
1

Smoothed A* Algorithm for Practical Unmanned Surface

Vehicle Path Planning

Rui Song, Yuanchang Liu, Richard Bucknall

(Department of Mechanical Engineering, University College London, Torrington Place,

London WC1E 7JE, UK)

Corresponding author: Yuanchang Liu. Tel: +44(0)2091089405. E-mail:

yuanchang.liu.10@ucl.ac.uk

An effective path planning or route planning algorithm is essential for guiding

unmanned surface vehicles (USVs) between way points or along a trajectory. The A*

algorithm is one of the most efficient algorithms for calculating a safe route with the

shortest distance cost. However, the route generated by the conventional A* algorithm

is constrained by the resolution of the map and it may not be compatible with the non-

holonomic constraint of the USV. In this paper an improved A* algorithm has been

proposed and applied to the Springer USV. A new path smoothing process with three

path smoothers has been developed to improve the performance of the generated route,

reducing unnecessary ‘jags’, having no redundant waypoints and offering a more

continuous route. Both simulation and experimental results show that the smoothed A*

algorithm outperforms the conventional algorithm in both sparse and cluttered

environments that have been uniformly rasterised. It has been demonstrated that the

proposed improved A* route planning algorithm can be applied to the Springer USV

providing promising results when tracking trajectories.

KEY WORDS

1. USV navigation. 2. Path planning. 3. A* algorithm. 4. Autonomous

mailto:yuanchang.liu.10@ucl.ac.uk

2

1. INTRODUCTION: The benefits of deploying unmanned surface vehicles (USVs)

in both civil and military applications have raised worldwide interest. USVs offer the

benefits of reduced casualty risk and lower costs, as they can operate with minimal

personnel involvement. Moreover, when compared with autonomous underwater

vehicles (AUVs), USVs do not suffer from the constraint of GPS fixing as AUVs are

required to surface regularly to correct errors introduced from having to utilise on-board

dead reckoning navigation systems (Naeem et al., 2012). As a result of these benefits,

USVs can be used in a myriad of tasks requiring high positional accuracy, such as

weapons delivery, force multipliers, oceanography, environmental monitoring, shallow

water surveying and supporting AUV operations by acting as a communication relay. A

number of USV programmes have emerged in the last decade for a variety of these

aforementioned purposes. Springer USV is one such research project highlighted in this

paper.

The Springer USV project commenced in 2004 by the Marine and Industrial

Dynamic Analysis (MIDAS) Research Group at Plymouth University (Xu, 2007).

Springer is designed for undertaking shallow water missions, such as pollutant tracking,

and is a test bed platform for other academic and scientific institutions’ research

(Naeem et al., 2006). To accomplish these missions, a robust navigation, guidance and

control (NGC) system has been developed for Springer. Several research work

programs have been undertaken to improve the reliability and accuracy of the NGC

system. For example, a fuzzy logic based multi-sensor data fusion algorithm (Xu et al.,

3

2007) and an interval Kalman filter (Motwani et al., 2013) have been implemented for

accurate positioning to navigate the vehicle. In addition, a linear quadratic Gaussian

theory based controller (Naeem et al., 2006) and a genetic algorithm based model

predictive controller (Sharma and Sutton, 2013) have been developed for the autopilot

in the NGC system. However, from the previous reported papers, Springer either

follows a predefined route or uses a line-of-sight (LOS) waypoint tracking strategy for

route guidance. An intelligent path planning subsystem is currently absent and thus

needs to be developed and integrated with the NGC system to better assure the safety

of the USV.

Path planning algorithms can be categorised by two general approaches, viz. the

stochastic approach (Smierzchalski 1999; Tam and Bucknall 2010; Tsou et al., 2010)

and the deterministic approach (Naeem et al., 2012; Xue et al., 2011; Tam and Bucknall

2013). The deterministic approach, also known as the exact approach, follows a set of

rigorously defined steps to generate a unique navigation path; while the stochastic

approach, widely accepted as an approximate approach, only searches for an acceptable

solution. Therefore, the output from the stochastic approach does not necessarily

provide the best solution that satisfies the design requirements. As a consequence of its

better consistency and completeness, the deterministic approach has become the

dominant solution for maritime navigation systems. However, employing the

deterministic approach could lead to several other practical problems. The generated

path consists of a sequence of waypoints but may contain a significant number of course

4

changes. Such a path may not be practical in real-time maritime navigation, where the

path with the least course changes is generally preferred. Waypoints connected by line

segments usually result in the need for sharp angled course changes, which can prove

difficult for a USV to track precisely. In addition, the deterministic approach is costly

in terms of the computational resources required to run. In (Goldberg and Harrelson,

2005), it has been shown that it takes substantial memory space for saving the

significant number of solutions generated when applying the deterministic approach.

The path planning can further be classified into three stages, route planning,

trajectory planning and motion planning, according to properties of autonomous

unmanned systems. The intention here is to address the aforementioned problems by

developing a practical route planning algorithm to be integrated with Springer’s NGC

system, and report field testing results from data acquired from on-board sensors. The

design of the route planning algorithm is developed from the well-known deterministic

algorithm - A* algorithm (Hart et al., 1972). As a heuristic search, the A* algorithm is

more efficient than other deterministic approaches (Oriolo et al., 1995) because it

returns an optimal path with minimum cost, whenever one exists, thus guaranteeing

completeness. The conventional A* algorithm is however limited to generate

piecewise-linear path (Dolgov et al., 2010), neither smooth nor continuous. To

implement the conventional A* algorithm on USV platform, (Zhu et al., 2013)

developed a self-adaptive environmental model for inland water environment. The A*

algorithm is applied on subdivided effective grids, which are selected by a pre-

5

segmentation process. Also, to realise the avoidance of both static and dynamic

obstacles, (Casalino et al., 2009) developed a three-layered hierarchical architecture

path planning algorithm, where the obstacle is bounded in a box. With the A* algorithm

being applied locally in the second layer, the start point when searching for a path is the

USV’s current position while the end point is one of the vertex of the obstacle bounding

box. Although, these studies have succeeded in applying the conventional A* algorithm

to generate the shortest trajectory in a short time, they did not consider the trajectory

tracking problems and neglected the disadvantages such as the generated route being

unsmooth.

To optimise the generated route in terms of smoothness, (Yang et al., 2015) proposed

a finite angle A* algorithm, where the neighbouring nodes are increased to 16 and

turning options are increased (0o, 22.5o, 45o, 67.5o and 90o). Although such options can

avoid sharp turnings, it sacrifices the computational memory space at each iteration.

