural Variation in Cell Cycle Dynamics Results in
Changes in Ras-Dependent Gene Expression
Gene expression changes in response to glucose deprivation or

RasD levels suggest that RasD-dependent gene expression pro-

vides a buffering mechanism to counter the effects of extrinsic

variation on the cell cycle and thus cell fate. We, therefore, tested

whether these effects are specific to nutritional history or also

seen in response to other environmental perturbations. For

example, drugs that affect intracellular pH have previously

been shown to affect cell fate choice (Gross et al., 1983; Kubo-

hara et al., 2007). Hence, we tested whether growth at different

pHs also affects cell fate choice. When compared to G+ cells

grown in ‘‘normal’’ pH-6.8 medium, pH-7.5 cells exhibit a sporey

cell fate bias in chimera. This contrasts with nutritional perturba-

tion, where G� cells exhibit a stalky bias (Figure 6A). qPCR re-

vealed that while stalky G� growth resulted in a sporey gene

expression profile (increased rrgA versus rigA), sporey pH-7.5
ges in Cell Cycle Dynamics

d nutrition. RNA-seq was performed on AX3 G+, AX3 G�, and gefE� G+ cells.

+ and AX3 G+ samples. A highly significant proportion of these 45 DEGs (80%)

etric test, p = 4 3 10�15). Comparison of log2 FCs of the 36 overlapping genes

ate genes are highlighted in red.

d expression levels depend on RasD activation.

in each cell was calculated as an index of expression rrgA/(rrgA + rigA). Values

ent. Expression profiles of RasD-dependent genes were determined fromRNA-

ockout in AX3 does not significantly affect stalk cell differentiation, whereas the

ntary Mendeley data for p values). rigA knockout in AX3 does not significantly

ificantly reduced stalk cell differentiation compared to AX3rasD(G12T). Plotted

ed cells were developed in a 50:50 ratio with unlabeled AX3 cells. The rrgA and

ckouts in the gefE� mutant rescue the tip and prespore bias seen in the gefE�

ificantly affect cell fate choice. The rigA/AX3rasD(G12T) and rigB/AX3rasD(G12T)

ompared to AX3rasD(G12T).
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Figure 6. Ras Activity Buffers Extrinsic Fluctuations that Affect Cell Cycle Dynamics

(A) Altering nutrition or pH during growth affects cell fate choice. RFP labeled or unlabeled cells were grown inG+medium at pH 6.8 and 7.5 or in G�medium at pH

6.8. Chimeric development revealed cells at more alkaline pH are biased to the prespore cell fate, whereas low glucose results in a stalky bias.

(B) Altering nutrition or pH during growth affects Ras network activity. Expression of rrgA and rigA was measured in G+ pH 6.8 and 7.5 and G�medium pH 6.8 by

qPCR (3 replicates each). In stalky G� cells, the expression of the low Ras activity reporter rrgA increases relative to high Ras activity reporter rigA expression.

This trend is reversed in sporey alkaline pH. Error bars depict SEM.

(legend continued on next page)
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growth resulted in a stalky gene expression profile (increased

rigA versus rrgA) (Figure 6B).

The directionality of gene expression changes in response to

pH or levels of glucose is consistent with a buffering mechanism.

We therefore next tested whether these gene expression

changes are required for cell type proportioning in response to

changes in extrinsic conditions. Knockout of rrgA was found to

have no effect when cells were grown under normal G+ condi-

tions (Figures 6C and 6D) in chimeric development and mono-

layer differentiation. However, when rrgA knockout cells were

grown in G� conditions (i.e., when rrgA gene expression is

normally induced), clear defects were seen. In chimeric develop-

ment, G�mutant cells were found to adopt the stalky collar and

back fate in chimeric slugs, even when mixed with G�-grown

wild-type cells (Figure 6C). Furthermore, mutant cells were hy-

persensitive to the effects of G� growth and showed an

increased propensity to differentiate as prestalk cells in mono-

layer cell culture (Figure 6D).

