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Abstract

This thesis investigates the relationship between knowledge management and

innovation performance in the context of new product development in the biotech-

nology industry. The dissertation contains three empirical essays in three different

research settings. Chapter two focuses on how to improve the outcome-dependence

of experiential learning. The findings demonstrate that two innovation strategy

choices - the novelty of innovation and the primary ownership - enable prior failure

experience to reduce the incidence of future failure more than prior success experi-

ence does. Chapter three assesses stage specific learning and knowledge spillover.

The findings demonstrate that the productivity of drug research increases only with

previous upstream research experience, whereas the productivity of drug develop-

ment increases only with previous downstream development experience. Chapter

four investigates the interaction between network structure and interfirm governance

and its effect on knowledge appropration and innovation behaviour. The findings

show that interfirm governance contingently determines the outcome of patent ap-

plications and patent citations within a dense network. Together these three essays

provide three primary contributions. First, the dissertation shows that failure experi-

ence has knowledge benefits and investing in failures allows an organisation to build

capabilities that improve future performance. In addition, two innovation strategies

- innovation novelty and primary ownership - moderate the search behaviour and

help to translate the inferences from an organisational experience into knowledge

and routines. Second, the dissertation illustrates that both learning by doing and

product innovation explain economic growth externality and improve productivity,

and knowledge spillover is bounded in the same stage for long-run growth. Third,
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when considering the formation of alliances to advance innovation, neither alliance

network structure nor interfirm governance guarantee superior performance. There-

fore, the dynamic process of a strategic alliance by focusing on the interaction be-

tween network structure and interfirm governance need to be considered.
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Impact Statement

The total expenditures of the US health care is $3.2 trillion or 17.8% of GDP in

2015, and the expenses for drugs is $1.5 trillion, which is nearly half of the total ex-

penditures of health care. Therefore, the biopharmaceutical industry is a key player

in the health care system to develop medications to improve global health, pros-

perity and economic productivity by reducing the incidence of diseases, treating

illnesses and enhancing the quality of life of people. The industry’s main contri-

bution is engaging drug research and development (R&D) through technological

innovation to meet the complex health care demands of population.

Despite the critical role of this industry and the tremendous improvement in the

science and technology underpinning drug R&D, there has been little improvement

in the output of this industry. In other words, the number of new drugs approved by

the US Food and Drug Administration each year has not changed for the past twenty

years. Even worse, after taking the R&D expenses into consideration, the number

of new FDA-approved drugs per billion US dollars of R&D spending has halved

every 9 years since 1950. In this dissertation, I look at three specific knowledge

management processes - outcome-dependent learning, knowledge spillover across

stages and knowledge appropriation in alliance networks - that help explain the in-

novation heterogeneity that can be seen among organisations and act as the potential

factors to improve technological innovation.

The findings of this dissertation show that failure experience is more than a dis-

aster for organizations but has knowledge benefits, and investing in failures allows

organisations to build capabilities that improve future performance. In addition,

two innovation strategies - innovation novelty and primary ownership - improve the

build-up capability from failure experience. These two strategic choices help prac-

titioners to develop superior strategies for coping with failures and enable organi-

sations to reap substantial gains. Policy makers need to understand that balancing

incremental innovation and radical innovation or allocating more resource to inven-

tors than to licensees could promote learning from previous failures and enhance
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innovation efficiency.

Second, the dissertation illustrates that both learning by doing and product in-

novation explain economic growth externality and improve productivity, and man-

agers should make use of this knowledge management tool to achieve high produc-

tivity during innovation. By setting the knowledge boundary and understanding the

sources of learning by innovating also enable decision makers to resolve low effi-

ciency of learning by matching knowledge and experience. Furthermore, due to the

knowledge boundary condition, the government should use tax laws to encourage

investment in intra-stage technological progress instead of promoting cross-stage

technological innovation.

Third, this dissertation bolsters the case for the dynamic process of strategic

alliance by focusing on the interaction between network structure and alliance gov-

ernance since these two factors increase innovation independently and in combi-

nation. In other words, decision-makers have to look beyond the dyadic level of

relationship and consider the network level characteristics in conjunction in order

to optimize their alliance strategy and to achieve better innovation performance.
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Chapter 1

Introduction

In many industries, technological innovation is the most important driver of

competitive success. Introducing new products helps firms protect their margins,

while investing in process innovation helps firms lower their costs. Besides rais-

ing the competitive bar for firms, technological innovation also positively affects

society. Innovation enables a wider range of goods and services to be delivered to

people worldwide, raising living standards and economic performance.

Gross domestic product (GDP), the total annual output of an economy, reflects

the aggregate impact of technological innovation. Figure 1.1 shows the GDP ad-

justed for inflation for the US from 1970 to 2011. As shown in the figure, the US

GDP has risen steadily since 1970. A series of studies conducted at the National

Bureau of Economic Research (NBER) shows that the historic rate of economics

growth in GDP cannot be explained entirely by growth in labour and capital inputs

(e.g. [Romer, 1990]; [Islam, 1995]). Nobel Prize winner Robert Merton Solow ar-

gues that this unaccounted residual growth could be explained by technological in-

novation [Solow, 1994]. In other words, innovation increases the amount of output

achievable from a given quantity of labour and capital and improves social welfare.

Knowledge is a resource requiring explicit and specific management policies

and practices to be acquired, processed and exploited efficiently. According to the

endogenous growth theory in macroeconomics, knowledge production and diffu-

sion are central elements determining economic growth [Aghion and Howitt, 1998];

[Romer, 1990] and the sources of economic expansion [Warsh, 2007]. Strategy



14

Figure 1.1: Product Innovation Productivity

Notes: US gross domestic product from 1970 to 2016. All numbers have been
converted into 2017 dollars and adjusted for inflation.

scholars are developing a knowledge-based view of the firm: theorising that firms

exist because they provide efficiency advantages in the use, creation, and com-

mercialisation of knowledge relative to markets [Kogut and Zander, 1996] and that

aspects of the knowledge creation process influence a firms’ scale and scope

[Nickson and Zenger, 2004]. Among other factors, knowledge determines firm

productivity and its medium and long term competitive advantage [Grant, 1996];

[Roberts, 1999]; [Eisenhardt and Martin, 2004].

Knowledge management is the process of creating, sharing and managing

knowledge, and fostering innovation [Alavi and Leidner, 2001]; [Barley et al., 2018].

It is the main driver and determinant of technological innovation. Schumpeterian

innovation competences are based on the growth of knowledge stock and generative

learning [Schumpeter, 2010]. These competences lead to changes with regard to

the practices developed in the organisation, and strengthen its competences and

capabilities. Therefore, knowledge management can contribute to the sustainability

of competitive advantage, enabling the development of distinctive competences.

Despite the importance of technological innovation and knowledge manage-

ment, however, very little research has systematically examined the advanced strate-
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gies and well-developed processes to manage knowledge to improve technological

innovation. Therefore, many firms choose knowledge management practices that

are a poor fit with their resources and objectives; manage the new product develop-

ment process wrongly, causing high failure rates and long development cycles; and

organize structures that cannot effectively support the innovation.

This dissertation and my broader research agenda look at the knowledge man-

agement factors that play a crucial role in determining the heterogeneity in firms’

innovation behaviour and competitive performance. It looks at the role that experi-

ence and structures play both in developing capabilities, and in improving innova-

tion productivity. The research context of this dissertation is the US biotechnology

industry and the new products focused on here are new drugs.

One of the most obvious sources of knowledge production and innovation

is the firms’ own research and development (R&D) efforts. The term research

and development refers to a range of activities that extend from early explo-

ration of a scientific domain to specific commercial implementations. Stud-

ies show that R&D innovation is the lifeblood of the biotechnology industry

[Henderson and Cockburn, 1996]; [Azoulay, 2004]. This sector is a unique indus-

try with a profound impact on people’s health and quality of life. It is substantially

more coupled with science, and more regulated than other industries. Biotech-

nology firms become industry leaders by spending large sums on R&D in order

to produce a steady stream of patents and successful products. In other words,

biotechnology firms’ R&D novelty has a strong positive correlation with their sales

growth rate, sales from new products, and profitability. Because patents only pro-

tect firms from generic competition for a limited period of time (usually 15 years)

[Griliches, 1990], these firms need to continually innovate to ensure survival and

growth.

Searching for innovative products is extremely difficult in almost any industry.

It is especially challenging in the biotechnology industry, because products come

from highly complex fields, such as molecular biology and biochemistry, and in-

volve the most delicate and complicated system - human body. The quest for new
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drug development must combine an understanding of the complexity of the human

body with a knowledge of life science.

The drug R&D process starts from synthesising and screening new compounds

which might interact with specific genes or proteins to combat particular diseases.

Once candidate molecules are identified, they are studied in test tubes and in ani-

mals to determine their side effects, efficacy, and pharmacological dynamics. Only

the promising candidates can proceed to human clinical trial by submitting an in-

vestigational new drug (IND) application to the Federal Drug Administration (FDA)

first, informing the agency that human studies will start in 30 days unless it objects.

The FDA requires drugs to go through three phases of clinical trials on hu-

mans. During phase I, a small number of healthy people receive the drug to test

safety and dose range. During the second phase of clinical trials, a large number

of subjects who have the disease or conditions that the drug is intended to treat, are

tested in placebo-controlled trials. Besides safety and optimal doses, Phase II also

investigates the efficacy of the drug. Phase III is tested on an even larger patient

population to assess safety, effectiveness, and optimal doses. Normally Phase III is

double-blind, which means that neither doctors nor patients are aware of whether

the patients are taking the drug or a placebo. When Phase III is completed, the

company needs to submit a New Drug Application (NDA) to the FDA before it can

launch the new product.

Generally speaking, hundreds of compounds need to be tested to find one

promising candidate. During clinical trials, if 20 drugs enter Phase I, only around

13 will successfully complete it. Of those, about nine will finish Phase II, but

only 1.5 will survive Phase III. Even after a drug successfully completes Phase

III, the FDA might not approve it because they think the data is insufficient for

approval. Ultimately, only one of the original 20 may be approved for marketing

[Steven et al., 2010].

Despite tremendous improvement in the science and technology underpinning

drug discovery, improvement in R&D management, and copious R&D investments,

there has been little change in the critical output of the industry, which is the number
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Figure 1.2: Eroom’s Law in Drug R&D

Source: Scannell et al. (2012)

of new drugs approved by the FDA [Kola and Landis, 2004].

The paradoxical phenomenon of declining R&D efficiency has been docu-

mented by Scannell and his collogues (2012). They use the term “Eroom’s Law”,

which is “Moore’s Law” backwards, to refer to the number of new FDA-approved

drugs per billion US dollars of R&D spending has halved every 9 years since 1950

(See Figure 1.2). As Figure 1.2 depicts, the decline rate is almost the same across

different 10-year segments (Panel b). Moreover, the trend seems to be robust in

relation to various assumptions on average delay between R&D spending and drug

approval (Panel c).

In my dissertation, using the biotechnology industry as my research context, I

look at three specific knowledge management processes - outcome-dependent learn-

ing, knowledge spillover across stages and knowledge appropriation in alliance net-
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works - that help explain the innovation heterogeneity that can be seen among or-

ganisations (See Table 1.1 for a brief overview of each chapter). In Chapter 2, I in-

vestigate how to improve the outcome-dependence of experiential learning. While

we know organizations need to learn how to innovate and revitalize [Grant, 1996];

[Argote et al., 2003], we know less about how to improve the outcome-dependence

of learning [Madsen and Desai, 2010]. This study acknowledges the gap and dis-

entangles the theories of learning from failures and successes. To address project

heterogeneity and to alleviate the non-randomness of innovation strategy choices for

causal inference, I deploy Competing Risk Analysis [Jenkins, 2005] and Coarsened

Exact Matching [Blackwell et al., 2010] methods to analyse more than two thou-

sand drug development projects from 37 US biotechnology companies. I find that

two innovation strategy choices - the novelty of innovation and the primary own-

ership - enhance learning from failure experience. These two strategy choices also

enable prior failure experience to reduce the incidence of future failure more than

prior success experience does. In addition, by exploring interview data, I seek to

provide additional insight into the mechanisms of learning from failures and learn-

ing from successes. Taken together, these findings offer both theoretical and practi-

cal insights into how innovative firms could improve their learning from successes

and failures differently.

In Chapter 3, I examine learning by innovating and the boundary of learn-

ing by innovating, by using detailed project-level data in the biotechnology indus-

try. Both product innovation and learning by doing reduce uncertainty and im-

prove productivity [Arrow, 1972]; [Syverson, 2011]; [Aghion and Jaravel, 2015].

Previous research shows that learning by innovation, the combination of these two

factors, is a crucial antecedent for innovation success [de Ven and Polley, 1992];

[Aghion and Jaravel, 2015]. However, whether and under what conditions learning

by innovating to enhance productivity is not well understood [Nooteboom, 2004].

This study illustrates learning by innovating drives productivity in the biotechnol-

ogy industry. In addition, this study documents that learning by innovating is stage-

specific, which means that one stage of drug innovation cannot fully appropriate
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the productivity gains acquired through experience with another stage of drug in-

novation. In other words, the productivity of drug research increases only with

previous upstream experience, whereas the productivity of drug development in-

creases with only previous downstream development experience. This paper pro-

poses that the lack of knowledge spillover between stages is due to limited attention,

and proves that decision makers’ attention reduce this learning constraint. These re-

sults shed light on how learning by innovating shapes the productivity trajectory and

the boundary of learning by innovating.

Finally, in Chapter 4, I consider the structuring condition of alliance net-

works and their effect on knowledge appropriation and innovation behaviour.

Previous research indicates that there is a growing recognition of the impor-

tance of collaborative R&D networks for successful innovation [Freeman, 1991];

[Hargadon and Sutton, 1997]; [Ahuja and Lampert, 2001]. Collaboration is espe-

cially crucial in high-technology sectors, such as the biotechnology industry, where

it is unlikely that a single individual or organisation will possess all of the re-

sources and capabilities necessary to develop and implement technological inno-

vation [Powell et al., 1996]. Alliance networks blend the features of market-based

exchanges as well as of hierarchies, so both network structure and interfirm gov-

ernance present interesting challenges and opportunities for firms’ innovation be-

haviour [Powell et al., 1996]; [Oxley, 1997]; [Ahuja, 2000]; [Polidoro et al., 2011].

Instead of treating them separately, this study examines the interaction of network

structure and interfirm governance on the “ twin tasks” in innovation search, namely

access to novel information on the one hand and the build-up of absorptive capacity

on the other. Using a combination of propensity-score weighting and difference-

in-difference estimation strategies to address endogeneity, I find that interfirm gov-

ernance, the transaction feature of alliance networks, contingently determines the

outcome of patent applications and patent citations within dense networks. More

specifically, new partners and non-equity relationships improve the positive influ-

ence of dense network when the density is low, but mitigate the cost when the

density is high, and enhance the amplitude of the effect of dense networks. These
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results indicate the benefits of network closure contingent on interfirm governance,

namely partner selection and ownership structure. Therefore firms embedded in a

certain type of network structure should clearly recognise such contingency and its

implications, and devise optimal alliance strategies to manage it.
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Phenomenon Theory Key Construct Identification

Chapter 2 Improvement in the outcome-

dependent experiential learn-

ing

Organisational search Innovation experience Competing risk analysis

Innovation Strategy Innovation strategy: novelty,

co-development and primary

ownership

Coarsen exact matching

Experiential learning Firm performance: future

failure/success hazard ratio

Chapter 3 Innovation productivity based

on the configuration of value

chain activities

Cobb-Douglas production

function

Stage-specific experience Competing risk analysis

Organisational boundary Knowledge spillover con-

struct

Productivity: future fail-

ure/success hazard ratio

Solow growth model

Chapter 4 Alliance network features of

network structure and inter-

firm governance determine

firm’s innovation behaviour

Innovation search Governance design: owner-

ship structure and partner se-

lection

Propensity score weight-

ing

Transaction cost economics

theory

Firm innovation perfor-

mance: patent applications

and citations

Semiparametric difference

in differences

Table 1.1: Overview of the Following Three Chapters
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Below I will first summarise the relevant research questions and key findings

for each of the three core chapters. Subsequently, I will summarise the key contri-

butions of these three chapters. Finally, I will introduce the future research direction

and possibilities.



Chapter 2

The Wisdom of Learning:

Knowledge Strategies in

Technological Innovation

2.1 Introduction

Technological innovation is essential to competitive advantage and to eco-

nomic development more generally; however, many innovating firms fail to ob-

tain sustainable innovation and significant economic returns [Teece, 1986]. The

ability of firms to learn and acquire knowledge has emerged as a key factor in-

fluencing performance and survival [Grant, 1996]; [Argote et al., 2003]. Organi-

sational learning, the key building block of innovation, is a process of searching

through prior experience [Levinthal, 1997] and translating the inferences from such

experience into knowledge and routines that systematically alter subsequent be-

haviour [Cyert and March, 1963]; [Levitt and March, 1988]. This process is not the

retrieval of some entity, but a process of sensemaking to recombine existing materi-

als [Nelson and Winter, 1982]; [Penrose, 2009] or to reconfigure the ways in which

knowledge elements are linked [Henderson and Clark, 1990]. Different interpre-

tations lead to different organisational responses, which ultimately shape strategy,

norms, forms and protocols for learning [Daft and Weick, 1984]. This implies, in

particular, that learning is dependent upon current strategy choices, which gain at-
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tention and engender actions for sensemaking to interpret collective experience.

In other words, current innovation strategies affect learning outcomes by assist-

ing organisations in making sense of the experience through emphasising discovery

through enactment and interpretation [McGrath, 2001].

Indeed, the interplay between past experience and current strategy are central

to the creation of meaning and development of knowledge [Colville et al., 2014].

Previous research shows that experience is appreciated through current strategies.

For example, the strategy choices help to link between events and models, plot nar-

ratives and selectively retain the interpretations considered valuable or preferable

[Henderson and Cockburn, 1994]; [Maitlis and Sonenshein, 2010]. Despite these

significant advances, however, important questions, such as how the current in-

novation strategy improves the process of experience interpretation and enhances

learning from failures, and whether it also affects learning from successes in the

same way, remain unanswered. This is a crucial gap, because learning during in-

novation is not straightforward due to the use of heuristics and insights in relation

to ambiguous contexts, and some evidence suggests that learning is highly specific

to the innovation context (e.g. [du Plessis, 2007]; [Madsen and Desai, 2010]). The

purpose of the present study is to address this gap by identifying innovation strate-

gies which enhance the sensemaking process in order to improve learning. More

specifically, I consider distinct innovation strategies to be delineated by innova-

tion novelty (incremental vs. radical), co-development behaviour (collaboration vs.

solo) and primary ownership (inventor vs. co-developer). Within each of these

six innovation strategies, I further disaggregate failure and success experience and

address their relative learning outcome.

Even though many organisational learning theorists have long held that organ-

isations learn primarily through processes of ‘problemistic search’, wherein they en-

gage only after experiencing failure [Cyert and March, 1963]; [March and Shapira, 1992];

[Sitkin, 1992]; [Dahlin et al., 2018]; [Posen et al., 2018], any existing evidence that

failure is more important than success for organisational learning is entirely anecdo-

tal. Indeed, the way in which learning is contingent on prior outcomes has received
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little empirical attention compared to the literature on learning from aggregated ex-

perience. Disaggregating success and failure experience helps us understand which

experience drives the improvement of organisational performance. Only three stud-

ies have directly compared learning from failure with learning from success but they

report disparate results: Madsen and Desai (2010) found that orbit launch vehicle

companies learn more effectively from failure experience than from success experi-

ence, and the magnitude of failures influences the learning process. Muehlfeld and

his colleagues (2012) uncovered that newspaper-producing firms could learn from

both previous failure and success experiences in relation to acquisition but that this

learning process depends on two context factors: the degree of structural variance

and the level of stimulation of deliberate learning. Gong and his colleagues (2017)

discovered that the experience of successful acquisitions drives up the acquisition

premium whereas the experience of failed acquisitions reduces the premium, and

the magnitude of these experiences affects the learning outcomes. In addition, none

of these studies has investigated learning from innovation in which increasing effec-

tiveness is the result of searching for and exploring alternative routines to practise

and the refinement of innovation-related skills. Therefore, whether firms learn from

success and failure innovation experiences and whether innovation strategies could

change learning behaviour remain unclear.

To explore these issues, I examine the drug innovation process in the US

biotechnology industry during the period 1987-2012. This process provides an in-

teresting context in which to study exploratory learning during technological inno-

vation, considering that drug development is the core competence of biotechnology

firms and that these firms are usually proactive and willing to take risks during this

process. The empirical setting is the US, where biotechnology is well developed

and drug development is extensive. However, there is an empirical challenge to

answering my research question: information on how and why decision makers

choose certain innovation strategies is generally unavailable. Therefore, innovation

strategy choices could be the outcome of a process which matches purposely with

previous experience, making it difficult to uncover causal effects. To overcome the
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endogeneity of the strategic choices, I make use of a matching method in order to

make projects comparable.