(Wang et al., 2018) developed a global path planning algorithm based on improved A*

algorithm, where hexagonal grids (6 neighbours) are used instead of rectangular grids

to increase the safety and rapidity. The generated path was smoothed by deletion of the

second node among three consecutive nodes that clear of collision. However, evaluating

collision for every node is redundant. (Kim et al., 2013) improved the conventional A*

algorithm that considered the dynamic constraint of USV in a non-uniform map, but

such variable scales will make locating become difficult when integrating with the data

acquisition subsystem.

6

Therefore, to best retain the advantages of the conventional A* algorithm and

integrate it into the Springer USV seamlessly, an improved waypoint based, A*

algorithm has been developed, named the smoothed A* algorithm. The conventional

A* algorithm has the advantage of being able to search for an optimal trajectory fast

and efficiently. To retain this characteristic, the 4-cell geometry connection style is

applied. In addition, to make the algorithm more suitable for USV navigation, three

novel path smoothers are introduced. These are the line-of-sight path smoother (LOPS),

the waypoint refining path smoother (WRPS) and the interpolation based path smoother

(IPS). The LOPS is used to reduce unnecessary ‘jags’ produced by the conventional A*

algorithm, the WRPS removes redundant waypoints along a straight line within the

constraints of Springer’s dynamic behaviour, and the IPS uses a cubic spline

interpolation method to make the path more continuous.

This paper is organised as follows: Section 2 outlines the NGC system and describes

each subsystem in detail. The structure and implementation of the smoothed A*

algorithm are discussed in Section 3. Section 4 briefly introduces the dynamic model

of the Springer USV. Simulation and experimental results for off-line and real time path

planning are presented in Section 5. Section 6 is the conclusion.

7

2. NAVIGATION, GUIDANCE and CONTROL SYSTEM: The Springer USV, as

shown in Figure 1, is designed and constructed by the Marine and Industrial Dynamic

Analysis Research (MIDAS) group of Plymouth University. Springer has a two-hull

catamaran structure with the dimensions of 4.3 m in length and 2.3 m in width. Eight

12 V 135 A h batteries, which are placed within the hulls with four in each side, provide

power for the electrical motors to drive two propellers to propel the vehicle and all the

electronic devices. Two Peli-cases with guaranteed waterproof capability are placed on

the hulls to contain the Navigation, Guidance and Control (NGC) system. Figure 2

illustrates the autonomous NGC system structure of Springer USV. It consists of three

modular subsystems:

1) Navigation data processing subsystem. This module acquires the necessary

navigational data, including that of the USV itself and other ships, from various sensors.

Common navigational devices such as GPS, electronic compass, inertial measurement

unit and gyroscope have been implemented. In addition, to increase the robustness, a

complement module consisting of IMU and stereo camera has also been developed to

determine the USV's location if other sensors malfunction. All the information obtained

is processed and merged via a data fusion process to improve information accuracy. As

this paper focuses on the development of path planning algorithms, details of the data

fusion process will not be introduced here, but can refer to work presented in (Liu et

al., 2015 and Motwani et al., 2016). The processed information is then passed to the

path planning subsystem to assist with the path planning task.

8

2) Path planning subsystem. This subsystem is a new addition to the NGC system of

Springer. With the information provided from the navigation data subsystem, the

smoothed A* algorithm is applied by this subsystem to generate an optimal collision

free path as the reference trajectory route to inform the initial navigation.

3) Autopilot subsystem. The autopilot employs a closed loop controller to calculate

the USV's heading according to the generated waypoints. The generated manoeuvres

include the changing of the heading as well as the speed of USV. By conducting tests,

the PID controller was tuned to produce the most robust trajectory tracking results for

Springer’s autopilot (Motwani, 2015).

Figure 1. Springer USV.

9

Figure 2. The NGC system structure of Springer USV. There are three subsystems, namely the

Navigation Data Processing subsystem, the Path Planning subsystem, and the Autopilot

subsystem.

10

3. PATH PLANNING ALGORITHM: It has been proved that the conventional A*

algorithm will find the shortest path in applications of robotics (Oriolo et al., 1995; Kala

et al., 2010 and Boh´acs et al., 2016). However, the conventional A* algorithm uses a

grid map where the resolution depends on the grid cell size and this can lead to several

practical problems for USV navigation control:

1) The generated path may contain a significant number of turns which are not

practicable in real-time maritime navigation, where the path with the least number of

turns is generally preferred. Although the number of turns could be reduced by using a

grid map with lower resolution, the resulting generated path may not be optimal,

especially in a complex environment. This observation is supported by the performance

comparisons when using the conventional A* algorithm with different grid map

resolutions, as shown in (Chiang et al., 2007).

2) The generated path often consists of a sequence of line segments connected by

waypoints where sharp turns are encountered. Such a path could be difficult for the

piloting control dynamics of a USV to track precisely. Therefore, to facilitate and

improve USV navigation, the conventional A* algorithm would need to be improved

by the addition of a path smoothing process.

While developing the improved A* algorithm, not only do the optimal criteria, such

as distance and time costs need be considered, but additional constraints, such as the

USV dynamics, must also be taken into account to make the generated path more

commensurate with practical requirements, constraints and limitations.

11

The structure of the improved A* algorithm is shown in Figure 3, which includes three

steps: (1) Image processing to generate a feasible map; (2) applying the conventional

A* algorithm to search for a route; and (3) path smoothing to produce a more practically

feasible path. The algorithm first receives fused navigational information, i.e. the

environment map from the upper level subsystem of the USV. The algorithm extracts

the environment map information to generate a binary grid map and identifies the

locations of static obstacles in the image processing step. Meanwhile, the fused

navigational data is used for mapping the positions of the USV itself on to the generated

grid map. Once all the information is processed, the conventional A* algorithm is

applied in the second step to calculate the shortest safe path, which consists of a series

of waypoints, including the mission start and mission end points. The path smoothing

process is then applied to reduce any unnecessary waypoints making the path more

continuous. Note that the path smoothing process is undertaken after the conventional

A* algorithm finishes searching the least cost route to largely reserve the fast

computational speed of the A* algorithm. Finally, the smoothed path with the

information of waypoint coordinates is sent to the lower level subsystem, such as the

autopilot subsystem, to control the USV and to track the generated path.

12

Figure 3. Smoothed A* algorithm procedures. The algorithm consists three procedures, i.e.

image processing, A* searching and path smoothing.

