
1 
 

Mutation burden and other molecular markers of prognosis in the QUASAR2 clinical trial of 

colorectal cancer treated with curative intent 

 

Enric Domingo1,2,3,^ PhD, Carme Camps2^ PhD, Pamela J Kaisaki2^ PhD, Marie J Parsons4,5^ BSc, 

Dmitri Mouradov4,6 PhD, Melissa M Pentony2 PhD, Seiko Makino1 PhD, Michelle Palmieri4,6 

PhD, Prof Robyn L. Ward7 PhD, Prof Nicholas J. Hawkins8 FRCPA, Prof Peter Gibbs4,6,9 MBBS, 

Hanne Askautrud10 PhD, Dahmane Oukrif11 MSc, Haitao Wang3 BSc, Joe Wood12 PhD, Evie 

Tomlinson3 BSc, Yasmine Bark3 MSc, Kulvinder Kaur2 PhD, Elaine C Johnstone3 PhD, Claire 

Palles1 PhD, David N Church1,2 D.Phil, Prof Marco Novelli11 PhD, Prof Havard E Danielsen10,13 

PhD, Jon Sherlock12 PhD, Prof David Kerr13 MD, Rachel Kerr3* PhD, Oliver Sieber4,5,6,14* PhD, 

Jenny C Taylor2* PhD, Prof Ian Tomlinson1,2,15* PhD 

 

1Oxford Centre for Cancer Gene Research and 2Genomic Medicine Theme, National Institute 

for Health Research Oxford Biomedical Research Centre (NIHR Oxford BRC), Wellcome Trust 

Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK  

3Department of Oncology, Old Road Campus Research Building, University of Oxford, 

Roosevelt Drive, Oxford OX3 7DQ, UK 

4Systems Biology and Personalised Medicine Division, The Walter and Eliza Hall Institute of 

Medial Research, Parkville, VIC 3052, Australia 

5Department of Surgery, The University of Melbourne, Parkville, VIC 3052, Australia 

6Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia 

7Office of the Deputy Vice-Chancellor (Research), The University of Queensland, Brisbane, QLD 

4072, Australia 

8Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia 

9Department of Medical Oncology, Royal Melbourne Hospital, Parkville, VIC 3052, Australia  

10Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo NO-0424, 

Norway 

11Department of Histopathology, University College London, Rockefeller Building, 21 

University Street, London WC1 6DE, UK 

12Thermo Fisher Scientific, Paisley PA4 9RF, UK  

   



2 
 

13Nuffield Department of Clinical and Laboratory Science, Radcliffe Department of Medicine, 

Level 4, Academic Block, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK 

14School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia 

15Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, 
University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 

 

^ Joint first authors 

* Joint senior authors 

 

 

Corresponding author: Enric Domingo  

Tel: +44 (0)1865 617032     

email: enric.domingo@oncology.ox.ac.uk 

 

 

Key words  

colorectal cancer, mutation burden, driver mutations, prognosis 

 

 

Running title 

Prognostic biomarkers in colorectal cancer 

 

 

Word count 

Abstract: 289/300 words 

Text: 3549/3500 words 

 

 

mailto:enric.domingo@oncology.ox.ac.uk


3 
 

ABSTRACT 

 

Background 

Several relatively large studies have assessed molecular indicators of colorectal cancer (CRC) 

prognosis, but most analyses have been restricted to a handful of markers.  

 

Methods 

In stage II/III CRCs from the QUASAR2 clinical trial and from an Australian community-based 

series, we assessed gene panels for somatic driver mutations and overall mutation burden. 

We determined molecular pathways of tumorigenesis, and analysed associations with 

treatment response and prognosis.  

 

Findings 

In QUASAR2 (N=511), TP53, KRAS, BRAF and GNAS mutations were independently associated 

with shorter relapse-free survival, whereas total somatic mutation burden was associated 

with longer survival, even after excluding mismatch repair-deficient (MSI+) and POLE-mutant 

tumours. We successfully validated these associations in the Australian sample set (N=296). 

In an extended analysis of 1,752 QUASAR2 and Australian CRCs for which KRAS, BRAF and MSI 

status was available, we found that KRAS and BRAF mutations were specifically associated 

with poor prognosis in MSI- cancers. This association was not present in MSI+ cancers, and 

MSI+ tumours with KRAS or BRAF mutation actually had better prognosis than MSI- cancers 

that were wildtype for KRAS or BRAF. New rare molecular pathways were also uncovered: 

mutations in the genes NF1 and NRAS from the MAP kinase pathway co-occurred, mutations 

in TP53 and ATM appeared to be alternative ways of inactivating the DNA damage response 

pathway. 

