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The infant brain is unlike the adult brain, with considerable differences in morphological, neurodynamic, and
haemodynamic features. As the majority of current MRI analysis tools were designed for use in adults, a primary
objective of the Developing Human Connectome Project (dAHCP) is to develop optimised methodological pipelines

};l;e:;l(;(:s:ziic response function for the analysis of neonatal structural, resting state, and diffusion MRI data. Here, in an independent neonatal
Neonatey P dataset we have extended and optimised the dHCP fMRI preprocessing pipeline for the analysis of stimulus-
Pain response fMRI data. We describe and validate this extended dHCP fMRI preprocessing pipeline to analyse

changes in brain activity evoked following an acute noxious stimulus applied to the infant's foot. We compare the
results obtained from this extended dHCP pipeline to results obtained from a typical FSL FEAT-based analysis
pipeline, evaluating the pipelines' outputs using a wide range of tests. We demonstrate that a substantial increase
in spatial specificity and sensitivity to signal can be attained with a bespoke neonatal preprocessing pipeline
through optimised motion and distortion correction, ICA-based denoising, and haemodynamic modelling. The
improved sensitivity and specificity, made possible with this extended dHCP pipeline, will be paramount in

making further progress in our understanding of the development of sensory processing in the infant brain.

1. Introduction

The infant brain is not a miniature replica of the adult brain. During
early development, the composition, size, and morphology of the human
brain changes rapidly (Dubois et al., 2014; Dubois and
Dehaene-Lambertz, 2015), and neurodynamic and haemodynamic ac-
tivity differs dramatically from that observed in adults (André et al.,
2010; Arichi et al., 2012). Features such as the high water and low myelin
content lead to a reduction in contrast and an inversion of MRI signal
between tissue types (Paus et al., 2001), and data quality can be highly
influenced by infant movement (Power et al., 2012; Reuter et al., 2015;
Satterthwaite et al., 2012; Siegel et al., 2017; Yendiki et al., 2014).
Despite these structural, functional, and behavioural differences, infant
MRI studies often rely on data acquisition and analytical approaches that
have been developed and refined to optimise spatial specificity and

sensitivity to signal in adults.

Within the last decade, great strides have been made to change this by
improving multiple aspects of neonatal fMRI data analysis and acquisi-
tion. The advantages of using infant-specific head coils and data acqui-
sition parameters, such as echo time (TE), have been demonstrated
(Goksan et al., 2017; Hughes et al., 2017), and novel stimulus-evoked
experimental paradigms have been assessed (Cusack et al., 2015).
Semi-automated independent component analysis (ICA)-based denoising
(Salimi-Khorshidi et al., 2014) has previously been adapted for neonatal
data (Ball et al., 2016); spatial smoothing extents have been scaled based
on infant brain size (Gao et al., 2015); and haemodynamic response
function (HRF) modelling has been optimised for a range of neonatal ages
(Arichi et al., 2012). In addition, non-linear spatial normalisation tools,
optimised for adult standard templates, have been adapted for use with
neonate-specific templates (Goksan et al., 2015). This is not an
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exhaustive list, and those interested in the challenges and progress in
neonatal fMRI are directed to recent reviews and references therein
(Cusack et al., 2017; Mongerson et al., 2017) for further reading.

A major aim of the Developing Human Connectome Project (dHCP) is
to understand human brain organisation in early life by modelling dy-
namic changes in structural and functional connectivity (www.
developingconnectome.org). To achieve this goal, bespoke methodolog-
ical approaches have been developed to optimise the analysis of neonatal
structural, diffusion, and resting-state functional MRI data (Bastiani
et al., 2018; Fitzgibbon et al., 2018; Makropoulos et al., 2018). The fMRI
analysis pipeline has been designed to provide robust motion and
distortion correction, optimised registration, improved structural tem-
plates, and automated artefact cleanup. However, to date this pipeline
has not been applied to an independent dataset or used to quantify
stimulus-evoked changes in blood oxygen level dependent (BOLD) ac-
tivity. As such, its superiority over more traditional preprocessing ap-
proaches has not yet been demonstrated, and with its more extensive
data manipulation and signal variance reduction, the risk of inadver-
tently removing signal-of-interest must be assessed.

Here, we assess these methodological innovations using a study of
nociception in newborn infants. Accurate characterisation of noxious-
evoked brain activity should provide invaluable insight into how pain
perception develops in early life, but it requires a highly robust meth-
odological approach. A mild noxious stimulus is repeatedly applied to the
foot and noxious-evoked brain activity is recorded using fMRI. We
extended the dHCP fMRI preprocessing pipeline to characterise the
noxious-evoked BOLD activity, and compare the results to a typical
analysis using FMRIB Software Library (FSL) FMRI Expert Analysis Tool
(FEAT) procedures (Jenkinson et al., 2012) that we have previously used
to study these responses in infants (Goksan et al., 2015). Noxious stim-
ulation presents specific challenges such as the greater potential for
stimulus-correlated motion artefacts due to reflexive activity, which can
severely compromise signal quality. We aimed to assess the effects on
data quality of bespoke motion and distortion preprocessing and robust
spatial normalisation. In addition, we aimed to assess the effects of
implementing semi-automated spatial ICA-based denoising, and of
different choices of spatial smoothing and haemodynamic response
function (HRF) modelling. Ultimately, we investigate the effect on spatial
specificity and sensitivity to signal that can be attained with a bespoke
preprocessing pipeline, optimised for neonatal stimulus-based fMRI data.

2. Material and methods
2.1. Infant demographics and experimental details

We recruited healthy term infants from the postnatal ward at the John
Radcliffe Hospital (Oxford University Hospitals NHS Trust) for an MRI
scan. Infants were eligible for inclusion in the study if they were greater
than 37 weeks gestation and less than 10 postnatal days old, inpatients on
the postnatal ward, never required admission to the neonatal unit, had no
history of congenital conditions or neurological problems, and were
clinically stable at the time of study. We scanned 15 term infants (8 male
and 7 female) within the first postnatal week (mean postnatal age: 2.3
days; range 1-7 days). At the time of study, the mean gestational age
(GA) of the infants was 39.3 weeks (range 37.1-42.7 weeks) and the
mean birth weight was 3408 g (range 2235-4570 g). We obtained writ-
ten informed consent from parents prior to study.

A clinical investigator transported infants to the Wellcome Centre for
Integrative Neuroimaging (Oxford, UK), where infants were screened for
metal, fed, and swaddled prior to scanning. Infants were fitted with ear-
putty, ear-muffs (Minimuffs, Natus Medical Inc., Galway, Ireland), and
ear-defenders (Em's 4 Bubs Baby Earmuffs, Em's 4 Kids, Brisbane,
Australia), and placed on a vacuum-positioning mattress with extra soft
padding around the head to restrict motion. We monitored heart rate and
blood oxygen saturations throughout scanning (Fibre Optic Pulse Ox-
imeter; Nonin Medical, Plymouth, Minnesota). We applied a 128 mN
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non-skin-breaking noxious stimulus (PinPrick Stimulator, MRC Systems)
to the dorsum of the left foot 10 times, 1 s per trial, with a minimum inter-
stimulus interval of 25 s. The stimuli were applied when the infants were
naturally still, in order to minimise motion artefacts at the time of
stimulus presentation, and were time-locked to the fMRI recording using
Neurobehavioural Systems software (Presentation, www.neurobs.com).
We obtained ethical approval for this study (National Research Ethics
Service, REC reference: 12/SC/0447), and carried it out in accordance
with the standards set by the Declaration of Helsinki and Good Clinical
Practice guidelines.

All data were collected on the Siemens Prisma 3T with an adult 32
channel receive coil. The structural image acquisition was as follows: T2-
weighted, TSE (factor 11), 150° flip angle, TE = 89 ms, TR = 14,740 ms,
TA = 2 min 13 s, parallel imaging GRAPPA 3, 192 x 192 in-plane matrix
size, 126 slices, 1 mm isotropic voxels. The fieldmap image acquisition
was as follows: GRE, 2D FT readout, dual echo TE1/TE2 = 4.92/7.38 ms,
TR = 550 ms, TA = 1 min 40 s, 46° flip angle, 90 x 90 in-plane matrix
size, 56 slices, 2 mm isotropic voxels. The functional image acquisition
was as follows: T2* BOLD-weighted, GRE, EPI readout, 70° flip angle,
TE = 50 ms (Goksan et al., 2017), TR =1300 ms, mean TA = 6 min
(approx.), multiband 4 (Moeller et al., 2010; Xu et al., 2013), 90 x 90
in-plane matrix size, 56 slices, 2 mm isotropic voxels, with a single-band
reference (SBref) image acquired at the start.

2.2. Introduction to the pipelines

2.2.1. dHCP pipeline

This pipeline was originally developed for, and tested on, dHCP
resting-state data (Fitzgibbon et al., 2018; Fitzgibbon et al., in prepara-
tion), incorporating a variety of new and existing FSL tools, and other
software to provide methods that are optimised for the characteristics of
neonatal brains. The pipeline has not yet been formally published, but
with the article in preparation, readers should refer to the Publications
section of the dHCP website for further wupdates (www.
developingconnectome.org). Here, we extended the pipeline, so that it
could be applied to a stimulus-evoked dataset with different imaging
parameters. We outline two key extensions here. First, we incorporated
spatial smoothing to assess its effects on SNR and the effects of spatial
normalisation misalignments. Second, the standard dHCP fMRI pipeline
does not incorporate structural image preprocessing, because the dHCP
structural images are first preprocessed in a separate structural pre-
processing pipeline (Makropoulos et al., 2018). Therefore, the dHCP
fMRI pipeline was extended to incorporate the MIRTK Draw-EM
(Developing brain Region Annotation With Expectation- Maximization)
neonatal pipeline v1.1 (Makropoulos et al., 2014), which is the neonatal
segmentation tool that underpins the dHCP structural pipeline. This tool
performs brain extraction, bias field correction, and tissue segmentation
on neonatal T1/T2 images, which allows accurate and robust extraction
of grey/white-matter boundaries for later registration steps. Throughout
this paper, we refer to our extended dHCP preprocessing pipeline as ‘the
dHCP pipeline’. See Fig. 1 for a schematic of the preprocessing steps in
the typical and extended dHCP pipeline for functional images.