3.1. Image processing: The conventional A* algorithm runs on a rasterised map,

which is normally referred to as a grid map. However, in practical maritime navigation,

the map normally provided is a marine navigation chart, and therefore requires image

pre-processing to effectively generate the grid map while maintaining the essential

original information. There are two main techniques applied in the image processing

step to better inform the algorithm of the surrounding environment. One technique is

map transformation. This utilises the Otsu algorithm (Otsu, 1975) and Luminance

method, which are mainly used to distinguish the obstacles by transforming a colour

map first to a grey scale map and then to a binary grid map. The other technique is the

13

coordinate transformation method, which is applied to convert the navigational data

represented in the earth frame to the screen coordinate frame

• Otsu algorithm & Luminance method

The Otsu algorithm is a well-known method to generate a binary image from a grey

scale image in computer vision by distinguishing the foreground and background pixels.

As the geographic information extracted from a marine navigation chart is normally

coloured, a luminance method is used to obtain the required grey-scale information.

Figure 4. shows an example of converting a coloured image to a binary image.

The final step of the image processing is to obtain the grid map by rasterising the

binary image map. In such a case, a configuration searching space (Cspace) can be

obtained in such a way that Cfree is the place where the grid cell value is equal to 1

(white colour), and Cobs has a grid cell value that is equal to 0 (black colour). This makes

the risk assessment of collision to be dependent upon the logic value of the space only.

Note that, there is a trade-off between the computational time and the resolution of the

grid map. The higher the resolution, the longer the computational time required. An

acceptable size of each grid cell must be selected for the rasterization. Normally, in

robotic studies, when choosing the size of grid cells, it should follow the rule that a

robot can move from one grid to its neighbouring grids (Miklic et al., 2012). However,

different from robot, USVs are usually non-holonomic systems making their

manoeuvrability relatively low. In particular, when taking a turning manoeuvre, a

USV’s turning capability depends on the turning radius, which is defined by vehicle’s

14

dynamic model. When calculating the radius, according to the Standards for Ship

Manoeuvrability, the minimum turning radius is 5 times the ship’s length for a large

vessel and 3 times that for a small sized vessel. Therefore, in this paper, each grid cell

size is set at 12 m ×12 m, which is around 3 times the overall length of Springer (4.3m).

Based on this configuration Springer will be able to make starboard and port side turns

of up to 180° within a grid cell.

a) b) c)

Figure 4. Example of grid map generation. Image processing for the map of Roadford Lake. (a)

Colour image format. (b) Grey-scale map. (c) Binary image format.

• Coordinate transformation

When running the algorithm in real-time, the current USV location on the grid map

needs to be provided from the data acquisition subsystem at each time step. The USV

location, as determined from the sensors, is represented in the earth frame (values of

latitude and longitude). There is therefore a requirement to convert the earth coordinate

frame into a screen coordinate frame. By defining the height (h) and width (w) of the

15

screen, in actuality the size of the grid map, the transformation equations and boundary

conditions are given by:

 xref = {
(lon - minLon)*3600/scaleX when lon≠minLon & lon≠maxLon

0 when lon=minLon

w when lon=maxLon

 (3.1)

𝑦ref = {
(lat - minLat)*3600/scaleY when lat≠minLat & lat≠maxLat

0 when lat=minLat

h when lat=maxLat

 (3.2)

where xref and yref are the referred coordinates on the environment map in the screen

coordinate frame. lon and lat are the fused GPS information. The scaleX and scaleY are

conversion ratios along the X and Y axes, given by:

 scaleX = ((maxLon-minLon)*3600)/w (3.3)

 scaleY = ((maxLat-minLat)*3600)/h (3.4)

where, maxLon, minLon, maxLat and minLat are the geographic coordinates boundary

values of the environment map represented in the earth frame. 3600 represents the

conversion from the form (degree,degree,degree) to (degree, miniute,seconds). For

example, 1 degree*60→miniutes*60→seconds.

To transform pixels into meters, it can be first calculated using latitude and longitude

values. The expression is given as:

a= sin
2

(∆ϕ/2) + cos ϕ
1

* cos ϕ * sin
2

(∆λ/2)

c=2* tan2 (√a/√1-a)

d=R*c

, (3.5)

where d is the length in meters, ϕ is latitude, λ is longitude, R is earth's radius

equalling 6,371 km, (note that angles are represented in radians). To further transform

between pixels and meters: 1 pixel = d/w in the horizontal axis, and 1 pixel = d/h in the

vertical axis.

3.2. 4-GEOMETRY A* ALGORITHM: The conventional A* algorithm has been

16

implemented to calculate the least distance path which consists of a finite ordered

sequence of waypoints from the mission start point to the mission end point. It plans a

path from a start node Xstart(s) to an end node Xend(s), where s is the set of states

including the USV's heading angle  and coordinates (x,y). To calculate the path, it

stores an estimated distance cost from Xstart(s) to each node X(s) denoted as f(X(s)) with

the initial value for all the nodes on the grid defined as f (X(s)) = ∞. The algorithm

begins the search by setting the cost of Xstart(s) to be 0, then places Xstart(s) into a priority

queue known as the OPEN_list. Each element (X(s)) in this queue is ordered according

to the sum of its current distance cost from the start point, denoted as g(X(s)), and a

heuristic estimation of the distance cost to the end point (Xend(s)), denoted as h(X(s)).

Such a sum represents the local distance cost function, expressed as:

 f(X(s))=g(X(s))+h(X(s)). (3.6)

The node with the minimum value of f(X(s)), denoted as Xn(s), is placed at the front of

the OPEN_list. The heuristic h(X(s)) evaluates the cost of the optimal path from X(s)

to Xend(s) and is used to guide the search towards to Xend(s). Figure 5 shows that using

the heuristic cost function, the efficiency, in terms of the computational time and the

memory space is improved.

17

(a) (b)

Figure 5. Efficiency comparisons when considering and without considering the heuristic cost.

Search from the same start point (green square) to end point (red square). (a) Without heuristic

guidance, the number of iteration is 363. (b) With heuristic guidance, the iteration number

reduced to 59. The searched points stored in the memory space are shown in light green and

blue cells.