 

Interpretation 

A multi-gene panel has identified two previously unreported prognostic associations in CRC 

involving both TP53 mutation and total mutation burden, and confirmed associations with 

KRAS and BRAF. We conclude that even a modest-sized gene panel can provide important 

information for use in clinical practice and out-perform MSI-based models.  
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INTRODUCTION 

 

It is increasingly recognised that treatment of the common cancers can be modified according 

to a patient’s expected prognosis and/or response to therapy. For some of the newer 

molecularly guided therapies, there exist powerful biomarkers of response, often comprising 

mutations in the specific protein that is targeted. For more conventional cytotoxic therapies, 

however, predictive markers of response are rare. Given the relatively small survival benefits 

that such therapies provide for patients with the common solid malignancies, biomarkers of 

prognosis still have considerable potential clinical importance. Such markers can guide the 

use of more or less aggressive treatment regimens, balancing expected outcome against early 

and late therapeutic toxicities. 

 

Biomarkers can be based on several different types of molecules, and recent high-profile work 

has highlighted the potential utility of mRNA profiling in identifying groups of colorectal 

cancers (CRCs) with varying prognosis1. Other biomarkers are based on DNA, which is 

generally easier to analyse given its stability. For CRCs treated with curative intent, the 

biomarker most consistently used in clinical practice is microsatellite instability (MSI), which 

usually results from defective DNA mismatch repair2. For stage II CRCs , MSI predicts relatively 

good survival, with hazard ratios as low as 0·63. The association is less strong for stage III and 

in stage IV MSI+ CRCs may actually have a relatively poor prognosis4. 

 

Recently, the availability of a few large datasets (>500 participants) from clinical trials has 

begun to clarify the associations of certain somatic mutations with CRC prognosis However, 

most of these analyses have been restricted to KRAS mutations, and/or BRAF mutations 

and/or MSI; their results are summarised in Supp. Table 1. Overall, for CRCs treated with 

curative intent (generally stage II or III), there is support for an association between MSI and 

good prognosis, albeit possibly weaker in stage III, coupled with more limited evidence that 

KRAS and BRAF mutation, which are mutually exclusive, indicate poor prognosis in MSI- 

tumours5-10. MSI+ CRCs tend, however, to be BRAF-mutant and KRAS-wildtype so statistical 

interactions may exist between these prognostic biomarkers. It is, moreover, currently 

unclear whether combinations of other genetic biomarkers provide useful prognostic 

information. 
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Two main reasons have limited large genetic biomarker studies to screening a small number 

of genes: sub-optimal sample quality or quantity; and the cost of mutation screening. Clearly, 

because somatic mutations tend to co-occur in molecular pathways of tumorigenesis, it would 

be highly desirable to screen many potentially prognostic mutations in the same data set and 

identify the primary determinants of tumour behaviour. However, the few studies to perform 

such analyses have lacked standardised recruitment and follow-up. The prime example is the 

exome or genome sequencing of over 600 CRCs by The Cancer Genome Atlas (TCGA) group11. 

This has provided an excellent data set for driver mutation discovery, but has limited use for 

biomarker discovery owing to the heterogeneous sample set and associated variability in the 

clinical data. 

 

Our strategy in this exploratory study was to retain the advantages of a large clinical trial data 

set whilst assessing multiple prognostic biomarkers for CRC. To this end, we used a 82 gene 

panel to identify somatic mutations in all the major CRC driver genes in more than 500 

tumours from the QUASAR2 clinical trial of stage II/III CRC. We also assessed MSI and the 

“ultramutator” phenotype from POLE mutations12. A larger QUASAR2 sample set was 

additionally tested for KRAS/BRAF mutations and MSI. Variables associated with survival in 

QUASAR2 were replication tested in an independent community-based cohort, and subjected 

to a combined analysis, resulting in the identification of four independent prognostic 

biomarkers: mutations in KRAS, BRAF, TP53 and mutation burden.  

 

 

MATERIALS AND METHODS 

 

QUASAR2 was an international clinical trial comprising 1,952 patients with high-risk stage II 

or stage III CRC, randomised to capecitabine +/- bevacizumab without radiotherapy and 

median follow-up of 4.92 years13. Patients in the bevacizumab arm showed no benefit in 

overall or disease-free survival at three years follow-up; comparable results have also been 

reported in two similar trials14,15. Clinico-pathological data (Supp. Table 2) were obtained from 

the trial database. Some were converted to binary variables: sex; location (proximal vs distal); 
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depth of invasion (T4 vs T1/T2/T3); and lymph node metastasis (N2/N1 vs N0). Age and grade 

were assessed as continuous variables.  