My results provide support for the hypotheses that two dimensions of innova-

tion strategies - innovation novelty (radical or incremental innovation) and primary

ownership (inventor or co-developer) - moderate learning from failure and success.

In particular, I find that working on incremental innovation projects improves sense-

making and knowledge recombination and enhances learning from failure more than

working on radical innovation projects does. An additional Wald test also shows

that working on incremental innovation advances learning from failure experience

more than from success experience. Primary ownership has a similar effect on mak-

ing sense of previous experience. Compared to a licensees, working as an inventor

reduces future failure by giving meaning to previous failure experience more than

working as a licensee does. It also empowers prior failure experience to reduce the

likelihood of future failure more than prior success experience does.

This study contributes to existing learning theories in several ways: firstly,

this study illustrates that innovation strategies serve as a moderator of sensemak-

ing and organisational learning [du Plessis, 2007]. More specifically, this paper

proposes that two innovation strategies - innovation novelty and primary owner-

ship - moderate sensemaking behaviour and knowledge production. Secondly, this

study demonstrates the relationship between failure experience and innovation per-

formance. Previous research shows that investing in a failing technology helps

an organisation to build absorptive capacity, which will improve future perfor-

mance [Eggers, 2014]. This study confirms this conclusion and notes that the two

above-mentioned innovation strategies could improve the build-up capability from

failure experience. Thirdly, this study addresses the importance of learning from

failure [Madsen and Desai, 2010]. This highlights that improved innovation perfor-

mance of increasing experience is mainly driven by learning from failure instead of

learning from success. In addition to the theoretical contribution, this study also ad-

vocates project-level data so as to address the microfoundation of learning variation.
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2.2 Theories and Hypotheses

2.2.1 Innovation Strategy and Learning

Organisational learning is the result of a problem-solving process in

which solutions to problems are discovered via search [Cyert and March, 1963];

[Dosi, 1988]. The search framework was first conceptualized by Kauffman in evolu-

tionary biology [Kauffman, 1993]. In innovation and organisation literature, learn-

ing is a process of search over previous experience landscapes and the typography of

the experience landscape determines the likelihood of fruitful search and expected

success of search [Levinthal and March, 1981]; [Fleming and Sorenson, 2001]. In

other words, search is often planned and guided by routines and heuristics of past

experience [Nelson and Winter, 1982]; [Dosi, 1988].

Such search reflects experiential wisdom in that they are the outcome of the

selection and interpretation of prior behaviour and experience. Organisational in-

terpretation is a process of translating events and developing shared understand-

ing and conceptual schemes among members [Daft and Weick, 1984], and gives

meaning to experience in the early stage of the organisational learning process. To

understand the complexity associated with organisations, innovation strategies of

current projects assist organisations in making sense of the experience by empha-

sizing discovery through enactment and interpretation [McGrath, 2001]. Specifi-

cally, previous literature identifies three basic trade-offs: innovation novelty, co-

development and primary ownership, that require strategic decisions during techno-

logical innovation (e.g. [Bierly and Chakrabarti, 1996]). These innovation strate-

gies create responses and actions based on the interpretation of task interactions

(e.g. [Haunschild and Rhee, 2004]; [Madsen and Desai, 2010]).

First, innovation strategy can affect resource allocation for experiential search.

Innovation learning - a process of acquiring, distributing, interpreting and synthe-

sizing existing components - needs resources. Organisations use these resources to

perform trials to learn what an error is and to test presumed constraints to discover

what is feasible. Certain innovation strategies intensify competition and uncertainty

and create new problems, demanding more resources be put into search-related be-
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haviours [McGrath, 2001].

Second, innovation strategy also affects equivocality of previous experience.

Daft and Weick (1984) define equivocality as ‘the extent to which previous expe-

rience is unclear and can be interpreted in several ways’. Organisational decision

makers will always experience some equivocality in their experience and the un-

certainty makes it difficult for decision makers to accurately interpret their past

performance outcomes [Levitt and March, 1988]. The current innovation strategy

provides a blueprint of novel combination [Schumpeter, 2010] and improves search

competence [Levinthal and March, 1981] by combining the results of practice and

the refinement of innovation-related skills and providing knowledge.

Third, innovation strategy presents a pattern recognition system. Searching

the experience landscape is also a process of knowledge and pattern comparison

between new data and pre-existing patterns of activity. Tushman and Anderson

(1986) dichotomise innovation as either continuous or discontinuous. Continuous

innovation is consistent with current belief and allows decision makers to apply

existing mental models to identify the critical information. Discontinuous innova-

tion, on the other hand, is unique and may alter the trajectory of the interpretation

process.

2.2.2 Learning from Experiences of Success and Failure

The key insight of learning models is that change is triggered by adaptive

search: satisfactory or superior outcomes from success tend to result in local

search and organisation slacks, while unsatisfactory outcomes from failure call

for non-local search and result in resource shortage [Cyert and March, 1963];

[Levinthal and March, 1981]; [Dahlin et al., 2018]. In other words, failed in-

novation leads to organisational change and brings in alternative knowledge,

while satisfactory and superior performance only refine existing knowledge

[March and Shapira, 1992]; [Chuang and Baum, 2003].

According to a behaviour theory of the firm, organisational decision

makers respond quite differently to failure from the way they do to success
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[Cyert and March, 1963]. Decision makers interpret the experience of success

as evidence that the existing knowledge is up to date and the development of new

knowledge is unnecessary [Lant, 1992]; [March and Shapira, 1992]. As a result,

prior successful innovation induces decision makers to ignore information about

the outside world and narrows down search to the neighbourhood of the status

quo [Cyert and March, 1963]; [March, 1982]. Neighbourhood search represents a

balance between the need to exploit the current wisdom associated with existing

action and, at the same time, to engage in some degree of search for alternatives in

the immediate landscape of the current behaviours [Gavetti and Levinthal, 2000].

In contrast, failed innovation upsets the status quo, calls existing routines

and practices into question, draws attention to potential problems, and stimu-

lates a search for alternatives which are likely to vary greatly from current be-

haviours. As a result, organisations are more likely to undertake major changes

and to initiate the exploration of new practices, strategies, and courses of action

to raise performance above the aspiration level. Put differently, failed innovation

leads to exploratory search, while successful innovation continues to exploit search

[March and Shapira, 1992]; [Chuang and Baum, 2003]; [Dahlin et al., 2018].

There are several innovation strategic choices that decision makers formu-

late which shape and direct an organisation’s search and learning process and,

subsequently, determine its performance. Specifically, three basic trade-offs that

require strategic decision arise from innovation and knowledge management lit-

erature: organisations need to decide to focus on either radical or incremental

innovation to make either a long jump search or just a short climb to search for

the local optimum [March, 1991]); they need to find the proper balance between

internal knowledge and external knowledge [Lant and Mezias, 1992]; they also

need to resolve the tension between the depth and breadth of their knowledge by

inventing everything in house or licensing key technology from other companies

[Holt and Cornelissen, 2014].
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2.2.3 Innovation Novelty and Learning

One crucial decision that a company needs to make during new product de-

velopment is the innovation novelty of its product. The type of innovation nov-

elty strongly influences the factors that shape the innovative performance, no-

tably learning (e.g.[Tushman and Anderson, 1986]; [Garcia and Calantone, 2002].

Incremental innovation uses the same technology, introduces relatively mi-

nor changes to the existing product and reinforces the current competence

[Tushman and Anderson, 1986]; [Henderson and Clark, 1990]; [Schumpeter, 2010]).

Firms examine the immediate neighbourhood to identify alternative forms whose

fitness value is superior to their current level of fitness. During this process, firms

focus on fine-tuning products by means of incremental improvements which are

inspired by other sources of innovation that use existing technology continuity and

previous knowledge [Utterback and Abernathy, 1975], and conduct short climbing

and neighbourhood search to recombine knowledge. Incremental innovation often

needs less investment and effort, and the performance implications appear to be

more modest [Marsili and Salter, 2005]. Accordingly, incremental innovation is a

routinised behaviour which requires less attention and mindfulness.

Organisational search and learning require both changes and stability, and the

level of uncertainty of a current project determines the effectiveness of the con-

ditions of search and learning [Starbuck et al., 1978]. If both current projects and

previous knowledge are too complex and dynamic, information overload may occur

and learning will not take place since too much change and turbulence make it diffi-

cult to map the knowledge path and interpret information [March and Olsen, 1975].

Therefore, firms engaging in exploratory search from failure experience and long

jump search to recombine components so as to create radical products typi-

cally suffer the costs of experimentation without harvesting many of its benefits

[Nooteboom, 2004]. On the other hand, too much stability can also be dysfunc-

tional because there is little inducement to learn or to change. The experience of

success proves that the existing knowledge is not obsolete and change is not nec-

essary [Lant and Mezias, 1992]. In this case, both the current innovation strategy
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- notably the incremental innovation - and the internal processing of success expe-

rience stifle the variation of search. Therefore, decision makers are less likely to

choose a risky, less cost-efficient information-generating process. In addition, they

have little motivation to pursue a new information-generating process by searching

beyond current knowledge bases due to satisfaction with current knowledge. Such

responses are likely to lead unwaveringly to a trap, in which organisations only

follow routinised behaviour and become stymied in a competence trap.

In contrast, the experience of failure provides variation. Pursuing an incremen-

tal innovation strategy only gradually searching through neighbourhood landscapes

requires less attention and mindfulness, and might be positively challenged by the

previous experience of failure and result in search for increased risk. Feeling chal-

lenged, in turn, might stimulate researchers to experiment and explore further and

come up with new proposals [Fiol and Lyles, 1985]. In addition, it is the nature of

scientists to face challenges and investigate failure, especially when they are not

constrained. Failures also trigger their curiosity to find novel ways to interpret data

with dialogic practices and analogical reasoning [Adams, 1990].

Furthermore, conducting incremental innovation also alleviates the resource

allocation problem. The experience of success promotes the refinement of ex-

isting routines without too much variation [Sitkin, 1992], economising on re-

sources [Cyert and March, 1963]. However, decision makers still tend to allocate

more resources to successes to avoid risk. On the other hand, failure experience

is less explored and search behaviours are insufficient due to lack of resource

[Levinthal and March, 1981]. Therefore, imbalanced resource allocation exacer-

bates the problem: “learning from organisational failures is anything but straight-

forward” [Edmondson, 2011].

Unlike undertaking a radical innovation strategy, which is highly uncer-

tain and drains cognitive and other resources, conducting incremental innova-

tion relies heavily on past routine and being able to attend to other stimuli

[Shiffrin and Schneider, 1977]. Although learning from innovation failure is not

straight-forward, it is necessary, since only by doing this can an organisation un-
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cover the causal relationship between experience and outcomes [Sitkin, 1992]. In-

creasing resources could help to detect and interpret failures, which is the first step

to learning from failure. In addition, the spare attention saved from incremental

innovation also enables organisations to conduct a non-local problemistic search

to discover the underlying mechanism of failures and generate new knowledge in

order to find better solutions.

To sum up, working on incremental innovation enables organisations to learn

more effectively from the experience of failure, and also to improve learning out-

comes by searching through failure experience landscapes more than by searching

through success experience ones.

Hypothesis 1a Working on incremental innovation improves learning outcome

from failure more than working on radical innovation does.

Hypothesis 1b Working on incremental innovation helps a company to reduce

the incidence of future failure by learning from failure more than learning from

success.

2.2.4 Co-development and Learning

The organisation’s strategy partially determines its learning capability by shap-

ing the goals and objectives and the breadth of actions available for carrying out

learning activities. A co-development strategy expands the boundaries of deci-

sion making and duplicates the experience landscapes for searching and learning

[Cyert and March, 1963]. The enlarged landscapes, presenting more space to search

and increasing the flexibility of the firm, are critical to firms in a dynamic environ-

ment [Grant, 1996]. In other words, a collaborative task facilitates both the search

for information and its interpretation, and co-developed products are conducive to

developing new knowledge [Powell et al., 1996].

In addition, co-development with external members complements a firm’s in-

ternal capacity [Cohen and Levinthal, 1990]; [Arora and Gambardella, 1994], and

this capacity evaluates the progress, while external collaboration provides knowl-

edge and resources [Nelson, 1982]. Extended collaboration enables firms to view
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some issues from different perspectives, which is essential in order for them to over-

come routines and bias [Bierly and Chakrabarti, 1996].

A co-development strategy also helps organisations to benefit from external

knowledge by searching extended landscapes. Although searching internal experi-

ence could yield new knowledge, it sometimes leads to suboptimal stable equilib-

ria due to the depleting of recombinant materials. Collaboration can alleviate this

dilemma by bringing new routines and novel knowledge for experiential search. In

addition, decision makers tend to ignore their own failure and only learn from the

failure of others, because they attribute their own failure to external reasons and

others’ failure to the efforts and actions of the latter [KC et al., 2013]. In this sense,

collaboration facilitates vicarious learning, especially from failure experience, and

provides new routines and novel knowledge which could reduce the ambiguity of

self-failure. Therefore, collaboration could help these companies combine the in-

ternal and external knowledge together, enhancing the knowledge repository, and

promote an understanding of the underlying mechanism and better interpretation of

previous failure experience.

Furthermore, co-development could facilitate learning from failure by attend-

ing to weak clues. A key feature of collaboration is a high level of mindfulness,

a condition where new product decisions and participants’ actions reflect an inte-

grated understanding of the agenda and constraint [Jassawalla and Sashittal, 1998].

Co-development processes are characterised not only by participants who think

globally, act locally, and achieve high levels of openness about one another’s mo-

tives and mindset, but also by participants who understand, accept, and internalise

differences that exist and agree to focus on common objectives [Dougherty, 1992].

Accordingly, collaborative partners tend to focus on weak clues which are ignored

by self-developers, and uncover the causal relationship of failure experience even

though some of the information is not well captured.

However, a co-development strategy may not be useful for learning from suc-

cess due to a knowledge sharing dilemma [Gulati, 1998]. Organisational decision-

makers are usually over-confident about their existing knowledge when interpreting
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success experience and conclude that further development of knowledge is unnec-

essary [March and Shapira, 1992]. As a result, they tend to ignore external sugges-

tions and knowledge, and only search their own experience for knowledge recombi-

nation. At the same time, co-development strategy tends to redirect attention to the

collaboration structure design instead of searching and interpreting success expe-

rience [Gulati, 1998]. Even though successes are normally causally unambiguous,

simply refining existing assumptions and approaches is not sufficient, especially

when the level of technological sophistication is high.

Taking these insights together, I argue that collaboration enables innovative or-

ganisations to learn more effectively from failure experience, and to improve learn-

ing outcomes by searching through the experience of failure more than through that

of success.

Hypothesis 2a Working with other partners improves learning outcome from

failure more than when working alone.

Hypothesis 2b Working with other partners helps a company to reduce the

incidence of future failure by learning from failure more than learning from success.

2.2.5 Primary Ownership and Learning

The final element of a firm’s innovation strategy is the decision of being the

inventor or the licensee who acquires the preliminary products from other firms. As

the innovation inventors, organisations shape a responsibility-taking culture. This

culture and its norms influence the behavioural and cognitive development that or-

ganisations can achieve. In other words, inventors have greater search competence

which discovers and refines experience.

Accordingly, inventors are more mindful of and attentive to all clues. How-

ever, this mindfulness has no privilege in searching success experience landscapes.

Information on successful products is more transparent than that on failed products,

and easily accessible to anyone. Both inventors and licensees feel confident about

the adequacy of their knowledge since the knowledge generated during success

is akin to the existing framework [Madsen and Desai, 2010]. Thus the searching
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activities become redundant [Wildavsky, 1988] and the extra attention is wasted.

On the other hand, mindfulness can pick up the weak clues of failure and trigger

non-local searches for potential problems [Cyert and March, 1963]; [Weick, 1995];

[Rerup, 2009]; [Posen et al., 2018]. It also helps organisations to learn how to pri-

oritise failure and raises the awareness of the insignificant signs of failure for future

reference [Baum and Dahlin, 2007]; [Dahlin et al., 2018].

Moreover, innovation inventors also possess a monopoly of knowledge in the

field and have the right to reject new ideas from outside [Katz and Allen, 1982].

This monopoly has the potential to disentangle the causal relationship of failure,

so as to understand such relationships of previous failures and help to replace ex-

isting routines and knowledge with more useful and accurate ones in relation to

failure experience [Haunschild and Sullivan, 2002]; [Henderson and Stern, 2004].

Only the inventors have the resources and ability to trigger problemistic searches

and look for solutions or alternatives that could address the problems. With diver-

sified knowledge, they can easily detect earlier errors so as to prevent subsequent

expensive failure [Edmondson, 2011].

Overall, I posit that organisations cannot learn from success experience be-

cause the mindfulness of innovation inventors does not improve ‘local search’.

However, because inventors have a monopoly of unique knowledge and the abil-

ity to find the reason for failure based on weak clues, organisations could learn

effectively from failure experience.

Hypothesis 3a Working as innovation inventors improves learning outcomes

from failure more than working as non-inventors.

Hypothesis 3b Working as innovation inventors helps reduce the incidence of

future failure by learning from failure more than learning from success.
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2.3 Methods

2.3.1 Quantitative Analysis

2.3.1.1 Setting

Biotechnology firms need to constantly identify new opportunities and pro-

duce knowledge to survive and prosper. The process of drug development is the

procedure of introducing innovation and is the key characteristic that identifies core

competence in biotechnology firms. According to the US Food and Drug Admin-

istration (FDA), drug development is divided into five steps. The first is discovery

and development, where scientists screen thousands of existing compounds, mod-

ify chemical structures, and use biological assays to test drug candidates in treating

certain disease. The second step is preclinical research, in which scientists engage

in both in vitro (in a test tube) and in vivo (in a living organism) tests of the drug

candidates to discover potential toxicity and signs of success against the disease of

interest. After this there are three phases of clinical trials to assess the safety and

efficacy in humans. After completing all the clinical testing, the company can file a

New Drug Application (NDA) to the FDA for approval.

This process of drug R&D is a lengthy process and most experimentations

do not reach the approval stage. It is widely believed that the chemicals which

do not reach potential launch status are failures [Henderson and Cockburn, 1994].

There are various reasons for failure, such as safety issues of clinical trials, side

effects and poor target validation (no causal linkage between drug target and clinical

impact). Previous research shows that nearly 90% of newly developed drugs fail in

this process [Kola and Landis, 2004]; [Cannon and Edmondson, 2005]. Although

this figure is somewhat higher than other innovations, the distribution of failures is

highly skewed, as in other innovative industries [Scherer and Ross, 1980].

Even though failures challenge the status quo and trigger distant search, they

are the natural running course of innovation, running the risk of going unnoticed

or being deliberately ignored. In contrast, successes, confirming the adequacy of

current knowledge and leading to local search, are treated as rare events and are

considered important to a firm in triggering more extensive search for improving
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the firms subsequent innovation outcomes. Therefore, whether innovative firms can

learn more from failure than from success is unclear.

2.3.1.2 Data and Sample

The sample for this study consists of 37 top US biotechnology companies. To

select the sample, I compiled the top 100 biotechnology companies list ranked by

revenue from Compustat and excluded companies, based on three criteria: company

location, main business and data availability. Among these top 100 companies, 38

companies have their headquarters outside the US, 12 of them do not develop drugs

for human, and 13 of them have incomplete financial and R&D data.

Only US firms are included in this study, based on the following two argu-

ments: first, data from the US is more transparent with high reliability, especially

for public firms, making the data collection process smoother. Second, although

scientific sharing is common in biomedical research, the exorbitantly high cost and

the length of time of the R&D process prevent researchers from sharing informa-

tion freely. Indeed, sometimes they are unwilling to share knowledge even when

they are in strategic alliances [Rothaermel and Deeds, 2004]; [Pisano, 2006]. Some

researchers find that geographically distributed units face the challenges of exchang-

ing and acquiring knowledge [Ingram and Baum, 1997]; [Argote, 2012]. Therefore,

only including American firms give me a unified and less complicated sample.

Another concern of my sample is the selection problem, which suggests that

my sample is too small and will not represent the industry. Admittedly, since the

1970s, over 1600 new biotechnology companies have emerged, but many of them

have disappeared due to failure or acquisition. Most of these firms are small start-

ups from universities or research institutions, and the majority market share is con-

trolled by only a few giant companies, most of which are located in the US. Even

at the lower end of the top 100 biotechnology companies, many of them have fewer

than ten drugs being developed. Therefore, although my sample is a small selection

of firms in the biotechnology industry, it is representative of this industry and the

data best serves the purpose of this paper.
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Some people may argue that my sample is a comparatively successful group

of companies and the behaviour of less successful companies may be different.

