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Abstract

In tuning the sub-particle localisation of Gd(III) binding macrocycles within a mesoporous 

scaffold, nanoparticle contrast agents of unprecedented relaxivity and low Gd(III) loadings can be 

realised.

Magnetic resonance imaging (MRI) is a powerful non-invasive technique in medical 

research which becomes considerably more potent when magnetic contrast agents are 

applied to locally accelerate magnetic relaxation.1-4 Mesoporous silica structures, including 

those formed in the micro- and nano-size ranges have been generated by a variety of 

condensation and template assisted methods.5-7 Depending on their desired application, 

additional surface and pore modifications can be achieved by in situ co-condensation, post-

grafting or imprint coating.8 In tuning reaction conditions, these modifications can be biased 

towards either the internal or external surfaces.9,10 In recent years, significant effort has 

been invested in the incorporation of resonant contrast enhancing features into mesoporous 

silica nanoparticles (MSNs),11,12 which may be additionally modified with other modalities 

to augment their utility. The relaxation (and hence image contrast) offered by chelate 

entrapment within particles is generally enhanced in comparison to ‘molecular scale’ 

equivalents, an observation commonly assigned to the reduced tumbling rate associated with 

particles.13 The efficacy of internal water access in mesoporous materials has been noted 

experimentally and theoretically and is an important consideration in optimising 

paramagnetic contrast agent enhancement due to the complex dynamic processes occurring 

within porous channels.11,13-17 A number of methods by which Gd-chelates may be loaded 

into MSNs have been reported, including electrostatically driven layer-by-layer 

incorporation,18 direct coupling of the agent using silane chemistry,12,19,20 or carbodiimide 

linking through functional groups.11,13 In this communication, we describe the importance 

of Gd-chelate localisation and Gd loading in observed T1-weighted 1H MRI contrast and 

report the highest r1 relaxivities achieved to date with particles of this type.

MSNs were prepared herein using an aqueous Stöber technique employing a surfactant 

template which was subsequently removed to yield an internal hierarchical porous 
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network.5,21 The silanol-rich surfaces of the particles were partially aminated by either co-

condensing or post-grafting 3-aminopropyltriethoxysilane (APTES). Significantly, 

amination localisation could be controllably biased internally or externally by performing 

either time delayed co-condensation (Fig. 1a and b) or post-grafting (Fig. 1c),9,10 with 

retention of particle size (66.3 ± 6.6 nm), morphology and pore size (3.2 ± 1.3 nm) (Fig. S1, 

ESI†). These localisations subsequently act as anchor points for gadolinium-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl) triacetic acid (Gd-DOTA) attachment by standard 

chemical means to yield Gd-DOTA-functionalised MSNs (Gd-DOTA-MSNs) (see 

Experimental procedures and Fig. S2, ESI†).

The effects of preparation-tuned Gd-DOTA location bias on 1H spin-lattice MRI relaxivity 

were observed by monitoring the change in the relaxation rate (1/T1) per mM concentration 

of Gd on nanoparticulate samples at 7 T (Fig. 1). Notably, delayed co-condensation Gd-

DOTA-MSNs exhibited r1 relaxivities significantly higher (17.14 ± 0.49 mM−1 s−1 and 

33.57 ± 1.29 mM−1 s−1 for ‘short’ and ‘long delay’ reactions respectively) than those 

prepared by post-grafting (10.77 ± 0.22 mM−1 s−1). These relaxivities were, in the most 

optimised case, more than an order of magnitude greater than observed for molecular Gd-

DOTA at the same field (2.01 ± 0.14 mM−1 s−1), observations assignable to the markedly 

reduced rotational flexibility of the chelates when particle confined.13

The significant relaxivity enhancements observed for all co-condensation prepared Gd-

DOTA-MSNs equate with the internally biased location of the contrast agent chelates in 

such cases. The behaviour of mobile water confined within the porous networks of 

mesoporous silica is complex and influenced by molecular interactions with pore walls that 

reduce diffusive and rotational mobility compared to bulk water.15-17,22 This restricted 

innate water mobility, in combination with the internal wall confinement of paramagnetic 

centres, is expected to lead to markedly increased diffusional (τD) and rotational (τR) 

correlationtimes and altered characteristic water proton residence lifetime (τm).23-25 These 

effects serve to boost protic contrast and result in the remarkably high relaxivities observed. 

These confinement effects were additionally probed herein by investigation of the r1 

relaxivity of Gd-DOTA functionalised non-porous silica nanoparticles, prepared by post-

grafting. Such particles, with externally Gd-DOTA-loaded surfaces only, exhibit r1 

relaxivities of 9.56 ± 0.47 mM−1 s−1, very similar to those observed for post-grafted MSNs.