The observed requirement for rrgA in specific growth condi-

tions is consistent with the idea that changes in GefE/RasD ac-

tivity lessen the effects of cell cycle perturbations. Therefore,

we next determined whether changes in GefE/RasD network ac-

tivity could also be seen under normal physiological conditions.

For example, a small number of cells show a significantly longer

than average cell cycle (i.e., exhibit ‘‘natural’’ cell cycle perturba-

tion) even when grown in G+ conditions. These cells also have a

slight tendency to become stalk cells (Figure 3C). We, therefore,

tested whether they also decrease RasD network activity (e.g.,

increase rrgA expression) in an attempt to compensate. For

this, we visualized and quantified gene network activity in living

cells. A dual reporter strain was generated in which the pro-

moters of rigA and rrgA were used to drive GFP and RFP expres-

sion, respectively. This showed similar behavior to that seen by

RNA-seq and RNA FISH (Figure 6E). We next used live cell imag-

ing to simultaneously monitor cell cycle dynamics and levels of

rrgA:RFP expression in single cells. The cell cycle length of

each cell that initiated rrgA:RFP reporter gene expression was

measured. Because translation and folding of RFP protein are

likely to introduce a delay in the system, we also measured the

length of the previous cell cycle. These data were then compared

to the cell cycle length of the population as a whole. Cells that

activated rrgA reporter expression, and thus down-regulated

Ras activity, were found to have recently exhibited a significantly

longer cell cycle than the average of the general population (Fig-

ures 6F and 6G). Together, these data strongly support the idea

that coupling of the signal response threshold through the Ras

gene network to the cell cycle dynamics serves to buffer extrinsic
(C) rrgA� mutants are more biased to collar and back prestalk cell differentiation

G+ or G�medium and mixed 50:50 with unlabeled AX3 G+ or AX3 G� cells. Only

when mixed with wild-type G� cells.

(D) Increased stalk cell differentiation in rrgA�mutant cells when grown in G�. rrg

number of stalk cells is significantly increased compared to wild-type cells when

(E) An rrgA and rigA dual promoter construct acts as a RasD network activity

transformed into wild-type and gefE� cells. The majority of the cells (80.9% and 7

predominantly express only GFP (15.1%). In the gefE� mutant, the majority of t

markers, respectively.

(F and G) Cells that induce rrgA expression have a longer than average cell cycle. C

reporter. Cells that induced the expression of rrgA have a slightly longer cell cycle

longer (G) (one-way ANOVA; p = 0.0019). Error bars depict SEM.
fluctuations in a cell fate oscillator and maintain robust cell fate

proportioning.

A Simple Model for Cell Cycle Control of Cell Fate
Our data suggest that a noisy cell cycle oscillator controls cell

fate choice in Dictyostelium, while coupling of cell cycle dy-

namics to response thresholds confers robustness in the face

of extrinsic environmental perturbation. In order to gain insights

into the underlying mechanism, we used our highly quantitative

data to build a model for cell cycle control of cell fate choice.

The model was based on three key experimental observations.

First, the probability of stalk cell differentiation is highest in cells

that have just undergone mitosis. Therefore, the model assumed

the existence of a cell cycle-associated factor (CCAF) that deter-

mines the stalk cell differentiation propensity (c), with a propen-

sity of 1, indicating that it will almost certainly adopt the stalk fate.

Second, c declines gradually following mitosis. Hence, the

model assumed the breakdown of CCAF is gradual with rate l,

rather than stepped. The propensity of any cell to adopt the stalk

fate was then modeled as a function of the time since mitosis

(Figure 7A; STAR Methods). Finally, c rises in cells that are at

the end of G2 but is still significantly lower than cells that have

just divided. Consequently, the model assumed the existence

of a checkpoint at the end of G2 and that CCAF levels rise rapidly

between this checkpoint (a) andmitosis. We found that the inclu-

sion of this checkpoint a before mitosis, after which CCAF levels

rise to saturation levels instantaneously and are then held con-

stant until after mitosis, resulted in a slight rise in c in cells with

a longer than average cell cycle length (as they are more likely

to be close to this checkpoint). This cell fate model could also

be coupled to the previously described stochastic model that

we constructed for cell cycle length variation in cell populations

and thus also takes into account the observed correlation of cell

cycles between sister cells. Thus, having created a population of

cells using this stochastic model, we were able to assign fates to

each cell based on the probability given by the propensity func-

tion in Figure 7A. Figure 7B demonstrates the excellent fit be-

tween the experimentally observed behavior of wild-type cells

grown under G+ conditions and the model.