2.2.2. FEAT pipeline

We compare the dHCP pipeline to a preprocessing pipeline using
standard FSL FEAT tools (Jenkinson et al., 2012) with modifications for
neonatal data, previously employed in Goksan et al. (2015) (see Fig. 1).
All analysis steps are described in detail in sections below, but here we
note three key modifications of the ‘typical’ FEAT pipeline for neonatal
data. First, boundary based registration (BBR) (Greve and Fischl, 2009)
was omitted, as the current default settings for FLIRT-BBR (FMRIB's
Linear Image Registration Tool - BBR) in FEAT are hard-coded to adult
specifications, which assume a specific direction of the intensity gradient
across the white matter boundary, inappropriate for infants. The BBR
parameters, which are wused for distortion correction and
functional-to-structural registration, cannot be altered within FEAT
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FEAT fMRI preprocessing pipelines dHCP fMRI preprocessing pipelines
‘Typical’ adult pipeline Modified infant pipeline Extended infant pipeline ‘Typical’ infant pipeline

Artefact removal: Artefact removal:
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Motion correction (MCFLIRT) Motion correction (MCFLIRT) Motion and distortion correction (EDDY)
Distortion correction uses Gradient Echo Dual Echo

derived field maps (fsl_prepare_fieldmap)

Motion and distortion correction (EDDY)
Distortion correction uses Spin Echo Blip-up/Blip-

down derived field maps (TOPUP)

Distortion correction (FLIRT-BBR and FUGUE) Distortion correction (FUGUE)

High-pass temporal filtering
100 s filter for stimulus-based data

High-pass temporal filtering

Brain extraction (BET) 150 s filter for resting-state data

Brain extraction (BET)

High-pass temporal filtering High-pass temporal filtering Denoising (MELODIC and FIX) Denoising (MELODIC and FIX)

Brain extraction (BET) Brain extraction (BET)

Denoising (MELODIC and FIX) *

Low-pass spatial filtering (SUSAN) Low-pass spatial filtering (SUSAN) Low-pass spatial filtering (SUSAN)

Grand mean scaling Grand mean scaling Grand mean scaling

Spatial normalisation: Spatial normalisation:

Func to SBref using 6 DOF (FLIRT) Func to Struct using 6 DOF (FLIRT) Func to SBref using 6 DOF (FLIRT) Func to SBref using 6 DOF (FLIRT)

SBref to Struct using BBR (FLIRT) SBref to Struct using BBR (FLIRT) SBref to Struct using BBR (FLIRT)

Struct to MNI152 standard template (FNIRT) Struct to age-matched standard template Struct to age-matched standard template Struct to age-matched standard template

(FNIRT) (SYN) (SyN)
Age-matched standard template to 40 week Age-matched standard template to 40 week Age-matched standard template to 40 week
standard template (FNIRT) * standard template (SyN) standard template (SyN)

\,

GLM analysis

Subject-level:

Pre-whitening, infant double gamma HRF fit (FEAT)
Group-level:

Group mean activity with five nuisance EVs; 10,000

permutations; variance smoothing, voxel/cluster/TFCE
thresholding, 5% FDR/FWER/FWER correction (Randomise)

Fig. 1. : fMRI analysis pipeline flowchart and comparison highlighting key pipeline differences. “FEAT fMRI preprocessing pipelines” box: the “’Typical’ adult
pipeline” column is our hypothetical FEAT fMRI preprocessing pipeline using analysis tools and steps currently found in FEAT, appropriate for analysis of an adult
multiband fMRI dataset; the “Modified infant pipeline” is our modification of this ‘typical’ FEAT pipeline for use in our infant multiband fMRI dataset
(* = preprocessing steps performed partially or fully external to FEAT). “dHCP fMRI preprocessing pipelines box™: the “’Typical’ infant pipeline” column is a
condensed description of some key analysis steps in the dHCP fMRI preprocessing pipeline; the “Extended infant pipeline” extends the dHCP pipeline for use with our
stimulus-based fMRI dataset. “GLM analysis” box: this is a condensed description of the key GLM analysis steps performed at the subject- and group-level in this paper,
and is common to the outputs of both our modified FEAT and extended dHCP fMRI preprocessing pipelines. See main text for expansion of abbreviations.

v6.00. Therefore, we used FEAT v5.98, which does not include BBR, for
preprocessing in the FEAT pipeline (FEAT v6.00 was subsequently used
for all subject-level GLM fitting in both the FEAT and dHCP pipelines, as
outlined below in section 2.5.). We assess the influence of BBR on the
quality of spatial normalisation (as outlined in section 2.4.2.), because
this is one of the major differences between the pipelines' spatial nor-
malisation approaches i.e. BBR is used in the dHCP pipeline but not used
in our FEAT pipeline. Second, FIX (FMRIB's ICA-based Xnoiseifier)
denoising (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), which is
external to the FEAT pipeline, was included. FIX denoising is part of the
standard dHCP pipeline, so its inclusion in our FEAT pipeline allowed for
meaningful comparisons. We also explore the effect of omitting this step
to demonstrate its central importance. Third, the final non-linear regis-
tration to standard templates was modified to include an extra registra-
tion step to accommodate the substantial changes in brain morphology
during the neonatal period. Specifically, the structural T2 image was first
non-linearly registered to a standard template corresponding to the in-
fant's gestational week (Makropoulos et al., 2016), and then this
age-matched template was non-linearly registered to a 40 week template,
used as the global standard space. Throughout this paper, we refer to our
modified instantiation of a ‘typical’ FEAT preprocessing pipeline as ‘the
FEAT pipeline’. See Fig. 1 for a schematic of the preprocessing steps in
the typical and modified FEAT pipeline for functional images.
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2.3. Structural and field map image preprocessing

Both preprocessing pipelines required specific preparations of the
structural and fieldmap images. For the dHCP pipeline, each subject's
structural image was processed with the MIRTK Draw-EM neonatal
pipeline v1.1 (as mentioned in section 2.2.1.), and each fieldmap image
was prepared using a modified version of fsl_prepare_fieldmap. For the
FEAT pipeline, each subject's structural image was brain extracted using
FSL's Brain Extraction Tool (BET) (Smith, 2002), with the optimal frac-
tional intensity threshold and its vertical gradient parameters manually
optimised per subject. Each subject's fieldmap image was prepared using
fsl_prepare_fieldmap.

2.4. Functional image preprocessing

2.4.1. Motion and distortion correction

Volume-to-volume motion correction was performed in the FEAT
pipeline using MCFLIRT (Motion Correction FMRIB's Linear Image
Registration Tool) (Jenkinson et al., 2002), which rigidly aligns volumes
to the middle functional volume, correcting for between-volume motion.
Distortion correction was performed using FUGUE (FMRIB's Utility for
Geometrically Unwarping EPIs) (Smith et al., 2004), using static distor-
tion correction. In the dHCP pipeline, volume-to-volume followed by
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slice-to-volume motion correction was implemented using EDDY
(Andersson et al., 2017, 2016) to correct for between-volume motion and
misaligned slices due to intra-volume motion. When applied to fMRI,
EDDY treats each fMRI volume as a diffusion BO image using a predictive
model which assumes the contrast is identical across volumes. Subject
head motion also causes changes in the susceptibility-induced field that
result in changing distortions that cannot be adequately corrected using a
static fieldmap method. EDDY corrects for this motion-by-susceptibility
distortion by modelling the susceptibility-induced field as a continuous
function of subject orientation to allow for the estimation of a unique
susceptibility field for each volume (Andersson et al., 2018). Due to the
differences in grey/white matter tissue contrast between our fieldmaps
(gradient echo dual echo) and those in the dHCP dataset (spin echo
blip-up/blip-down), we used a different (i.e. negative) BBR slope
parameter for fieldmap registration to structural space prior to distortion
correction (dHCP data: slope = 0.5; our data: slope = —0.5).

To assess the effects of these pipeline differences, we compared the
DVARS motion metric and temporal signal-to-noise ratios (tSNR). From
the general linear model (GLM) output of modelling the noxious stimuli
events, we compared active voxel counts and t-statistics within specific
grey matter regions-of- interest (ROIs) (see section 2.5.2. for definition of
ROIs). For all voxel counts and t-statistics comparisons, both the FEAT
and dHCP preprocessing results were registered to standard space using
FEAT-style registrations (detailed below) in order to disambiguate the
effect of pipeline differences in motion and distortion correction from
differences in spatial normalisation.

2.4.2. Spatial normalisation

In the dHCP pipeline, the functional-to-structural-to-standard regis-
tration is a multi-step process. Using FSL's FLIRT (FMRIB's Linear Image
Registration Tool), the functional reference volume was registered to the
distortion-corrected SBref image using rigid-body 6 DOF, and the
distortion-corrected SBref was then registered to the structural image
using BBR (Greve and Fischl, 2009). The SBref image was
distortion-corrected using FSL's FLIRT. The cerebral
grey-matter/white-matter (GM/WM) boundary of the structural image
was used for BBR. The registration between structural and standard space
was performed using ANTs's SyN (Advanced Normalisation Tools's
Symmetric image Normalisation method) (Avants et al., 2008), which is a
diffeomorphic nonlinear registration. The structural image was first
registered to the age-matched template, and the age-matched template
was warped to the 40-week GA standard template by combining
week-to-week non-linear warps from the age-matched template to the
week 40 template. All transformations were combined into a single warp
and applied once, to minimise data degradation due to interpolation.