Clearly, the selection of companies is the result of a data availability issue since the

data of failed companies are less accessible. However, since this study is based on

project-level data, firm characteristics have less effect on the analysis. In addition,

the clinical trials and marketing activities often require the capital that only larger

biotechnology firms can provide, and only larger and successful firms have the abil-

ity to continue and complete a project [Guedj and Scharfstein, 2004]. Therefore,

even though the selection of relatively successful and large biotechnology compa-

nies is biased, it ensures that the data is complete.

To investigate my hypothesis, I compiled a unique dataset by combining data

from several sources. I collected drug development data from Pharmaproject, clin-

ical trials data from clinicaltrial.gov website, ventures alliance data from Deloitte

Recap and financial data from Thomson One. The dataset consists of all drug de-

velopment projects carried out by these 37 top US biotechnology firms in the period

from 1987 to 2012. Altogether there are 2,240 projects, including 180 successes

and 1,732 failures.

2.3.1.2a Dependent Variable

The dependent variable in my model is the hazard rate of an event - either fail-

ure or success - happening to a project. Success is defined as the launch of the prod-

uct, whereas failure is defined as the suspension or discontinue of the product. The

dependent variables include both the observed time (either censoring time or event

time) and the indicator of the time corresponds to an event. The observed time is the

period (in days) between the start of the project and the date on which the project

finishes through success or failure. The observed time is right censored to 2012

since for continuing projects I do not have a recorded completion event. Some may

argue that defining learning by a fixed outcome as success or failure could lead to

an overly narrow representation of organisational learning [Kim and Miner, 2007].
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However, it captures well the knowledge from the process of product development

that operates to produce survival-enhancing learning in the biotechnology industry.

Mathematically, the hazard rate of failure or success is the instantaneous fail-

ure/success rate as dt tends to zero:

ht = lim
dt→0

R(t)−R(t +dt)
dt ∗R(t)

where R(t) is the probability of no event (failure or success) before time t.

2.3.1.2b Independent Variables

Success and failure experience The independent variable measuring success

experience is the cumulative time (in days) an organisation spends on develop-

ing launched drugs in the same therapeutic class until time t. The independent

variable measuring failure experience is the cumulative time (in days) spent by

an organisation on prior suspended or discontinued drugs in the same therapeu-

tic class until time t. Drug development is a tedious process which normally

takes more than ten years and varies dramatically across products. So merely

including the count of a firm’s prior success or failure as in the previous litera-

ture (e.g. [Madsen and Desai, 2010]; [Muehlfeld et al., 2012]; [Gong et al., 2017]),

would not fully capture the variation of experience. Therefore, the cumulative du-

ration of prior R&D failure or success would be more appropriate and justifiable to

proxy experience.

Incremental innovation According to the US FDA, a drug that contains an ac-

tive moiety which has not been approved by the FDA in other drugs is considered

to be a new chemical entity (NCE). The NCEs are different from existing molecules

and all of them must be reviewed by an advisory committee before being approved

by the FDA, so developing an NCE drug is regarded as a process of radical in-

novation. On the other hand, developing a non-NCE drug is equivalent to a pro-

cess of incremental innovation, which is the modification of existing chemicals and

drugs. This process includes new dosages of existing drugs, combinations of exist-

ing chemicals, new indication and formula changes of existing drugs. I have coded

non-NCE, which is incremental innovation, as 1, and NCE as 0.
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Co-development Strategic alliances are ubiquitous in the biotechnology indus-

try to alleviate uncertainty and prior research shows that an alliance improves or-

ganisational learning by building absorptive capacity (e.g., [Powell et al., 1996]).

However, how collaboration affects learning from success and failure separately is

ignored to a great extent. Therefore, I include collaboration as a dummy variable.

If the product is co-developed with other organisations, the variable is coded as 1.

Otherwise, it is coded as 0.

Primary ownership As discussed above, many drugs in the biotechnology

industry are co-developed by several partners and these partners share the val-

ues and risks. However, the benefits and risks are not distributed equally among

all partners, and inventors take extra responsibility comparing to licensees. First,

the inventors of innovation normally have a monopoly of knowledge in the field

[Katz and Allen, 1982]. Second, they face more uncertainty than the licensees,

since they invest the majority of the capital and time. Third, they could capitalise

more financial reward by charging licensing fees or by obtaining a larger portion of

revenue. Therefore, primary ownership affects the willingness and ability to learn

from experience. In this research, if the product is solely developed or invented by

the focal company, the variable is coded as 1. Otherwise, it is coded as 0.

2.3.1.2c Control Variables

Several control variables are also included to account for factors other than

organisational experience that might impact the hazard rate of failure or success.

Vicarious learning experience The organisational learning theory suggests

that organisations develop knowledge not only from their own experience but

also from observations of other companies experiences [Ingram and Baum, 1997];

[Madsen and Desai, 2010]; [Argote, 2012]. To control for vicarious learning, I

measure industry experience by including R&D experience of other pharmaceutical

companies, universities and research institutes.

In practice, since there are thousands of biotechnology and pharmaceutical
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firms developing new drugs, and many universities and research institutes contribute

during the process of drug development, many of their R&D activities are not pub-

licly available and it is impossible to calculate the total time spent on R&D by these

organisations. Therefore, I include the cumulative number of FDA approved drugs

until time t as the proxy for industry experience.

Firm size Annual drug development at time t is included because larger firms

tend to have more products under development and it could represent the size of the

firm [Haunschild and Rhee, 2004]. Total assets at time t is also included to control

for firm size.

R&D expenditure R&D expenditure may influence knowledge creation and

retention by affecting the investment in equipment, human capital, and man-

agement, so I include annual R&D expense (indexed to 1980 dollars) at time t

in my model following the previous literatures [Haunschild and Sullivan, 2002];

[Haunschild and Rhee, 2004].

Drug classes The project characteristics may affect knowledge recall and pro-

cessing, so three additional drug development characteristics - delivery routes, de-

livery medium and drug origins - are also included.

Firm age Previous research has examined the effect of ageing on the organisa-

tional performance (e.g. [Tushman and Anderson, 1986]; [Henderson and Cockburn, 1994]).

Therefore, besides the control variable discussed above, I also include the age of

the firm at time t since it is not only related to technology advancement but also to

the knowledge endowment of an organisation [Argote, 2012].

All the variables are also illustrated in Table 2.1.
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Variables Description Measurement

DV Hazard rate of failure The observed time period (in days) for the project to be a

failure

The failure rate at time t+dt conditional on

survival until time t for a certain project

Hazard rate of suc-

cess

The observed time period (in days) for the project to be suc-

ceed

The success rate at time t+dt conditional on

survival until time t for a certain project

IV Success experience Firms learn from their successes (Ingram & Baum, 1997;

Madsen & Desai, 2010)

Cumulative time a firm spends developing

launched drugs in the same therapeutic class

as the DV’s therapeutic class until time t

Failure experience Firms learn from their failures (Madsen & Desai, 2010) Cumulative time a firm spends developing

drugs which failed eventually in the same

therapeutic class as the DV’s therapeutic

class until time t

Incremental Innova-

tion

Innovation novelty strongly influences the factors that shape

innovation performance (Garcia & Calantone, 2002)

Non-new chemical entity coded as 1, new

chemical entity coded as 0

Co-development Strategic alliance could alleviate uncertainty and promote

learning (Powell et al., 1996)

Co-development coded as 1, self-

development coded as 0

Primary ownership Inventor has monopoly of knowledge and faces increasing

uncertainty (Katz &Allen, 1982)

Solely developed or invented by focal com-

pany coded as 1, otherwise 0

Control Industry experience Organisations develop knowledge not only from their own

experience but also through observation of others’ experi-

ences (Ingram & Baum, 1997; Madasen & Desai, 2010; Ar-

gote, 2013)

Cumulative number of FDA approved drugs

until time t

Annual drug develop-

ment

Control for firm size (Haunschild & Sullivan, 2002;

Haunschild & Rhee, 2004)

Annual number of drug projects at time t

Total assets Control for firm size Company total assets at time t

R&D expenditure Control for firm size and knowledge creation and retention

(Haunschild & Sullivan, 2002; Haunschild & Rhee,2004)

R&D expense each year(Indexed to 1980

dollar) at time t

Firm age Ageing has an effect on organisational perfor-

mance(Tushman & Anderson, 1986; Henderson, 1994)

Company age at time t

Delivery routes Control for task characteristics that may affect knowledge

dissemination. Four types: oral, injectable, inhaled and not

applicable

Categorical variables from 1 to 4 for the 4

delivery routes

Drug origin Control for task characteristics that may affect knowledge

dissemination. Four types: biological, chemical, natural

product and not applicable

Categorical variables from 1 to 4 for the 4

types of drug origins

Delivery medium Control for task characteristics that may affect knowledge

dissemination. Five types: capsule, powder, solution, tablet,

patch

Categorical variables from 1 to 5 for the 5

types of delivery mediums

Table 2.1: Variable Construction



2.3. Methods 43

2.3.1.3 Model

Organisational learning researchers tend to aggregate individual project-level

data to form firm-year panel and calculate the influence of previous experience on

yearly failure outcomes. Compared with cross-section analysis, this captures the

complexity of firm behaviour by controlling the impact of omitted variables and

reduces measurement errors by observing an individual firm several times. In ad-

dition, panel data analysis accounts for the learning outcome when studying only

routine and repetitive activities. However, with increasing uncertainty and com-

plexity of learning during innovation, this method ignores individual outcomes and

micro-foundations of learning.

If individual projects are similarly conditional on certain variables, firm-year

panel data enables the possibility of learning from an individual firm’s behaviour

by observing others’ projects [Hsiao et al., 1993]. However, if there are major vari-

ations among projects, which is common under the innovation context, acknowl-

edging the heterogeneity instead of treating each project equally and supplementing

observations with data on other firms is a more sensible approach.

In addition, aggregated data analysis often involves the representative agent

assumption. However, if micro-units are heterogeneous, not only can the time series

properties of aggregated data be very different but also the evaluation based on

the data may be grossly misleading [Hsiao, 2005]. Furthermore, the prediction of

combined outcomes using aggregate data can be less accurate than the prediction

based on micro-project data.

To address these problems, I use project-level data and estimate the hazard

ratio. In contrast to traditional analysis, survival analysis can predict whether and

when an event will occur [Jenkins, 2005] and allows us to assess the conditional

probability of an event given that the project is still in progress. Therefore, survival

analysis can cope with right-censored data in which an event has not yet occurred

and with time-series data, which has different time horizons [Jenkins, 2005].

The process of drug development I study is characterised by both situations:

The data are right censored since many projects are still active after 2012. Further,
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the time window is different for each project depending on when in the sample pe-

riod it fails or succeeds. Last but not least, survival analysis allows me to apply a

competing risk model to account for the heterogeneity of the event. While a drug

development project can be either ongoing or completed, the modes of completion,

which includes either failure or success, also need to be considered. Since the oc-

currence of one state removes other states from the pool of all risk states at that

point in time, the different completion outcomes can be treated as competing risks.

Hence, I estimate the following equation:

ht(t|xit) = h0k(t)exp(xikβk)

where hk(t|xik) is the hazard of project completion, h0k(t) is the baseline haz-

ard (i.e. the hazard when all covariates are equal to zero), and xik is a matrix of co-

variates, including independent variables, control variables as well as company and

therapeutic class dummy. The competing risks considered in the analysis are failure

and success. Assuming the risks are independent, previous research has shown that

the log-likelihood for the competing risk model is additively separable into K terms,

with each one being a function of the parameters of a single cause-specific hazard

[Narendranathan and Stewart, 1991]. Thus, the estimation of a single risk hazard

considers finishing durations for other reasons than the one of interest as censored

at the point of completion.

When developing a new drug, it is important to consider the therapeutic class to

which the drug belongs. The failure rate varies greatly among different therapeutic

classes owing to the innate molecular mechanisms [Kola and Landis, 2004]. To

account for therapeutic classes, I include 31 indicator variables, corresponding to

the therapeutic class guideline given by the FDA. In addition, I also include a set of

company dummies to capture the variation in the trend of failure incidence across

companies.

Missing data Since some of the dates are missing in my dataset, I estimate

those missing data using different assumptions.

In the main model, I assume that all missing data follow the middle point rule,

which is (see Appendix Table A.1):
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1. if only the day of the current stage is missing, and the current stage is not in

the same year and month as either the previous or next stage, assume the date

is the 15th;

2. if only the day of the current stage is missing, and the current stage is in

the same year and same month as the previous stage, assume the date is the

middle point between the previous stage date and the last day of the month;

3. if only the day is missing, and the current stage is in the same year and month

as the next stage, assume the date is the middle point between the next stage

date and the first day of that month;

4. if both the month and the day are missing, and the current stage is not in the

same year and month as either the previous or next stage, assume the month

is June and date is the 30th;

5. if both the month and day are missing, and the current stage is in the same

year as the previous stage, assume the date is the middle point between the

previous stage date and the last day of the year;

6. if both the month and day are missing, and the current stage is in the same

year as the next stage, assume the date is the middle point between the next

stage date and the first day of that month; and

7. if the year, month, and day are missing, average the existing previous stage

date and post-stage date to estimate them.

In the robustness check section, different assumptions such as minimum,

maximum and random will be considered.

Coarsened Exact Matching (CEM) The idea that different strategic choices

may foster different types of learning highlights a source of potential bias that I

cannot mitigate entirely: potential assortative matching between organisations and

strategies. Here, the concern is that learning outcomes are influenced by the ex-

pectations of the innovative potential of each strategy. Although I control for as
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many observable differences in the project-level characteristics as possible in my

regressions, some aspects of these matches may be unobservable, introducing the

potential for selection bias. From the pre-CEM section of table 2.2 we can see

that different types of strategies have different characteristics. Similar drug classes

share identical mechanisms to promote learning. This begs the questions of whether

organisations are matched with projects and whether this may, in part, drive the ob-

served results. To address this possibility, I perform CEM to make the projects in

the pairwise strategic factors comparable in my analysis [Blackwell et al., 2010].

The matching process is as follows. The first step is to choose a relatively

small set of covariates on which I would like to guarantee a balance between

projects when searching for experience. In this study, I focus on three drug class

types (delivery routes, delivery medium, drug origins; see Table 2.1 for more de-

tailed information) and therapeutic classes. These four variables I use to balance

the projects represent observable learning potentials that would be correlated with

strategic choices. As the ‘pre-CEM’ column shows, the incremental innovation and

radical innovation sub-samples are significantly different (at the 5% level) across the

board for the full set of covariates as are the sub-samples for collaborative projects

and non-collaborative projects, and inventors and non-inventors. These differences

are reduced, however, ‘post-CEM’ , where none of the differences is significant at a

level higher than 5%, suggesting a balance in the two pairwise sets of samples. The

second step is to create a large number of strata to cover the support for the joint

distribution of the covariates selected in the previous step. Thirdly, each observation

is allocated to a unique stratum. Any stratum that has no project from either of the

pairwise strategic factors is then dropped from the data.
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Table 2.2: Project Characteristics Before and After Coarsened Exact Matching Procedure

Pre-CEM Post-CEM

Incremental Innovation Radical Innovation Incremental Innovation Radical Innovation

Delivery Routes 2.56 3.21∗∗ 3.09 3.09

(0.70) (0.65) (0.92) (0.70)

Delivery Medium 3.66 2.21∗∗ 3.22 3.27

(1.71) (1.01) (0.86) (1.21)

Drug Origins 1.48 2.01∗∗ 2.05 2.02

(0.67) (0.11) (0.22) (0.15)

Therapeutic Class 13.8 15.1∗∗ 14.26 14.67

(6.76) (6.84) (6.42) (6.60)

Collaboration Non-collaboration Collaboration Non-collaboration

Delivery Routes 3.35 2.93∗∗ 2.92 2.82

(0.84) (0.66) (0.72) (0.89)

Delivery Medium 3.14 3.73∗∗ 3.19 3.12

(1.07) (0.98) (0.93) (0.76)

Drug Origins 1.89 1.24∗∗ 1.75 1.70

(0.60) (0.50) (0.52) (0.56)

Therapeutic Class 13.6 15.3∗∗ 14.95 14.26

(6.99) (6.61) (6.76) (6.38)

Inventor Non-Inventor Inventor Non-Inventor

Delivery Routes 3.03 2.53∗∗ 2.92 2.90

(0.72) (0.95) (0.71) (0.89)

Delivery Medium 3.01 3.84∗∗ 3.29 3.54

(0.94) (1.51) (0.94) (1.49)

Drug Origins 1.25 1.96∗∗ 1.75 1.72

(0.53) (0.62) (0.52) (0.59)

Therapeutic Class 12.9 15.4∗∗ 14.56 14.59

(6.73) (7.24) (6.47) (7.12)

Notes: The mean and standard deviation (in parentheses) are reported. The CEM procedure invloves matching on the delivery

routes (Oral, injectable, inhale and not applicable), delivery medium (capsule, powder, solution, tablet, patch, deliver medium

and not applicable ), drug origin (biological product, chemical product, natural product and not applicable) and therapeutic

classes.

**Indicates difference is significant at the 5% or higher level

The procedure is coarse because I do not precisely match the projects on

covariate values, but rather, I coarsen the support of the joint distribution of the
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covariates into a finite number of strata, and keep the strata if and only if projects

from both pairwise strategic factors can be found in the same stratum. An important

advantage of CEM is that researchers can guarantee the degree of covariate balance

ex ante. However, the downside is that the more fine-grained the partitioning of the

covariates, the larger the number of unmatched observations. In general, there is a

trade-off between the quality of the matches and external validity.

2.3.2 Qualitative Analysis

Learning from innovation failures and innovation successes is quite dif-

ferent from learning from routine works as described in previous studies (e.g.

[Adams, 1990]; [Baum and Dahlin, 2007]; [Madsen and Desai, 2010]). Failure is

predominant in innovation, but rare in routine works. Therefore, the mindset is

different between these two contexts. In addition, learning from innovation is a

random trial and error since firms cannot automatically shift from existing routines

to new ones [Nooteboom, 2004]. To make sense of the quantitative results and to

determine why learning from innovation failures and successes are more difficult,

I also conduct several semi-structured interviews with senior scientists. The quali-

tative data are collected from the research centres of US biotechnology companies

in China. The main reason for collecting interview data from China instead of the

US is data availability: most of the scientists in the private sectors are not willing to

talk about their drug development projects in any sense and the company regulations

also forbid employees to release any information concerning their R&D to protect

their intellectual property in the field. The author could obtain in-depth information

in China because of previous personal relationships.

Semi-structured interviews are conducted with 12 interviewees from 5 firms;

they all are senior scientists with at least 10 years’ industry experience of drug de-

velopment. Each interview consists of three sections: the first section covers the

interviewee’s background, education, and work history. The second consists of

a detailed narrative of the relationship among the projects the company has been

working on without the technical elements. This section of the interview focuses



2.4. Results and Mechanisms 49

on the specific problems the firm faces during the R&D process as well as actions

taken by the person with respect to these issues. The goal is to understand how

the scientist sees the connections among projects and what the knowledge-sharing

activities inside the firm are. In this section, I also explore their opinions on the

sky-high attrition rate and whether they can learning by doing. The third section ex-

plores specific details and decisions that arise during the interview. Each interview

lasts between 30 minutes to 1 hour.

To ensure data validity and minimise informant bias, the interviews are struc-

tured to gather specific information and conducted with non-directive questioning

[Huber, 1985], and the participants are asked to focus on facts rather than specu-

lation. For example, informants are asked about a specific project’s failure and its

relationship with other projects, and leading questions (e.g., was the failure blame-

worthy?) are avoided.