 

A total of 1,187 UK QUASAR2 CRCs was collected for molecular analysis, of which a subset of 

598 tumours was analysed using an Ion Torrent sequencing gene panel (Supp. Table 3a). The 

remaining CRCs were analysed by Sanger sequencing for selected mutations and for MSI 

(Supp. Materials and Methods). 40um scrolls were cut from FFPE specimens of CRC that had 

>80% estimated purity, and from normal bowel; 10um sections were cut from the remaining 

CRCs and needle-microdissected to enrich for tumour using a haematoxylin and eosin (H&E) 

section as a guide. Peripheral blood samples were also available from most patients. DNA was 

extracted from FFPE tissue with the DNeasy kit (Qiagen) and from blood with the Maxwell 16 

Blood DNA Purification kit (Promega).  

 

The community-based series comprised 657 patients with stage II or III CRC treated at the 

Royal Melbourne Hospital, Western Hospital Footscray or St Vincent’s Hospital, Sydney, 

Australia since 1993 (Supp. Table 2). Fresh-frozen tumour and matched normal specimens 

were retrieved from hospital tissue banks. Individuals with hereditary CRC syndromes were 

excluded. All patients received standard neo-adjuvant or adjuvant 5FU-based chemotherapy 

or concurrent chemoradiotherapy. 379 patients received adjuvant 5FU treatment, of whom 

47 also received oxaliplatin and 38 had no data on oxaliplatin use. All patients were 

prospectively followed according to standard protocols, with a median follow-up of 60 

months. All patients gave informed consent, and the study was approved by the medical 

ethics committees of all sites. Australian stage II patients were regarded as low-risk when they 

were T3/N0, otherwise as high-risk. A subset of 296 tumours was screened by targeted next-

generation sequencing, the others by conventional PCR-based sequencing (Supp. Table 3b).  

 

Individual driver gene mutations, combinations of mutations or global measures such as MSI 

or mutation burden (total number of non-synonymous mutations and coding indels) were 

tested for associations with relapse-free survival (RFS) in univariable and multivariable 

models, principally using Cox proportional hazards models, in accordance with published 

guidelines16 (Supp. Table 4). Further details of patients and analytical methods are provided 

in Supp. Materials and Methods and Supp. Figure 1. 
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RESULTS 

 

QUASAR2 mutation profiling using a custom gene panel 

 

598 QUASAR2 tumours were sequenced for 82 genes by Ion Torrent technology. We 

eliminated mutations with a high probability of being artefacts and cancers with high levels 

of artefactual hypermutation owing to ex vivo cytosine deamination (Supp. Figures 2-5, Supp. 

Tables 6-9). 511 tumours remained for further analysis (Supp. Figure 1). 

 

We identified all likely driver mutations (see Materials and Methods; Supp. Table 9) and 

selected the 13 most commonly mutated genes (mutated in ≥8 tumours) for further analysis 

to identify mutations tending to occur together in genetic pathways (Supp. Tables 10, 11; 

Supp. Figure 6). In addition to known associations, new findings included a negative 

association between TP53 and GNAS, and a positive association of NF1 with PTEN and NRAS. 

 

Since several mutations co-varied, we searched for primary associations by multivariable 

regression (Supp. Table 13), hierarchical clustering and Bayesian networks (Supp. Figures 7, 

8). Interestingly, all three analytical methods found that mutations in NF1, a gene involved in 

the pathogenesis of neuromas and a negative regulator of the Ras pathway, were positively 

associated with NRAS mutations, but not with mutations in KRAS or BRAF. SMAD4 mutations 

were associated with BRAF mutations, but not with KRAS or NRAS changes, suggesting 

possible synergy between BRAF and the TGFβ or BMP pathways. In addition, logistic 

regression and Bayesian network analyses showed a strong negative association between 

driver mutations in TP53 and ATM, two key mediators in the DNA damage response (DDR) , 

suggesting that these mutations were alternatives DDR inactivators. Finally, clustering and 

Bayesian network analysis suggested a positive association between ATM and PTEN 

mutations. It has recently been shown than PTEN is phosphorylated by ATM in response to 

DNA-damaging agents, thus inducing autophagy17. Regression analysis between molecular 

and clinical variables showed that KRAS mutations were associated with female sex, similarly 
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to BRAF mutations11,18. In addition, mutations in FBXW7 and CTNNB1 were associated with 

high grade, the latter suggesting that activation of the Wnt pathway through beta-catenin 

rather than APC mutation might predispose to poorly differentiated CRCs.  