Our modified FEAT pipeline follows a similar multi-step process to
the dHCP pipeline, however the structural-to-standard registration steps
are performed with FSL's FNIRT (FMRIB's Non-linear Image Registration
Tool) (Andersson et al., 2007). Furthermore, as mentioned above in
section 2.2.2., we did not use BBR in the functional-to-structural regis-
tration, as the current default settings for FLIRT-BBR in FEAT are
hard-coded to adult tissue contrast specifications, which are inappro-
priate for infants, where the grey-white matter intensity gradient is
inverted relative to adults.

For all spatial normalisation assessments, results were obtained using
only the dHCP pipeline outputs in order to disambiguate spatial nor-
malisation effects from other preprocessing effects, such as motion and
distortion correction. We assessed the effects of these registration pipe-
line differences by comparing the alignment of the functional image in
standard space and quantified normalized mutual information (NMI),
which measures the statistical dependency between the two images. We
also quantified the intensity gradient in the functional image across the
cerebral GM-WM boundary of the standard template image. Using the
GLM output of modelling the noxious stimuli events, we examined dif-
ferences in active voxel counts and t-statistics within specific grey matter
ROIs, and compared spatial specificity by comparing the proportion of
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significantly activated voxels incorrectly localised to white matter (see
section 2.5.2. for definition of grey and white matter ROIs).

2.4.3. FIX denoising

The efficacy of FIX denoising (semi-automated sICA-based denoising)
in neonatal fMRI data is not well documented. Considering that the
noxious stimulus often elicits limb withdrawal reflexes, stimulus-
correlated motion was expected (Hartley et al., 2015). Prior to FIX
denoising in both pipelines, the data were high-pass temporally filtered
using a 0.01 Hz (100 s period) cut-off, and data decomposed into inde-
pendent components using FSL's MELODIC (Multivariate Exploratory
Linear Optimised Decomposition into Independent Components) (Beck-
mann and Smith, 2004). FIX denoising was used in both our FEAT and
dHCP pipelines.

Noise components were manually labelled (Griffanti et al., 2017) and
used to train FIX using the dHCP pipeline data only, because the FEAT
pipeline cannot provide accurate tissue segmentations required by FIX
for feature extraction. In the Supplementary material, we have provided
eight examples of common ICA components identified in our data (Supp.
Fig. 1-8). To ensure accuracy and consistency of component labelling, we
used FIX's built-in leave-one-out cross-validation testing. Any inaccura-
cies in component labellings identified here were inspected, components
relabelled if necessary, and FIX was re-trained. This iterative process of
training and manual inspection was considered complete when discrep-
ancies between manual and FIX labellings were due solely to FIX mis-
labellings i.e. inspection of labelling discrepancies clearly demonstrated
the manually assigned labels were correct. To ensure equally accurate FIX
denoising between pipelines, the following approach was adopted. The
trained FIX model was used in both pipelines initially only to label
components. All components from both pipelines were then manually
inspected, and misclassified components relabelled where necessary.
Notably, the FIX model, which was trained on the dHCP data, worked
equally well in the FEAT pipeline; the small number of misclassified
components was comparable between pipelines, and no obvious differ-
ence in the nature of the components was discernible to the researchers.
Once manual inspection of ICA components was complete, FIX was then
used to remove these noise component time series and extended head
motion parameter time series (24 motion time series) from the data.

We tested the effect of FIX denoising on the dHCP preprocessed data
only, comparing the dHCP pipeline results with FIX denoising omitted to
results with FIX denoising included. Using the GLM output of modelling
the noxious stimuli events, we quantified the effect by looking at voxel
counts and t-statistics within specific grey matter ROIs (see section 2.5.2.
for definition of ROIs). We used the dHCP preprocessing pipeline for this
assessment to reduce the influence of noise and spatial normalisation
misalignments on this analysis, as we had demonstrated that the dHCP
pipeline was superior in terms of both motion and distortion correction,
and spatial normalisation.

2.4.4. Spatial smoothing

Spatial smoothing can improve SNR and reduce the effects of spatial
normalisation misalignments (Lowe and Sorenson, 1997), at the expense
of decreasing resolution to spatially localise activity. Using a filter with a
full width at half maximum (FWHM) larger than an active region de-
creases sensitivity to activity in this region (Ball et al., 2012). This is
important for neonatal fMRI analysis, considering the significantly
smaller brain regions. We implemented spatial smoothing in both our
FEAT and dHCP pipelines with FSL's SUSAN (Smoothing over Univalue
Segment Assimilating Nucleus) (Smith and Brady, 1997), which uses
neighbourhood voxel intensity information to limit voxel averaging to
those voxels with similar intensities, preserving tissue structure by per-
forming spatial smoothing within tissue type. The spatial filter must be
larger than the voxel size, and we therefore used a minimal spatial filter
extent equal to 1.5 times the voxel size (3 mm FWHM Gaussian kernel
spatial filter). Finally, all data from both pipelines were grand mean
scaled to have a spatiotemporal median value of 10,000 before doing the
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Fig. 2. Comparison of the effects of motion correction and
distortion correction between the FEAT and dHCP pipelines in
representative subjects. (A) Comparison of volume-to-volume
and slice-to-volume motion correction. Each row is the same
volume from one subject before correction (Raw), after
volume-to-volume motion correction used in the FEAT pipe-
line (FEAT), and after slice-to-volume motion correction used
in the dHCP pipeline (dHCP). (B) Comparison of static
distortion correction and estimated dynamic distortion
correction. Each row is a standard deviation image as a pro-
portion of the mean signal (i.e. ratio of temporal standard
deviation to temporal mean) from one subject before correc-
tion (Raw), after static distortion correction used in the FEAT
pipeline (FEAT), and after dynamic distortion correction used
in the dHCP pipeline (dHCP). Improvements are seen pre-
dominantly at the brain surface perpendicular to the phase
encode directions, especially in frontal and occipital polar
regions.
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Fig. 3. Comparison of effects of motion correction and distortion correction (MCDC) between FEAT and dHCP pipelines using measures of motion and signal-to-noise
ratio. (A) Comparison of DVARS plots post-correction for a representative subject. The dHCP pipeline corrections result in lower mean DVARS metric across the entire
session with greatest effects seen during large head motions. The yellow asterisks indicate the time of stimulus delivery, demonstrating the presence of stimulus-
correlated motion in this subject. (B-C) Comparison of MCDC effects between FEAT and dHCP pipelines across all 15 subjects using DVARS, and tSNR. For each
plot, solid coloured lines are individual subjects and the dotted black line is the group average. The dHCP MCDC results in lower DVARS and increased tSNR,
indicating better artefact correction. The differences in DVARS and tSNR values between pipelines were statistically significant.

FEAT preprocessing
FEAT registrations

dHCP preprocessing
FEAT registrations

Fig. 4. Comparison of motion correction and distortion correction (MCDC)
between FEAT and dHCP pipelines using t-statistics from the GLM output for all
15 subjects. After thresholding the group activity maps (TFCE, default param-
eters, 5% FWER corrected), the dHCP pipeline resulted in greater sensitivity to
signal in both cortical and subcortical regions. Using the dHCP pipeline, bilat-
eral thalamic activity was detected. Using the FEAT pipeline, only contralateral
thalamic activity was detected. Note, spatial smoothing is matched across FEAT
and dHCP preprocessing pipelines.

GLM analysis.

We also tested the effect of alternative spatial smoothing levels on the
dHCP preprocessed data, assessing no spatial smoothing, minimal
smoothing of 3mm, and a 5mm FWHM Gaussian kernel. This larger
smoothing kernel was chosen as it has been previously used in studies of
noxious-evoked brain activity in infants (Goksan et al., 2015) and is
reasonably representative of the smoothing extent used in the adult
literature. A review from 2012 (Carp, 2012) found an overwhelming
majority (over 80%) of fMRI studies used a smoothing kernel equal to or
greater than 5 mm FWHM, likely due to use of default settings (FEAT
default: 5mm FWHM; SPM default: 8 mm FWHM). Additionally, in the
neonatal fMRI literature, examples of spatial filters larger than 5 mm are
not uncommon in both resting-state (Mitra et al., 2017) and
stimulus-based (Scheef et al., 2017) data analysis. We used the GLM
output of modelling the noxious stimuli events to test the effects of spatial
smoothing. We compared the active voxel counts and t-statistics within
specific grey matter ROIs, and compared spatial specificity by comparing
the proportion of significantly activated voxels incorrectly localised to
white matter (see section 2.5.2. for definition of grey and white matter
ROIs).
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Standard template
GM/WM boundary
Brainstem boundary
Cerebellum boundary

dHCP preprocessing
FEAT registrations

dHCP preprocessing
dHCP registrations

Fig. 5. Comparison of the differences in spatial normalisation between the
FEAT and dHCP pipelines in a representative subject. Top row: the week 40 GA
standard template in grey-scale, with a tissue boundary overlaid in green to aid
assessment of registrations. The boundary is taken from the same atlas as the
standard template, and includes the GM-WM boundary in the cerebrum, as well
as the outer boundary of the brainstem and cerebellum. Second row: the mean
functional image registered to standard space using the FEAT pipeline regis-
trations (FSL's FLIRT and FNIRT). Third row: the same mean functional image
registered to standard space using the dHCP pipeline registrations (FSL's FLIRT-
BBR and ANTs's SyN). In general, the FEAT registrations tend to incorrectly
register the GM-CSF boundary of the functional image to the GM-WM boundary
of the template, likely due to lack of BBR, and this is corrected in the dHCP
result. Also, the cerebellum and brainstem are more accurately aligned with the
template in the dHCP result. In this specific subject, several other improvements
are visible in the dHCP results, with example regions in each view highlighted
with a red circle.
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Fig. 6. Comparison of spatial normalisation between FEAT and dHCP pipelines
for all 15 subjects using (A) normalized mutual information and (B) boundary
intensity difference. For each plot, solid coloured lines are individual subjects
and the dotted black line is the group average. The dHCP spatial normalisation
results in larger magnitudes for both alignment metrics, and these differences
were statistically significant.