To further test the model, we addressed whether it could also

predict the behavior of G�-grown cells. Experimental data sug-

gest they exhibit a 1–2 hr block at a G2/M checkpoint, resulting in

a high propensity to adopt the stalk fate. We fitted the data for

G� cells to the model, which resulted in a longer delay between

a and mitosis. This model reflected the observed data well, and

G� cells blocked in late G2 exhibited a higher likelihood of stalk

cell differentiation than G+ cells in late G2. This is because cells
in chimera when grown in G�. RFP labeled AX3 and rrgA� cells were grown in

G� rrgA� cells show a defect and adopt the collar and back prestalk cell fate

A�mutant cells do not show a prestalk bias when grown in G+medium, but the

grown in G� medium. Error bars depict SEM.

reporter. A plasmid containing the promoter of rrgA(RFP) and rigA(GFP) was

0%) express neither GFP nor RFP. In wild-type, the majority of fluorescent cells

he fluorescent cells express RFP (20.6%). Only 3.3% and 2.2% express both

ell cycle length wasmeasured in cells transformedwith the rrgA promoter-RFP

(F), while the cell cycles of the mothers of rrgA-expressing cells are significantly
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Figure 7. A Simple Model for Cell-Cycle-Dependent Cell Type Differentiation

(A) Schematic of the model. The stalk propensity of a typical cell is illustrated through two generations under the model. Directly after mitosis (M), a cell has a

starting stalk propensity (c), which can be estimated from the experimental data. This starting propensity is then assumed to decrease with an exponential rate of

decay (l) until the cell reaches a checkpoint in the cell cycle (a). At this point, the stalk propensity increases instantaneously to its maximum value, where it is

delayed by a certain time depending on extrinsic influences (e.g., nutrition).

(B) Simulated data fit the experimental data from AX3 G+. A simulated cell population was generated in which all cells are asynchronously dividing (i.e., after 96 hr

of growth from a single progenitor; see Figure 1G). A parameter combination of c = 1, l = 0.412, and delay of 24 min fit the experimental data best.

(C) Increasing the delay between the checkpoint and mitosis explains the pattern seen in G� growth. A parameter combination of c = 1, l = 0.439, and delay of

2 hr and 6 min fit the experimental data best.

(D) Decreasing the starting stalk cell propensity explains the pattern seen in gefE� cells. A parameter combination of c = 0.813, l = 0.447, and delay of 20 min fit

the experimental data best.
blocked in late G2 have a higher probability to have passed the

checkpoint and reached saturating CCAF levels. The model

also predicted that the rate of decay of CCAF was the same as

that seen for G+ cells (Figure 7C). Finally, we also addressed

whether the model could help explain why lowering Ras activity

decreases stalk bias. Simply changing the amount of CCAF that

accumulated at mitosis allowed the experimental data to fit the

model (Figure 7D). Therefore, while this simple model may not

fully capture the true behavior of CCAF, it is able to recapitulate

most experimentally observed features of the cell fate system.