 

Sub-clonal mutations may be clinically important, for example by driving drug resistance, but 

can be difficult to identify. Our high depth sequencing allowed us to identify 58 tumours (11%) 

carrying somatic mutations at significantly reduced allele frequency, suggesting sub-clonal 

status (see Materials and Methods). Of the 13 most commonly mutated genes, PIK3CA, ATM 

and SMAD4 had lower driver mutation allele frequencies than the other genes (P=0·001, 

0·002 and 0·05 respectively), suggesting they were more often sub-clonal (Supp. Table 14).  

 

Mutation burden, clonal diversity (presence of any identified mutation at low allele 

frequency) and driver mutations in the 13 genes were tested for prediction of bevacizumab 

treatment response, with no significant associations found (data not shown). 

 

 

Markers of prognosis in gene panel analysis of QUASAR2 and the community cohort 

 

In QUASAR2, overall mutation burden and mutations in 4 specific genes (TP53, KRAS, BRAF 

and GNAS) showed promising individual associations with relapse-free survival (RFS) (pre-

defined P<0·10) and were therefore selected for multivariable analysis, together with T stage, 

N stage, treatment arm (as bevacizumab had previously been associated with poorer 

prognosis in the analysis of our patent sub-group although not the whole trial), and MSI (as it 

co-varied with mutation burden and is probably the best established prognostic factor for 

CRC) (Table 1a; Supp. Tables 15, 16). We found mutation burden (HR=0·81; 95%CI=0·68-0·96; 

P=0·014), mutations in TP53, KRAS, BRAF and GNAS, T/N stage and use of bevacizumab were 

all independently associated with poor prognosis (P<0·05), but MSI was not (HR=1·12; 

95%CI=0·57-2·19; P=0·75) (Table 1a). To test whether the prognostic effect of mutation 

burden was only due to hypermutation, the same model was run in the sub-set of tumours 

without MSI or pathogenic POLE mutations. Mutation burden retained a borderline significant 

association with outcome (HR=0·85, 95%CI=0·73-1·00, P=0·051), with the other variables 

showing results similar to those previously found (Table 1a).  
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To replication test our prognostic markers, we used an independent data set from an 

Australian community-based cohort of stage II and III CRC patients (N=296) (Supp. Table 2; 

Supp. Figures 9, 10) in which all prognostic markers identified in QUASAR2, except GNAS 

mutations, had been assessed (see Materials and Methods). A multivariable analysis 

incorporating the same clinical and molecular variables and co-variables showed that, in 

agreement with the QUASAR2 analysis, BRAF mutation, TP53 mutation, and mutation burden 

were associated (P<0·05) with RFS, whereas MSI was not (Table 1b). KRAS mutation also 

showed a similar prognostic association in the Australian patients to that present in QUASAR2, 

although formal significance was not reached. Exclusion of MSI+ and ultramutator tumours 

from the Australian analysis made little difference to the associations, although KRAS became 

formally associated with prognosis and BRAF mutation lost that status (Table 1b).  

 

A combined analysis of the QUASAR2 and Australian cohorts confirmed that mutations in 

KRAS, BRAF and TP53, together with lower mutation burden, were all independently 

associated with poor prognosis, whereas MSI was not (Figure 1; Table 1c; Supp. Table 17).  

Exclusion of MSI+ and ultramutator cancers did not alter our findings. There was no significant 

heterogeneity between cohorts and our model persisted in Australian patients treated with 

chemotherapy (details not shown).  

 

We compared a prognostic model based on the current gold standard of clinico-pathological 

variables and MSI with our new model incorporating clinical variables, mutation burden and 

driver mutations in KRAS, BRAF and TP53. In both QUASAR2 and the Australian cohort, the 

new model performed significantly better (P=4x10-5 and P=0·0057 respectively, likelihood 

ratio test). A 10% leave-out cross-validation analysis showed these analyses to be robust (see 

Supp. Material and Methods).  

 

We then explored the prognostic model separately in stage II (N=266) and stage III (N=499). 