2.5. GLM analysis

All subject-level GLM analysis for both the FEAT and dHCP pipelines
was performed using FEAT v6.00. The stimulus event timings were
convolved with a double gamma HRF tailored to neonates (see section
2.5.1. below for details). The model was temporally filtered using the
same 0.01 Hz high-pass filter as applied to the data during preprocessing,
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dHCP preprocessing
FEAT registrations

dHCP preprocessing
dHCP registrations

Fig. 7. Comparison of spatial normalisation between FEAT and dHCP pipelines
using t-statistics from the GLM output for all 15 subjects. The significant activity
in the thresholded maps (TFCE, default parameters, 5% FWER corrected) more
faithfully aligned with grey matter structures after applying the dHCP regis-
tration transformations. There was also better separation of activity in physically
proximal brain regions that are separated by white matter, which should be
devoid of activity e.g. the grey matter of the central sulcus and insular cortex.

and fitted to the data using FEAT (FSL version 5.0.10) with FILM
(FMRIB's Improved Linear Model) prewhitening to correct for autocor-
relations (Woolrich et al., 2001).

Two group-level analyses were performed: the first to estimate group
activity for each pipeline separately using a whole-brain approach; the
second to test if differences in t-statistics observed between the first
group-level analyses were statistically significant using a region-
constrained approach.

For the first group-level analysis approach, each subject's parameter
estimate image was entered into a whole-brain analysis. The design
matrix included five nuisance EVs for gestational age, postnatal age,
gender, brain volume, and head motion (mean DVARS of entire raw time
series). The mean stimulus-evoked positive response was estimated using
permutation testing in FSL's Randomise (Winkler et al., 2014) with 10,
000 permutations and 10 mm FWHM variance smoothing (Holmes et al.,
1996) due to the relatively low degrees of freedom. Thresholded group
activity maps, corrected for multiple comparisons, were generated using
three separate approaches: first, voxel-based thresholding with a 5% false
discovery rate (FDR) correction (using family-wise error rate correction
for voxel-based whole brain analysis was too conservative, resulting in
many empty thresholded maps); second, cluster-mass-based thresholding
(Bullmore et al., 1999) with a cluster-defining threshold of 2.3 and a 5%
family-wise error rate (FWER) correction; third, threshold-free cluster
enhancement (TFCE) (Smith and Nichols, 2009) thresholding with
default parameters and a 5% FWER correction. Because each thresh-
olding approach has strengths and shortcomings, quantitative compari-
sons are reported for all three approaches to facilitate interpretation.

For the second group-level analysis approach, a difference-in-t-
statistic image was generated per subject per pipeline comparison and
entered into a region-constrained voxel-wise analysis (see section 2.5.2.
below for details of ROI and constrained region definition). Due to the
constrained region being composed of several discrete non-contiguous
ROIs, thresholding approaches that use neighbourhood spatial informa-
tion, such as cluster-based and TFCE-based thresholding, were not valid.
Thus, we used voxel-based thresholding with a 5% FWER correction for
these cross-pipeline region-constrained analyses. Similar to the first
group-level analysis, we used Randomise with 10,000 permutations,
variance smoothing, and controlled for the same nuisance variables.

2.5.1. HRF modelling

Compared to adults, the BOLD response of neonates has a smaller
amplitude, longer latency to peak, larger undershoot relative to initial
rise, and longer latency to return to baseline (Arichi et al., 2012;
Colonnese et al., 2008). Thus neonate-specific HRF models are necessary
to accurately model the response to a stimulus. To test the effect of
different HRF models, we used the dHCP pipeline results with three
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Unthresholded t-statistics

different HRFs of increasing complexity. We examined a single gamma
(without undershoot; abbreviated as SG), a double gamma (with initial
rise and subsequent undershoot; abbreviated as DG), and a
three-basis-function model developed using FSL's FLOBS (abbreviated as
FLOBS) (FMRIB's Linear Optimal Basis Sets) (Woolrich et al., 2004). Both
the SG and DG HRF models were generated in-house using the
neonate-appropriate parameterisations (based on (Arichi et al., 2012)).

To examine the effects of these different HRF models on GLM output,
we generated a size-statistic image and its associated t-statistic image per
subject. For the SG and DG HRFs, the size-statistic image was the typical
parameter estimate image automatically generated by FEAT. For the
FLOBS HRF, we chose the size statistic to be the 2-norm of the fitted
FLOBS model, taking the sign of the parameter estimate from the first
basis function. As described above (section 2.5.), subjects' size-statistic
(parameter estimate) images were entered into our first group-level
analysis approach; subjects’ t-statistic images were used to generate
difference-in-t-statistic images and entered into our second group-level
analysis approach. We examined the effects of these different HRF
models on GLM output by comparing active voxel counts and t-statistics
within specific grey matter ROIs (see section 2.5.2. for definition of
ROIs).

To understand how our three HRF models fit to the data, we examined
peristimulus time plots in two ROIs: the postcentral gyrus, due to the
robust signal detection using all HRF models, and the thalamus, due to
the large variability in sensitivity between models. For each subject, we
extracted one time series per ROI by averaging across all trials, and
extracting the mean time series across all ROI voxels. We used a time
window of 20 vol (26 s), from the point of stimulus delivery, due to our
minimum inter-stimulus interval being 25 s. In addition to subject-level
peristimulus time plots, we compared group average plots. For the raw
data plots, we used the Woody average to correct for artefactual jitter in
the time series; for the HRF plots, we used a simple average. We
compared the stimulus responses in the raw data to the HRF estimates by
examining latency from baseline-to-peak and upshoot-to-undershoot
amplitude ratio. To extract robust values from the raw data, we fitted a
double gamma function to the raw data group average, which fitted
accurately. The baseline-to-peak and upshoot-to-undershoot ratio for the
raw data were extracted from the fitted double gamma function. All
peristimulus time plot analyses were performed using standard FSL and
MATLAB tools.

Thresholded t-statistics
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Fig. 8. Visualization of the effect of FIX denois-
ing using t-statistics from the GLM output for a
representative subject with strong stimulus-
correlated motion. Thresholding and correction
for multiple comparisons of the GLM results was
achieved using Gaussian random field theory
cluster-based thresholding with a cluster-forming
threshold of 2.3 and a 5% FWER correction. Top
row: not using FIX denoising resulted in strong
motion and striped multiband artefacts domi-
nating the unthresholded t-statistic image,
resulting in very poor sensitivity to signal in the
thresholded image. Bottom row: using FIX
denoising resulted in greatly reduced noise
contamination of the unthresholded t-statistic
image, and a significant improvement in sensi-
tivity to signal in the thresholded image. Notable
for this subject is the presence of stimulus-
correlated motion; see Fig. 3A to see stimulus
and head motion timings for this subject. FIX
denoising allowed separation of sources of BOLD
signal from motion artefacts successfully
removing noise while retaining the signal of
interest.

No FIX denoising

., | With FIX denoising

2.5.2. ROI and region-constrained analyses

We defined four grey matter and one white matter ROIs as follows. In
an independent dataset of 15 term subjects (Goksan et al., 2018), we used
the FEAT pipeline to generate an activity map in response to the 128 mN
noxious stimulus, which was thresholded (TFCE default parameters, 5%
FWER) and binarised to generate an activity mask. We defined four
bilateral anatomical regions using the infant standard brain atlas (Mak-
ropoulos et al., 2016): the thalamus, insula, postcentral gyrus (PoCG),
and anterior cingulate cortex (ACC). The thalamus, insula, and ACC re-
gions were defined directly from the atlas, whereas the postcentral gyrus
was defined manually as follows. The anterior boundary with the pre-
central gyrus and the medial boundary were automatically defined using
the atlas. The posterior boundary was manually selected as the fundus of
the postcentral sulcus and the lateral boundary with the opercular cortex
was manually defined using the lateral sulcus. We then masked the
anatomical masks with the activity mask, in order to define four discrete,
functionally active, grey matter regions of interest (ROIs). The thalamus
ROI includes regions of the thalamus involved in relaying incoming
noxious stimulus information to the cortex. The postcentral gyrus ROI
includes primary somatosensory cortex, area S1. The insula and ACC
ROIs include subregions of these structures involved in processing
noxious stimulus information. We also generated a fifth white matter ROI
using the atlas 40-week white matter mask, which we used to identify
activity incorrectly localised to white matter during the spatial normal-
isation and spatial smoothing comparisons.