DISCUSSION

Buffering or Mistake Correction?
Developmental systems must be robust to perturbation by

extrinsic variation that affects signaling dynamics or biochemical

reaction rates. In addition, intrinsic stochastic variation is an inev-

itable consequence of gene expression kinetics.Mistakes can be

corrected through cell-cell communication if information about

the relative proportions of the cell types is relayed. Our results

suggest that the underlying circuits can also be buffered to

ensure a robust and reproducible initial outcome. This may be
506 Developmental Cell 47, 494–508, November 19, 2018
because the cell cycle must exhibit stochastic variation to

generate a sufficiently de-synchronized population of cells. This

does, however, render the cell cycle susceptible to perturbations

caused by shifts in external environmental conditions, such as

nutritional availability. Here, we find that Dictyostelium cells

have evolved an elegant solution, in which changes in the cell cy-

cle result in compensatory changes in signal sensitivity and thus

the probability of cell type differentiation (Figure S2). In this,

extrinsic environmental changes that affect cell cycle dynamics

trigger changes in a RasD responsive gene network. In silico an-

alyses reveal this network is enriched in genes that have the po-

tential to affect cell signaling responses, such as transmembrane

and plasma membrane proteins. One of these, rigA, encodes a

protein with sequence similarity to human histidine rich glycopro-

tein, which has been shown to modulate different signaling path-

ways (Jones et al., 2005). Another, rrgB, is related to components

found in the yeast spindle pole body (centrosome in Dictyoste-

lium and mammalian cells), which is now widely accepted to

serve as a hub for the integration and coordination of signaling

pathways, including cell cycle-related signaling (Arquint et al.,

2014). Finally, it is interesting to note that RhgB encodes a rhe-

sus-like glycoprotein and thus a putative ammonium transporter,



given long-standing observations linking ammonium and intra-

cellular pH in cell fate choice and responses to cAMP and

DIF-1 in Dictyostelium (Gross, 2009).

Linking the Cell Cycle to Cell Fate Choice
Links between cell cycle progression and cell fate decisions are

well established. Recently, however, there has been renewed in-

terest in the possibility that the phase of the cell cycle in which

cells receive differentiation cues could affect fate choice. Much

of this recent work has focused on differentiation events that

occur inG1 (or indeed different phases ofG1). However, a cell cy-

cle-based mechanism has the potential to generate further cell

type complexity if other phases of the cell cycle also affect fate

choice. In fact, Dictyostelium cells have little or no G1. Instead,

we find that prestalk cell differentiation is favored in S phase

and early G2, and prespore cell differentiation inmidG2. It should

also be noted that our studies reveal the potential for more

complexity becausemultiple prestalk lineages are favored during

Sphase/earlyG2. Itwill be interesting todeterminewhether this is

due to different windows of opportunity within this phase of the

cell cycle or whether another level of regulation (perhaps sto-

chastic) is layered on top of the cell cycle.

While our studies reveal that different phases of the cell cycle

can affect lineage choice, the underlying mechanism is still

poorly understood. Indeed, there are many differences between

cells at different cell cycle stages, including cell size, nuclear vol-

ume, and DNA content. The activity of cell cycle regulators also

rises and falls sharply as cells transition from one state to

another, and these could directly affect regulators of develop-

mental transcription. Indeed, we find that the decision of a cell

to enter mitosis results in an abrupt shift in cell fate propensity.

If this is due to the accumulation of a cell cycle regulatory com-

plex, our studies will aid in its identification because they reveal

the kinetics of its activity. Furthermore, due to the ease with

which genes that influence developmental decisions can be iso-

lated in Dictyostelium and tested for effects on the cell cycle or

cell signaling, studies of this system will likely pave the way for

a better understanding of this process.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Klebsiella aerogenes Dicty Stock Center dictyBase: DBS0349838

Chemicals, Peptides, and Recombinant Proteins

HL5 medium Formedium HLG0102

KK2 This study N/A

Oxoid purified agar ThermoFisher LP0028B

G418 Sigma 000000004727878001

conditioned media This study N/A

DIF-1 ENZO life sciences BML-GR324-0100

stalk medium This study N/A

EDTA Sigma E6758

HCR probe sets and fluorophore-labeled HCR hairpins Molecular Technologies N/A

Deposited Data

SOLiD sequencing data AX3 G+ / G-; gefE- G+/G- This study SRA: SAMN07834373 -

SAMN07834380

Illumina HiSeq 4000 81 AX3 single cells This study SRA: SAMN07833758 -SAMN07833838