2.4 Results and Mechanisms
2.4.1 Results

Table 2.3 presents the descriptive statistics and correlations between the vari-

ables. As can be seen from the table, some very high correlations exist among

certain variables. For example, the correlations between total assets and R&D ex-

pense (r =0.95) as well as between these two and annual drug development (r= 0.67

and 0.69 respectively). To avoid multicollinearity, I run the analyses by adding the

variables sequentially and checked the fitness of each regression. These analyses

show that multicollinearity is not affecting my main conclusions.
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Table 2.3: Descriptive Statistics

Variables Mean SD Min Max 1 2 3 4 5 6 7 8 9 10 11 12 13

1.Failure Experience 10.77 1.50 0 12.69 1.00

2.Success Experience 8.14 3.76 0 11.37 0.49 1.00

3.R&D Expense 11.14 1.63 6.51 14.13 0.63 0.52 1.00

4.Company Age 22.38 15.41 0 81 0.31 0.40 0.46 1.00

5.Annual Development 38.28 29.72 1 112 0.73 0.48 0.67 0.19 1.00

6.Total Assets 12.85 2.23 6.77 16.79 0.64 0.59 0.95 0.55 0.69 1.00

7.NDA Approved 11558.67 507.26 9374 12163 0.46 0.10 0.34 0.24 0.06 0.30 1.00

8.Incremental Innovation 0.48 0.50 0 1 -0.03 0.03 0.03 0.09 -0.03 0.04 -0.14 1.00

9.Co-development 0.48 0.50 0 1 0.01 0.05 -0.06 -0.10 -0.03 -0.06 0.06 0.10 1.00

10.Innovation Inventor 0.85 0.36 0 1 0.16 -0.13 -0.06 -0.16 0.03 -0.09 -0.02 -0.03 -0.32 1.00

11.Drug Origins 1.75 0.54 1 4 -0.04 0.00 -0.14 -0.11 -0.07 -0.14 0.06 -0.49 -0.01 0.02 1.00

12.Delivery Medium 3.25 1.06 1 7 -0.04 0.05 0.00 0.02 -0.07 0.01 0.09 -0.02 0.12 -0.11 0.05 1.00

13.Delivery Routes 2.90 0.75 1 4 0.00 -0.07 -0.06 -0.12 0.00 -0.07 0.03 -0.44 -0.04 0.04 0.24 0.03 1.00

Notes: The samples consist of 2,240 drug development projects from 37 biotechnology firms. See the Data and Sample section for details on the sample

construction and Table 2.1 on variables definitions and construction.
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In addition, the correlation between success experience and failure experience

is also high. One reason for the fairly high correlation could be that occasions of

both success and failure increase as the organisation gains overall experience. To

determine whether success and failure experiences contribute information to the

models independent of general experience, I conduct preliminary tests to estimate

the impact of an organisation’s general experience. Although total experience has

a significant effect on performance improvement, models separating general expe-

rience into success experience and failure experience yielded a significantly better

fit. This finding suggests that success experience and failure experience contribute

independent information to the models despite their high correlations. Therefore,

only failure experience and success experience are included in the models and the

general experience is omitted.

Table 2.4 reports the partial likelihood method of estimation for the fixed-

effects hazard model analysis of learning from failure and success. The second

and third columns do not confine the sample to observations matched via CEM be-

cause I initially want to describe the learning pattern for all my samples. I examine

both the timing and consequences of future failures as my dependent variables. I

take the log value of experience, R&D expense and total assets and include three

fixed effects, namely company fixed effects, year fixed effects, and therapeutic class

fixed effects. We can see that innovation novelty and primary ownership moderate

the relationship between experience and future performance.

Specifically, researching incremental innovation projects helps organisations

learn from failure experience to reduce the failure risk. In addition, innovation

inventors take more responsibility and have a higher tendency to learn positively

from failure experience. Therefore, hypotheses 1a and 3a are supported but not 2a.

An additional Wald test also shows that all three factors help prior failure experience

enabling learning more effectively than prior success experience, even though the

moderating effects of co-development on learning from failure and learning from

success separately are not statistically significant. Therefore, hypotheses 1b, 2b and

3b are supported.
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Table 2.4: Boundary Condition of Learning from Success and Failure

CRA CEM
Variables Risk of Failure Risk of Success Risk of Failure Risk of Success
Failure Experience 1.46∗∗ 0.83∗∗ 1.12 1.04

(0.17) (0.15 ) (0.20) (0.18)
Success Experience 0.91∗∗ 1.04∗∗ 0.95 1.02

(0.04) (0.02) (0.06) (0.08)
Failure Experience * Incremental 0.87∗∗ 1.17∗∗ 0.82∗∗ 1.25∗∗∗

(0.05) (0.07) (0.08) (0.07)
Success Experience * Incremental 1.01 0.98 1.02 0.97

(0.02) (0.03) (0.04) (0.03)
Failure Experience * Collaboration 0.92 1.06 0.98 1.05

(0.05) (0.06) (0.07) (0.06)
Success Experience * Collaboration 1.00 1.02 0.99 1.01

(0.02) (0.03) (0.02) (0.03)
Failure Experience * Inventor 0.78∗∗ 1.27∗∗ 0.78∗ 1.25∗∗

(0.07) (0.08) (0.11) (0.10)
Success Experience * Inventor 1.09∗∗∗ 0.87∗∗∗ 1.09∗∗ 0.91∗∗

(0.03) (0.04) (0.04) (0.04)
Company Fixed Effect Y Y Y Y
Therapeutic Fixed Effect Y Y Y Y
Year Fixed Effect Y Y Y Y
Loglikelihood -2584.89 -2583.85 -1516.33 -1527.57
Chi-squared 543 544 313 307
N 2240 2240 1309 1309

Notes: Estimates stem from the partial likelihood method of estimation. Dependent variable is the hazard rate of future project failure
or success. All models incorporate year fixed effect and firm fixed effect, as well as therapeutic class fixed effect. Robust standard
errors in parentheses. Two specifications are used and they differ depending on whether CEM is performed before the regression.
The sample size drops to only a half after CEM.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

This estimation has not taken the possible self-selection of different learning

modes based on unobservable into consideration. I therefore employ CEM to better

understand the relationship between innovation strategy and learning outcomes.

The last two columns of the table report the CEM estimates, balancing on drug

class types (delivery routes, delivery medium, drug origins) and therapeutic classes

to define the pairwise task samples. I find that my key results hold. This specifi-

cation contains my full set of controls, company fixed effects, year fixed effects,

and therapeutic class fixed effects. In terms of the magnitudes of the effects, if

the current project has incremental innovation, one year of failure experience will

decrease future failure incidence by 3.6% and increase the future success incidence

by 4.3%. If the focal company is the inventor of the drug, one year of failure

experience will decrease future failure likelihood by 4.8% and increase the future

success incidence by 5.3%. We can also see that neither the coefficient of failure

nor the coefficient of success experience is significant, indicating that both of them
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are less likely to reduce future failure incidence or induce success incidence. These

results are surprising and contradictory to those of previous studies alleging that

organisations can learn from both failures and successes. Additional test and data

in the next section will explain this in detail.

2.4.2 Disentangling the Mechanisms

The above results fail to uncover evidence of significant learning by firms from

the observation of their own failures and successes. Coefficients estimating the ef-

fect of success experience and failure experience on future performance are indis-

tinguishable from one. Although several properties of innovation strategy improve

learning from failures, the fact that organisations do not demonstrably learning from

the experience of failure or success is confusing and inconsistent with previous lit-

erature.

In addition, in this study I find that co-development does not enhance learning

from failure. This is not a rejection of previous study on alliance and learning. The

present study only takes intra-organisational learning into consideration, whereas

most studies of alliance and learning focus on inter-organisational learning (e.g.,

[Powell et al., 1996]). So it is highly likely that co-development contributes to inter-

organisational learning, but is unable to moderate intra-organisational learning ap-

propriately. Limited resources, both cognitive and financial, may limit the ability of

organisations to strike a balance between inside knowledge and outside knowledge.

To understand this ‘unlearn’ situation and explore the effect of co-development, I

conduct further qualitative analysis.

It is possible that learning from innovation failures and successes are drasti-

cally different from learning from routine works. Organisations cannot automati-

cally abduct from an existing working modus operandi to a new one that in the future

will turn out to be better but which now is not known [Nooteboom, 2004]). They do

not know all the options and so random trial and error might be the only choice. To

shed light on this issue and explain the above quantitative result, I conduct twelve

semi-structured interviews with the senior scientists from five biotechnology firms.
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A first potential explanation that arises from the interviews is that it takes a long

time for the disease mechanisms which are the direct information from previous

drug development to be applied in new drug development. One chief scientist from

one of the largest biotechnology companies states:

Although pharmaceutical development is aimed at producing new drugs, the most

valuable product of translation efforts is information about disease and drug mecha-

nisms. This information is valuable because it informs drug development and it guides

clinical practice. However, unlike other fields, the translational process in pharma-

ceutical development could not be accomplished overnight and there is a huge lag.

Similar points and detailed examples are stated repeatedly by other scientists.

One scientist recalls that several oncogenes which cause tumour growth have been

discovered from clinical research that was conducted more than thirty years ago;

however, our understanding of the mechanism of these genes is still limited and the

discovery of drugs which target these oncogenes is still a long way off. My analysis

only covers 25 years of data and this short time span potentially poses a challenge to

find a real learning effect in the baseline model. This also promotes the importance

of research in finding context factors which accelerate the learning process as has

happened in this study.

Another possible reason that emerges from the interviews is that the meth-

ods for generating information may not be effective. Over the past three decades,

the development of biotechnology has transformed drug development from low-

throughput in vivo testing and medicinal chemistry optimization to aim-specific ge-

netic manipulation and targeting in order to improve success rates. Although the

latter reduces the cost and enhances the speed dramatically, it also produces more

false positives since the assays are less rigorous. Before the 1990s, the standard

approach for small-molecule drug discovery involved synthesizing and screening

a relatively smaller number of compounds (normally fewer than ten at one time).

Repeating the assessment cycle could establish a structure activity relationship and

advance the structures of lead compounds through the chemical space. This ap-

proach prevents trial compounds from being confined to minor local optima and
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avoids spurious clinical promise due to bias or random variation.

To reduce cost and to speed up the process, many drug development activities,

especially early stage investigations, are conducted on small sample sizes and sur-

rogate endpoints. However, this also comes at a cost, since small and less rigorous

studies tend to produce more false positives, with misleading results. Several scien-

tists complain in their interviews that in order to explore a vast, multidimensional

landscape of agents, doses, disease indications and treatment schedules on a tight

budget and within a limited time frame, they have to look for other intermediate

indicators or use the minimal sample size. They think these short cuts may work for

a while, but are detrimental to the field. One of the researchers became really upset

when discussing this issue, telling me:

These managers only care about the success rate and profit, and they do not have

any sympathy for the suffering victims. Science should not and cannot be measured

by money, especially medical science. Money is only a number and it becomes use-

less when you can no longer enjoy your life. They are the real causes of unethical

behaviours in medical research.

Several neuroscientists from my interviews also mentioned that many spuri-

ous clinical promises are caused by bias or random variation in their field. They

alleged that some information generated from previously launched products cannot

be verified and this is hard to vindicate in the later drug development.

Most of the scientists also mentioned that a considerable amount of informa-

tion and knowledge generated from drug development is not well-captured. For

example, several researchers noted that the reporting and publication scheme is in-

adequate in pharmaceutical research. In one case, a senior scientist who used to

work at a top US university criticized the fact that only limited pathophysiological

data and theories are shared among peers even in the same company. If he wishes

to publish the clinical results, he has to withhold some part of the methods or data

to avoid leaking too much information. In this sense, knowledge is only embedded

in a few particular people. If they leave the company, at least part of the knowledge

will be lost.
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Furthermore, negative or inconclusive studies are even more susceptible to this

problem. It could because that scientists are afraid of admitting failures or they

think that only positive and conclusive results can diminish the off-label use of a

licensed drug and be used to compile a clean narrative for investors. For example,

several researchers in my interviews mentioned that the reporting and publication

scheme is inadequate for failures in pharmaceutical research. One senior scientist

said that it is not possible to publish failed clinical results since no journal is willing

to accept negative results. Therefore, other members in the same firm may not learn

from the potential mistakes and may approach future tasks in ways that are similar

to the approach which leads to failure.

The reasons presented above help explain why it is not easy for biotechnology

firms to learn from failures or successes and to build a circumstantial case in favour

of interpreting the learning process during innovation. However, these reasons do

not enable me to reject some potentially relevant versions of theory - such as the

mindfulness of researchers in interpreting information - nor do they allow me to

learn about the degree of each effect.

2.4.3 Robustness and Sensitivity Check

In addition to the main analyses reported above, I also conduct several sup-

plemental tests to assess whether the patterns of results are robust to alternative

specifications and samples. First, I use different estimation methods for missing

data given that previous estimations might distort the data and generate false sig-

nificant results, which would not be reflected in the real situation. As discussed

above, my primary analyses assume that the missing data are random. Given that

failure experience and success experience may vary in length, it is necessary to as-

sess whether my arguments regarding the relative effects of learning from failures

compared with learning from successes hold with respect to different estimations of

the missing data. To rule out this possibility, I use different assumptions to calculate

the missing data (see Appendix Table B.1).

• Minimum: Assume the missing stage date is one day later than the previous



2.4. Results and Mechanisms 57

stage date

• Maximum: Assume the missing stage date is one day earlier than the later

stage date

• Random: Assume the missing stage date is a random date between the previ-

ous stage and later stage

All these estimation assumptions yield similar results.

Second, another concern regarding the missing data is that these missing data

are not random but are related to innovative performance. One possibility is the

decision makers pay less attention to some projects and choose not to record them

if they think these projects are less likely to succeed, or the loss of key scientists

or important achievement records could have caused the loss of date. Regardless of

the reason, missing data indicates that particular knowledge might be lost. To rule

out these possibilities, I test the models by including projects with non-missing data

only. This sub-sample contains 1919 products with 1579 failures and 143 successes.

The main results do not change qualitatively when projects with missing data are

discarded.

Third, given the duration of successful drug development is ten years, gener-

ally, and a few projects in my dataset have less than a year of R&D duration, it is

possible that these data are sometimes non-reliable since finding pre-clinical infor-

mation record is problematic [Kola and Landis, 2004]. In addition, it is unlikely that

organisations will allocate limited attention to these projects owing to their brevity

and the lack of promising results. Therefore, to further test whether my findings are

affected by this, I drop 51 projects that have a lifespan of less than one year. The

results are similar to the main findings, suggesting that these short-duration projects

do not twist my results.

Fourth, many researchers have found that the value of prior experience de-

preciates over time in such a way that recent experience is more valuable than

the older experience (e.g., [Ingram and Baum, 1997]; [Madsen and Desai, 2010];

[Argote, 2012]). This is caused by the organisation members’ exit [Argote et al., 1990]
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or changes in organisational processes or structures [Pablo Martin de Holan, 2004].

Several methods have been developed to model knowledge depreciation (e.g.

[Baum and Ingram, 1998]; [Haunschild and Sullivan, 2002]).

Typical values assigned to the discount factor are 1 (assuming that knowl-

edge is non-depreciating), the age of experience (assuming that knowledge depreci-

ates linearly), the age of experience squared (assuming that knowledge depreciates

rapidly), and the square root of the age of experience (assuming that knowledge

depreciates slowly). To examine whether knowledge depreciation can reduce the

learning effect and therefore change my results, I replicate my analyses using the

same sample but include the discount factors. None of the three commonly used

discount factors change my main findings.

Last but not the least, to further examine whether the findings of the innovation

inventor as a moderator are susceptible to the self-development of products, I also

estimate the effect of primary ownership in a partial data set including only col-

laborative drug development. The results are similar to those of the main models,

suggesting that the difference between organisational learning from success experi-

ence and failure experience can be driven by primary ownership.

2.5 Conclusion and Contribution

2.5.1 Conclusion

Despite the wealth of research on organisational learning which enables in-

novation and promotes economic development (e.g., [Alegre and Chiva, 2013];

[Moustaghfir and Schiuma, 2013]), we have limited knowledge of innovation learn-

ing and know little about how innovation strategies enable learning from past fail-

ures and successes. The present study aims to address this gap by analysing,

first, how particular properties of innovation strategies - innovation novelty, co-

development, primary ownership - improve learning from failure. In contrast to the

majority of the empirical research in organisational learning, which discusses learn-

ing from general experience, I focus on improving learning from failure. Many
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institutional systems, such as Total Quality Management and soliciting feedback

from customers by using the United Stated Navy and Colour Code System by Boe-

ing respectively, have been put in practice to give additional attention and resources

to surface failures alongside the routine operations [Edmondson, 2011]. Learning

from failure is more salient in innovation since 50-90% of innovation projects fail

[Castellion and Markham, 2013] and diversified knowledge can be obtained from

failures than from successes. This work, using Coarsened Exact Matching to im-

prove the estimation of causal effects by reducing the imbalance in covariates be-

tween different groups, looks at the fine-grain project-level data and provides theo-

retical and practical implications for improving learning from failure.

Second, I also test whether these strategies improve more by learning from

previous innovation failures than they do by learning from previous innovation suc-

cesses. In doing so, this work explicitly distinguishes between success and failure

experience in the context of innovation. The results yield strong evidence that all

three innovation strategies help organisations learn by observing their own failure

more than by observing their own successes.

Although the coefficients estimating the effect of failure experience and suc-

cess experience on future performance are indistinguishable from zero, this should

not be interpreted as evidence that organisations cannot learn from failures or suc-

cesses to improve their performance. However, the fact that organisations do not

experience demonstrable learning from failures or successes suggests that learning

from innovation success and innovation failure separately is far from being an auto-

matic process. Additional qualitative analysis explores the reasons underlying this.

2.5.2 Theoretical Contribution

This study contributes to existing theory in several ways. First, it in-

troduces two innovation strategies as the accelerators of learning from innova-

tion failures. Previous research shows that the complexity of an innovation

task determines the knowledge strategy and subsequent performance of the firm

[Bierly and Chakrabarti, 1996], but how different types of innovation strategies fa-
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cilitate knowledge search between different performance outcomes is understudied.

This paper argues and proves that conducting incremental innovation or acting as

an inventor enhances learning from innovation failures. These factors not only im-

prove learning from failure, but also lead to stabilizing learning from success since

the results of current study do not show there is a considerable improvement in

learning from success. The results suggests trade-off between learning from failure

experience and learning from success experience and confirm that the aggregated

experience may not represent the real learning result. This confirms the discus-

sion of interpreting previous results cautiously in terms of learning from aggregated

experience [Madsen and Desai, 2010]; [KC et al., 2013]; [Muehlfeld et al., 2012];

[Gong et al., 2017]. These two factors also drive entrepreneurship, since organisa-

tional learning acts as an important driving factor of entrepreneurial efforts and has

been associated with firms’ greater ability to innovate [Burgelman, 1983].

Second, this paper demonstrates how previous failure experience is expected

to influence the efficiency of innovation. Failures motivate decision makers to chal-

lenge the status quo and engage in deep and mindful reflection involving complex

thought processes [Madsen and Desai, 2010]. Organisational search for knowledge

in response to failure helps to correct problems, challenge old assumptions and in-

novate [Sitkin, 1992], [Eggers, 2014]. During this process, innovation novelty and

primary ownership not only provide resources to increase the chance of searching

for new knowledge, but also bring mindfulness into the search process to attend to

minor clues and the roadmap of the gap [Levitt and March, 1988]. In other word,

these two innovation strategies are more likely to produce the necessary conditions

for organisations to build capabilities that improve future performance.

Third, this work extends the literature on intelligent failures [Sitkin, 1992]. In-

telligent failures are those in which expectations are not met, but something useful

for the future is learned [McGrath, 2001]. These failures are necessary experimen-

tal steps for innovative outcomes, but learning from them is not straightforward.

Organisations need a special schema to take advantage of them. For example, Eli

Lillys failure parties since 1990, which honour intelligent experiments that fail to
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achieve the desired results, redeploy valuable resources for new projects and kick-

start many new discoveries [Edmondson, 2011]. This study attempts to uncover

some strategic factors which can enhance learning from intelligent failures.

Finally, this work also presents a new analytical method to analyse organisa-

tional learning by taking project heterogeneity into consideration. Using aggregated

data to infer individual behaviour by previous researchers means relying heavily on

the representative agent assumption [Hsiao, 2005]. However, the diverse conditions

of each innovative project render this assumption defective. This study constitutes

the first project-level analysis of organisational learning and provides the micro

foundation of learning variation.

2.5.3 Implications for Practice

This paper highlights that learning from what went wrong in past innovation

processes is possible but challenging [Edmondson, 2011]; [Eggers, 2012]. Fail-

ure is sometimes difficult for organisation members to cope with because fail-

ures are often stigmatized and organisation members frequently refuse to ac-

knowledge failure and refrain from communicating about it [March et al., 1991];

[Madsen and Desai, 2010]. This is especially salient in innovative industries be-

cause of the causal ambiguity.

Nonetheless, given the number of failures during innovation and their

central role in organisations shown previously [Haunschild and Rhee, 2004];

[Baum and Dahlin, 2007]), the inability to learn from failure may deprive an or-

ganisation of the opportunities for improvement. Therefore, developing superior

strategies for coping with failures should enable organisations to reap substan-

tial gains. Thus this study provides some solutions to treat failures as invaluable

learning opportunities and encourages the open sharing of information about them.

Furthermore, this study provides another way to overcome Erooms Law (drug

discovery is becoming slower and more expensive over time, despite improvement

in technology) [Scannell et al., 2012]. Although the paper published in Nature Re-

views Drug Discovery in 2012 discusses the problems and solutions in great de-
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tail, the authors dismiss the importance of using management to lessen the threat.

Admittedly, a fundamental change in the business model is a painful process and

the outcome is ambiguous. But based on the results from this study, organisations

could learn more easily and effectively from previous failure experience and im-

prove R&D efficiency by carefully choosing the projects. This could help reduce

the growing panic over the status quo.