To compare the group GLM t-statistic results between pipelines, we
used the above four bilateral grey matter ROIs in an ROI analysis
approach. First, to generate the group-level t-statistic images, each sub-
ject's effect size image was entered into the group-level whole-brain
analysis as described above (section 2.5.). Then, we examined the effect
of pipeline differences on group-level GLM statistics by comparing mean
and peak t-statistics extracted from each of the grey matter ROIs. Here,
we follow the rationale of Smith and colleagues that, at the group-level, it
is reasonable to assume that larger t-statistics are better due to reduced
noise variance originating from imperfect analysis methods (Smith et al.,
2005). To test if these observed differences were statistically significant,
we generated difference-in-t-statistic images per subject per pipeline
comparison and entered these into group-level region-constrained ana-
lyses. The region to which the analyses were constrained was a reduced
infant ‘pain network’ defined by combining the above four grey matter
ROIs.
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3. Results
3.1. Assessment of motion correction and distortion correction (MCDC)

The dHCP pipeline corrected slice-to-volume and motion-by-
susceptibility artefacts that were not corrected by the FEAT pipeline
(Fig. 2). The dHCP dynamic fieldmap approach provided greatest noise
reduction in frontal and occipital polar regions. We quantified motion-
related noise remaining after MCDC using DVARS, and by comparing
the tSNR (Fig. 3). At the single subject level, the dHCP MCDC resulted in
a greater reduction in motion related signal variance, especially during
large movements (Fig. 3A). At the group level, the dHCP MCDC pipeline
significantly reduced the mean DVARS values (Wilcoxon signed-rank
test, « = 0.05, p = 1.8*10~%) and increased the mean tSNR values
(Wilcoxon signed-rank test, « = 0.05, p = 6.1¥107°) across subjects
(Fig. 3B and C). Note that the change in tSNR should be interpreted with
caution, and in combination with the other measures, as real signal
fluctuations in the data can be included in the ‘noise’.

The dHCP MCDC resulted in a modest increase in the mean group-
level t-statistic in all grey matter ROIs (Table 1). Comparing the num-
ber of significantly active voxels, all three thresholding approaches
demonstrated increased number of active voxels using the dHCP pipeline
(Table 1). Using the thresholded activity maps to qualitatively compare
pipelines, the increased significant activity was seen in both cortical and
subcortical regions, with greatest improvements in the thalamus (Fig. 4).
Together, these results suggest the dHCP MCDC pipeline increased
sensitivity to signal by reducing noise variance. Comparing the pipeline
differences in subject-level t-statistics, the changes in these statistics were
not statistically significant.

3.2. Assessment of spatial normalisation

Improvements in spatial normalisation were apparent in individual
subjects when using the dHCP pipeline (Fig. 5). Greatest improvements
were visible at the brain/non-brain surface. The FEAT pipeline registra-
tions frequently incorrectly aligned the functional image cortical GM-CSF
boundary with the template image cortical GM-WM boundary, unlike the
dHCP pipeline. The dHCP registrations also produced marked improve-
ments in cerebellum and brainstem alignment. Other non-surface im-
provements were visible but less consistent across subjects. To quantify
these differences in spatial normalisation, we compared the alignment
between the functional image in standard space and the standard tem-
plate image using normalized mutual information (NMI), and the in-
tensity difference of the functional image across the GM-WM cerebral
boundary of the standard template i.e. the boundary intensity difference
(Fig. 6). Using both metrics, the dHCP registrations resulted in a statis-
tically significant improvement in spatial normalisation, (Wilcoxon

Table 1

: Comparison of motion correction and distortion correction (MCDC) between
FEAT and dHCP pipelines using t-statistics from the GLM output and significantly
activated voxel counts for all 15 subjects. T-statistics: using the dHCP pipeline, all
grey matter ROIs had an increase in mean t-statistic. The maximum t-statistic (in
parentheses) increased in all regions using the dHCP pipeline, except the PoCG. #
active voxels: the dHCP pipeline also resulted in an increase in the number of
significantly active voxels using all three thresholding approaches. Voxel is FDR
corrected; cluster and TFCE are FWER corrected. ACC = anterior cingulate cor-
tex; PoCG = postcentral gyrus; TFCE = threshold free cluster enhancement.

FEAT dHCP

T-statistics ACC 1.529 (3.518) 2.012 (4.581)

Insula 2.651 (5.244) 2.682 (5.422)

PoCG 2.822 (6.568) 3.131 (6.123)

Thalamus 2.168 (6.197) 2.542 (6.368)
# active voxels Voxel 0 41,492

Cluster 60,175 62,224

TFCE 16,823 53,926
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signed-rank test, « = 0.05, p = 1.2*10~* for NMI, p = 6.1*107° for
boundary intensity difference).

The dHCP spatial normalisation resulted in a modest increase in the
mean group-level t-statistic in all grey matter ROIs, except the PoCG
(Table 2). Comparing the number of significantly active voxels and the
proportion of significant activity incorrectly localised to white matter, all
three thresholding approaches demonstrated increased number of active
voxels and decreased proportion of mislocalised activity using the dHCP
pipeline (Table 2). Using the thresholded activity maps to qualitatively
compare pipelines, the dHCP pipeline provided greater spatial speci-
ficity, limiting the regions of significant activity to the grey matter more
accurately than the FEAT pipeline (Fig. 7). Together, these results suggest
the dHCP spatial normalisation pipeline increased spatial specificity and
sensitivity to signal by reducing subject-template and subject-subject
misalignment errors. The subject-level t-statistics between pipelines
were however not statistically significantly different.

3.3. Assessment of FIX denoising

We custom-trained FIX using the 15 subjects’ data from the dHCP
pipeline, as described in the methods. Using the inbuilt leave-one-out
cross-validation, we assessed its accuracy for automatic denoising of
new subjects to have a median True Positive Rate (TPR; percent of signal
components correctly identified as signal) of 100%, a median True
Negative Rate (TNR; percent of noise components correctly identified as
noise) of 95%, and an overall measure of median accuracy of 98.6%
(accuracy defined in FIX as (3*TPR + TNR)/4) (see Salimi-Khorshidi
et al. (2014) for details). Using the dHCP pipeline, the effects of FIX
denoising can be seen at both the subject-level (Fig. 8) and group-level
(Fig. 9), demonstrating a dramatic improvement in sensitivity to signal.
Particularly in subjects with strong stimulus-correlated motion, BOLD
and motion signal sources were clearly separated using ICA, and noise
was successfully removed from the data using FIX (see Fig. 8). White
matter and CSF signal sources were readily visible as ICA components,
negating the need to manually extract signal time courses from these
regions using ROIs. Removing these signal sources using the ICA
approach allowed us to avoid the partial volume risk inherent to the ROI
approach i.e. inadvertently including grey matter in the white matter and
CSF ROIs. This risk was substantially greater in our infant dataset than in
typical adult datasets due to the smaller brain and ventricle size, resulting
in overall poorer voxel-wise tissue type resolution. An additional benefit
of the FIX approach to ICA denoising was its semi-automated nature.

Table 2

Comparison of spatial normalisation between FEAT and dHCP pipelines using t-
statistics from the GLM output and significantly activated voxel counts for all 15
subjects. T-statistics: using the dHCP pipeline, there was an increase in the mean
t-statistic in all grey matter ROIs, except the PoCG (maximum t-statistic in pa-
rentheses). # active voxels: the dHCP pipeline resulted in greater sensitivity to
signal, measured as increased number of active voxels using all three thresh-
olding approaches. % white matter: the dHCP pipeline resulted in greater spatial
specificity, measured as decreased percent of active voxels mislocalised to white
matter using all three thresholding approaches. Voxel is FDR corrected; cluster
and TFCE are FWER corrected. ACC = anterior cingulate cortex; PoCG = post-
central gyrus; TFCE = threshold free cluster enhancement.

FEAT dHCP
T-statistics ACC 2.012 (4.581) 2.104 (4.030)
Insula 2.682 (5.422) 2.977 (5.224)
PoCG 3.131 (6.123) 2.959 (6.987)
Thalamus 2.542 (6.368) 2.565 (6.797)
# active voxels Voxel 41,492 66,984
Cluster 62,224 82,837
TFCE 53,926 66,756
% white matter Voxel 20.835 17.598
Cluster 9.882 5.400
TFCE 8.504 4.687
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No FIX denoising

With FIX denoising

Fig. 9. Comparison of the effects of FIX denoising on t-statistics from the GLM
output for all 15 subjects. Comparing thresholded group activity maps (TFCE,
default parameters, 5% FWER corrected), there is a dramatic increase in sensi-
tivity to signal, in both cortical and subcortical regions, when using FIX
denoising compared to no FIX denoising. Note, this FIX denoising comparison
was assessed using dHCP pipeline outputs only.

Including FIX denoising in the preprocessing pipeline resulted in an
increase in the mean group-level t-statistic in all grey matter ROIs
(Table 3). Comparing the number of significantly active voxels, all three
thresholding approaches demonstrated dramatically increased number of
active voxels using FIX denoising (Table 3). Using the thresholded group
activity maps to qualitatively compare pipelines, an increase in signifi-
cant activity was seen globally (Fig. 9). Together, these results suggest
FIX denoising dramatically increases sensitivity to signal by reducing
noise variance. Comparing the differences in subject-level t-statistics,
these differences were statistically significant (voxel-based thresholding,
5% FWER corrected), localised to all grey matter ROIs, except the ACC.