Datasets for Figures 1, 2, 3, 4, 5, and 6 and three

additional figures

This study https://doi.org/10.17632/rvny4rmfpp.1

Experimental Models: Organisms/Strains

Dictyostelium discoideum AX3 Dicty Stock Center dictyBase: DBS0235539

AX3 cells co-transformed with pspA-GFP and ecmAO-RFP This study N/A

AX3 cells co-transformed with ecmB-GFP and ecmAO-RFP This study N/A

AX3 cells co-transformed with ecmB-GFP and pspA-RFP This study N/A

AX3 cells transformed with PCNA-RFP intra-chromosomal

reporter

This study N/A

AX3 gefE- cells transformed with PCNA-RFP intra-

chromosomal reporter

N/A N/A

AX3 cells transformed with dual rrgA/rigA promoter

reporter construct

This study N/A

AX3 gefE- cells transformed with dual rrgA/rigA promoter

reporter construct

This study N/A

AX3 rrgA knockout This study N/A

AX3 rigA knockout This study N/A

AX3 dictyBase: DDB_G0292996 knockout This study N/A

AX3 dictyBase: DDB_G0281385 knockout This study N/A

AX3 dictyBase: DDB_G0293434 knockout This study N/A

AX3rasC(G12T) This study N/A

AX3rasG(G12T) This study N/A

AX3rasD(G12T) This study N/A

Software and Algorithms

novoalignCS V1.04.01 NovoCraft N/A

HTseq-count https://htseq.readthedocs.io/ N/A

NGS QC toolkit https://ccbr.github.io/Pipeliner/

Tools/NGS_QC_Toolkit.html

N/A

bowtie2 http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

R https://www.r-project.org/ N/A

DESeq2 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

N/A

M3Drop https://bioconductor.org/packages/

release/bioc/html/M3Drop.html

N/A

edgeR https://bioconductor.org/packages/

release/bioc/html/edgeR.html

N/A

ImageJ https://fiji.sc N/A

SAMtools http://www.htslib.org/ N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Chris-

topher R.L. Thompson (christopher.thompson@ucl.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Strain Growth, Maintenance, and Development
Dictyostelium discoideum AX3 strains were cultured on lawns of Klebsiella aerogenes or in HL5 medium with (G+) or without (G�)

86 mM glucose. Cells were grown for 2–4 days for G� phenotypes. All cultures were maintained at log phase (1–4 3 106 cells/ml)

during this period. For development, amoebae were washed with KK2 (16.1 mM KH2PO4, 3.7 mM K2HPO4) and deposited onto

KK2 plates containing 1.5% purified agar (Oxoid) at a density of 3.5 3 106 amoebae/cm2. Plates were incubated for 14–16 hours

at 22�C in a dark, moist box then removed and allowed to complete development in the light. For chimeric development, amoebae

of two different genotypes, where one strain was labelled by expression of GFP or RFP, were mixed and developed together. Images

were taken after approximately 16 hours to determine any sorting bias. Stalk cell differentiation in monolayers was quantified using

the cAMP removal assay described in (Thompson et al., 2004a). All mutants were generated in the AX3 background used in this study

by the insertion of a blasticidin resistance cassette into the coding sequence of the gene by homologous recombination. Constructs

for gefE (Chattwood et al., 2013), rasC (Lim et al., 2001), rasD (Wilkins et al., 2000) and rasG (Bolourani et al., 2006) disruption have

previously been described. Gene deletions were generated for rrgA (dictyBase: DDB_G0268600), rigA (dictyBase: DDB_G0274655)

and rrgB (dictyBase: DDB_G0270640). For rigB (dictyBase: DDB_G0272238), the blasticidin resistance cassette was introduced at

position 1,724,548 of chromosome 2. Double mutants were generated by transient expression of Cre recombinase before transfor-

mation with second knockout vector. For induction of constitutively active Ras proteins, cells were grown in the presence of doxy-

cycline for 6 hours, before washing and plating for development.