Last but not least, this study also has policy implications. Innovative com-

panies are an important contributor to economic growth and government policy

incentive research, development and innovation. There are various kinds of poli-

cies, and encouraging R&D knowledge spill-over is commonly used by many

modern governments. However, no explicit policy has been targeting innovation

learning. Instead of focusing collaboration to facilitate knowledge-sharing across

organisations, other policies such as balancing incremental innovation and radical

innovation or allocating more resource to inventors than to licensees could promote

learning from previous failures and enhance innovation efficiency.

2.5.4 Limitations and Directions for Future Work

While I am able to investigate how to improve learning from failure during

innovation, the results from this study should be interpreted with caution. Although

incremental innovation can enhance learning from failure experience, organisations

that only focus on incremental innovation will fall into the competence trap of just

developing current and short-term competence, and will lose the chance to move to

new and superior competence [Levinthal and March, 1981]. In this sense, radical

innovation is necessary for organisations in the long term, although learning from

failure is compromised. Therefore, a balance needs to be achieved between radical

innovation and incremental innovation, and only by doing this, can organisations

have a sustainable competitive advantage.

A similar condition applies to primary ownership. Although being an inventor

is beneficial for learning from failure, it is impossible to invent everything due to

limited resources and attention. Co-invention or co-development could be a com-
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promise and organisations could benefit from vicarious learning. In addition, co-

development also reduces uncertainty and cost and diversifies any organisation’s

portfolio, thereby increasing survival [Nelson and Winter, 1982]; [Powell, 1990].

In addition, not all failures make the same contribution to learning, since the

magnitude of failure varies and future work could include the financial data of each

drug development process to account for the magnitude of failure and see whether

it will produce the same result as this study. This would not only control the mag-

nitude of failure, but also test the learning curve framework in innovation learning,

using the most acceptable outcome [Argote and Epple, 1990].

Last but not least, the research context of this study is drug development in

biotechnology industry, and many people may argue that other technological inno-

vation contexts may result in different conclusions. Admittedly, in all innovative

industries, the ability to develop a new product quickly, effectively and efficiently

is the most important factor driving a firm’s success. Even though the cycle time

of drug development is longer and the failure rate is higher than in other industries,

reducing the innovation cycle time and reducing failure as a dependent variable, as

used in this study, are common goals for all technological innovation. However,

this does not guarantee that the conclusions in this study apply to other innovation

contexts. So further studies on other research contexts, such as chemical or software

development, to test the learning hypotheses in this paper, would be welcome.

This study demonstrates that innovation novelty and primary ownership can

enhance learning from failure and improve learning from failure more than learn-

ing from success. Collectively, these findings suggest the need to further explore

organisational learning practices associated with innovation failure and to deter-

mine how organisations may be able to reap the benefits of failure without exposing

themselves to its undue cost.



Chapter 3

Towards an Understanding of

Learning by Innovating: Evidence

from Drug R&D

3.1 Introduction

Product innovation drives economic growth by raising product quality

or increasing product price [Syverson, 2011]. It is aimed at entering new

markets or at refocusing a firm’s efforts towards growing demand segments

[Acemoglu and Linn, 2004]; [Balasubramanian and Sivadasan, 2011]. Rapid tech-

nological changes and complex and unpredictable environments require that firms

maintain the capacity to continuously improve in response to these conditions

[Balasubramanian and Sivadasan, 2011]. The impact of the knowledge economy

on today’s business has promoted a growing recognition among the companies

about the need to cultivate learning by doing. Knowledge spillovers and learn-

ing by doing are the workhorses of endogenous growth and the principle sources

of passive productivity growth [Arrow, 1972]; [Thornton and Thompson, 2001];

[Levitt et al., 2013]; [Aghion and Jaravel, 2015]. Experience allows decision mak-

ers to identify opportunities for process improvement and shape the productivity

trajectory. Hence, learning by innovating, learning by doing during product innova-

tion, is increasingly being recognised as an important precondition for innovation
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success [de Ven and Polley, 1992]; [Aghion and Jaravel, 2015].

Learning by innovating is crucial because it implies that both learning by do-

ing and product innovation can reduce uncertainty and expand a firm’s total factor

productivity (TFP) [Thompson, 2010]. Despite this progress, there has been little

empirical investigation into whether and under what conditions learning by inno-

vating improves productivity. One important reason for this situation is the lack

of a systematic instrument to measure productivity in the technological innovation

context. One review article reveals that even though productivity is a relatively

straightforward concept, the components and structure of the productivity construct

are not well explicated [Syverson, 2011]. While the notion of learning to enhance

productivity is generic in nature, its relationship in the technological innovation

context might be different. Learning by innovating is a process of abduction instead

of a routine-based process that responds to experience by repeating behaviours that

have been found to be successful [Nooteboom, 2004]. Innovative firms project an

existing practice into a context that is sufficiently similar to have a chance of suc-

cess, and allow for some predication of likely results. The context also needs to

be sufficiently different to yield a novel experience. Therefore, empirical studies

that address the relationship between learning by innovating and productivity are

needed.

Learning is bounded and knowledge gained in one setting may not be ex-

ploitable in another [Jovanovic and Nyarko, 1996]; [Thornton and Thompson, 2001]

[Egelman et al., 2016], this may create problems for learning by innovating since

different knowledge is generated along the innovation process. During the product

innovation process, endogenous uncertainties create pressure to invest and resolve,

and staging innovation becomes a common strategy to manage the risks associated

with major innovation projects [Myers and Turnbull, 1977]. By staging the innova-

tion process, firms can create options that convey the right (but not the obligation)

to make further development. In industry practice, upstream research is most of-

ten separated from downstream development [Karlssona et al., 2004]. Upstream

research is defined as the invention of new science and capturing of new know-
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how; whereas downstream development is about applying proven technologies to

commercialise products to achieve business objectives. Therefore, knowledge gen-

erated in different stages is unique but related, knowledge spillovers between stages

may give firms an incentive to choose multi-stage options to reduce uncertainty

and improve efficiency. Therefore, the boundary condition of learning by innovat-

ing, especially whether there is knowledge spillover across different stages during

product innovation also need addressed.

In this paper, I gather rich data on R&D from the biotechnology industry to ad-

dress questions regarding whether learning by innovating drives productivity growth

and whether knowledge originating from one stage of learning by innovation could

be exploited in another stage. To answer the first question, the role of innovation

experience is evaluated in shaping and driving productivity. To answer the second

question, the influence of experience from different stages on the likelihood of fu-

ture failure in each stage is measured. In order to overcome barriers to measuring

the project-level response to the experience from different stages, unique features

of the biotechnological R&D setting, including the observability of development

milestones, and the separability of R&D stage is leveraged. The core data set cov-

ers in incredible detail the innovation process of over 1,900 drugs over the courses

of 25 years. There are numerous opportunities for learning, as drugs share similar

therapeutic targets and production teams.

The US biotechnology industry is well suited to the investigation for several

reasons. First, the biotechnology industry is under growing pressure of losing rev-

enue due to patent expirations, increasingly cost-constrained healthcare systems and

highly demanding regulatory requirements. Indeed, the industry’s price/earnings ra-

tio, a measure of the current valuation of the industry, has decreased below that

of the S&P 500 index and has remained more or less flat for the last 10 years

[Paul et al., 2010]. Therefore, without a drastic increase in innovation productiv-

ity, the industry cannot sustain the current business. Second, rapid technological

advancement and unprecedented investment have resulted in clear stage division,

and this is more apparent in biotechnology than in any other industry. Although
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sequential development is not unusual in innovation, the clear division of new drug

development stages, including upstream research process and downstream develop-

ment process, followed by all decision makers, makes it easy to collect and analyse

data. Third, learning is a potential source of productivity growth in this industry.

Nearly 90% of newly developed drugs fail in the experimental stage, and it takes

more than 10 years to develop a new drug [Kola and Landis, 2004]. The knowledge

and skills acquired through experience could reduce the long development duration

and sky-high cost.

The primary finding of this paper is that firms learn from their own innovation

experience, but the benefits of experience mainly come from experience gained in

the same stage of product innovation experience. Specifically, upstream research

can only benefit from learning obtained from other upstream research processes but

not from downstream development processes. The very act of conducting upstream

research allows firms to identify opportunities for improvement of the same stage

of the process to increase productivity. The same logic applies to the downstream

development process.

In terms of magnitude, I estimate that upstream research experience decreases

the failure rate of the research stage of innovation by 7.4% on average, and down-

stream development experience decreases the incidence of failure of the develop-

ment stage of innovation by 3.8% on average. The enhancement of success gives

biotechnology firms an incentive to simplify the R&D process inside the firms. Ac-

cordingly, both my data and industry anecdotes indicate that biotechnology firms

tend to carry out only the upstream research process in house, and outsource down-

stream development or forming alliances to execute downstream development.

Finally, I examine the mechanism behind the observed stage-specific learn-

ing by innovating. Although I cannot rule out other possibilities, the boundary of

knowledge spillover across stages during innovation appears to be driven partially

by additional attention. Extra attention, which recognises and attends to weak cues

to develop novel knowledge, improves cross-stage learning for upstream innovation

from downstream development experience.
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The findings in this paper add new insights to the literature that has been at-

tempting to move beyond a progress function that simply relates learning by do-

ing and product innovation to productivity. One distinction of this study is that

I combine learning by doing and product innovation as reflected in productivity

analysis. Previous research has demonstrated that both learning and product in-

novation drive economic growth [Arrow, 1972]; [Syverson, 2011], but few works

have combined these two elements to illustrate their combined impact on pro-

ductivity. This paper presents the first empirical study to analyse how learning

by innovating affects subsequent productivity. The second distinction is my fo-

cus on the mechanism of learning during product innovation. Much of the eco-

nomic and management research on learning by doing has focused on the finding

of improved productivity with increasing experience, but what drives the improve-

ment is still unclear [Thornton and Thompson, 2001]. This work, by using a unique

dataset, separates experience and productivity into upstream and downstream, and

addresses the relative effects of stage-specific learning. The third distinction is that

this study illustrates the distinctive ‘search modes’ and knowledge spillover bound-

ary [Levitt and March, 1988]. The fundamental distinction between upstream re-

search and downstream development during product innovation is their search and

experimentation process. The process of upstream research requires large scale ex-

periments and variation, whereas the process of downstream development enhances

productivity through choice, execution and variance reduction.

By fleshing out several details of stage-specific learning in the biotechnology

industry, we understand more about the nature of knowledge spillovers. In this

way, experience gained from one stage does not cause efficiency enhancement in

another stage. Knowing more about such boundaries enables us to better understand

the knowledge sharing and transfer process [Meyer and Goes, 1988]. Furthermore,

it indicates that a firm not only needs to combine new product development with

different types of knowledge at different stages [Madhavan and Grover, 1998], but

also need to use a different process of knowledge sharing and knowledge transfer

as a knowledge management process [Levitt et al., 2013].
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Though this article focuses on the drug innovation process in the biotech-

nology industry, it seems that the prevalence of stage-specific learning extends

beyond the drug R&D process. Many new product developments, such as new

electronics, intricately involves multi-stage investment and decision making. In

addition, while I focus on stage-specific learning within firm as the main con-

struct in this paper, knowledge spillovers and specificities are also likely to de-

termine the firm boundary. Azoulay (2004) and Macher and Boerner (2012) dis-

cuss how the knowledge-based view (KBV) can be applied to firm boundary de-

cisions and efficient organisation approaches. During contractual arrangements,

residual control rights over knowledge decide investment incentives and ownership

rights [Grossman and Hart, 1986], [Hubbard, 2008]. These theories could in prin-

ciple contribute to the firm boundary debate and complement the capability mode

[Argyres and Zenger, 2012].

The remainder of the article is organised as follows: Section II provides

background information on the biotechnology industry and the drug innovation

process, and Section III discusses the mechanisms for learning by innovating and

stage-specific learning. Section IV describes the data used in this study. Section V

presents a model of staged-learning and discusses the empirical strategy. Section VI

and VII provide the estimation results of learning by innovating and stage-specific

learning respectively, and Section VIII examines the mechanisms behind staged-

specific learning. Section IX presents the conclusion.

3.2 Institutional Background

The biotechnology industry is a young science-based industry with its foun-

dation dating back to the pioneering work by Watson and Crick, who discovered

the structure of DNA as a double helix in the early 1950s. Drug R&D, lying in the

centre of innovation activities, is typically a sequential process. At several points in

the process, a biotechnology firm tests and reviews the status of the drug and makes

a decision on whether to continue with its development. In general, the decision



3.2. Institutional Background 70

depends on the potential therapeutic benefits, the severity of adverse reactions and

the projected estimates of a future revenue stream.

Drug R&D is a multi-stage process with a regulatory approval process that

proceeds in well-known stages. Generally, a drug goes through the following stages

to the point of the FDA approval: Initially, chemists and biologists synthesise new

compounds using existing concepts and screen it for pharmacology activity. After

identifying a set of promising compounds, researchers test their pharmacokinetic

and pharmacodynamic properties in animals. If, after these pre-clinical tests, the

drug is still considered to have a special molecular target and desirable therapeutic

effects, it is filed with the FDA as an Investigational New Drug Application (IND).

After receiving authorization from the FDA, the drug can undergo clinical testing

30 days after filing the application. Clinical trials normally occur over three distinct

phases, each of which contributes information on safety, efficacy, and proper dosage

strength and form.

In phase I clinical trial, the drug is tested with a small number of healthy vol-

unteers to establish safe dosages and to gather information on the absorption, dis-

tribution, metabolic effects, excretion, and toxicity. In the next phase, phase II, the

drug is administered to a larger number of patients who have the targeted disease

or condition and evidence on safety and preliminary data on efficacy are reported.

The final clinical trial, phase III, typically consists of large patients population and

is designed to firmly establish the efficacy and to identify side-effects that occur in-

frequently. The large sample size (usually in thousands) increases the likelihood of

the actual benefits being found to be statistically significant and the testing approx-

imates the manner in which the drug would be utilised after marketing approval.

Once the clinical trials have been completed and the drug developer be-

lieves that there is sufficient evidence of safety and efficacy, the firm will com-

pile the results and submit a New Drug Application (NDA) or a Biological Li-

cense Application (BLA) to the FDA for review and approval. The drug can only

be sold commercially after the FDA formally approves it. In this step, devel-

opers continue to provide post-approval safety and monitoring data (e.g. Phase
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IV clinical trials, adverse event reporting, and other post-marketing surveillance).

The entire drug R&D cycle usually takes over 10 years [DiMasi et al., 1991];

[Henderson and Cockburn, 1996].

Only around 10% drug R&D projects make it to the FDA approval stage and

the process fails for a variety of reasons. No sign of success against the disease of

interest and potential toxicity are the most common reasons for pre-clinical failure,

whereas safety and efficacy concerns account for the vast majority of clinical trial

project terminations. A research conducted by AstraZeneca found that about half

of the clinical trial safety failures are related to the drug’s primary biological target,

while the other half of safety failures are attributed to off-target side effects. The

most common reasons for efficacy failures are poor target validation (no causal

linkage between drug target and clinical impact), dosage limitations, poor selection

of indications and weak evidence from previous phases [Cook et al., 2014].

3.3 Theoretical Background

Product innovation is a process of combining equipment, work force,

task specification, material, and information to produce a product or service

[Utterback and Abernathy, 1975]. This process lies at the core of the creation

and maintenance of competitive advantage. It is a highly risky process and

most of the products fail along the way and cannot generate profit for companies

[Mansfield, 1981].

Innovation in product quality is a stochastic process of exogenous random

events that represents an independent and equally likely draw from an underlying

probability distribution of possible actions [Hannan and Freeman, 1977]. Learn-

ing by doing, where firms create, retain and transfer knowledge, constitutes firms’

capability of mitigating innovation uncertainty and serves as the driving force for

firms’ productivity growth [Lucas, 1993]; [Covert, 2014]. Learning by innovating

has been documented in the literature since Schumpeterian (2010) ‘creative destruc-

tion’ and ‘novel combination’. This departures from learning by doing in the sense
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familiar to economists refers to the downward shift of an average cost curve as

a function of cumulative uninterrupted production since it is dominated by uncer-

tainty. If uncertainty precludes the ‘substantive’ rationality of choosing the best

available option, we need a ‘procedural’ or heuristic rationality, in the form of some

modus operandi that is likely to succeed [Simon, 1979]. In other words, a firm

could abduct knowledge from adjacent possible projects and put that into a similar

context for prediction while it is sufficiently different to yield novel experience and

indications [Nooteboom, 2004].

Owing to the uncertainty during the process of product innovation, deci-

sion makers usually create options and stage the process to reduce risk. This

option strategy secures a firm’s claim to commercialise the product and helps

mitigate loss at the same time. Different stages produce different experience

that drives economic growth. These experiences are transformed into knowledge

that is incorporated into routines and operating practices [Levitt and March, 1988].

Economists frequently make references to the limitation of knowledge spillovers

as the principle source of the learning boundary [Thornton and Thompson, 2001];

[Macher and Boerner, 2012]; knowledge originating from a certain stage may not

be exploitable in another stage. Therefore, aggregating experience from different

stages may not only underestimate their contribution to productivity growth, but

also create a no-growth trap if too little knowledge is transferable across innovation

stages [Jovanovic and Nyarko, 1996].

The product innovation process can be divided into two distinct stages: up-

stream research and downstream development [Karlssona et al., 2004]. In the up-

stream research stage, decision makers usually experiment with a large quantity of

alternatives to invent new science and to capture new know-how, and gain returns

that are uncertain, distant and often negative. To solve problems and codify expe-

riences from this stage, decision makers need to search for novel technologies in

the area in which they have no prior experience. The main goal of this stage is to

gain increased understanding of a phenomenon and utilise it in the current product

and process. In the downstream development stage, on the other hand, decision
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Table 3.1: The Key Difference Between Research and Development

Research Stage Development Stage
Time Upstream Downstream

Originality Discontinuous ‘jump’ in
knowledge

Continuous evolution of ex-
isting ideas

Knowledge Depth Highly specialised Broad Knowledge
Goal To understand a phenomenon

or to search for new elements
of technology

To commercialize the product
and to satisfy the customers’
needs

makers tend to refine and extend the existing competence and paradigms and apply

proven knowledge to commercialise products. They search for new dimensions in

areas that enable them to build upon their established base. Therefore, the similar

response generated by encountering routines during the downstream development

stage is the source of continuity [Nelson and Winter, 1973]. The main goal of this

stage is to apply knowledge from the previous stage to further develop and manu-

facture the products in order to improve product reliability and customer suitability.

Therefore, research aims to develop new knowledge, whereas development aims to

apply scientific or engineering knowledge to expand it and integrate the knowledge

for commercial applications [Karlssona et al., 2004]. The distinction between up-

stream research and downstream development lies in four factors: time, originality,

knowledge depth and goals (see Table 3.1 for more information).

In the drug development process, the upstream process is the pre-clinical stage,

which focuses on the research process and explores new knowledge to create a

prototype product that can undergo further testing and development. In this dis-

covery process, researchers identify biological mechanisms that impact diseases

and symptoms. For instance, they may want to develop a drug that inhibits or

enhances the functioning of a particular target, such as a gene or its coded pro-

tein. Having identified the potential target, scientists then screen potential com-

pounds which have some desired action on this target. Researchers then test the

pharmacokinetic and pharmacodynamic properties of these promising compounds

both in vitro(in a test tube) and in vivo (in a living organism). This process is
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extremely uncertain and requires exploratory experimentation with new alterna-

tives [Gilsing and Nooteboom, 2006]. Generally, scientists pursue things that might

come to be known and face the risk of numerous failures.

On the other hand, the downstream process involves the clinical trials, which

focus on the development process and exploit the knowledge gained through prior

exploration. Clinical trials have three phases. Phase I and Phase II test the safety and

dosage by using healthy volunteers and people who have the condition (disease) of

interest, respectively. Phase III is essentially a large-scale version of Phase II trial,

usually involving more participants who are tracked over a longer period of time.

These clinical trials are less uncertain compared to pre-clinical research. Developers

only need to refine and extend existing competencies and knowledge.

Literature attempting to investigate innovation productivity has mostly focused

on measuring innovation activities as a whole [Karlssona et al., 2004]. However,

the previous attempts to do so have failed for two main reasons. Firstly, the ex-

pected outputs from research and development are totally different. The purpose of

research is to develop new knowledge or technology, whereas the purpose of devel-

opment is to combine knowledge to produce a new product to satisfy customers’

needs. Secondly, research activities are very different from development activities,

especially in knowledge elements; research requires specialised expertise in certain

areas to expand current knowledge to new areas. Development requires broader

knowledge bases for cross-functional understanding. Therefore, the learning pro-

cess and outcome might be different in research and development stages.