The model was only formally significant (P=7.3x10-8) in the latter case (Supp. Table 18), but 

hazard ratios were very similar in both stages, suggesting the lack of formal significance was 

the result of lower power in the smaller stage II set. Correspondingly, despite inherently 

reduced power, an analysis by tumour location (proximal colon, distal colon, rectum) showed 



11 
 

similar hazard ratios for all biomarkers across sites, even after exclusion of hypermutated 

tumours (Supp. Table 19). In addition, formal assessment of interactions between individual 

biomarkers and stage or tumour location found no evidence of significant deviation from a 

log-additive model (details not shown). 

 

 

Patient outcome in relation to combinations of MSI, KRAS and BRAF status in enlarged cohorts 

 

Based on previous reports5-10, we investigated the prognostic associations of KRAS and BRAF 

mutations in relation to MSI status. We pooled data from the QUASAR2 gene panel, the 

Australian validation set, and an additional 676 QUASAR2 and 362 stage II/III Australian CRCs 

that had been analysed for MSI and by Sanger sequencing for KRAS/BRAF mutations (Supp. 

Table 2) for an extended set of 1,732 patients. In a multivariable analysis we found MSI was 

associated with good prognosis (HR=0·45, 95%CI=0·31-0·64, P=1x10-5), and KRAS and BRAF 

mutations were both associated with poor prognosis (HR=1·22, 95%CI=1·01-1·48, P=0·035; 

HR=1·53, 95%CI=1·14-2·04, P=0·004 respectively; Supp. Table 20). Since the strong co-

variation of these biomarkers could potentially have confounded or obscured prognostic 

effects, we added to the multivariable model multiplicative interaction terms between MSI 

and mutations in KRAS and BRAF. We found both of these interactions to be significant 

(P=0·003 and P=0·023 respectively) suggesting differential prognostic effects.  

 

Accordingly, we explored different combinations of MSI, KRAS mutation and BRAF mutation. 

Compared with “triple negative” (MSI-, KRAS-wildtype, BRAF wildtype) cancers, MSI- tumours 

with KRAS or BRAF mutations had a worse prognosis (respectively HR=1·35, 95%CI=1·11-1·64, 

P=0·003 and HR=2·02, 95%CI=1·47-2·77, P=1·19x10-5; Table 2, Figure 2). By contrast, and 

explaining the statistical interactions detected, MSI+ CRCs with KRAS or BRAF mutation had a 

significantly better prognosis than the triple negatives (respectively HR=0·28, 95%CI=0·09-

0·89, P=0·03 and HR=0·55, 95%CI=0·34-0·90, P=0·017; Table 2), although the difference was 

not significant compared with MSI+ CRCs without KRAS/BRAF mutation.  The 6 

MSI/KRAS/BRAF sub-groups showed consistent effects between the QUASAR2 and Australian 

cohorts (details not shown). 

  



12 
 

 

TP53-based prognostic sub-sets in MSI- CRCs  

 

Although MSI was not an independent prognostic marker when mutation burden was also 

assessed, it was prognostic in the absence of that information (Supp. Table 20). We therefore 

explored whether new prognostic groups within the larger MSI- subset could be identified 

using KRAS, BRAF and TP53, given that TP53 mutation remained an independent prognostic 

marker when MSI+ and ultramutator CRCs were excluded from our main analysis based on 

gene panels (Table 1). We used our extended QUASAR2 and Australian cohorts and derived 

TP53 status from either NGS or Sanger sequencing. Within the MSI- CRC set (N=991), tumours 

with BRAF and TP53 mutations had a particularly poor prognosis (HR=3·08, 95%CI=1·88-5·03, 

P=7·12x10-6; Supp. Table 21; Figure 3), with a suggestive, but non-significant, interaction 

between these markers (HR=2·21, P=0·058), but no evidence of interaction between TP53 and 

KRAS (HR=1·13, P=0·62). Overall, therefore, we convincingly detected only independent 

prognostic effects of these three driver genes. 

 

 

DISCUSSION 

 

The use of prognostic molecular markers in the management of solid tumours is still not 

widespread. In part, this reflects a lack of validated markers and in part, differences between 

studies that have led to inconsistency in the recommended markers to use and their 

estimated effect sizes. For CRC, whilst several relatively large studies have assessed molecular 

indicators of CRC prognosis, most have been restricted to a handful of markers. In this study, 

we have used overlapping cancer gene mutation panels to analyse a high quality clinical trial 

of CRCs treated with curative intent and a validation cohort. In multivariable analysis 

incorporating known clinico-pathological prognostic factors, we have shown that low overall 

mutation burden and mutations in KRAS, BRAF and TP53 are independently associated with 

poorer RFS from CRC treated with curative intent. All these findings were also present in our 

Australian validation set, even though the patients in that study were from a community-

based collection rather than a clinical trial. The fact that we found no molecular marker of 

bevacizumab response in QUASAR2 or chemotherapy response in the Australian cohorts 
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(details not shown) suggested that the markers we have found are prognostic, although 

formally demonstrating this is difficult given that most of our patients received 5FU-based 

chemotherapy.  