After selecting Xn(s) from the queue, the algorithm then updates the cost of all

neighbouring nodes that can be reached directly from Xn(s). The cost is calculated by

adding the current cost of the node Xn(s) (g(Xn(s))) and the distance between Xn(s) and

its neighbouring node Xi(s), denoted as d(Xn(s), Xi(s)). This cost, namely g(Xn(s))+

d(Xn(s), Xi(s)), will be used as the updated cost of Xi(s) if it is less than the node's

current cost. If the cost of a neighbouring node Xi(s) changes, Xi(s) will be placed in

the OPEN_list. It should be noted that the algorithm continues selecting the node with

the lowest value from the OPEN_list and places it into a CLOSED_list. During these

iterations, if the heuristic is appropriate and admissible, i.e. guaranteed to not

overestimate the cost between two nodes, then the path cost from Xstart(s) to Xend(s) is

guaranteed to be optimal. Once Xend(s) has been selected and moved to the

Operations: 363

Start

Nodes been
searched End

Searched node in OPEN list

Searched node in CLOSE list

Obs

Node is not searched

Generated path

Operations: 59

18

CLOSED_list, the cost updating process within the algorithm terminates.

In order to find the optimal path, which consists of a sequence of waypoints, each

node keeps a record of its parent node (Xi.parent) or predecessor during the iterations.

The final path will be searched from Xend(s) by iteratively following each node's

predecessor until Xstart(s) is reached. The corresponding pseudocode is described in

Algorithm 1.

The time complexity of the conventional A* algorithm depends on the number of

nodes (Nopen) that have been extracted from the OPEN_ list. The time complexities for

expanding the successor nodes isO(Nopen), and for resorting is O (Nopenlog(Nopen)), if a

fast sorting method is applied. Therefore, the time complexity for the complete A*

algorithm is O (N2
openlog(Nopen)).

Algorithm1 A* algorithm

Input: start node Xstart, end node Xend

1. OPEN_list := Xstart, where f(Xstart)= h(Xstart)

2. CLOSE_list := { }

3. while OPEN_list is not empty do

4. current node Xn := the node in the OPEN_list with the lowest f(X)

5. if Xn = Xend break

6. Remove Xn from OPEN_list and add it to CLOSE_list

7. for each adjacent node, Xi of Xn do

8. if f(Xi)=0 || Xi ∈ CLOSE_list continue

9. if Xi ∉ OPEN_list

10. add Xi into OPEN_list

11. the parent node of Xi, Xi.parent = Xn

12. calculate f(Xi), g(Xi) and h(Xi)

13. if Xi ∈ OPEN_list

14. g(Xi)'=g(Xi)+d(Xn,Xi)

15. if g(Xi)'≥g(Xi) continue

16. else

19

17. Xi.parent = Xn

18. g(Xi)=g(Xi)'

19. f(Xi) = g(Xi)+ h(Xi)

20. Resort and keep OPEN_list sorted by f values

21. Xp = Xend

22. Path_list := Xp

23. while Xp ≠ Xstart do

24. Xp = Xp.parent

25. Path_list = {Path_list, Xp}

Return: Path_list

• Cell connection

Generally, 2-geometry cell connection is used to represent changes of direction

along the path. As shown in Figure 6(a), the turning degree of 2-cell geometry (4

neighbours) is 90o. However, it is impractical to fix and limit any and all heading

changes to 90o for path change manoeuvres. To overcome this limitation a 4-cell

geometry (8 neighbours) connection is used to improve the path property throughout

this work. As shown in Figure 6(b), along with the 90o turn, a 45o turn is also available

as an option of manoeuvre. In this way, the efficiency can be improved since the number

of points to be evaluated has increased from 4 to 8 during each iteration.

(a) (b)

Figure 6. Grid cell connection styles. (a) 2-geometry cell connection scheme, searches 4

neighbours in each expansion. (b) 4-geometry cell connection scheme, searches 8 neighbours

in each iteration.

20

3.3. PATH SMOOTHING: The trajectory provided by the conventional A*

algorithm usually consists of a number of short line segments connecting a series of

waypoints. As shown in Figure 7, there are two major shortcomings associated with the

generated path. First, the main focus of the A* algorithm is to minimise distance cost

in such a way that the jags generated are minimised. It sacrifices turning cost in order

to obtain the shortest path. Second, the path obtained is not navigationally continuous,

which may not be practicable for the USV's autopilot subsystem to track. Therefore, to

overcome these disadvantages novel and advanced path smoothing algorithms have

been developed. As the path smoothing process is applied after path searching, the time

complexity depends on the number of waypoints existed along the route after each

process.

Figure 7. Path generated by the conventional A* algorithm with jags. To avoid obstacles (Obs,

grey nodes), a generating path with jags is inevitable.

To increase the practicability of the path, there are three main objectives that need

to be achieved: 1) To achieve soft acceleration: without smoothing，may lead to

Start

End

Jags

Jags
Searched node in OPEN list

Searched node in CLOSE list

Obs

Node is not searched

Generated path

21

unstable motion and over-actuation particularly at sharp turning points. 2) To save

energy less turning reduces the energy consumption for manoeuvring. 3) To track the

trajectory more robustly a continuous path is easier for the autopilot to track than

discrete waypoints which may require the USV turn too sharply.

Figure 8 shows the flowchart of the path smoothing algorithm with three individual

path smoothers (PS): The line-of-sight path smoother (LOPS), the waypoint refining

path smoother (WRPS) and the interpolation based path smoother (IPS).

Figure 8. Flow chart outlining the path smoothing algorithm.

• Line-of-sight path smoother (LOPS)

The LOPS is applied first to reduce the number of turning points after the

conventional A* searching procedure. It should be noted that the precondition to use

such a smoother is that there must be at least four points in the path list. Therefore, the

22

first action is a check of the number of path points generated from A* algorithm. An

iteration is then carried out from the first point to the last. For each iteration, the LOPS

checks all nodes in consecutive groups of three, (1) the current checking point, denoted

as point A; (2) A's next via point in the path, denoted as point B; and (3) the next via

point of B, denoted as point C. Figures 9(a) and 9(b) illustrate how this method works.

Assuming the original sequence of points in the path list is A-B-C-D-E-F-G, and it

satisfies two conditions:

1) Point C is directly visible to A as shown in Figure 9(a);

2) Distance between A and C is less than or equal to the sum of the distances between

A and B and the distance between B and C.

If the above conditions are satisfied point B will be removed from the path. The new

path becomes A-C-D-E-F-G as shown in Figure 9(b). In such a case, the number of

points are reduced after each loop. The LOPS will be terminated until the number of

turnings has been reduced to the lowest number feasible through application of the

LOPS. However, the path still remains as a series of waypoints connected by rigid

straight lines. The IPS is therefore applied to make the path more continuous.