3.4. Assessment of spatial smoothing

Changing spatial smoothing extent shifted the balance between
sensitivity to signal and spatial specificity. Comparing the ROI analysis
results, we observed a consistent decrease in maximum t-statistic across
all grey matter ROIs as smoothing extent increased (Table 4, values in
parentheses). Comparing the region-constrained analysis results, we
observed a statistically significant (voxel-based thresholding, 5% FWER
correction) increase in t-statistics across all grey matter ROIs as
smoothing extent increased (Table 4; * and 1 = statistically significant
difference; * = 3 > 0 mm, { = 5 > 3 mm). The group-level ROI mean
t-statistics results were slightly more variable: there was a consistent
increase in mean t-statistic comparing 3 mm smoothing to no smoothing,
but a 50/50 split in ROIs in which mean t-statistics increased when
comparing 3 mm-5 mm smoothing. These ROI and region-constrained

Table 3

Comparison of the effects of FIX denoising on t-statistics from the GLM output
and significantly active voxel counts for all 15 subjects. T-statistics: using FIX
denoising resulted in an increase in the mean t-statistic in all grey matter ROIs
(maximum t-statistic in parentheses). * = ROIs in which FIX denoising resulted in
statistically significant increases in t-statistics (voxel-based thresholding, 5%
FWER corrected). # active voxels: using FIX denoising also resulted in an in-
crease in the number of significantly active voxels using all three thresholding
approaches. Voxel is FDR corrected; cluster and TFCE are FWER corrected.
ACC = anterior cingulate cortex; PoCG = postcentral gyrus; TFCE = threshold
free cluster enhancement.

No FIX With FIX

T-statistics ACC 2.065 (4.822) 2.104 (4.030)

Insula 2.199 (4.839) 2.977% (5.224)

PoCG 2.249 (5.329) 2.959* (6.987)

Thalamus 1.527 (7.387) 2.565* (6.797)
# active voxels Voxel 0 66,984

Cluster 30,837 82,837

TFCE 1311 66,756
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Table 4

Comparison of the effects of spatial smoothing on t-statistics from the GLM
output and significantly activated voxel counts for all 15 subjects. T-statistics: as
spatial smoothing extent increased, peak t-statistics (in parentheses) decreased
and statistically significant (voxel-based thresholding, 5% FWER corrected) in-
creases in t-statistics (* and { symbols) were observed across all grey matter ROIs.
The mean t-statistic in all ROI increased after 3 mm smoothing compared to no
smoothing, and increased in PoCG and thalamus after 5 mm smoothing
compared to 3 mm # active voxels and % white matter: as smoothing extent
increased, the number of statistically significant voxels increased, measured
using three thresholding approaches. Voxel is FDR corrected; cluster and TFCE
are FWER corrected. ACC = anterior cingulate cortex; PoCG = postcentral gyrus;
TFCE = threshold free cluster enhancement; * and { = statistically significant
difference.

0 mm FWHM 3 mm FWHM 5mm FWHM
T-statistics ACC 1.956 (5.392)  2.104* (4.030) 2.066 (3.102)
Insula 2.674 (6.222) 2.977* (5.224) 2.968 (4.317)
PoCG 2.423 (8.778)  2.959* (6.987) 3.265 (5.874)
Thalamus 1.928 (7.467)  2.565* (6.797) 2.927 (5.389)
# active voxels Voxel 14,484 66,984 140,389
Cluster 48,332 82,837 109, 137
TFCE 25,226 66,756 93,852
% white matter Voxel 13,353 17.598 21.309
Cluster 4.616 5.400 7.192
TFCE 2.319 4.687 6.148

results suggest that increasing the spatial smoothing extent tended to
increase t-statistics overall by “smearing” activity.

Comparing the number of significantly active voxels and the pro-
portion of significant activity incorrectly localised to white matter, all
three thresholding approaches demonstrated increasing number of active
voxels and proportion of mislocalised activity with increasing smoothing
extent (Table 4). Using the thresholded activity maps to qualitatively
compare smoothing extents, a clear shift in the balance between spatial
specificity and sensitivity to signal was visible, consistent with the
quantitative t-statistic and voxel count comparisons (Fig. 10). Without

0 mm FWHM

Fig. 10. Comparison of the effects of spatial smoothing on t-statistics from the
GLM output for all 15 subjects. Comparing thresholded (TFCE, default param-
eters, 5% FWER corrected) group activity maps, as spatial smoothing extent
increased, the signal sensitivity increased in all ROIs, but the spatial specificity
decreased. Not using spatial smoothing resulted in a lack of signal sensitivity in
both cortical and subcortical structures. Using the 5 mm FWHM kernel, signif-
icant activity was incorrectly localised to non-grey matter regions, and distinct
clusters of activity fused into massive clusters spanning several brain regions.
Note, this spatial smoothing comparison was assessed using dHCP pipeline
outputs only.



L. Baxter et al.

smoothing, activations in many regions were tightly localised to grey
matter, and as smoothing increased, activations became increasingly
blurred across functionally distinct brain areas. However, not smoothing
resulted in a thresholded activity map lacking several functionally
important regions, such as ipsilateral thalamus, ACC, hippocampus,
brainstem, and cerebellum. The minimal smoothing extent of 3 mm (1.5
times voxel size) appeared to be a reasonable compromise between
gaining sensitivity to signal at the cost of spatial specificity.

3.5. Assessment of haemodynamic response function modelling

We assessed the effects of three HRF models on sensitivity to signal
using the dHCP pipeline results. To explore the causes of variability in
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HRF model fits, we compared peristimulus time plots at both the subject
and group levels in the PoCG and thalamus ROIs (Fig. 11). In the raw
data, a considerable undershoot was visible (Fig. 11 Row 4, grey and
black plots). Due to this undershoot not being modelled by the SG HRF,
we excluded the SG from further peristimulus time series comparisons.
The FLOBS model appeared to over-fit the data compared to the DG
model. At the subject level, the fitted FLOBS HRFs exhibited a wide array
of BOLD response shapes, including some biologically unlikely profiles
(Fig. 11 Row 2). The reduced flexibility of the DG HRF appeared to make
this model more robust to noise (Fig. 11 Row 3). To quantify these dif-
ferences, we compared the baseline-to-peak latency and upshoot-to-
undershoot ratio of the group mean DG and FLOBS HRFs to a double
gamma function fit to the raw data group average (Fig. 11 Row 4). In
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Fig. 11. Peristimulus time plot analysis. The left column contains results for the postcentral gyrus (PoCG) ROI; the right column contains results for the thalamus
(Thalamus) ROL. For all plots, the x-axis is time in seconds and displays a time window from t = 0 s (time of stimulus delivery) to t = 26 s. The y-axis for rows 1-4 are
arbitrarily scaled so that the maximum value, as indicated on each y-axis, has a value of 1. Row 5 y-axis is in arbitrary units. Rows 1-3: peristimulus time plots for all
individual subjects, averaged over all voxels in the region and all trials, using the raw data (Row 1), the three basis-function (FLOBS) HRF (Row 2), and the double
gamma (DG) HRF (Row 3). Row 4: group mean time series plots. The raw data plots are arbitrarily scaled so that the double gamma function fit to the PoCG raw data
has a maximum of 1. In both the PoCG and Thalamus, the DG HRF has a larger upshoot amplitude and a smaller undershoot amplitude compared to the FLOBS HRF.
There are also differences in latencies to peak, as described in the main text. Row 5: group standard deviation time series plots. In both the PoCG and Thalamus, the
FLOBS HRF has larger cross-subject variability, most noticeably during the undershoot component of the BOLD response. Note, for the mean and standard deviation
plots in Rows 4-5, the values at each time point are calculated from the range of values across subjects at each time point for the DG and FLOBS responses displayed in
Rows 2-3. Thus, the differences in mean and standard deviation between the DG and FLOBS models are visible prior to deriving a size statistic (2-norm) for the

FLOBS model.
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both ROIs, the DG HRF had an upshoot-to-undershoot ratio more closely
resembling the raw data. In the PoCG, the DG HRF had a latency to peak
more closely resembling the raw data than the FLOBS HRF, but in the
thalamus, this relationship was reversed. Comparing the between-subject
variability in HRFs (measured as standard deviation), the FLOBS HRF
had noticeably larger variability than the DG HRF, especially during the
undershoot component of the BOLD response (Fig. 11 Row 5). Together
these results suggest the SG HRF is an overly simple model that under-fits
the BOLD response. The FLOBS model may be too flexible for the level of
noise in infant fMRI data, resulting in over-fitting and large between-
subject variability. The DG appeared to be a reasonable compromise
between under-fitting and over-fitting of the modelled response to the
data.

Comparing the group-level ROI analysis results, we found the DG HRF
produced the largest mean t-statistics in all grey matter ROIs compared to
both the SG and FLOBS HRFs (Table 5). The constrained-region group
comparisons of HRF models demonstrated statistically significantly
(voxel-based thresholding, 5% FWER corrected) larger t-statistics in the
DG HRF compared to the SG, localised to the insula. There were no
statistically significant differences in t-statistics between the DG and
FLOBS models. Similarly, the DG HRF resulted in the largest number of
active voxels compared to both SG and FLOBS models using all three
thresholding approaches (Table 5). Using the thresholded group activity
maps to qualitatively compare HRF models, the DG HRF produced
noticeably increased activity in both cortical and subcortical structures
(Fig. 12). Overall, these GLM-based results were in line with our peri-
stimulus time series results, and suggested the DG HRF model provides
greatest sensitivity to signal compared to both the SG and FLOBS models.

3.6. Overall effects of the dHCP pipeline on statistical results

Finally, we compared the overall effect of our FEAT and dHCP pipe-
lines on GLM results. To generate the group-level results, both pipelines
included FIX denoising, 3mm FWHM spatial smoothing, and the
neonatal DG HRF at the subject-level. Comparing the mean t-statistics of
the ROI analysis, the dHCP pipeline resulted in increased mean t-statistics
in all grey matter ROIs (Table 6). The constrained-region group com-
parisons demonstrated statistically significantly (voxel-based thresh-
olding, 5% FWER corrected) larger t-statistics in the dHCP pipeline
compared to the FEAT pipeline, localised to the PoCG. This is in contrast
to our assessments of MCDC and spatial normalisation above (sections
3.1. and 3.2.), where we did not observe statistically significant differ-
ences in t-statistics when contrasting these pipeline differences in
isolation.