 

The complexity of associations between mutations and CRC prognosis is arguably reflected in 

the generally stronger associations of markers in multivariable than univariable analyses. 

Furthermore, MSI was generally not prognostic in these analyses, because its effects were 

captured by mutation burden (somatic single nucleotide variants and small indels): however, 

mutation burden not only strongly co-varied with MSI and POLE, but also provided prognostic 

information in MSI- CRCs. Although high mutation burden has been associated with good CRC 

prognosis in the context of MSI and POLE proofreading deficiency12, this has not previously 

been shown for CRCs without those forms of genomic instability. Similar data from other 

tumour types are limited19-21, although in other cancers with generally high mutation burdens 

but without specific forms of genomic instability, such as lung carcinoma and melanoma, 

mutation burden has predicted response to immune checkpoint inhibitors22,23. It remains 

possible in our study that undetected hyper/ultramutator cancers contributed to the 

mutation burden association, although the frequencies of MSI and POLE mutations that we 

found were typical of other studies12 and we found a monotonic relationship between 

mutation burden quartile and RFS in our data. A further potential cause of the mutation 

burden association was non-excluded deamination artefacts if they happened to be 

associated with an unknown factor correlated with good prognosis; however, we made 

strenuous efforts to exclude those artefacts, no plausible explanatory causes such as tumour 

age were detectable within QUASAR2 (details not shown), and the Australian validation 

cohort was from fresh frozen tissue which is unlikely to have deamination. We note that the 

new observed association with mutation burden is sufficiently strong that even a modestly 

sized gene panel can pick it up, as it may be representative of mutation burden in the exome24. 

The underlying reason for the association between mutation burden and prognosis remains 

unclear, although anti-tumour immune responses are evidently the prime candidate19-21.  

 

The interplay between KRAS, BRAF and TP53 mutations, MSI and mutation burden in our data 

set is intriguing. These mutations co-vary strongly (Supp. Table 12), and are additionally 

associated with other molecular variables. Deciphering primary associations is therefore 
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extremely challenging. Nevertheless, our study strongly supports the reported poor prognosis 

of MSI- CRCs with KRAS or BRAF mutations5-10 compared with MSI- CRCs wildtype for these 

genes and unselected MSI+ CRCs; in addition, we found that KRAS or BRAF mutation may be 

associated with improved prognosis in MSI+ CRCs. TP53 has not previously been consistently 

reported as a prognostic marker for CRC in the curative setting, but very few large studies 

have undertaken a sufficiently comprehensive molecular analysis to include KRAS, BRAF, TP53 

and MSI. Notably, addition of these four prognostic markers improved outcome prediction 

compared with current clinical guidelines based on MSI. 

 

The strengths of our study are multiple potential biomarkers screened in a large, high quality 

clinical trial and a comparable, community-based cohort. We have very carefully performed 

quality control analysis to derive high-quality mutation calls. For mutation burden, the study 

is arguably limited by the size of the gene panels used, and a larger panel or exome/genome 

sequencing might detect even stronger associations with prognosis. In addition, the lower 

numbers of stage II patients in the sample set means that the utility of our model in such 

patients remains formally unproven. Moreover, we cannot  formally distinguish between the 

model being prognostic, or predictive for 5FU response. Another potential weakness is the 

different treatment regimens used in each cohort, although regimen was incorporated as a 

co-variable into the analyses. Finally, our study may have sub-optimal power to draw firm 

conclusions about outcomes in small patient groups or sub-groups, such as those with 

combinations of several molecular variables.  

 

Advances in molecular testing hold considerable promise for the delivery of precision cancer 

medicine, but their clinical use to date has largely been limited to the analysis of small 

numbers of actionable variants. In CRC, these include KRAS and NRAS mutation testing for 

prediction of resistance to anti-EGFR therapies25, or MSI, which identifies stage II tumours 

with excellent prognosis26 and stage IV tumours likely to respond to immune checkpoint 

inhibition27. Our findings show that the use of even a modest-sized gene panel can provide 

clinically useful information beyond individual driver mutations. In particular, tumour 

mutation burden displaced MSI/POLE as a marker of prognosis in multivariable analysis, thus 

extending the group of good-prognosis CRCs to include those with high mutation burden in 

the absence of a specific underlying mutator phenotype. While we were unable to test 
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whether mutational load is predictive for immunotherapy response in CRC, this correlation is 

well documented in other tumour types, including melanoma, lung and ovarian cancers28. 