 (a) (b) (c)

Figure 9. Path smoothing process. (a) The original path, where point B is unnecessary. Due to

the nature of grid search limitation, such ‘jag’ on point B is inevitable in conventional A*

23

algorithm, as shown in Figure 7. (b) LOPS, where point B has been removed. (c) WRPS, where

points C, D and F have been removed; and the smoothed curve path is generated by IPS.

• Waypoint refining path smoother (WRPS)

Before applying the IPS, redundant waypoints may exist along a straight path

segment such as points C and D shown in Figure 9(b). From previous empirical

experiments, it has been found that these waypoints could be allied to adverse vehicle

tracking. Closely placed waypoints will generate extra control points, which could lead

to degraded tracking performance. To overcome this problem, a waypoint refining path

smoother (WRPS) has been specifically designed based on the condition given as:

 |d(Xn+1)-d(Xn)|<dcont (3.7)

If Equation 3.7 is satisfied, i.e. the distance between two adjacent waypoints, Xn and

Xn+1, is smaller than the optimal control distance, denoted as dcont, the redundant

waypoint Xn+1 is removed. From previous experiments, it was found that although the

size of grid cell is well defined, during the navigation that a large heading change is

required, compromised tracking results may be generated especially between two

adjacent waypoints that are relatively close to each other. This is mainly due to the

limitation of vehicle’s tuning capability. Therefore, to compensate such a tracking error

and achieve better performance, the path planning algorithm that can provide optimal

number of waypoints is required and the optimal control distance dcont is introduced.

The value of dcont is determined from the performance of pre-done experiments in

identifying Springer’s dynamic model. In addition, the value of dcont is experience based

and related to the operating environment (may be influenced by the hydrodynamic

24

forces).

• Interpolation path smoother (IPS)

With the aim to further improve the continuity of the path, a cubic spline

interpolation is used. From among a number of interpolation methods, the cubic spline

is employed because its feature of least deviation from the original path (Fossen, 2002).

It is a process of approximation to depict a parametric curve from the discontinuous

path, as shown in Figure 9(c).

The main rationale of the cubic spline method is the use of a spline consisting of

third order polynomials to connect a set of control points (or waypoints on a path). The

interval between two control points has the form of polynomial function, which is

defined by:

 f
k
(x) = A3k(x-xk)

3
+A2k(x-xk)

2
+A1k(x-xk)+A0k (3.8)

where 𝑘 is the index of the control points. By giving the coordinate values of each

control point, the polynomials' coefficients (A0k, A1k, A2k and A3k) can be calculated

using the following constraints:

1) Cubic polynomials match the values of the equation at both ends of the interval

(between two control points) [𝑿𝑘, 𝑿𝑘+1], namely: fk(xk)=yk and fk(xk+1)=yk+1.

2) The first (velocity) and second (acceleration) derivatives of the cubic spline function

at each interval control point have the same value making the generated path continuous,

namely f’k-1(xk)= f’k(xk) and f’’k-1(xk)= f’’k(xk).

25

3) The first derivatives at the start and end points are equal to the initial and final

velocities; whereas, the second derivatives at the start and end points are zero.

4. SPRINGER DYNAMIC MODEL: Figure 10 shows the block diagram of the

Springer USV control model. The model has two inputs that represent the rotational

speeds of each propeller, denoted as n1 and n2 in revolutions per minute (rpm). A

single output represents the USV heading. For tracking along a straight line, the vehicle

requires both propellers to rotate at the same rpm but while turning motion the two

propellers will have a rotational speed differential (Annamalai et al., 2013). Two modes

of thruster velocity can therefore be defined as the common mode (nc) and differential

mode (nd), and be expressed respectively by:

 {
nc=

n1+n2

2

nd=
n1-n2

2

 (3.9)

To obtain the dynamic model for the Springer USV, a system identification (SI)

technique has been applied noting that the dynamic model for the USV changes with

the environment (Naeem et al., 2006). The MATLAB model for Springer USV is

obtained using the SI toolbox analysing the data obtained from several pre-done field

tests. For data acquisition purposes, several inputs including a pseudorandom binary

sequence were applied to the thrusters and the heading response was recorded. The

input to the SI is the differential mode thruster velocity nd, which causes the vehicle to

manoeuvre as required (nc is maintained to conserve the operating regime). The

acquired data were processed and filtered at 1 1 Hz since this frequency was deemed to

26

be adequate for Springer’s controller design noting that the dynamic model for the USV

changes with the environment (Naeem et al., 2006).

Figure 10. Block diagram of the USV model with two inputs and one output.

Prior to testing the performance of Springer’s NGC system with the smoothed A*

algorithm integrated, several model identification trials were carried out. Springer was

put through some predetermined manoeuvres, during which data such as vehicle

heading was recorded using a digital compass. During these trials, a forward speed of

3 knots was maintained, i.e. nc = 900 rpm, while nd was varied to steer the vessel. All

the recorded data were analysed by the built-in MATLAB SI function using the steering

model expressed as:

 {
x(k+1) = Ax(k)+Bu(k)

y(k) = Cx(k)+Du(k)
 (3.10)

in which the sampling time is 1 s, u(k) represents the differential thrust input in rpm and

y(k) represents the heading angle in radians. The calculated values of the coefficients

of matrices A, B, C and D are:

A =

[

1.1130 0.3519 −0.4221 −0.04596 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0.004301 −0.003881 −0.001648 0.001247 1]

B = [1 0 0 0 0]T

C=[0 0 0 0 1]

D = 0

27

This model, with the specific coefficients matrices, is then applied for the simulations

and experiments to test the performance of using the smoothed A* algorithm.

5. RESULTS: This section presents the results from both the actual trials using

Springer USV and the computer based simulations. To best verify the effectiveness of

the algorithm under simulated conditions, the practical environment extracted from the

Google map has been utilised. The practical field trials have been undertaken on

Roadford Lake which offered the opportunity of testing under a range of weather

conditions. The specific configurations for simulations and experiments are as follows:

1) Simulations of off-line path planning using a practical environment to verify the

path smoothing performance of the algorithm (Section 5.1).

2) Simulations of off-line path planning when integrating with Springer’s NGC

system in a practical environment (Section 5.2).

3) Experiment of off-line path planning when integrating with Springer’s NGC

system in a practical environment (Section 5.3).