Similarly to the mean t-statistic results, the dHCP pipeline resulted in
a larger number of significantly active voxels compared to the FEAT
pipeline using all three thresholding approaches (Table 6). The different
thresholding approaches were less clear-cut in quantifying the proportion
of activity mislocalised to white matter. Voxel-based thresholding was
not appropriate here, because no activation survived thresholding with
the FEAT pipeline. Cluster-based thresholding suggested a clear
improvement in spatial specificity using the dHCP pipeline. TFCE
thresholding revealed almost identical levels of mislocalised activity in
both pipelines. However, given our assessment of spatial normalisation
(section 3.2.) clearly demonstrated improved alignments using the dHCP
pipeline, the similar proportions of activity in white matter measured
here appear to be a TFCE “artefact”. That is, given the increase in
sensitivity to signal seen with the dHCP pipeline, we would expect this
substantially larger grey matter activity to unavoidably ‘enhance’
neighbouring white matter t-statistics. Finally, using the thresholded
group activity maps to qualitatively compare pipelines, the dHCP pipe-
line demonstrated noticeably increased activity in both cortical and
subcortical structures (Fig. 13). Taken together, these quantitative and
qualitative GLM-based pipeline comparisons revealed dramatically
improved spatial specificity and sensitivity to signal using the dHCP
pipeline.
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Table 5

Comparison of the effects of HRF modelling on t-statistics from the GLM output
and significantly activated voxel counts for all 15 subjects. T-statistics: the double
gamma HRF had greatest mean t-statistic in all grey matter ROIs (maximum t-
statistic in parentheses). # active voxels: the double gamma HRF had the largest
number of significantly activated voxels using all three thresholding approaches.
Voxel is FDR corrected; cluster and TFCE are FWER corrected. ACC = anterior
cingulate cortex; PoCG = postcentral gyrus; TFCE = threshold free cluster
enhancement; * = statistically significant difference.

Single gamma Double gamma FLOBS

T-statistics ACC 1.870 (4.889) 2.104 (4.030) 1.905 (3.953)
Insula 2.773 (5.269) 2.977* (5.224) 2.141 (4.400)
PoCG 2.877 (7.182) 2.959 (6.987) 2.729 (5.824)
Thalamus 1.985 (5.709) 2.565 (6.797) 2.366 (5.920
# active voxels Voxel 33.421 66,984 57,569
Cluster 72,987 82,837 46,648
TFCE 38,896 66,756 29,665

Single gamma

Double gamma

Fig. 12. Comparison of the effects of HRF modelling on t-statistics from the
GLM output for all 15 subjects. Comparing thresholded (TFCE, default param-
eters, 5% FWER corrected) group activity maps, the double gamma HRF had
greatest sensitivity to signal in both cortical and subcortical structures, most
noticeable in ipsilateral thalamus.

4. Discussion

In this work, we report and validate an extension of the dHCP fMRI
preprocessing pipeline for the analysis of evoked brain responses in in-
fants. We identify optimal processing choices and show that the extended
dHCP pipeline substantially improves sensitivity to signal and spatial
specificity of activity detected in response to a noxious stimulus. There
are several advantages to optimising the dHCP pipeline to characterise
noxious-evoked BOLD activity. In contrast to resting-state data, the time
course of the signal of interest is determined by the experimenter,
meaning that model parameters and statistics can be assessed using a
general linear modelling approach (Boynton et al., 2012). As noxious
stimulation activates a large array of distinct brain areas in infants
(Goksan et al., 2015; Williams et al., 2015), it provides multiple discrete
regions in which model parameters and statistics can be examined. In
addition, reflex limb withdrawal in infants is often evoked by
low-intensity noxious stimuli (Hartley et al., 2015), providing an op-
portunity to examine whether stimulus-correlated motion artefacts can
be effectively minimised.

Subject motion and large inter-subject variability in brain
morphology represent two substantial challenges in the analysis of infant
MRI data. We show that slice-to-volume motion correction (Andersson
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Table 6

Overall comparison of FEAT and dHCP pipelines using t-statistics from the GLM
output and significantly activated voxel counts for all 15 subjects. T-statistics:
using the dHCP pipeline, all grey matter ROIs showed an increase in mean t-
statistic (maximum t-statistic in parentheses). This increase in t-statistics was
revealed to be statistically significant (voxel-based thresholding, 5% FWER
corrected) using the constrained-region analysis, localised to the PoCG. # active
voxels: the dHCP pipeline also resulted in an increase in the number of signifi-
cantly active voxels using all three thresholding approaches. % white matter:
voxel-based thresholding was not valid due to zero voxels being activated.
Cluster-based thresholding showed a clear reduction in mislocalised activity
using the dHCP pipeline. TFCE-based thresholding showed a very modest in-
crease in mislocalised activity using the dHCP pipeline, possibly due to un-
avoidable ‘enhancement’ of white matter voxels by the neighbouring grey
matter. Voxel is FDR corrected; cluster and TFCE are FWER corrected.
ACC = anterior cingulate cortex; PoCG = postcentral gyrus; TFCE = threshold
free cluster enhancement; * = statistically significant difference.

FEAT dHCP
T-statistics ACC 1.529 (3.518) 2.104 (4.030)
Insula 2.651 (5.244) 2.977 (5.224)
PoCG 2.822 (6.568) 2.959* (6.987)
Thalamus 2.168 (6.197) 2.565 (6.797)
# active voxels Voxel 0 66,984
Cluster 60,175 82,837
TFCE 16,823 66,756
% white matter Voxel - 17.598
Cluster 10.051 5.400
TFCE 4.412 4.687

FEAT pipeline

dHCP pipeline

Fig. 13. Overall comparison of FEAT and dHCP pipelines using t-statistics from
the GLM output for all 15 subjects. Comparing the thresholded group activity
maps (TFCE, default parameters, 5% FWER corrected), the dHCP pipeline
resulted in increased sensitivity to signal in both cortical and subcortical re-
gions. Compared to the unilateral activity detected in the thalamus and cingu-
late cortex using the FEAT pipeline, the bilateral activity detected in these
regions using the dHCP pipeline could lead to a substantially different inter-
pretation of the data.

et al., 2017) and estimated dynamic distortion correction (Andersson
et al., 2018) dramatically reduce the effects of head motion, increasing
sensitivity to BOLD responses across the brain. While these results are
compelling, it should be noted that EDDY, which was used for both
slice-to-volume and dynamic distortion correction, was designed for
diffusion data, and its use on functional data is undocumented and not
officially supported by FSL. For fMRI, EDDY uses a predictive model in
which each volume is treated as if it were a diffusion BO image. The re-
sults herein, and other results in preparation (not shown), are starting to
build a strong case for the use of EDDY on fMRI data.

Another major challenge is to ensure that functional data from infants
is accurately registered to a standard template to facilitate group analysis.
Accurately computing these spatial normalisation transformations is
challenging because of the rapid developmental changes in brain size,
volume, and gyrification in infants (Dubois et al., 2014; Dubois and
Dehaene-Lambertz, 2015). The dHCP pipeline uses infant-appropriate
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boundary-based  registration  (BBR) parameters for  the
functional-to-structural registration that account for the inversion in
grey-matter/white-matter contrast compared to adults, and an advanced
registration tool (ANTs's Syn) for the structural-to-standard registration
that uses multiple warp resolutions among other optimisations. This
leads to significant improvements in the alignment of functional images
to the standard infant template, throughout the brain, especially at the
cortical surface, the brainstem, and the cerebellum. Overall, there is a
substantial benefit in using optimised spatial normalisation.

FIX denoising is a semi-automatic spatial ICA-based cleanup approach
used to remove noise artefacts from fMRI data, and has been successfully
implemented in adult and infant fMRI data to greatly improve sensitivity
to signal (Ball et al., 2016; Griffanti et al., 2014; Salimi-Khorshidi et al.,
2014). To date, there has been no formal assessment of the benefits of FIX
denoising applied to neonatal fMRI data. We found the use of FIX
denoising resulted in a dramatic increase in the number of significantly
active voxels, and improved signal detection across multiple cortical and
subcortical brain regions, at both the subject and group levels. FIX
denoising allowed us to obtain good quality data from participants that
would otherwise have been rejected due to artefacts. Fig. 8 demonstrates
the dramatic improvement FIX denoising can have on the spatial prop-
erties of a single subject's activity map: with FIX denoising performed, the
relatively smooth activity map with large activations well localised to
grey matter regions is strongly suggestive of improved modelling of
neural responses rather than motion. It is clear that effective denoising is
a crucial element of neonatal fMRI analysis and should be incorporated
into analysis pipelines.