Accordingly, our results suggest that the use of tumour mutation burden as a prognostic and 

predictive marker in CRC is worthy of further exploration, beyond tumours with MSI or POLE 

mutation. It is likely that other genome-wide molecular phenotypes, such as mutational 

signatures29, will come to play a role in cancer management in the future. 
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Table 1. Associations between clinico-pathological-molecular variables and relapse-free survival. 

Cox proportional hazards analysis was performed. The “univariable” analyses are adjusted by T stage, N stage and treatment arm (or 2 of these 

if the adjustment variable itself is being assessed). Multivariable analysis is based on all variables shown. Mutation burden is derived here from 

coding mutations , since these are most likely to be functionally relevant, but similar results are obtained when other somatic variants are also 

included (Supp. Figure 11). POLE proofreading mutation is not shown as a prognostic variable owing to the low frequency of those cancers 

(Supp. Table 11). 

  

(a) QUASAR2. N=511 (all cases, univariable and multivariable); N=443 (MSI-/Non-pathogenic POLE).  

 

 All cases univariable All cases multivariable MSI- & Non-pathogenic POLE multivariable 

 
HR 95% CI P HR 95% CI P HR 95% CI P 

KRAS mutation 1·48 1·07-2·05 0·018 1·99 1·37-2·91 3·44x10-4 2·25 1·51-3·35 6·07x10-5 

BRAF mutation 1·42 0·94-2·13 0·093 2·46 1·51-4·03 3·31x10-4 2·88 1·70-4·85 7·50x10-5 

TP53 mutation 1·53 1·08-2·18 0·018 1·63 1·12-2·38 0·011 1·61 1·09-2·38 0·025 

GNAS mutation 2·19 0·89-5·35 0·087 2·76 1·08-7·04 0·034 4·00 1·42-11.3 0·009 

Mutation burden (quartiles) 0·87 0·75-1·00 0·055 0·81 0·68-0·96 0·014 0·85 0·73-1·00 0·051 

MSI 0·73 0·42-1·28 0·271 1·12 0·57-2·19 0·75 -   

Chemotherapy (bevcap vs cap) 1·37 0·98-1·92 0·065 1·43 1·02-2·00 0·039 1·55 1·09-2·22 0·015 

T4 v T123 2·11 1·52-2·94 8·59x10-6 2·10 1·50-2·93 1·36x10-5 2·29 1·61-3·25 3·66x10-6 

N+ v N0 1·80 1·22-2·63 0·003 1·85 1·25-2·73 0·002 2·03 1·33-3·09 0·001 
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(b) Australian. N=296 (all cases without missing data, univariable); N=253 (all cases, multivariable); N=209 (MSI-/Non-pathogenic POLE). Note 

that BRAF was only tested for the common V600E variant and that GNAS was not tested. 

 

 
All cases univariable All cases multivariable MSI- & Non-pathogenic POLE multivariable 

HR 95%CI P HR 95%CI P HR 95%CI P 

KRAS mutation 1·31 0·92-1·87 0·136 1·51 0·97-2·38 0·066 1·61 1·02-2·59 0·040 

BRAF mutation 0·91 0·52-1·64 0·780 2·18 1·08-4·56 0·029 1·79 0·73-4·24 0·204 

TP53 mutation 1·19 0·83-1·71 0·334 1·82 1·12-2·73 0·014 1·81 1·09-2·82 0·020 

Mutation burden (quartiles) 0·72 0·62-0·85 8·62x10-5 0·78 0·63-0·95 0·014 0·82 0·64-0·93 0·008 

MSI 0·39 0·18-0·71 0·003 0·62 0·24-1·44 0·247 - -  - 

Chemotherapy (yes vs no) 1·01 0·71-1·44 0·946 0·60 0·34-0·91 0·019 0·51 0·18-0·90 0·018 

Radiotherapy (yes vs no) 1·21 0·50-3·02 0·653 1·33 0·53-3·32 0·546 1·29 0·51-3·20 0·603 

T4 v T123 2·19 1·54-3·22 2·01x10-5 2·38 1·57-3·75 6·34x10-5 2·67 1·73-4·21 1·62x10-5 

N+ v N0 1·4 0·97-2·08 0·070 1·21 0·71-2·04 0·493 1·19 0·66-2·05 0·597 
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(c) Combined 

For this analysis, N=807 (all cases without missing data, univariable); N=764 (all cases, multivariable); N=652 (MSI-/Non-pathogenic POLE). 