The smoothed A* algorithm has been coded in JAVA and MATLAB. Simulations

were run on a computer with a Pentium i7 3.4 GHz processor and 8 GB of RAM. In the

simulations, it was assumed that the water current is 1 m/s flowing south to north. To

simplify the implementation of the algorithms, some assumptions are predefined:

 The USV is considered as a mass point., in such case the hydrodynamic forces

can be neglected.

28

 The velocity of the vehicle at the start and end points are assumed to be zero,

which satisfies the constraints of the IPS introduced in Section 3.3.

 When tracking the trajectory, the velocity of the USV is set at 1.5 m/s when the

vehicle is more than 20 m away from a waypoint and is reduced to 1 m/s when

the vehicle is within 20m of a waypoint.

 The distance value is calculated and measured in Euclidean space.

 The environment for both the simulations and experiment are assumed to be the

same. Therefore, the dynamic model of Springer USV obtained in Section 4 can

be applied for both verifications.

5.1. SIMULATION IN A PRACTICAL ENVIRONMENT: Results of running the

proposed algorithm in the representation of a practical environment are now presented

to show the performances of different path smoothers. The selected environment is

Roadford Lake, shown in Figure 11(a) with the start and end points marked as blue and

red dots respectively. Using the image processing illustrated in Section 3.1, the

extracted environment map is first transformed into a binary map, which is further

rasterised into a grid map with dimensions of 100×350 grid cells as shown in Figure

11(b).

Figure 11(b) shows the effect of the application of the path smoothers to the original

path generated by the conventional A* algorithm. The line in blue is the path generated

by the conventional A* algorithm. It can be seen that a number of zig zags are formed,

making such a path unsuitable for practical navigation. The line in green is the trajectory

29

obtained by applying the LOPS and WRPS. Note that within the WRPS, the optimal

control distance (dcont) is defined as 50 m to align with the dynamics of Springer. It can

be observed that the jags have been markedly reduced, producing a path with a reduced

number of turns. The red line shows the more continuous path obtained after application

of the IPS to the path generated after LOPS and WRPS application. These results show

that the smoothed A* path planning algorithm can achieve a smooth and continuous

path successfully for a practical environment and the next step would be integration

into Springer for field trials.

Table I shows the computational data results of the simulation. It can be seen that

the computational time for the conventional A* algorithm is less than that for the

smoothed A* algorithm (100 ms for conventional A* “compared to 485 ms for

smoothed A*). However, although the smoothing process increases computational cost

it reduces distance cost. The distance of the path generated by the conventional A*

algorithm is 2380 m compared to 2301 m provided by the smoothed A* algorithm. In

addition, the number of course changes of the path has be reduced significantly from

39 to 9 by using the smoothed A* algorithm.

To confirm the reliability and consistency of the verification process additional

simulations with different start and end points were carried out. In line with the

evaluation of the initial simulation results, the total distance cost and computational

time of the two algorithms have been compared with the results shown in Table II. It is

evident that the smoothed A* algorithm consistently provides a path with lower

30

distance cost. Although the intrinsic property of the conventional A* algorithm is to

find the shortest path, the total distance cost can be reduced further by using the

smoothed A* algorithm as the new path seeks to avoid unnecessary turnings. It can be

seen that for each of the simulations, the computational time for the smoothed A*

algorithm is longer than that for the conventional A* algorithm, as the path smoothing

procedure consumes more time to generate a smooth path. However, Table II indicates

that the modified path planning algorithm is still fast enough to satisfy the sampling

time constraint (less than 1 second) indicating that the algorithm should be suited to

real-time applications.

(a)

31

(b)

Figure 11. Off-line path planning simulation result. (a) The satellite map (2.13×3.93 km) of

Roadford Lake with marked start and end points. (b) The binary grid map (100×350 grid cells,

1 grid cell column length = 21.3 m and row length = 11.2m) with trajectories generated using

different PSs of the smoothed A* algorithm, i.e. original trajectory without path smoothing,

namely the conventional A* algorithm result (blue line), trajectory after applying the LOPS and

WRPS, and smoothed trajectory after using the IPS (red line)

Table I. Properties comparisons of conventional and smoothed A*

Performance Conventional A* Smoothed A*

Time (ms) 100 485

Distance Cost (m) 2380 2301

No. of turns 39 9

Table II. Simulation results with different start and end points

Test Start point

(m, m)

End point

(m, m)

Total distance cost (m) Computation time (ms)

A* Smoothed A* A* Smoothed A*

1 (639, 896) (1491, 2016) 257.00 254.48 56 236

2 (319, 2464) (1491, 2016) 155.40 152.31 26 137

3 (1278, 1120) (1278, 2464) 184.50 182.99 19 150

4 (639, 2800) (1278, 1120) 349.95 345.95 77 392

5.2. SIMULATIONS USING THE DYNAMICS OF A PRACTICAL USV: To

32

further test the algorithm simulations have been undertaken to demonstrate the seamless

integration of the smoothed A* algorithm with the NGC system of Springer USV. The

dynamic model and the turning radius of the vehicle have been specifically applied to

test the degree of accuracy with which the vehicle is able to follow the generated path.

In the simulations, the PID controller in the autopilot is used to track the waypoints.

In addition, to increase the complexity of the simulation, a virtual obstacle has been

added to the environment (shown in Figure 12(a)) such that the collision avoidance

capability can be tested. The USV launch point is (-4.2368°, 50.6954°) in longitude and

latitude; whereas, the start and end points transmitted to the path planning algorithm

are (-4.2344°, 50.6967°) and (-4.2364°, 50.6988°). The reason for such a configuration

is that when conducting the experiments, the USV is normally launched from the pier

and starts the mission in the middle of lake. Therefore, the USV launch point and

mission start point are not the same. Another simulation condition is that as the adopted

PID controller is designed to follow a series of waypoints instead of a continuous

trajectory, the IPS is therefore abandoned with only the LOPS and WRPS being used

as path smoothers.

To compare the performances with different path smoothers, simulations have been

carried out by applying the smoothed A* algorithm with and without WRPS. The results

are presented in Figure 12(b) (without WRPS) and 12(c) (with WRPS) showing the

generated trajectories as well as the associated tracking performance of Springer. The

generated waypoints are depicted as crosses in circles and connected by black dashed

33

lines while the blue lines are the trajectories taken by the vehicle when following these

waypoints.