It is notable that the delayed co-condensation preparative technique used here provides a 

further refinement of relaxivity by enabling not only internal versus external control (of 

doped amine functionalities and hence Gd-chelate units) but also locality within the MSN 

interior. Specifically, an elongation of the delay leads to a higher probability of functional 

group distribution nearer to the nanoparticle porous openings, facilitating the correlation 

time advantages noted above with greater water accessibility and improved 1H relaxivity 

(‘long delay’ particles have relaxivities of 33.57 ± 1.29 mM−1 s−1 at 7 T). Gd-DOTA-MSNs 

prepared by ‘short delay’ co-condensation exhibited relaxivities of 17.14 ± 0.49 mM−1 s−1 at 

†Electronic supplementary information (ESI) available: Fig. S1–S4, Tables S1 and S2 and Experimental procedures. See DOI: 
10.1039/c2jm35116a

Davis et al. Page 2

J Mater Chem. Author manuscript; available in PMC 2015 June 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



7 T, indicative of more deeply internalised contrast agent groups, unable to undergo efficient 

water exchange with the external solvent.11,26

In addition to maximising contrast performance through localisation, we have examined the 

potential steric constraints on water access at high levels of Gd-DOTA loading (within 

particles otherwise optimised by ‘long delay’ co-condensation preparation). Specifically, 

samples with different percentage loadings of internalised Gd-DOTA contrast agents have 

been examined (Fig. 2 and S3, ESI†). All Gd-DOTA-MSN samples demonstrated significant 

relaxation enhancements compared to unbound Gd-DOTA complex in solution, as expected. 

On increasing loading from 1.37 wt% to 2.07 wt%, relaxivities were observed to drop from 

33.57 ± 1.29 mM−1 s−1 to 19.61 ± 1.51 mM−1 s−1 respectively, a downward trend which 

continued as loading was further increased to 3.82 wt% Gd (14.22 ± 0.67 mM−1 s−1). We 

assign these observations not only to the steric effects of increased macrocycle loading on 

water accessibility19,26 but also the progressive (sterically driven) bias of macrocycle 

loading towards the particle external surface at higher concentrations (where the advantages 

of water and Gd confinement are reduced).

Relaxivity assessments at (more clinically relevant) 3 T fields yielded r1 values of 39.26 ± 

1.29 mM−1 s−1 for the optimised 1.37 wt% Gd-DOTA-MSNs, a sensitisation which is 

unprecedented for nanoparticles based on a silica scaffold (prior reported relaxivities of Gd-

doped-MSNs span 6.2 to 28.8 mM−1 s−1 at 3 T; see Table S2, ESI†).12,19,26 Particularly 

striking in this work is the low level of Gd doping associated with these characteristics. 

These nanoparticle conjugates additionally exhibit excellent aqueous long-term colloidal, 

chemical (Fig. S4, ESI†) and contrast stability. Furthermore, since Gd loading is 

controllably internalised, the external particle surface can be biomodified with retention of 

high contrast (Fig. 2).27

Conclusions

In addition to their highly localised physicochemical characteristics and potentially 

increased blood circulation times, one of the principal advantages nanoparticle contrast 

agents have over their molecular analogues is their immensely high tunability. We have 

shown here that even very low levels of Gd-DOTA loading on the walls of mesoporous 

silica nanoparticles (1.37 wt% Gd, equivalent to 87 μmol g−1 of nanoparticles) can be 

effective in generating T1 MRI relaxation characteristics with some 20 fold enhancement 

over free Gd-DOTA (r1 = 39.26 ± 1.29 mM−1 s−1 [1.16 × 106 ± 3.82 × 104 per particle] at 3 

T and 33.57 ± 1.29 mM−1 s−1 [4.94 × 105 ± 8.03 × 103 per particle] at 7 T) and markedly 

higher than in any prior report at comparable field strengths. Central to this has been 

understanding and optimising the benefits of Gd internalisation on image contrast whilst 

maximising water exchange. The most promising aspect of utilising nanoparticles in 

diagnostic or theranostic applications remains an ability to engender high image contrast 

with additional functionality and low toxicity. We have shown herein that colloidally stable 

nanoparticles can be precisely engineered to have unprecedented relaxivities and exterior 

surfaces available for further functionalisation and bio-labelling.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Typical transmission electron microscope image and schematic representation of Gd-

DOTA-MSNs (66.3 ± 6.6 nm) prepared using (a) ‘Short delay’ co-condensation, where 

functionalities are internalised deeply in the structure (r1 = 17.14 ± 0.49 mM−1 s−1), (b) 

‘Long delay’ co-condensation, where functionalities are internalised nearer to the porous 

openings (r1 = 33.57 ± 1.29 mM−1 s−1) and (c) post-grafting, where functionalities are 

loaded on external surfaces (r1 = 10.77 ± 0.22 mM−1 s−1). (d) Post-grafted Gd-DOTA-non-

porous silica nanoparticles (r1 = 9.56 ± 0.47 mM−1 s−1). The chart displays r1 relaxivities of 

corresponding nanoparticle samples, measured at 7 T.
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Fig. 2. 
1H r1 relaxivities of Gd-DOTA complex in solution (2.01 ± 0.14 mM−1 s−1), Gd-DOTA-

MSNs prepared with different percentage Gd loadings (1.37 wt% Gd: 33.57 ± 1.29 mM−1 

s−1; 2.07 wt% Gd: 19.61 ± 1.51 mM−1 s−1; 3.82 wt% Gd: 14.22 ± 0.67 mM−1 s−1) and 

biomodified Gd-DOTA-MSNs (26.69 ± 0.43 mM−1 s−1),27 measured at 7 T. Upper inset 

shows corresponding T1-weighted phantom images of aqueous MSN samples with [Gd] 0.04 

mM (TR = 30 ms; TE = 5 ms; slice thickness = 2 mm; matrix = 256 × 256, at 20 ° C).
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