Mutation burden quartile was derived separately for the QUASAR2 and Australian cohorts owing to the different content of the two panels. 

Note that the cohort/treatment variables are categorical. 

 

 
All cases univariable All cases multivariable MSI- & Non-pathogenic POLE multivariable 

HR 95%CI P HR 95%CI P HR 95%CI P 

KRAS mutation 1·40 1·10-1·78 0·006 1·74 1·31-2·29 1·21x10-4 1·88 1·40-2·51 2·11x10-5 

BRAF mutation 1·23 0·88-1·72 0·231 2·21 1·47-3·29 1·02x10-4 2·32 1·50-3·58 1·49x10-4 

TP53 mutation 1·30 1·01-1·67 0·039 1·65 1·24-2·19 4·67x10-4 1·68 1·24-2·26 0·001 

Mutation burden (quartiles) 0·82 0·74-0·92 5·1x10-4 0·8 0·70-0·91 0·001 0·84 0·74-0·94 0·004 

MSI 0·58 0·38-0·89 0·012 0·8 0·46-1·35 0·399 - - - 

Cohort/treatment Q2 cap Ref.   Ref.   Ref.   

Cohort/treatment Q2 bev+cap 1·45 1·04-2·03 0·029 1·44 1·02-2·01 0·034 1·53 1·07-2·18 0·019 

Cohort/treatment Australia no chemo 2·04 1·4-2·98 2·2x10-4 3·48 2·28-5·30 7·04x10-9 4·05 2·58-6·34 9·96x10-10 

Cohort/treatment Australia chemo 2·06 1·45-2·93 5·61x10-6 1·75 1·18-2·58 0·005 1·88 1·25-2·83 0·002 

Radiotherapy (yes vs no) 1·56 0·64-3·78 0·326 1·37 0·54-3·41 0·503 1·3 0·51-3·24 0·579 

T4 v T123 1·81 1·42-2·29 1·30x10-6 2·19 1·68-2·83 3·03x10-9 2·36 1·80-3·09 4·38x10-10 

N+ v N0 1·45 1·11-1·89 0·006 1·63 1·21-2·20 0·001 1·68 1·21-2·30 0·002 
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Table 2. Prognosis associated with sub-groups by KRAS mutation, V600E BRAF mutation 

and MSI in all cohorts (N=1,732).  

P for interaction between MSI and BRAF and KRAS is 0·003 and 0·023 respectively.  Results 

are from multivariable analysis adjusted by cohort arms as shown in Table 1(c).  Six patients 

in very rare subgroups are not shown. 

 

All cohorts (N=1,732) HR 95%CI P 

KRASwt/BRAFwt/MSI- Ref.   

KRASmut/BRAFwt/MSI- 1·35 1·11-1·64 0·003 

KRASwt/BRAFmut/MSI- 2·02 1·47-2·76 1·20x10-5 

KRASwt/BRAFwt/MSI+ 0·90 0·56-1·45 0·670 

KRASmut/BRAFwt/MSI+ 0·28 0·09-0·89 0·028 

KRASwt/BRAFmut/MSI+ 0·55 0·35-0·90 0·017 

T4 v T123 2·26 1·88-2·71 3·32x10-18 

N+ v N0 2·07 1·65-2·59 2·62x10-10 
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FIGURE LEGENDS 

 

Figure 1. Relapse-free survival in combined QUASAR2 and Australian cohorts by mutation 

burden from gene panel analysis (N=672). Burden data are shown by quartile (highest burden 

in Q4). Cancers that were MSI+ or carried pathogenic POLE mutations were excluded. Cox 

proportional hazards model results are also shown for univariable and multivariable analyses 

with Q1-4 as a continuous variable and other co-variables as per Table 1c. Note that the 

numbers in each quartile are not equal owing to ties in mutation burden.  

Figure 2. Relapse-free survival by combinations of MSI and mutations in KRAS and BRAF in 

the combined extended QUASAR2 and Australian cohorts. Cancers that carried pathogenic 

POLE mutations were excluded. 

Figure 3. Relapse-free survival by combinations of mutations in KRAS, BRAF and TP53 in the 

combined extended QUASAR2 and Australian cohorts. Cancers that were MSI+ or carried 

pathogenic POLE mutations were excluded.  

 

 