3.4 Data

The main empirical goal of this paper is to identify how experience gained

from different stages influences the productivity of each stage. Therefore, I needed

a comprehensive data set with project development histories and disclosures. The

primary data set was taken from Pharmaprojects, a commercial database that

records information about the R&D process in the biopharmaceutical industry. The
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Pharmaprojects database aggregates information from public records (e.g. patent

fillings, company press releases, financial filings, clinical trial registries, FDA sub-

missions, etc.), and employs professional analysts who curate the content. The

database covers the progress of new drug candidates as they enter commercial phar-

maceutical research and development programmes; it also tracks their progress from

pre-clinical development up to market launch, or to discontinuation if the drug fails

at any stage. For each innovation process, the database records the start and end

dates of each R&D phase. Most projects fail, so Pharmaprojects also documents

the date and stage of failure. The dataset also contains therapeutic class status,

biological targets of the drugs and patent information.

My main analyses require this information to construct full research and de-

velopment histories for each drug. The histories included which firms were actively

developing the drug, and what stage of development (preclinical, phase I/II/III clin-

ical trials, registration, approval and launch) the project was in at any given point in

time. They also included event dates for development discontinuation, suspension,

product withdrawal, and ‘no development reported’ if Pharmaprojects reported no

change in development in 18 months.

However, the main purpose of this database is to provide critical information

on the industry trends and benchmark the competitors’ performance, so the project

level data are not complete and accurate. To resolve this issue, I also used Clin-

icalTrial.gov 1, a central repository for publicly accessible information on current

and past clinical trial information; and PubMed 2, a free search engine maintained

1The Federal Drug Administration Modernization Act (FDAMA) in 1997 led to the formation of
ClinicalTrials.gov. While initial compliance with trial registration rules was low, registration rates
accelerated after the International Committee of Medical Journal Editors (ICMJE) initiated a policy
whereby trials must registered as a prerequisite for journal publication [Gill, 2012]). However, trial
registries only require information about the stage of the projects, development time lines and other
related documents concerning investor relationship and financial files. Only until recently, the Food
and Drug Administration Amendments Act (FDAAA) of 2007 start pushing the disclosure of clinical
trial results.

2PubMed, first released in January 1996, could access the Medical Literature Analysis and Re-
trieval System Online (MEDLINE). MEDLINE is compiled by the United States National Library
of Medicine (NLM), and includes bibliographic information for articles from academic journals
covering all biology and medicine field. PubMed automatically links to Medical Subject Head-
ings (MeSH, a comprehensive controlled vocabulary for the purpose of indexing journal articles and
books in the life sciences). MeSH is also used by ClinicalTrials.gov registry to classify th studied
diseases.
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by the National Institutes of Health (NIH) that consists of data primarily form the

references and abstracts on life sciences and biomedical topics. These two data

sources contained detailed pre-clinical and clinical data, which complemented the

Pharmaprojects database.

I obtained data on strategic alliance from the Deloitte Recap database, which

tracks alliance formation in the biopharmaceutical industry. The record is at the

alliance level, stating the name of the companies forming the alliances and the date

of the alliances. It also contains innovation target and therapeutic information of

these alliances. I matched these data with the drug R&D data to construct a time

series of drug innovation at the project and company level.

With these four data sets, it was possible to compile the drug R&D process and

results across time and companies. After removing non-US biotechnology firms,

small companies with unreliable data and projects with missing data, the final sam-

ple consisted of 1926 project observations from 37 firms in the period from 1987

to 2012. Of these projects, only 3% (62) were approved by the FDA eventually,

whereas 82% (1585) were reported as failures. The descriptive statistics for the

analysis sample are summarised in Table 3.2.

The success rate of drug R&D projects was relatively low (3%) compared

with that reported in previous studies (10%) [Henderson and Cockburn, 1996];

[Kola and Landis, 2004]. This is mainly because many projects are still under de-

velopment in my data set and the final outcomes are still unclear. One main lim-

itation of the data set is the absence of firms that went bankrupt during 1987 to

2012. Unfortunately, I could not retrieve the innovation data for these firms. How-

ever, this study focused on project-level data, so firm survival was not highly rele-

vant to the analysis. In addition, most failed firms were small start-ups, with lim-

ited resources and capabilities to complete the innovation process [Arrow, 1972];

[Kola and Landis, 2004]). They had no choice but to focus on the upstream research

stage, so cross-stage spillover was not a viable situation for these firms. Therefore,

although selection bias is presents in this study, it is not a prominent factor affecting

the main results.
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Table 3.2: Sample Summary Statistics

Variables Mean Median SD Minimum Maximum
Experience 10.99 11.01 1.11 5.99 12.83
Upstream Experience 10.63 10.62 1.07 5.99 12.42
Downstream Experience 9.35 9.93 2.37 0 11.75
R&D Expense 11.19 10.91 1.63 6.51 14.13
Company Age 21.78 19 14.13 0 81
Annual Development 26.79 19 21.91 0 84
Total Assets 12.87 12.19 2.24 6.77 16.79
Industry Experience 9.36 9.36 0.04 9.24 9.41
Innovation Novelty 0.46 0 0.50 0 1
Co-development 0.46 0 0.50 0 1
Primary Ownership 0.88 1 0.32 0 1
Slack Resource 5.10 3.86 4.10 0.73 33.03

Notes: The analysis data set consist of 1926 drug innovation projects from 37 US
biotechnology firms between 1987 and 2012. Approximately 3% of all drugs in my
data set are approved by FDA eventually, whereas 82% of drug projects have been
suspended or discontinued.

Unfortunately, at the present time, no data are available on the cost of the

inputs in each stage of the drug R&D process such as capital investment and mate-

rials. The following section is going to illustrate how to use R&D efficiency data

to proxy productivity. Project-level data were supplemented by firm financial data

from Thomson One and registered drug launch data from the FDA’s website. Us-

ing these supplementary data, I could construct the innovation history variable to

control for industry learning and firm size to control for economies of scale.

To fully understand the data set, I conducted further analysis on the failed and

launched products in my sample. Figure 3.1 shows the curve for the cumulative

number of launched and failed products during the researched period. The num-

ber of failures far exceeds the number of successes, which indicates the sky-high

attrition rate in drug R&D and the needs for improved productivity. Figure 3.2

illustrates the number of failures in each stage in my data set. The majority of

the failures occurred in the pre-clinical stage, which economises on both time and

resources. However, the number of failures in the development stage, which is

the combination of all clinical trial stages, is still staggering, far greater than the
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Figure 3.1: Product Successes and Failures

Notes: The figure represents a way of tracking the overall successes and failures in
the data set. It graphs the cumulative number of projects launched or failed each

year from 1987 to 2012. The left hand y-axis represents the cumulative number of
launched projects since 1987, while the right hand y-axis indicates the cumulative

number of failed projects.

number of launched products in my sample.

3.5 A Model of Learning by Innovation

Productivity is efficiency in production, i.e. how much outputs is obtained from

a given set of inputs [Syverson, 2011]. The productivity of drug innovation can be

simply defined as the relationship between the value created by a new medicine and

the investments required to generate that medicine. As such, biotechnology firms

strive to improve R&D’s contribution to firm performance by increasing the volume

of innovation and its value, while reducing cost [Paul et al., 2010]. In other words, it
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Figure 3.2: Project Failure by Stage

Notes: The bars display the number of failed projects in each stage.

can be elaborated in two important dimensions: innovation efficiency and financial

effectiveness. Innovation efficiency represents the ability of a firm to translate inputs

(for example, investments, efforts and materials) and deliver an innovative product

within a defined period of time, whereas financial effectiveness can be defined as the

ability to produce high value at minimum cost [Karlssona et al., 2004]. Specifically,

biopharmaceutical firms need to raise R&D performance by increasing the number

of new drugs each year, while reducing R&D cost and increasing the commercial

and medical value of those new drugs. Thus, drug innovation productivity can be

viewed as an aggregate representation of both innovation efficiency and financial

effectiveness (See Figure 3.3).

With this definition of drug productivity in mind, I design a productivity rela-

tionship or ‘drug R&D value equation’, which includes the key elements that de-

termine both R&D efficiency and financial effectiveness for any drug innovation

project.

P = p(IS)
CT ∗

V
C

Drug innovation productivity P can be viewed as a function of four elements:
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Figure 3.3: Product Innovation Productivity

Notes: Product innovation productivity is defined as the results of both innovation
efficiency and financial effectiveness. To increase productivity, decision makers

strives to increase the success rate and value, while reducing cost. For
biotechnology industry, this simply amounts to raising drug development success

rate and sales after launch, while keeping R&D cost low.

the probability of innovation success p(IS) divided by the cycle time CT, and the

value of the drug divided by the cost of R&D. Each of these parameters is concep-

tualised and analysed on a per project basis in this paper. This equation can be also

extended to company level by including the number of drug candidates in the R&D

progress in each company.

Innovation success rate p(IS) is the most important determinant of overall R&D

productivity. There is no doubt that increasing the success rate of drug R&D rep-

resents the greatest challenge and opportunity for drug innovation, and arguably

for sustaining the viability of the entire industry. Since clinical trials account for

the majority of the cost, it is clear that increasing innovation success rate is the

priority. Unfortunately, several reports suggest that the attrition rate of clinical

trials is increasing because more complex drugs are being pursued and because

of heightened scrutiny and concerns about drug safety [Kola and Landis, 2004];

[Paul et al., 2010]. Therefore, more basic research is needed to uncover the un-

derlying mechanisms of drug action on the primary target and off-target side effects

to increase the innovation rate. In addition, since the majority of drug candidates

are destined to fail, it is ideal to fail faster. Failing faster not only helps to reduce the

rate of detrimental failures in the late stage of drug R&D, but also saves the cost.
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Reducing the cycle time is an important means for improving innovation effi-

ciency. It not only saves time for scientists, but also reduces the cost of drug de-

velopment. Reduction in R&D cycle time can be achieved in several ways: firstly,

developing similar drugs based on prior experience. Learning by doing is the core

force for improving productivity, so companies need to reflect on their previous

experience and create new knowledge, especially from their previous failures. Sec-

ondly, more resources can be dedicated to basic research. Basic research could help

developers understand the underlying mechanisms of drug action and connections

among different tasks, thereby reducing the number of random trials and errors and

cycle time. This cannot be done by biopharmaceutical companies alone but requires

the cooperation of the government and research institutions. Thirdly, state-of-the-art

technology could also help achieve cycle time reduction, e.g. the use of automated

robots to screen compounds and the use of digital humans to test drug samples.

Last but not the least, the FDA needs to optimise its working procedure to reduce

the time required for regulatory review (submission to launch).

Desirable health outcomes and economic profits determine the financial ef-

fectiveness of drug R&D. Obviously, there are two aspects of the value of drug

R&D: (i) decreasing mortality and morbidity and reducing hospitalisation to en-

hance health outcomes and (ii) increasing the price of the medication to gain eco-

nomic profit. The determinants of overall value are likely to be different depending

on the perspective presented above. Therefore, it is crucial to balance these two

views and formulate an optimal plan.

Reducing the overall operational expenses is necessary to deliver a successful

product to the market. The cost reduction of an R&D project can be realised in

several ways. Cutting the cost of R&D processes can provide important opportu-

nities to reduce the overall R&D expense. However, special care needs to be taken

to ensure that the production of knowledge is not restrained during this process of

cost reduction. Leveraging new technology (such as software tools and laboratory

automation) can also lead to cost reduction. In addition, suspending non-promising

drug candidates as early as possible could also contribute to cost reduction. Fur-
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thermore, restructuring the organisation or research teams helps cut overhead costs

(salaries for employees that are not engaged in research and development activities

but that are otherwise necessary to support R&D organisations). Such overhead

costs are typically prevalent in larger, more mature firms, and it may be difficult to

change this owing to the inertia in these organisations.

This paper models the objective of biotechnology firms to maximise the inno-

vation efficiency of drug R&D, but does not consider the aspect of financial effec-

tiveness. Although this approach is necessitated by the fact that the cost of project

level data is unavailable, it parallels the way biotechnology firms actually view the

drug innovation process. In practice, the decision makers of these firms have very

little information about the cost and future revenue of potential drugs, and the sur-

vival and sustainability of the firms are mainly determined by the successful launch

of new drugs [Kola and Landis, 2004]. In the case of a promising drug candidate,

the likelihood of the project being abandoned purely on the basis of projected cash

flow and cost of capital is very low. R&D is always the priority in this industry,

partially because it is a science-based industry and scientists dominate the manage-

ment teams. In addition, although the direct costs of drug innovation today have

more than double that in the 1980s, the average sales of a recently launched drugs

has also increased substantially, with more than 50 achieving the coveted ‘block-

buster’ status (more than US $ 1 billion revenue). Therefore, the most significant

cause of reduced productivity is the movement in survival rates, in particular the

attrition rate of R&D. The attrition of projects through the pipeline is therefore

the central issue underlying the productivity challenge facing the industry today

[Booth and Zemmel, 2004]. Furthermore, it is almost impossible to evaluate the

value of a new drug since it does not only generate financial returns, but also cre-

ates social value by reducing the suffering of human beings. Last but not the least,

it is problematic to allocate costs to each drug. Besides ‘molecular cost’, which is

the direct cost of developing the new drug, there are also other costs. For example,

the costs of basic research and overhead costs are hard to assign to a specific drug

R&D project. For these reasons, using innovation efficiency to proxy productivity
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is acceptable. Previous research also uses R&D efficiency as a performance metric

[Henderson and Cockburn, 1996]; [Pammolli et al., 2011].

According to the discussion above, both probability of innovation success and

cycle time contribute to the productivity of drug innovation. The average attrition

rate of drug R&D is 90%; this is unacceptably high compared to other innovation

projects [Kola and Landis, 2004]. Indeed, reducing the attrition rate of the innova-

tion processes in both pre-clinical and clinical stages represents the greatest chal-

lenge and opportunity for drug R&D, and arguably for sustaining the viability of

the entire industry. Given that the vast majority of drug candidates are destined

to fail, failing fast could help redistribute the R&D resources from the later stage

to the earlier stage. Shifting attrition from the later stage to the earlier stage and

reducing cycle time for failure of projects, can reduce the cost of drug innovation

and improve productivity. Reducing the cycle time of each phase of discovery and

simultaneous development of other projects could also optimise time and resources.

The productivity of drug R&D can therefore be measured as the efficiency of

drug innovation, which firms try to maximise subject to the constraints imposed by

technology and firm capabilities. Specifically, I used hazard ratio to estimate inno-

vation efficiency. Hazard ratio not only allowed me to predict whether and when in-

novation success will occur, but also allowed me to assess the conditional probabil-

ity of success given that some of the projects in my sample were still under progress

[Jenkins, 2005]. In addition, it also allowed me to use a competing risk model to

account for heterogeneity in the events of ‘success’, ‘failure’ and ‘ongoing’. For a

given project, ht(t|xit)denotes the hazard ratio of the project’s success/failure and is

determined by the following equation:

ht(t|xit) = h0k(t)∗ exp((xikβk)∗ γ)

h0k(t) is the baseline hazard (i.e. the hazard when all covariates are equal

to zero), and xik is a matrix of covariates, including factors such as drug charac-

teristics and firm capabilities.γ denotes company and therapeutic class factors that

impact the innovation. I considered both failure hazard ratio and success hazard

ratio in this chapter. Assuming the risks are independent, previous research has
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shown that the log-likelihood for the competing risks model is additively separable

into K terms, each one being a function of the parameters of a single cause-specific

hazard [Narendranathan and Stewart, 1991]. Thus, the estimation of a single risk

hazard considers durations of completion for other reasons than the one of interest

as censored at the point of completion.

Experience effects, denoted by E, are part of xik. Allowing for the baseline haz-

ard h0k(t) that is independent of experience, the above equation can be transformed

into:

log(ht(t|xit)) = β1Eit +θCit + γ

θCit denotes a vector of observable variables that plausibly impact the produc-

tivity of drug innovation: (1) industry experience for vicarious learning; (2) total

assets for firm size; (3) R&D expenditure for knowledge repository; (4) firm age for

technology advancement; (5) drug delivery methods for difference in knowledge

processing; (6) new chemical entity for innovation novelty; and (7) ownership and

alliance formation for potential knowledge flow.

I measured Eit as the cumulative time spent by a firm on prior drug R&D in the

same therapeutic class until time t . Rather than counting the number of previous

drug R&D projects as the experience, my measurement captured the variation in

experience because the units of time used to develop a drug vary extensively across

products.

3.6 Results
3.6.1 Primary Estimation Results for Learning by Innovating

Table 3.3, column 1, presents the estimated learning model in drug innova-

tion. The estimated coefficient of internal experience is above 1 and statistically

significant. This point estimate implies that one year’s experience will increase

the success hazard ratio by 4.1%. Column 2 shows that internal experience could

reduce future failure incidence, which confirm the conclusion in column 1. The es-

timated coefficients of industry experience in these two models are not statistically
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significant. These results are in contrast with those of learning spillover studies

[Irwin and Klenow, 1994]; [Thornton and Thompson, 2001], which identify mod-

est cross-firm spillovers in the semiconductor and shipbuilding industries. The lack

of knowledge spillover in biotechnology firms may be due to information secrecy:

patent protection is rigorous in drug R&D and most companies are unwilling to

share information with others owing to the underlining financial benefit even if they

are in an existing alliance. In addition, clinical trials are usually strictly confidential

processes and the knowledge acquired from drug innovation is not easy to articulate,

so inter-organisation knowledge sharing and transfer is much more difficult in the

biotechnology field than in other industries. Other studies such as Kellogg (2011)

also report lack of spillover in oil and gas drilling companies due to the unwilling

to share information.
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Table 3.3: Estimation of Learning by Doing in Product Innovation

Variables (1) (2) (3) (4) (5) (6) (7) (8)
Experience 1.03∗∗ 0.95∗∗∗

(0.01) (0.02 )
Industry Experience 0.99 1.00 1.07 0.95 1.09 0.93 1.07 1.00

(0.15) (0.17) (0.14) (0.19) (0.20) (0.18) (0.37) (0.26)
Experience with Depreciation 1.07∗∗∗ 0.91∗∗∗ 1.12∗∗∗ 0.87∗∗∗ 1.06∗∗ 0.93∗∗

(0.02) (0.04) (0.03) (0.02) (0.02) (0.05)
Depreciation factor age age age2 age2 √

age
√

age
loglikelihood -2718.54 -2707.52 -2720.13 -2710.64 -2717.95 -2703.12 -2712.07 -2697.24
Chi-squared 471 492 463 486 475 494 484 498
Dependant Variable Success Failure Success Failure Success Failure Success Failure

Notes: Estimates stem from the partial likelihood method of estimation. Dependent variable is the hazard rate of future project success
or failure as shown in the table. All models incorporate year fixed effect and firm fixed effect, as well as therapeutic class fixed effect.
The depreciation of knowledge is ignored in model 1 and 2 as the basis analysis. In model 3 to 8, knowledge depreciates linearly, rapidly
and slowly respectively. Model 1 and 2 are the preferred specification since knowledge depreciation does not affect the analysis. Robust
standard errors in parentheses.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Previous works [Argote et al., 1990]; [Benkard, 2000]; [David and Brachet, 2011];

[Kellogg, 2011] focus on organisational forgetting: the decay of experience effects

over time. This is mainly caused by members’ exit or changes in a firm’s structure

or process. Since drug innovation techniques are designed by scientists, turnover

and lay-offs may lead to loss of experience. I examined organisational forgetting

of drug R&D experience by employing commonly used discount factors including

1 (assuming that knowledge is non-depreciating), the age of experience (assum-

ing that knowledge depreciates linearly), the age of experience squared (assuming

that knowledge depreciates rapidly), and the square root of the age of experience

(assuming that knowledge depreciates slowly).

Column 3-8 examine this forgetting effect. All of them imply that drug R&D

experience, no matter the depreciation rate, decreases the failure hazard ratio. More

specifically, if knowledge depreciates linearly, one year’s experience will decrease

the failure hazard ratio by 5.2%; if knowledge depreciates rapidly, one year’s expe-

rience will reduce the failure hazard ratio by 6.3%; if knowledge depreciates slowly,

one year’s experience will cutback the failure hazard ratio by 5.0%. Similarly, none

of the coefficients of industry experience is significant.

Decision makers always create stage options to alleviate uncertainty during

the process of product innovation and each stage has its own information process

pattern. In the pre-clinical stage of drug innovation, firms focus on exploring new

knowledge and transforming it into prototype products; whereas in the clinical stage

of drug innovation, firms tend to test and exploit the knowledge gained through pre-

clinical stage. To examine whether experience impacts the learning in different

stages, I estimated the effect of experience on upstream success/failure hazard ra-

tio and downstream success/failure hazard ratio separately. This analysis follows

the previous procedure but separate success/failure hazard ratio into upstream and

downstream as productivity indicators.

In Table 3.4, columns 1 and 2 predict the upstream success and failure hazard

ratios, and columns 3 and 4 predict downstream success and failure hazard ratios.