METHOD DETAILS

RNA-Seq Sample Preparation and Sequencing
RNA libraries from AX3 and gefE- cells grown in G+ or G- media (two replicates each) were sequenced on the SOLiDv4 platform

resulting in 50bp single-end reads. For single cell sequencing, log phase cells were grown in tissue culture dishes before being har-

vested and resuspended at a density of 1x106 cells/ml in HL5 for capture on a Fluidigm C1 flow cell using a medium size chip. This

resulted in the capture of 81 individual cells, which were sequenced on an Illumina Hiseq 4000 resulting in 100bp paired-end reads

(150bp insert). Raw reads from (Strasser et al., 2012) were downloaded from the Gene Expression Omnibus using accession number

GSE30368 and processed in the same way as the other Illumina data.

Cell Type Differentiation in Low-Density Culture
AX3 cells were co-transformed with pspA-GFP and ecmAO-RFP, ecmB-GFP and ecmAO-RFP, or ecmB-GFP and pspA-RFP cell

type specific reporters (Parkinson et al., 2009). Clonal lines were selected and maintained in 20 mg/ml G418. For quantification of

cell type induction, log phase cells were seeded in 10 cm tissue dishes at a density of 1x104 cells/ml in 9 ml conditioned media

with or without 10nMDIF-1 (minimum of ten plates per experiment) to induce differentiation. Conditionedmedia wasmade by plating

cells at a density of 1x106 cells/ml in stalk medium (10mMMES, pH6.2, 1mM CaCl2, 2mM NaCl, 10mM KCl, 200mg/ml streptomycin

sulphate) containing 5mM cAMP for 16 hours. After 16 hours, the media was collected and any cells removed by centrifugation.

Freshly prepared conditionedmedia was prepared for each experiment performed. After 20 hours of incubation in conditionedmedia

with or without DIF-1, cells were harvested from plates in 1ml KK2 plus 20mM EDTA. The proportion of fluorescent cells was deter-

mined by FACs (>10,000 cells per experiment). The data from all strains containing a given reporter gene were averaged, resulting in
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two biological replicates for each reporter construct. In addition, each induction was carried out on three separate occasions, result-

ing in a total of six biological replicates per cell type reporter. From this data, we were able to infer the percentage of cells that either

do not differentiate or are non-transformed (100 – (pspA+ecmAO+ecmB)). For tracking of growth and differentiation, log phase cells

were seeded at a density of 4x103 cells/ml in 750 ml HL5 medium in a 3 cm glass bottomed imaging dish. Cells were filmed in multiple

positions for 12-14 hours (i.e. until cell reached a density of approximately 1x104 cells/ml) at a frame rate of one image every 5minutes

to allow cell tracking. The growth media was then removed and the cells carefully washed twice with KK2 (16.1mM KH2PO4, 3.7mM

K2HPO4). 750ml of conditionedmedia plus 10nMDIF-1 was added to the washed cells to induce differentiation and cells were filmed

for a further 16-20 hours at a frame rate of one image every 5 minutes. A final fluorescence image was captured to observe reporter

gene expression. Cells were tracked by hand using the Fiji software from the beginning of the movie. The frame when a cell last

divided prior to addition of conditionedmedia was recorded. Cells were tracked throughout the remainder of the movie and their final

cell fate was recorded, as determined by reporter gene expression. The cell cycle stage at the time of induction was inferred from the

amount of time between the addition of conditionedmedia, and the last cell division before induction. The samemethodwas used for

tracking the growth and differentiation of G- cells, but these cells were conditioned prior to the experiment by growing the cells in log

phase in HL5 without glucose for 48 hours.

Assaying Cell Cycle Lengths
Cells were grown in G+ or G-media and imaged every 4min for 16 hours. The time between two cell divisions wasmanually extracted

by tracking single cells. Sister cells were tracked and their cell cycle was measured if a cell divided into exactly two cells. Mother and

daughter cells were noted if the next division of the daughter cell occurred before the end of the movie.