Comparing the results of the two tests, it can be observed that the blue trajectory in

Figure 12(c) is much smoother than the one in Figure 12(b), especially in the section

denoted by the red boundary. This is because, through the use of the WRPS,

redundant waypoints can be removed producing a path that the vehicle's autopilot is

better able to follow. It should be noted that such behaviour is especially important in

terms of maintaining safety. Although the planned path is guaranteed to be obstacle

free, when the USV is navigating, any deviation from the path may still put the

vehicle at risk. These simulation results of the two tracking trajectories are used as the

benchmark for the experiments presented in the next subsection.

34

(a)

(b) (c)

Figure 12. Springer off-line simulated path tracking result using PID controller. (a) The

configuration searching space with one barrier virtual obstacle. The grids (100×350 grid cells,

1 grid cell column length = 21.3 m and row length = 11.2m) are represented in grey colour. (b)

Generated waypoints and simulated tracking trajectory result without applying the WRPS. (c)

Generated waypoints and simulated tracking trajectory result considering USV dynamic model

by applying the WRPS. The simulated tracking trajectories are represented in blue lines. The

planned paths are shown in black lines.

5.3. EXPERIMENTS ON A PRACTICAL USV: The aim of these field trials is to

validate the practical performance of the smoothed A* algorithm and the

implementation of a complete NGC system of Springer. The experiment was conducted

35

off-line, in that the trajectory was generated before the vehicle started the mission. The

locations of Springer's launch point and path planning start and end points are the same

as in Section 5.2. Hence, for the off-line path planning, the waypoints generated before

launching the USV are the same as in Section 5.2. During the field trials, two GPS and

three compasses are used in the Navigation Data Acquisition subsystem to obtain the

navigational information. To improve the accuracy of the navigational data, Kalman

filtering technology is applied to fuse the recorded data. This implementation work was

done by (Motwani et al., 2016). Springer used the PID controller to adjust the heading

such that each waypoint can be targeted. Figure 13 shows Springer on land and being

launched from the jetty.

(a) (b)

Figure 13. Different status of Springer during the experiment. (a) Springer on land. (b)

Springer is launching.

The tracking performance of Springer is shown in Figure 14. The red and blue lines

represent the tracking results of the waypoints generated with and without considering

WRPS, respectively. By examining the two trajectories, it can be seen that Springer

was able to reach the end point without colliding with any obstacles. Tracking

36

performance that mirrored that of the simulations was realised from the field trials. The

frequency and severity of course changes are reduced along the red line when compared

with the blue one, which clearly indicates that the inclusion of the WRPS in the

smoothed A* algorithm can better optimise the number of waypoints producing a path

that is easier for the vehicle to follow. In addition, the success of Springer autonomously

reaching the end point without any human intervention demonstrates that the developed

path planning algorithm can be integrated into Springer's NGC system, which improves

the autonomy level of the vehicle.

Table IV provides further comparison of the results from the simulations and field

tests detailed in Figures 12(b), 12(c) and 14 from three aspects: the maximum and the

minimum offsets between the simulated and experimental tracking trajectories and the

tracking time from launching Springer to the USV reaching the end point of the transit.

From these comparisons, it can be seen that the effect of WRPS, even though “subject

to the vehicle's dynamic constraints, reduces the maximum offset between the simulated

and experimental results from 44 m to 27 m. In addition, using the smoothed A*

algorithm with WRPS the tracking time taken by the USV is shortened from 93 s to 35

s. Reduced transit time can also indicate that less energy should be consumed by the

vehicle, which could be another feature of the smoothed A* algorithm. These results

prove that the smoothed A* algorithm can be applied to practical applications.

37

Figure 14. Off-line experiments of tracking the planned path. The blue line is the tracking result

of the path generated without using the WRPS. The red line is tracking result of the path

generated using the WRPS. The configuration searching space, start and end points are the same

as in Section 5.2.

Table IV. Comparisons between simulation and experiment results

Smoothed A* without WRPS Smoothed A* with WRPS

max_Offset (m) 44 27

min_Offset (m) 22 15

Time cost (s) 93 35

38

6. CONCLUSION: A smoothed A* path planning algorithm for autonomous USV

NGC system has been developed, verified, and validated by both simulation and field

trials. The algorithm is designed with the aim of enhancing the feasibility of path

planning with collision avoidance in a real environment. The structure of the algorithm

can be divided into three processes. These are, searching space construction, collision

free path generation and path smoothing. An image processing method was applied to

build the grid map of the searching environment and distinguish the obstacle and free

spaces. To improve the confidence of the results and computational time, a 4-cell

geometry connection A* algorithm was implemented as the main algorithm. Due to the

nature of grid searching limitations, three path smoothers were designed to improve the

path continuity. Results showed that the smoothed A* algorithm outperforms the

conventional A* algorithm in terms of turning and distance cost.

The main contribution of this paper is the determination that the smoothed A*

algorithm can be successfully integrated with the NGC system of a practical USV. The

algorithm imported the navigational data from on-board sensors to determine the

position of the USV. The waypoints calculated by the algorithm were sent to the

autopilot to control the USV's cruise. Both the simulation and experimental results

showed that by considering the USV’s dynamic model, the smoothed A* algorithm can

be integrated and applied for real applications with better performance compared with

the conventional method.

As regards future work, three main issues have not yet been investigated in this paper.

39

First, the quality and reliability of the navigational data as well as the effect of a

complete loss of navigational data. This may cause the path planning to generate

trajectories that have increased collision risk with obstacles while the USV is tracking.

Second, the battery monitoring will be added as the constraints of path planning for

better energy management. Third, the hydrodynamic forces from environmental

influences, such as waves, currents and tides can affect the tracking performance

especially in ocean environment. Therefore, to further improve the reliability of

generated route, the hydrodynamic forces should be considered from path planning

level.

ACKNOWLEDGEMENTS

This work is supported by the ACCeSS group. The Atlantic Centre for the innovative

design and Control of Small Ships (ACCeSS) is an ONR-NNRNE programme with

Grant no. N0014-03-0160, the group consists of universities and industry partners

conducting small ships related researches. The authors are also grateful for Autonomous

Marine Systems Research Group, Plymouth University and Professor Robert Sutton for

providing the dynamic model of Springer USV and helping undertake the experiments.

The authors are also indebted to Mr. Konrad Yearwood for his valuable critique of this

paper.

REFERENCE

Annamalai, A. S., Motwani, A., Sutton, R., Yang, C., Sharma, S., & Culverhouse, P.

(2013). Integrated navigation and control system for an uninhabited surface vehicle

based on interval Kalman filtering and model predictive control. In Control and

Automation 2013: Uniting Problems and Solutions, IET Conference, 1-6.