Noxious-evoked BOLD activity in the infant is generated in a multi-
tude of brain regions, from small grey matter nuclei to the entire primary
somatomotor cortex (Goksan et al., 2015; Williams et al., 2015). Thus,
the noxious stimulation used in this experiment provided an opportunity
to investigate the effect of spatial smoothing (Lowe and Sorenson, 1997).
Smoothing increases SNR and improves between-subject anatomical
overlap of the functional data in standard space, but can result in poorer
spatial specificity. We demonstrated that omitting spatial smoothing
produced a substantial drop in sensitivity to signal in ACC, thalamus,
hippocampus, brainstem, cerebellum, as well as other cortical and
subcortical regions. The use of a smoothing kernel more than twice the
voxel size (i.e. the 5 mm smoothing kernel) resulted in increased sensi-
tivity to some signal at the significant cost of spatial specificity, with a
large increase in the proportion of activity incorrectly localised to white
matter and the fusion of clusters that were clearly distinct with reduced
spatial smoothing. The fusion of significantly active regions that span
multiple functionally distinct brain areas is problematic when exploring
noxious-evoked brain activity, due to the close proximity of several
distinct brain areas where noxious-evoked brain activity is generated
(Woo et al., 2014). This is exemplified in the perisylvian/operculoinsular
region, where the lateral-most region of area SI of the postcentral gyrus is
adjacent to area SII in the parietal operculum, which itself is adjacent to
the posterior insula, regions all typically involved in processing noxious
stimuli in both adults and infants (Apkarian et al., 2005; Goksan et al.,
2015; Tracey and Mantyh, 2007; Williams et al., 2015). To explore and
understand the role of each of these distinct brain regions, we must avoid
artificially combining and blurring the signal recorded across discrete
brain regions. In practice, this requires avoiding large spatial filters that
could easily cover multiple infant brain regions, and lead to a lack of
spatial specificity and problematic spatial inference that would dramat-
ically affect the interpretation of activity maps. Minimal smoothing of 1.5
times the voxel size yielded an optimal balance of spatial specificity and
sensitivity to signal in our data. It must be noted that all our analyses
were performed in volumetric space, so these conclusions would not
apply to surface-based analyses. The assessment of optimal spatial
smoothing extent will have to be investigated in future surface-based
work.

In general, the researcher's decision about spatial smoothing needs to
be based on two things: first, data quality and quantity, and second, on
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the specific research question. Regarding data quality and quantity,
smoothing the data involves a trade-off between increasing smoothing to
increase SNR and statistical power with the undesirable effect of blurring
your image and reducing spatial specificity. Spatial smoothing might not
be needed if SNR is reasonably good or if a large dataset is available. In
general, the less smoothing the better, but it is a trade-off. Regarding the
research question, if you are interested in exploring small brain regions
or short-range functional connectivity, then spatial smoothing may have
to be omitted. And conversely, if you are exploring larger regions or
functional connectivity between distantly separated regions, then
smoothing can reasonably be done if an increase in statistical power is
needed. Our findings emphasise the point that if spatial smoothing is
performed, the extent should be limited as much as possible due to the
unwanted effect of blurring across tissue-type boundaries and functional-
region boundaries, an effect which is greater in infants than adults due to
the much smaller brain volume.

The immaturity of the infant neurodynamic and haemodynamic re-
sponses, and their coupling, suggests that the adult canonical HRF is
inappropriate, and adoption of a neonate-specific HRF function would
improve the accuracy of modelling infant haemodynamic brain activity
(Arichi et al., 2012; Colonnese et al., 2008). Both near-infrared spec-
troscopy and BOLD fMRI studies demonstrate that the haemodynamic
response has a longer latency to peak in infants as compared with adults
(Arichi et al., 2012; Roche-Labarbe et al., 2014; Slater et al., 2006).
Arichi and colleagues characterised the infants' BOLD response to a so-
matosensory stimulus using a double gamma HRF and, in term infants,
estimated the latency to peak to be approximately 7 s and the ratio of
upshoot-to-undershoot to be approximately 1:1 (Arichi et al., 2012). We
found the infant double gamma HRF had the greatest sensitivity to signal
compared to the single gamma and FLOBS HRF models. Using the infant
double gamma function, we were able to detect robust signal in multiple
cortical and subcortical brain regions typically included in descriptions of
adult pain networks (Apkarian et al., 2005; Tracey and Mantyh, 2007),
and as previously reported in infants using independent datasets (Goksan
etal., 2015; Williams et al., 2015). We observed large undershoots in our
data, making the single gamma function an inappropriate choice, as it
fails to model the undershoot leading to model under-fitting. Interest-
ingly, the FLOBS HRF model had lower-than-expected sensitivity to
signal, which appeared to be due to model over-fitting. Compared to the
double gamma HRF, the increased flexibility of the FLOBS HRF resulted
in a large increase in between-subject variability in modelled BOLD
response morphology. We observed differences in latency to peak be-
tween postcentral gyrus and somatosensory thalamus, and in both ROIs,
there was substantial cross-subject variability in undershoot morphology,
which points to there being considerable scope for improved neonatal
HRF estimation methods still. It is worth noting that the experimental
stimulus used by Arichi and colleagues to develop their term neonatal
HRF models was somatosensory (non-noxious). The HRF models were
developed from a sample with an age-range similar to ours and from
somatomotor regions. It is therefore plausible, due to the similarity of the
experimental paradigms, that the double gamma function was ideally
tuned to explain the bulk of the BOLD signal variance evoked by our
noxious stimulus. This may have resulted in a type of ‘Goldilocks Effect’,
whereby both simplifying the HRF model (i.e. using the single gamma
HRF) and also increasing its complexity (i.e. using the FLOBS HRF) could
have shifted the model away from a parameterisation that was ‘just
right’. Our data might therefore not profit from the increased flexibility
afforded by the FLOBS model. It is possible that data with a wider range
of ages or different stimulus modalities may still benefit from the flexi-
bility of using a basis set HRF model. Further exploration of this topic is
still very much warranted.

It is important to note that several of our findings are not specific to
the neonatal population. From the adult literature, we know the advan-
tages of using FIX denoising (Griffanti et al., 2014), of using the BBR cost
function (Greve and Fischl, 2009), and of ANT's SyN over FSL's FNIRT
(Klein et al., 2009). Regarding motion and distortion correction, the
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advantages of volume-to-volume plus slice-to-volume motion correction
over volume-to-volume motion correction alone (Andersson et al., 2017),
and the advantages of estimated dynamic distortion correction over static
distortion correction (Andersson et al., 2018), are also established in
adult MRI. Here, we demonstrate that these advances in analysis provide
significant improvements in neonatal fMRI data processing too. We also
expect this pipeline to be useful for studies throughout childhood, and in
other cohorts where head motion, and challenging variations within and
across individuals exist. Of course, the neonate-specific standard tem-
plates and HRF models would have to change according to the population
in question.

While the current study did not explore the optimisation of data
acquisition protocols, the issue of data acquisition is also of central
importance to the advancement of neonatal fMRI research quality. If you
compare adult and infant data with identical spatial resolution (e.g. 2 mm
isotropic voxels), the ‘effective resolution’ (the ability to distinguish
neighbouring structures) is much lower in infants. Therefore, achieving
good spatial resolution is particularly valuable in studies of neonates.
Here, we have obtained a higher spatial resolution than in our previous
studies (Goksan et al., 2018, 2015) through the use of multiband imaging
(Moeller et al., 2010; Xu et al., 2013) and an echo time optimised for
neonates (Goksan et al., 2017). However, severe trade offs are faced
when increasing resolution. Increasing spatial resolution will dramati-
cally decrease SNR, which decreases proportionally to voxel volume.
Further, increasing the multiband factor - to maintain an acceptable
repetition time - also reduces SNR, particularly in subcortical regions.
Maintaining SNR is particularly important in infants, as their BOLD signal
is intrinsically low, compared to adults (Arichi et al., 2012). We felt that
the current acquisition provided a good balance of resolution and SNR,
but more detailed assessment of this trade off, and use of infant-specific
head coils, would be of great interest (Hughes et al., 2017).

5. Conclusion

In summary, we successfully adapted and optimised an extended
version of the dHCP fMRI preprocessing pipeline to an infant stimulus-
based fMRI dataset, which in this case was a mild noxious stimulus
applied to the infant's foot. We assessed the effects of implementing this
pipeline on spatial specificity and sensitivity to signal, comparing the
results to a more traditional FSL FEAT-based pipeline, to ensure that the
dHCP pipeline's more extensive data manipulation and signal variance
reduction did not inadvertently remove signal-of- interest. The dHCP
pipeline's sophisticated motion correction, distortion correction, and
spatial normalisation steps provided dramatic improvements in both
sensitivity to signal and spatial specificity, measured using a range of
independent, quantitative metrics. We examined the effect of FIX
denoising, spatial smoothing, and HRF modelling on both subject-level
and group-level results, and found that the data cleanup provided by
FIX, with minimal spatial smoothing, and an age-appropriate double
gamma HRF, resulted in the optimal outcomes. These improvements
were detectable at both the subject and group level, and both before and
after GLM modelling. Importantly, we demonstrate that the dHCP pre-
processing pipeline can be adapted for use on stimulus-based functional
data, not just resting-state data for which the pipeline was initially being
developed. It is also noteworthy that our dataset is independent of the
dHCP, acquired with a different data acquisition protocol, thus high-
lighting the flexibility of this now-generalised preprocessing pipeline.
Adoption of standardised, optimised analysis methods will improve in-
fant fMRI data interpretation, minimise the heterogeneity in fMRI anal-
ysis, and facilitate comparison across studies. As the fMRI field moves
from group-level analysis to subject-level analysis (Finn et al., 2015;
Tavor et al., 2016; Vogt, 2015), the optimisation of data preprocessing
for the infant population is imperative. The demonstration that the dHCP
analysis pipeline can be successfully implemented to measure complex
noxious-evoked haemodynamic activity in the infant brain is a valuable
advance for the field of neonatal neuroimaging. This work outlines the
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foundations on which further infant fMRI research can be conducted, and
provides a platform to address fundamental neuroscientific questions,
such as investigating how environmental factors shape central nervous
system function during early human development.
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