Assaying Cell Cycle Phase Lengths
Cell cycle phase lengths were assessed using a PCNA-RFP intra-chromosomal reporter (Muramoto and Chubb, 2008). Cells were

seeded at 1x104 cells/ml in filter-sterilised HL5 with or without 75mM glucose and grown for 48 hours (growing to 3-5x106 cells/ml).

Cells were then diluted to 1x105 cells/ml in G+ or G- HL5, added into each well of a glass-bottomed multi-chamber slide (Ibidi), and

left to settle for 2 hours before imaging every 4 minutes for 16 hours using an Eclipse Ti widefield microscope (Nikon) with laser-

assisted auto-focus, with illumination provided by a Precise LED light source at 25-50% maximum intensity. Images were subse-

quently analysed manually using NIS Elements Viewer (Nikon).

Assaying Ras Network Activity
To generate a dual rrgA/rigA promoter reporter construct, the promoters of each gene were amplified and cloned into the XhoI/BglII

sites of either pDM323 (rigA) or pDM324 (rrgA). The pDM323- rigA:GFP construct was digested with XhoI/HindIII, and blunt end

cloned into the NgoMIV site of pDM324- rrgA:RFP. Constructs were electroporated into vegetative AX3 and gefE- cells, and selected

with 10-20mg/ml G418. For time-lapse microscopy, the same protocol as used to follow PCNA localisation was used. For RNA-FISH,

we performed single-molecule hybridization chain reaction (smHCR) using the In Situ HCR v2.0 protocol for tissue sections on slides

provided byMolecular Technologies. In brief, we fixed vegetative cells in -20�Cmethanol for 1min. Fixed cells were treated with 0.5%

TritonX-100/PBS for 10 min. HCR probe sets and fluorophore-labeled HCR hairpins were purchased from Molecular Technologies

(moleculartechnologies.org). Samples were hybridized overnight with 2 nM of each HCR probe. HCR amplification was performed

overnight with 60 nM of each HCR hairpin (conjugated to Alexa488 or Alexa594 to visualize rrgA and rigA mRNA respectively). We

manually segmented the boundaries of cells and measured the mean signal intensity of Alexa488 and Alexa594 using ImageJ (NIH).

Mathematic Modeling
Stochastic Model for Cell Cycle Variation

In the model, after mitosis, the cell cycle lengths of each pair of daughters are drawn from a joint probability distribution. We denote

the length of the daughters’ cell cycles t1 and t2 respectively. t1 is drawn from a Gamma distribution with parameters a and b for the

shape and rate respectively. The difference in times t1 and t2 is then assumed to be a mean-zero Laplacian random variable with

standard deviation s, so that

t1 � Gammaða;bÞ; ðt2 � t1Þ � Laplace
�
s2
�
:

The mean and variance of these cell cycle times can be computed to be equal to

Eðft1; t2gÞ= a

b
; Varðft1; t2gÞ= 2a+b2s2

2b2
:

The variance s2 of the sister-sister difference in cell length is set to be equal to the usual unbiased estimator of the variance found in

the data. Likewise, unbiased estimators of the mean and variance of the cell cycles across the whole data set is then used in turn to

ascertain the values of a and b.

Stochastic Model for Cell Fate

We construct a model to link the position of a cell in the cell cycle with its fate. In particular, we propose a simple function to represent

the propensity that a given cell will become a stalk cell. This is a function of t, the current time, and where tl and tn are the times of the

last and next mitosis event for the cell respectively.
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PðstalkÞ=
�
minfc expð � lðt � tlÞÞ; 1g tn � t>a

1 tn � t%a
:

The values of the parameters c, l and a are fitted to the observed data regarding cell fate. In particular, we aim tomatch the behav-

iour seen in each scenario presented in Figures 7B–7D. A least squares fit for c and l is used to match the exponential decay part of

the function to the first six data points of each of these datasets. The value of a was determined by assuming all cells which have

passed the checkpoint have stalk propensity equal to min(c,1). In hours 7-11+, the proportion of cells in the last a minutes of their

cell cycle was calculated, and then a value for a was determined in each case using a least squares fit to the data. The values found

for each of these variables can be seen in each figure.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-Seq Re-processing
For the SOLiD data, three pre-processing steps using the SOLiD-pre-processor were included in the downstream analysis to remove

poor quality sequences . Firstly, all transcripts were trimmed to 40bp from the 3’ end. Next, any sequences containing an unresolved

base (-1 quality score,missing colour call) were also removed, as the sequence after this base call is likely to bewrong or ambiguous at

best. In addition, sequences that contained 3 or more bases with a quality score of less than 22 were removed, as these bases are

highly likely to bewrong,whichwould affect the reliability of the read towards the 3’ end. The resulting high quality readsweremapped

against the 30.04.2012Dictyostelium discoideum reference genome sequence (after masking the inverted repeat on chromosome 2)

using novoalignCSV1.04.01 (parameters used: -l 25 -H 20 -r E 2 -s 5 -t 99 -n 40 -o SAM -k -c 8). Counts for each genewere then deter-

mined using HTseq-count and the option intersection-nonempty, while strand information was taken into account. For the Illumina

data, paired-end reads from all samples were quality checked and filtered using the IlluQC_PRLL.pl script (v2.3) from the NGS QC

toolkit and a read length cut-off of 70% together with a quality score cut-off of 20. In all samples more than 90% of the reads were

retained, which were then mapped against the 30.04.2012 Dictyostelium discoideum reference genome sequence version (after

masking the inverted repeat on chromosome 2) using bowtie2 version 2.0.0-beta5 and very-sensitive end-to-end mapping parame-

ters requesting the best out of ten alignments. Resulting samfiles were filtered for uniquely mapped reads, sorted and converted into

bamfiles using samtools (0.1.18 (r982:295)). The annotation file available at Dictybase was then used to count reads mapping to

annotated genes using HTseq-count and the option intersection-nonempty, while strand information was taken into account.

RNA-Seq Data Analyses and Statistical Tests
Single cell data: Normalised expression profiles for each cell were correlated and cells with a low total read count (less than 106.2

reads) and low average correlation to all other cells (less than 0.4) were excluded from the analysis resulting in 81 cells. Genes

with low average read counts were also excluded resulting in 11,320 genes. Normalised read counts were then log transformed using

DESeq2 (v. 1.16.1; and a PCA was used to identify two clusters of cells. Marker genes for each cluster (701 and 901) were identified

using the R package M3Drop (v. 1.2.0) using a 1% FDR multiple testing correction and an AUC cutoff of 0.8.

AX3 vs gefE- and AX3 G+ vs AX3 G-: Differentially expressed genes between AX3 samples grown in glucose rich media (G+) and

glucose poor media (G-) as well as between gefE- G+ and AX3 G+ samples were determined using the R package DESeq2 using an

adjusted p-value of 0.05 and a foldchange cutoff of 1.5.

Cell cycle: Normalised read counts for the technical replicates were summed, while read counts for the biological replicates were

averaged. Cell cycle profiles for each genewere determined by firstly computing the percentage of the expression for each time point

and gene by dividing the normalised read counts for each time point by the sum of all normalised read counts. Then, outliers with

expression of 1.5 x MAD (median absolute deviation) higher than the median were identified. Genes were clustered according to

the highest outlier per gene while excluding genes with low average read counts and/or no outliers from the analysis. Over- and

underrepresentation of DEGs or marker genes in specific cell cycle clusters was determined using the hypergeometric test imple-

mented in the phyper function in R.

GO term enrichment: Enriched GO terms were identified using the statistical overrepresentation test (release 20160715) imple-

mented on http://pantherdb.org using a p-value cutoff of 0.05 and the ‘GO biological process complete’ database as annotation

data set.

DATA AND SOFTWARE AVAILABILITY

Raw reads from all samples were uploaded to the NCBI short read archive (see Files S1 and S3 for accession numbers). Raw and

processed data for Figures 1, 2, 3, 4, 5, and 6 were uploaded to Mendeley data (https://doi.org/10.17632/rvny4rmfpp.1).
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