Boh´acs, G., Gyimesi, A., and R´ozsa, Z. Development of an intelligent path planning

method for materials handling machinery at construction sites. Periodica Polytechnica.

Transportation Engineering, 44(1):13, 2016.

40

Casalino, G., Turetta, A., & Simetti, E. (2009, May). A three-layered architecture for

real time path planning and obstacle avoidance for surveillance USVs operating in

harbour fields. In Oceans 2009-Europe (pp. 1-8). IEEE.

Chiang, C., Chiang, P., Fei, J., and Liu, J. A comparative study of implementing fast

marching method and a* search for mobile robot path planning in grid environment:

Effect of map resolution. In 2007 IEEE Workshop on Advanced Robotics and Its Social

Impacts, pages 1–6. IEEE, 2007.

Dolgov, D., Thrun, S., Montemerlo, M., and Diebel, J. (2010), 'Path Planning for

Autonomous Vehicles in Unknown Semi- structured Environments', The International

Journal of Robotics Research, 29 (5), 485-501.

Fossen, T. I. Marine control systems: guidance, navigation and control of ships, rigs

and underwater vehicles. 2002.

Goldberg, A. and Harrelson, C. Computing the shortest path: A search meets graph

theory. In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete

algorithms, pages 156–165. Society for Industrial and Applied Mathematics, 2005.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1972), 'Corrections to "A formal basis for

the heuristic determination of minimum cost paths"', ACM SIGART Bulletin, (37), 28-

29.

Kala, R., Shukla, A., and Tiwari, R. Fusion of probabilistic a* algorithm and fuzzy

inference system for robotic path planning. Artificial Intelligence Review, 33(4): 307–

327, 2010.

Kim, H., Park, B., & Myung, H. (2013). Curvature path planning with high resolution

graph for unmanned surface vehicle. In Robot Intelligence Technology and

Applications 2012 (pp. 147-154). Springer, Berlin, Heidelberg.

Liu W., Liu Y., Song R. and Bucknall R. (2015). Towards the development of an

autonomous navigation system for unmanned vessels. Proceedings of International

Navigation Conference. February 24th-26th 2015, Manchester Conference Centre/UK

Miklic, D., Bogdan, S., Fierro, R., & Song, Y. (2012). A grid-based approach to

formation reconfiguration for a class of robots with non-holonomic

constraints. European journal of control, 18(2), 162-181.

Motwani, A., Sharma, S. K., Sutton, R., & Culverhouse, P. (2013). Interval Kalman

filtering in navigation system design for an uninhabited surface vehicle. Journal of

Navigation, 66(05), 639-652.

Motwani, A. (2015). Interval Kalman Filtering Techniques for Unmanned Surface

Vehicle Navigation. PhD thesis, Plymouth University.

Motwani, A., Liu, W., Sharma, S., Sutton, R., & Bucknall, R. (2016). An interval

41

Kalman filter–based fuzzy multi-sensor fusion approach for fault-tolerant heading

estimation of an autonomous surface vehicle. Proceedings of the Institution of

Mechanical Engineers, Part M: Journal of Engineering for the Maritime

Environment, 230(3), 491-507.

Naeem, W., Sutton, R., & Chudley, J. (2006, June). Soft computing design of a linear

quadratic Gaussian controller for an unmanned surface vehicle. In Control and

Automation, 2006. MED'06. 14th Mediterranean Conference on (pp. 1-6). IEEE.

Naeem, W., Sutton, R., & Chudley, J. (2006). Modelling and control of an unmanned

surface vehicle for environmental monitoring. In UKACC International Control

Conference, August, Glasgow, Scotland.

Naeem, W., Irwin, G. W., & Yang, A. (2012). COLREGs-based collision avoidance

strategies for unmanned surface vehicles. Mechatronics, 22(6), 669-678.

Naeem, W., Sutton, R., & Xu, T. (2012). An integrated multi-sensor data fusion

algorithm and autopilot implementation in an uninhabited surface craft. Ocean

Engineering, 39, 43-52.

Oriolo, G., Vendittelli, M., and Ulivi, G. On-line map building and navigation for

autonomous mobile robots. In Robotics and Automation, 1995. Proceedings., 1995

IEEE International Conference on, volume 3, pages 2900–2906. IEEE, 1995.

Otsu, N. (1975). A threshold selection method from gray-level

histograms.Automatica, 11(285-296), 23-27.

Sharma, S. K., and Sutton, R. (2013). A genetic algorithm based nonlinear guidance

and control system for an uninhabited surface vehicle. Journal of Marine Engineering

& Technology, 12(2), 29-40.

Smierzchalski, R. (1999). Evolutionary trajectory planning of ships in navigation traffic

areas. Journal of marine science and technology, 4(1), 1-6.

Tam, C., & Bucknall, R. (2010). Path-planning algorithm for ships in close-range

encounters. Journal of marine science and technology, 15(4), 395-407.

Tam, C., & Bucknall, R. (2013). Cooperative path planning algorithm for marine

surface vessels. Ocean Engineering, 57, 25-33.

Tsou, M. C., & Hsueh, C. K. (2010). The study of ship collision avoidance route

planning by ant colony algorithm. Journal of Marine Science and Technology, 18(5),

746-756.

Wang, Y., Yu, X., & Liang, X. (2018). Design and implementation of global path

planning system for unmanned surface vehicle among multiple task points. arXiv

preprint arXiv:1807.08106.

42

Xu, T., Chudley, J., & Sutton, R. (2006). A fuzzy logic based multi-sensor navigation

system for an unmanned surface vehicle. In Proceedings of the UKACC International

Control Conference, Glasgow, UK.

Xu, T. (2007). An intelligent navigation system for an unmanned surface vehicle. PhD

thesis, Plymouth University, UK

Xue, Y., Clelland, D., Lee, B. S., & Han, D. (2011). Automatic simulation of ship

navigation. Ocean Engineering, 38(17), 2290-2305.

Yang, J. M., Tseng, C. M., & Tseng, P. S. (2015). Path planning on satellite images for

unmanned surface vehicles. International Journal of Naval Architecture and Ocean

Engineering, 7(1), 87-99.

Zhu, M., Wang, Y., & Wen, Y. (2013). A Global Path Planning Algorithm of Unmanned

Vessel in Inland Waterway. In ICTIS 2013: Improving Multimodal Transportation

Systems-Information, Safety, and Integration, 2106-2113.