In models 1 and 3 for success hazard ratio, the coefficients of R&D experience
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Table 3.4: Estimation of Learning by Doing for Each Stage

Variables (1) (2) (3) (4)

Experience 1.10∗∗ 0.92∗∗ 1.12∗∗∗ 0.90∗∗

(0.03) (0.05) (0.03) (0.06)
Industry Experience 1.04 0.96 1.08 0.93

(0.21) (0.24) (0.23) (0.19)
loglikelihood -2000.57 -2679.47 -2017.46 -2683.63
Chi-squared 121 484 130 485
Dependant Variable Upstream Success Upstream Failure Downstream Success Downstream Failure

Notes: Estimates stem from the partial likelihood method of estimation. Dependent variable is the hazard rate of upstream and
downstream innovation success or failure as shown in the table. All models incorporate year fixed effect and firm fixed effect, as well
as therapeutic class fixed effect. Robust standard errors in parentheses.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

are above 1 and statistically significant. These results demonstrate that previous

innovation experience increases the productivity of both upstream research and

downstream development differently. The coefficients of R&D experience of mod-

els 2 and 4 show that previous innovation experience decreases both upstream

research and downstream development failure rate, thereby increasing productivity

at different magnitude. These results illuminate that there may be different learning

process in different stages of R&D.

3.6.2 Empirical Analysis of Stage-specific Learning

This section empirically examines whether knowledge gained in one stage can

be exploited in another stage, specifically, whether improved productivity with in-

creasing experience is driven by learning from same stage experience, other stage

experience, or a combination of the two.

From the above analysis, it is clear that learning in upstream and downstream

R&D drive drug innovation experience differently. When a biotechnology firm

completes the pre-clinical stage of a new drug, it will rarely continue to conduct

clinical trials on its own; instead, the biotechnology firm will form alliances with

pharmaceutical firms to maintain the development. Specifically, over 90% of the

drugs are co-developed by biotechnology and pharmaceutical companies in the clin-

ical trial stage [Azoulay, 2004]. Since patent rules are strictly enforced and knowl-

edge sharing is anecdotal in drug innovation, why should biotechnology firms forgo

the opportunity to increase their internal capability by restricting everything to in-
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Table 3.5: Estimation of Stage-specific Learning

Variables (1) (2) (3) (4)
Upstream Experience 1.08∗∗∗ 0.92∗∗ 0.94 0.99

(0.02) (0.05) (0.10) (0.13)
Downstream Experience 1.05 0.97 1.12∗∗ 0.90∗∗∗

(0.17) (0.12) (0.03) (0.03)
Industry Experience 1.10 0.87 1.06 0.91

(0.19) (0.24) (0.21) (0.20)
loglikelihood -1994.37 -2754.58 -2010.85 -2786.54
Chi-squared 132 480 143 497
Dependant Variable Upstream Success Upstream Failure Downstream Success Downstream Failure

Notes: Estimates stem from the partial likelihood method of estimation. Dependent variable is the hazard rate of upstream and downstream
innovation success or failure as shown in the table. All models incorporate year fixed effect and firm fixed effect, as well as therapeutic
class fixed effect. Robust standard errors in parentheses.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

house operations? Even if they lack the competence to conduct clinical trials in the

earlier phase, building this capacity could save transaction costs and benefit further

drug R&D, unless learning is bounded and knowledge spillover is not sufficiently

large for learning to be a plausible source of long-term growth. I, therefore, tested

the knowledge spillover effect by focusing on cross-stage learning.

The analysis still used the model mentioned before, but disaggregated experi-

ence into upstream research experience and downstream development experience in

addition to separating the success and failure hazard ratio. Table 3.5 illustrates the

results. Column 1 uses upstream hazard ratio as estimated outcome and upstream

research experience increases the upstream success rate by 5.4%, but the coeffi-

cient of downstream development experience is not statistical significant. On the

other hand, downstream development experience increases the downstream success

hazard ratio by 5.6% although upstream research experience is no longer useful

(See column 3, downstream hazard ratio is the outcome). Column 2 and 4 illustrate

similar effect (reducing failure to improve productivity) but using upstream and

downstream failure ratio as dependent variable.These results show that cross-stage

knowledge spillovers are impossible (and sometimes even negative) during the drug

innovation process. This explains why most biotechnology firms only focus on the

pre-clinical stage of R&D alone and form alliances with other firms in the clinical

trial stage.
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3.6.3 Mechanisms

This section examines the mechanisms behind the observed stage-specific

learning. Understanding the underlying mechanisms is important because these

have implications for firms’ optimal product innovation practices. If a firm can de-

termine the essential criteria for learning across stages, it could allocate resources

depending on whether it wants to be purely research focused firm or well-round

innovative company. In addition, the government could use these benchmarks to

make policies to encourage or dissuade consolidation among firms.

Resources, both human and physical, provide the basic material for knowledge

generation. When resources are strained, decision makers have little time to explore

better ways of working and therefore, standard procedures are followed, with little

room for experimentation to improve the process [Greve, 2003]. Slack resources

are the pool of resources in a firm that are in excess of the minimum necessary

to produce a given product. Therefore, firms can use slack resources to engage in

additional search and experimentation.

In columns 1 and 2 of Table 3.6, I investigate the impact of ‘slack resources’

by interacting it with upstream research and downstream development experience

separately. I find that slack resources has no impact on cross-stage learning. At first,

this finding appears to be surprising since although drug innovation is a sequential

process, it is not always a linear procedure. There is a lot of feedback during the

process, such as back to animal testing during clinical trial period for another thera-

peutic target or even to discovering the underlying molecular mechanism. However,

if the process of drug R&D contains loops, why does my regression not suggest so?

It could be because there are different types of slack resources, such as available

slack, recoverable slack, and potential slack, and they have different effect on inno-

vation performance [Greve, 2003]. Due to data restriction, I am not able to separate

the slack resources and investigate in detail. As a result, it is unclear whether the

results are due to the chosen factor or other possible explanations.

Another factor that contributes to enhanced knowledge spillovers is attention,

which diminishes uncertainty. Extra attention could help scientists recognise and
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address to weak cues, experiment with novel methods, and develop new knowl-

edge. To test whether attention could help increase cross-stage learning, I use

alliance formation as a proxy for extra attention. In the case of product innova-

tion, the decision makers are normally very mindful and attentive [Gulati, 1998];

[Gulati et al., 2000]. The mindfulness could help them identify some insignificant

links between upstream and downstream innovation and discover the underlying

association for information sharing.

In columns 3 and 4 of Table 3.6, I investigate the effect of extra attention by in-

teracting primary ownership and the experience in different stages. The results show

that cross-stage learning happens only in upstream innovation but not downstream

innovation. Although this provides additional support to the fact that cross-stage

learning is possible but not straightforward, it also suffers the same problem as the

previous factor, namely alternative explanation. For example, the alliance partners

also possess a large scope of knowledge in the field to disentangle the causal rela-

tionship between information and actions.

The overall results presented above help build a circumstantial case in favour

of interpreting cross-stage knowledge spillover boundaries and provide the possible

policy implications for knowledge spillovers. However, other potential mecha-

nisms, such as the current settings of collaboration between biotechnology firms

and pharmaceutical companies are optimal for drug innovation and they are reluc-

tant and it is unnecessary to learning across stages, cannot be rejected, nor do they

provide a complete list of factors that alleviate cross-stage learning obstacles.

3.7 Conclusion

This article shows that learning by innovating is an important driver of produc-

tivity improvement. I find substantial learning in the productivity of drug innova-

tion in the biotechnology industry. The patterns look qualitatively similar to those

seen in other empirical studies documenting learning by doing in various produc-

tion settings (e.g. [Syverson, 2011]; [Levitt et al., 2013]), albeit this paper focuses
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Table 3.6: Empirical Analysis of Cross-stage Learning Mechanism

Variables (1) (2) (3) (4)
Upstream Experience 0.65 0.88 0.44∗∗ 0.96

(0.33) (0.16) (0.15) (0.12)
Downstream Experience 0.94∗ 2.81∗∗∗ 1.15 0.97

(0.86) (0.03) (0.84) (0.04)
Slack Resources 1.13 0.87

(0.25) (0.09)
Upstream Exp * Slack 0.97 1.02

(0.03) (0.01)
Downstream Exp * Slack 1.02 1.00

(0.03) (0.01)
Attention 1.50 0.67

(2.10) (0.45)
Upstream Exp * Attention 0.68∗ 1.05

(0.25) (0.08)
Downstream Exp * Attention 0.53∗∗ 0.91∗∗

(0.13) (0.03)
loglikelihood -1469.65 -2328.56 -1417.42 -2308.37
Chi-squared 126 340 140 391
Dependent Variable Up Failure Down Failure Up Failure Down Failure

Notes: Estimates stem from the partial likelihood method of estimation. All models incorporate
year fixed effect and firm fixed effect, as well as therapeutic class fixed effect. Dependent variables
in model 1 and model 3 are upstream failure rate, while dependent variables in model 2 and model
4 are downstream failure rate. The competing risk of success is not shown in the table due to space
restriction. Robust standard errors in parentheses.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

on product innovation instead of product production. This study combines both

productivity drivers, i.e. learning by doing and product innovation, and explains

multiple features of the economic phenomenon such as productivity difference and

competitive advantage.

In addition, I also explore the specific knowledge that is built through differ-

ent stages of the learning process. I find that knowledge spillovers are bounded

in the same stage. In other words, upstream innovation can only learn from up-

stream research experience, whereas downstream innovation can only learn from

downstream development experience. This work disaggregates the experience and

productivity outcomes to addresses the relative effects of stage-specific learning,

and illustrates the knowledge spillover boundary for long term economic growth

[Thornton and Thompson, 2001].
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Finally, I examine the mechanisms behind this stage-specific learning and the

factors that can change it. I propose and evaluate - attention - could enhance knowl-

edge spillover across stages, but only for learning in upstream innovation from

downstream development experience. The mechanisms underlying stage-specific

learning provide additional insights into expanding a firm boundary.

These results can be generalised to other knowledge intensive industries even

though the importance of learning by innovating and stage-specific learning varies

with industry settings and firm characteristics. For instance, software firms may

need to stage a new software R&D and develop stage-specific experience through-

out the R&D process. Moreover, the greater the complexity and uncertainty of the

new product, the steeper the learning curve.

Beyond theoretical and empirical relevance, my findings also have managerial

implications. In economic research, low duration of development and high success

rate represent the key drivers of success [Thompson, 2010]. By using competing

risk analysis, this paper grasps the main idea of learning-based productivity gains

and provides a straightforward tool for managers to achieve high productivity during

innovation. In addition, setting the knowledge boundary and understanding the

sources of learning by innovating enable decision makers to resolve low efficiency

of learning by matching knowledge and experience.

It is also worth mentioning that the government should actively encourage tech-

nological progress by following the process of technological externalities (or knowl-

edge spillover). Although the Solow growth model takes technological progress as

exogenous and does not explain the determinants of technological progress, many

public policies are designed to stimulate private sectors to devote resources to tech-

nological innovation. For instance, the patent system gives a temporary monopoly

to inventors over their new drugs; the tax code offers tax breaks for pharmaceutical

firms engaging in R&D; government agencies, such as National Institute of Health,

directly subsidise basic research in universities. As per the results shown in this

paper, the government needs to realise that in the absence of knowledge spillover

across stages, the social returns to capital accumulation may not exceed the private
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returns, and the benefits of increased capital accumulation to facilitate cross-stage

investment may not able to yield greater externalities. Therefore, the government

should use tax laws to encourage investment in intra-stage technological progress

instead of promoting cross-stage technological innovation.

As with all work, this study also has a number of limitations, each of which

suggests opportunities for future research. First, stage division as upstream research

and downstream development seems arbitrary. This study explicitly assumes that

two stages of product innovation represent the R&D dichotomy, but the distinction

may not be so obvious in other industries. Therefore, further research in other

industries could find their own stage dimensions and test my conclusions.

Another significant critique is the fact that I do not have detailed cost data to

calculate productivity. At present, there are no data on the cost of the inputs to

each stage of drug development, and the research use aggregated data for clinical

trial expense only [DiMasi et al., 1991]; [DiMasi et al., 2003]. However, firms may

have data that provide insights beyond the scope of this study. While my analysis

is limited to R&D data, firms have financial information about their own projects.

Therefore, firms can use the financial data to document productivity gains through

cross-stage knowledge spillovers, and evaluate the decisions on firm boundary.



Chapter 4

When the Choice of Governance

Structure Overshadows the

Competitive Advantage

4.1 Introduction

R&D alliances are an essential part of firm strategy to improve innovation

performance in numerous industries (e.g. [Powell et al., 1996]; [Ahuja, 2000];

[Baum et al., 2000]; [Sampson, 2007]; [Zaheer and Bell, 2005]). Alliances func-

tion as ‘pipelines’ through which information and knowledge flow between

firms, but while enjoying access to their partners’ technological assets, firms

in alliances also put their own technological assets at risk of appropriation

[Owen-Smith and Powell, 2004]. Empirical evidence has indicated that network

structure and interfirm governance create both potential strategic benefits and po-

tential risks that influence a firm’s learning and performance [Powell et al., 1996];

[Oxley, 1997]; [Ahuja, 2000]; [Polidoro et al., 2011]. Therefore, research has pro-

duced conflicting and confusing findings on how these two factors relate to firm

performance. For example, Coleman (1988) argues that a closed or dense network

provides social capital in that this structure gives rise to trust, reciprocity norms,

and a shared identity, all of which may lead to a high standard of collaborative

behaviour. In contrast, Burt (1992) argues that networks in which a focal actor’s
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partners are disconnected are ideal because they provide social capital in the form

of access to timely, diverse information.

Similarly, interfirm governance also presents interesting challenges and op-

portunities for firms to promote knowledge sharing and protect core technologies

from appropriation [Teece, 1986]; [Oxley, 1997]. Two common choices that or-

ganisation decision-makers face with regards to the form of governance are part-

ner selection and ownership structure [Li et al., 2008]; [Meuleman et al., 2010] 1.

Partner selection involves whether to explore opportunities to collaborate with new

partners or to continue working with old partners in different projects. New part-

ners can bring novel information and additional innovative capabilities, which are

essential for innovation [Phelps, 2010]. They also expand the existing boundary

of business activities and knowledge domain, improving competitive advantage

by enhancing the ability to develop innovation which is different from the ex-

isting process [Li et al., 2008]. However, new partners lack the trust, relational

norms and routines which are indispensable for successful coordination and co-

operation. This can lead to an unpredictable and high variance return of alliances

[Reuer and Devarakonda, 2017], and raise the challenge of learning and integration

knowledge from partners. In the same vein, firms generally have two alternatives in

ownership structure choices: an equity-based joint venture and a non-equity-based

market form of contract. A non-equity alliance saves money and time being spent

in setting up a joint venture and has the flexibility of forming an alliance with other

radically different partners, but at the same time they are vulnerable to potential

opportunistic behaviours and uncertain outcomes [Oxley, 1997]; [Sampson, 2004].

These forms of network structure and interfirm governance are not necessarily

contradictory, but rather play different roles, which are valuable for different pop-

ulations or purposes [Burt, 1998]; [Li et al., 2008]; [Phelps, 2010]. In this paper,

1The scope of alliance is regarded as the third type of interfirm governance decisions to control
the threat of knowledge leakage and to protect technological assets in R&D alliances. The scope of
activities for a R&D alliance can be restricted to pre-competitive R&D activities only or be extended
to include manufacturing and/or marketing. These scope decisions have important implications for
the extent to which alliance partners expose valuable know-how to each other. However, in this
research, I only focus on research and product development alliances (see the details in 4.3 Data and
Sample Section), so the scope of alliance does not play a role here.
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I use this contingency approach to explore the interaction between these two fac-

tors as an important explanatory variable: whether firms should form their strategic

alliances with new partners or old partners, and whether firms should form equity

alliances or non-equity alliances, depending on how they are structurally embed-

ded in the network. The multiplexity of governance decision-making within an al-

liance structure can in turn give an insight into developmental sequences for social

relationships. When interfirm governance is explicitly included and alliances are

viewed in terms of their relational and structural characteristics, additional sources

of information and commitment emerge, which may improve the innovation out-

come [Hoang and Yi, 2015].

Innovation search and transaction cost economics are the theoretical founda-

tions for the issue I examine. At its core, innovation is a problem-solving process in

which solutions to valuable problems are discovered via search [Dosi, 1988]. His-

torically, innovation search has focused on various processes that firms can use to

develop knowledge that enhances performance. Some argue that innovation search

leads to the creation of new knowledge, which typically involves the novel recom-

bination of existing knowledge [Nelson and Winter, 1982]; [Fleming, 2001]; oth-

ers argue that it is done by reconfiguring the ways in which knowledge elements

are aligned [Henderson and Clark, 1990]. Yet whatever the perspective, innovation

search is uncertain, costly and guided by prior experience [Dosi, 1988]. Therefore,

it needs both knowledge elements and the build-up of absorptive capacity for under-

standing the novel combination [Gilsing et al., 2008]. Transaction cost economics

theory informs this present work, in that both partner selection and ownership struc-

ture are transaction features of strategic alliances.

In the empirical work reported here, I studied the innovation performance of or-

ganisations which can choose different interfirm governance structures within dense

networks: forming an alliance with a new partner or an old one; establishing an eq-

uity alliance or a non-equity one. I assessed the innovation and entrepreneurial out-

comes based on the number of patent applications that the organisation files and the

sum of patent forward citations, which are widely used and capture the R&D perfor-
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mance well [Gomes-Casseres et al., 2006];[Phelps, 2010]. Using the NBER Patent

Dataset and the SDC Database, along with other sources, I constructed a panel data

set of 2,299 alliances from 200 biotechnology firms between 1975 and 2006, and

I examined how the number of patents and patent citations change when organ-

isations choose a different interfirm governance structure under a dense alliance

network. One empirical challenge is that the interfirm governance decision-making

is the outcome of a purposeful matching process to an alliance structure, making

it difficult to uncover the causal effects. To overcome this endogeneity problem,

I made use of the propensity score weighting and difference-in-differences (DD)

techniques to make the treated and untreated groups comparable.

My results show that network closure has a curvilinear effect on innovation

performance, and appropriately designed interfirm governance alleviates dense net-

work risks. In particular, I found that when the network closure enhances innovation

performance by providing more social capital, partnering with a new partner and en-

gaging in a non-equity alliance, a positive effect and maximum value of innovation

are achieved as the network density increases. In addition, forming alliances with

new partners and engaging in non-equity form alliances in a closed network reduce

the negative effects that occur when network closure lacks the advantages of open

structure to access diverse information and information flows. These findings pro-

vide evidence which suggests interfirm governance is not independent from alliance

structure; rather, it appears to shape the relationship between network structure and

innovation performance.

This study contributes to the literature on both alliance and innovation by ad-

dressing significant gaps in the research on the influence of alliance network struc-

tures and interfirm governance on firm innovation. More specifically, I have bol-

stered the case for the dynamic process of strategic alliance by focusing on the

interaction between network structure and interfirm governance. The results show

that network structure and interfirm governance increase innovation, independently

and in combination. The results also suggest that neither network structure nor

interfirm governance guarantee superior performance. The dyadic-level factor (in-
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terfirm governance) and the network-level factor (network structure) coexist in a

firm’s alliance network and the benefits of network closure and access to diverse

information depend on the interaction between these factors. Both new partners

and non-equity relationships enhance the positive effect of dense network, and in-

terfirm governance is a portfolio level decision which needs to take the structure of

the alliance into consideration.

The rest of the paper proceeds as follows. In the next section, I present the

theoretical motivation for my hypothesis. Section 3 describes the construction of

the sample and presents descriptive statistics. Section 4 lays out my econometric

methodology. Section 5 reports and discusses the results of the analysis. Section 6

discusses the contribution and limitations, and then concludes.

4.2 Theoretical Background

4.2.1 Innovation Search

Innovation search refers to the attempts on the part of some actors to

find a solution to a problem. In this way, innovation is characterized as a

problem-solving process in which solutions to problems are discovered via

search [Dosi, 1988]. The main aim of innovation search is to create knowl-

edge and in general, search is a costly and partially routinised process that

actors employ to solve problems and discover opportunities in uncertain and

ambiguous environments [Cyert and March, 1963]; [Levinthal and March, 1981];

[Nelson and Winter, 1982]).

Numerous research articles have suggested that the creation of new knowl-

edge is the result of a novel recombination of conceptual and physical materi-

als that were previously in existence [Nelson and Winter, 1982]; [Penrose, 2009];

[Schumpeter, 2010]) or the reconfiguration of the ways in which such knowl-

edge elements are linked [Henderson and Clark, 1990]. Therefore, an increase in

search scope increases the number of knowledge elements available for recombi-

nation [Fleming, 2001]. In other word, the larger the set of knowledge elements,
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the greater are their combinational possibilities [Fleming and Sorenson, 2004].

In addition, the increase in the variance of search materials also increases the

expected improvement to current knowledge to be realized from such search

[Levinthal and March, 1981].

On the other hand, firms need to ensure that such novel knowledge, once ac-

cessed, is evaluated, and when proven to be valuable is adequately absorbed. Inno-

vation search is a costly activity, especially when directed at finding novel solutions

[Phelps, 2010]. However, search costs may decline with experience as firms de-

velop more efficient search competences and routines [Levinthal and March, 1981];

[Nelson and Winter, 1982]. In addition, search is often planned and guided by rou-

tine and heuristics [Nelson and Winter, 1982]; [Dosi, 1988]. Firms use heuristics in

their recombinant efforts, which are often embedded in organisational routines. The

institutionalization of past search experiences into organisational routines improves

the efficiency and effectiveness of similar, subsequent search efforts [Dosi, 1988];

[March, 1991].

Innovation search emphasizes the importance to firms of having access to di-

verse domains of knowledge and the build-up of absorptive capacity for understand-

ing novel recombinations. Strategic alliances are both a mechanism and medium

for such search. However, alliances per se do not guarantee access or facilitate the

search process. In fact, prior research demonstrates that increasing alliance diversity

can impede access and inhibit the learning associated with search [Phelps, 2010];

[Phelps et al., 2012].

Both network structure and interfirm governance have potential value to tech-

nological innovation. The extent to which these factors in an alliance network

relationship can increase a firm’s access to its partners’ knowledge stock and the

capacity to assimilate the knowledge facilitate the firm’s search and combination

efforts and subsequently its technological innovation.

4.2.2 Network Structure

Strategic alliances facilitates information and knowledge flows between firms
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[Owen-Smith and Powell, 2004]. Firms are embedded in varying degrees in net-

works of relations, and the nature or extent of this structure embeddedness influ-

ences firms’ access to information as well as their behaviour. Existing theories

and research contain opposite claims on network structure. On the one hand, net-

work closure facilitates knowledge transfer by deterring opportunistic behaviour

[Coleman, 1988]; [Polidoro et al., 2011]. In addition, dense network also advo-

cates a generalized reciprocity norm and boosts trust, so as to alleviate the con-

cerns about free riders and knowledge leaking [Uzzi, 1997]; [Gulati et al., 2000].

On the other hand, the network closure structure also demonstrates enormous costs,

notably lacks novel information and restricts flexibility in a fast-changing environ-

ment [Burt, 1992]; [Bogenrieder and Nooteboom, 2004]; [Zaheer and Bell, 2005].

Network density affects the relative novelty of knowledge available in a network

and the ease with which a firm can recognize, assimilate and utilize this knowledge

[Phelps, 2010].

Increasing network density enhances a firm’s relative absorptive capacity. Al-

liances function as a facilitator of knowledge access, however, knowledge from a

direct partner may not be readily understandable by the firm, and if they are not able

to understand information from the innovation search, they may need another part-

ner to complement their own absorptive capacity [Gilsing and Nooteboom, 2006].

In other words, redundant ties from dense networks are sometimes needed in or-

der to understand and absorb knowledge acquired in the other relations. This is

especially salient for tacit knowledge. A dense network could enhance the absorp-

tive capacity of the firm by acting as a device for screening and interpreting novel

information on its potential relevance and value [Gilsing et al., 2008].

A dense alliance network also deters opportunistic behaviour, promotes trust

and creates a new reciprocity norm between partners. In a dense network, alliance

partners are likely to have common partners, which act as an effective informal

social control mechanism over wrongful behaviours. The presence of common

partners generates deterrence-based trust by making opportunistic behaviour more

visible [Raub and Weesie, 1990]; [Polidoro et al., 2011]. Density and trust build-
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ing enable a proliferation of triangulation to judge the reliability of information.

The focal firm could develop a richer understanding and a better evaluation of the

accrued knowledge since the information from any partner is richer and more real-

izable to the extent that the partner also profits from triangulation among its partners

[Rowley et al., 2000]; [Gilsing et al., 2008].

However, the dense network also embodies tremendous costs, because it lacks

the structure holes which exist in a sparse network to access diverse information

[Burt, 1992]; [Walker et al., 1997]. Alliance networks rich in structure holes have

access to mutually unconnected partners and consequently to much broader and

non-redundant information. Thus, maximizing the number of structure holes con-

structs an efficient and information-rich network. On the other hand, firms with a

dense network structure are ill-positioned for learning efficiently and having access

to new and novel information [Zaheer and Bell, 2005]. In an R&D alliance, the

lack of novel knowledge and distinguished capability is detrimental, demotivating

engagement in the innovation process and in the formation and maintenance of the

alliance.

A dense network also opens up more avenues for undesirable spillovers, which

may increase risk of loss of competitive advantage. In a dense network, knowl-

edge and information reaching the company through its alliance network also

reach its partners. From a competence perspective, such knowledge spillovers are

desirable, but from a governance perspective spillover to competitors may lead

to loss of competitive position. Such diffusion of novel information through-

out the network may also deter firms from conducting further innovation search,

due to the search costs and appropriation issues [Gilsing and Nooteboom, 2006];

[Devarakonda and Reuer, 2018].

In addition, a dense network functions as an obstacle for firms to create im-

pacting innovation value, as it restricts firms behavioural flexibility and the ability

to form alliances with other novel partners. Dense networks often generate strong

social norms that largely define the accepted form of behavioural routines and deci-

sion choices. Deep embeddedness in dense networks restrains firms from entering
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into new, more innovative relationships, since they do not want to be radically dif-

ferent from their existing partners [Gilsing et al., 2008]; [Phelps, 2010].

Given these benefits and costs of a dense network, it has a curvilinear ef-

fect on a firm’s innovation performance. A dense network is especially benefi-

cial for knowledge transfer during the cooperation process in an R&D alliance.

The successful transfer of knowledge and the co-development of new products

between alliance parties require the flow of necessary information and the build-

up of absorptive capacity to process information [Reuer and Devarakonda, 2017],

and partners are more vulnerable and sensitive to each other’s opportunistic be-

haviour, such as shirking, since the partner’s input is hard to specify and monitor

[Teece, 1986]; [Phelps, 2010]. At low levels of network density, alliance partners

lack an established routine and trust, and absorptive capacity for knowledge ac-

cess and evaluation is still at its infancy. At high levels of network density, al-

though trust is well established and opportunistic behaviour is likely to be deterred,

rigid routines and obsolete and familiar knowledge become prominent. Research

has shown that as networks become more closed, the chances of adapting to a

changing environment and inventing new products declines [Orsenigo et al., 2001];

[Bogenrieder and Nooteboom, 2004]. In contrast, at a moderate level of network

density, a firm’s innovation performance benefits from a balance of access to novel

information and the build-up of absorptive capacity. Therefore, some degree of

network density is valuable for innovation, but either too much or too little can be

detrimental.

The logic of the above argument can be understand as meaning that novel in-

formation decreases with network density, but absorptive capacity increases with it.

Both effects are linear since no theoretical and empirical arguments suggest other-

wise. In this way, alliance innovation performance is hypothesized to arise from the

interaction of novel information and absorptive capacity. The basic idea here is that

there is an inverted-U shaped relationship. Mathematically, it can be formulated as

follows:
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AC = a0 +a1 ∗ND(a0,a1 > 0) (4.1)

and

NI = b0−b1 ∗ND(b0,b1 > 0). (4.2)

where AC is the absorptive capacity, NI is the novel information, and ND is the

network density.

The innovation performance of the alliance is defined as the product of the two

linear effects:

IP = AC ∗NI (4.3)

Replacing AC and NI by using equation (1) and equation (2) yields:

IP = a0 ∗b0 +(a0 ∗b1−b0 ∗a1)∗ND−a1 ∗b1 ∗ND2 (4.4)

Equation (4) results in an inverse U-shaped effect if and only if

a0 ∗b1 > b0 ∗a1 (4.5)

Hypothesis 1. The network density has an inverted U-shaped relationship with

the firm’s subsequent innovation performance

4.2.3 Partner Selection

Prior research in transaction cost economics suggests that choosing an ap-

propriate interfirm governance is one mechanism that firms use to promote

knowledge sharing and protection in alliances [Pisano, 1989]; [Oxley, 1997];

[Sampson, 2004]). Interfirm governance must become align with transaction

to reduce appropriability hazards and leakage of valuable intellectual property

[Teece, 1986]; [Williamson, 1991]; [Levinthal, 1997]. Transaction cost economics

treatment of alliance network has focused exclusively on the two aspects of inter-

firm governance: partner selection and ownership structure [Gulati et al., 2012].



4.2. Theoretical Background 105

Both of these are options to reduce transaction cost and uncertainties involved in

knowledge sharing and transfer [Li et al., 2008]; [Reuer and Devarakonda, 2017].

Although an alliance can facilitate innovation search and knowledge trans-

fer to create innovation, it does not guarantee the effective combination, reten-

tion and assimilation of that knowledge [Teece, 1986]. The tacit and embedded

nature of technological knowledge make it difficult for partners to learn. Dense

network is a closed network which has no access to broader and non-redundant

information [Zaheer and Bell, 2005]. Increasing network density worsens the prob-

lem, since there is no open network structure to enable access to novel infor-

mation. In addition, a dense network also increase the chance of undesirable

knowledge spillover since it enhances the likelihood that knowledge and infor-

mation reach partners which are not supposed to have access to the information

[Gilsing and Nooteboom, 2006]. Furthermore, a dense network has strong social

norms and behaviour routines, rendering firms unable to form alliances with more

innovative partners [Gilsing et al., 2008].

Partner selection is strategically critical because it has the potential to ease

knowledge transfer between partners and reduce potential transaction hazards stem-

ming from opportunism [Reuer et al., 2002]. Depending on previous alliance expe-

rience, partner selection preference can be categorized into new partner and old

partner [Li et al., 2008]. A new partner facilitates the access to novel knowledge,

which mitigates redundant information problem, decreases the appropriation of un-

desirable knowledge spillovers, and increases partners’ flexibility to be radically

different. These problems become more challenging, and thus more important to

resolve, as network density grows.

A new partner reduces novel information problems related to growing network

density. It brings novel information and provides a unique combination of distinct

capabilities and knowledge assets in order to innovate, therefore innovation arises

from new combinations of capabilities [Li et al., 2008]; [Schumpeter, 2010]. Since

unique combinations of different assets are required to generate innovation, the ad-

dition of similar capabilities by an old partner is no longer useful beyond a critical



4.2. Theoretical Background 106

minimum level of R&D activities [Sampson, 2007]. In this sense, partners who have

no prior experience of cooperation are more likely to access to novel information

and learning opportunity , and contribute to innovation.

A new partner not only brings novel information, but can also facilitates search-

ing beyond the organisation’s existing boundary of business activities and knowl-

edge domain [Levinthal, 1997]. This enhances a firm’s ability to develop timely

radical innovation that represents a clear departure from the existing processes

[Tushman and Rosenkopf, 1996]; [Li et al., 2008]. A dense network has strong so-

cial norms and routines which constrain the cognitive capacity and the ability to

look beyond their existing pools of social relationships. A new partner could rescue

the deep embeddedness of the dense network in fast-changing, fiercely competitive

industries [Wuyts et al., 2005].

A new partner can also reduce knowledge appropriation owing to information

asymmetry [Li et al., 2008]. This is especially beneficial for reducing the risk of

undesirable knowledge spillover. A new partner alliance means that each partner is

less likely to understand the other’s know how and learning routine. Therefore, this

creates an information asymmetry between the alliance partners such that knowl-

edge leakage is less likely to happen. Even if knowledge and information diffuse

unintentionally in a dense network, it is difficult for these partners to appropriate

their partner firms’ core technologies.

In short, forming an alliance with a new partner improves a firm’s ability to

alleviate the downside of a dense network and moderates the curvilinear effect of

network density on the firm’s innovation in several ways by enhancing the potential

for novel creation. First, it will increase the magnitude of the positive relationship

between network density and innovation. Second, it will increase the maximum

value of innovation performance achieved by the firm. In other words, the amplitude

of the curvilinear effect of network density is augmented. Third, after the effect of

network density on performance turns negative, partnering with a new firm will

dampen the negative effect.

The effect of network structure and partner selection occur simultaneously, and
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hence there are interaction effect between them. For the combined effects, the full

model then becomes:

AC = a0 +a1 ∗ND−a2 ∗NP (4.6)

NI = b0−b1 ∗ND+b2 ∗NP (4.7)

Multiplying equation (6) and (7) yields:

IP = a0 ∗b0 +(a1 ∗b0−a0 ∗b1)∗ND+(a0 ∗b2−a2 ∗b0)∗NP+

(a1 ∗b2 +a2 ∗b1)∗ND∗NP−a1 ∗b1 ∗D2−a2 ∗b2 ∗NP2
(4.8)

where NP is new partner, and

a1 ∗b0 > a0 ∗b1,a0 ∗b2 > a2 ∗b0 (4.9)

The interaction effect is positive since the variables have the opposite effect

on novel information and on absorptive capacity. An increase in novel information,

due to forming an alliance with a new partner, is accompanied by an increase in the

ability to absorb it due to an increase in network density.

Hypothesis 2a. Forming alliance with new partners increases the magnitude

of the positive effect of dense network when the density is low.

Hypothesis 2b. Forming alliance with new partners reduces the negative effect

of the dense network when the density is high.

Hypothesis 2c. Forming alliance with new partners increases the amplitude of

the effect of the dense network.

4.2.4 Ownership Structure

Another transaction cost economics treatment of an alliance network has been

to focus on ownership structure. Key findings from the literature show that certain

characteristics of alliance activities are associated with the adoption of more hier-
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archical or protective governance structure - most notably the equity joint venture

[Teece, 1986]; [Pisano, 1989]; [Sampson, 2004]. When firms choose an equity-

based joint venture, they create a new entity that is dedicated to the alliance activities

and is jointly owned and operated by the alliance partners. Transaction cost analysis

suggests that a joint venture helps to reduce the hazard of opportunism, especially

in technological innovation projects where information is complex and knowledge

is tacit. On the other hand, non-equity market contract has no equity investment

and only knowledge transfer between partners [Oxley, 1997], [Sampson, 2004]. By

adopting a non-equity contract form, firms have the flexibility to form innovative

alliances with other partners and the incentive to access diverse information and

increased knowledge flow.

The non-equity form mitigates some of the costs and amplifies some of the ben-

efits of increasing network density, thus positively moderating its effect on innova-

tion. Non-equity alliances facilitate the access to novel knowledge, which decreases

the frigidness of knowledge protection, enhances the flexibility of the alliances, and

decreases the appropriation of undesirable knowledge spillovers.

Non-equity alliances facilitate knowledge access and knowledge sharing, re-

ducing the frigidness of knowledge protection problems related to growing network

density. Unlike non-equity alliance, joint venture is a well-understand knowledge

protection strategy designed to reduce knowledge leakage concerns and thereby

encourage knowledge transfer [Li et al., 2008]. The ‘mutual hostage’ positions of-

fered by equity joint venture also create behavioural pressure for partners to con-

form to certain routines and pre-empt them from entering into new, more novel

relationships [Teece, 1986]; [Pisano, 1989]; [Kraatz, 1998]; [Gilsing et al., 2008].

On the other hand, a non-equity form with loose alliance structure and less bu-

reaucratic in terms of decision-making, provides new information, search op-

portunities and novelty creation [Gulati et al., 2012]. The loose structure and

novel information benefits of non-equity alliances promote innovation search,

which improves the recombination and reconfiguration of knowledge elements

[Nelson and Winter, 1982]; [Henderson and Clark, 1990]. Therefore, the non-
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equity form reduces organisational frigidness and brings novel knowledge, espe-

cially under network closure.

The non-equity form also expands the learning activity boundaries and en-

hances adaptability. It allows firms to search beyond the formal equity structure

to acquire new information. It also accelerates the decision-making process with-

out going through reviews and consensus of joint boards of directors, reduces the

sunk costs and commitment, and thereby frees limited capability of joint ventures

[Rowley et al., 2000]. In addition, while a joint venture alliance needs a new ven-

ture with its own legal structure, a non-equity alliance is a market form of contract,

which is easy to dissolve under an unfavourable situation, in order to access other

information [Sampson, 2007]. These flexibility and knowledge-flow issues become

more challenging, and thus more crucial to resolve, as network density grows.

In addition, the non-equity form can reduce knowledge appropriation owing to

lack of hierarchical controls [Gulati and Singh, 1998]. Equity alliance is the likely

governance structure for organising alliances to manage uncertainty and reduce ap-

propriation concerns. It can assert control by fiat, provide monitoring, and align

incentives. On the other hand, non-equity alliance lacks contractual monitoring and

enforcement; therefore, it is less likely to capture profits generated by the innovative

activities [Teece, 1986]; [Oxley, 1997]. Therefore, even if knowledge and informa-

tion disseminate undesirably among partners in a dense network, the structure of

non-equity alliance renders their ability to learn effectively from the knowledge

spillovers.

To sum up, forming a non-equity alliance reduces the downside of a dense net-

work and moderates the curvilinear effect of network density on a firm’s innovation

in several ways. Firstly, it will increase the slope of the positive relationship be-

tween network density and innovation. Secondly, the amplitude of the curvilinear

effect of network density is increased. More specifically, the maximum value of

patent applications and patent citations are boosted. Lastly, it will reduce the slope

of the negative relationship between network density and innovation.

Like partner selection, ownership structure also needs to be decided simulta-
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neously with network density, and hence the interaction model then becomes:

AC = a0 +a1 ∗ND−a2 ∗NE (4.10)

NI = b0−b1 ∗ND+b2 ∗NE (4.11)

Multiplying equation (10) and (11) yields:

IP = a0 ∗b0 +(a1 ∗b0−a0 ∗b1)∗ND+(a0 ∗b2−a2 ∗b0)∗NE+

(a1 ∗b2 +a2 ∗b1)∗ND∗NE−a1 ∗b1 ∗D2−a2 ∗b2 ∗NE2
(4.12)

where NE is non-equity alliance, and

a1 ∗b0 > a0 ∗b1,a0 ∗b2 > a2 ∗b0 (4.13)

The interaction effect is also positive since the variables are complemented by

novel information and on absorptive capacity. An increase in novel information,

due to the forming of the non-equity alliance, is accompanied by an increase in the

ability to absorb it due to an increase in network density.

Hypothesis 3a. Forming a non-equity alliance increases the magnitude of the

positive effect of dense network when the density is low.

Hypothesis 3b. Forming a non-equity alliance reduces the negative effect of

the dense network when the density is high.

Hypothesis 3c. Forming a non-equity alliance increases the amplitude of the

effect of the dense network.

4.3 Data and Sample
The setting for my empirical work is biotech-pharmaceutical alliances.

In this industry, fierce competition and fast-changing technology trends moti-

vate firms to seek out various R&D partnerships [Levinthal and March, 1981];
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[Powell et al., 1996]. Since the late 1970s, this industry experienced a sig-

nificant growth in the use of R&D alliances, and by the late 1990s, all

industry players were directly or indirectly interconnected to one another

[Roijakkers and Hagedoorn, 2006]. The ubiquitousness of R&D alliances in this

industry enabled me to closely examine the network structure and interfirm gover-

nance at the same time. Additionally, since I use patent data to measure innovation

performance, the unique role of patents in drug development is found to be helpful.

Given the unusually strong appropriability of knowledge associated with drug de-

velopment, organisations actively patent their innovations [Fleming, 2001].

4.3.1 Alliance data

To minimize right censoring and undesirable heterogeneity, I limited the study

period to 1975-2006. I only collected data from public companies to ensure the

availability and reliability of the financial data. I selected only the top 200 firms

based on market capitalization because complete and accurate alliance data are more

available for industry leaders than for smaller firms [Phelps, 2010]. To minimize the

influence of right censoring, I ended the study period in 2006 to allow sufficient time

for the approval of patent applications that sample firms made during the period.

To avoid undesirable heterogeneity [Levinthal and March, 1981], I also elimi-

nated alliances in which:

• One of the parties is a university, medical centre, other non-profit organisa-

tion, or government agency

• The two parties have a previous alliance covering the same set of technolo-

gies, and consequently were primarily renegotiating the terms of an earlier

alliance (this inflates the old partner measurement)

• There is neither a research nor a product development component, but the

alliance simply involves the marketing of an existing product (marketing al-

liance is less likely to affect innovation)
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• The alliance is focused on non-human therapy or medicine development

The alliance data are downloaded from SDC Platinum. Overall the data set

from which this study draws includes 2,299 alliances initiated during 1975-2006.

To ensure the data quality, I reviewed every record from the SDC data and correct

duplicate entries and other errors and omissions using secondary sources such as

annual reports, 10K filings and Lexis-Nexis.

4.3.2 Measuring innovation outcome

I used the number of patents and patent citations to measure innovation

performance as patents have been recognized as a rich and potentially fruitful

source of data for the study of innovation and entrepreneurship [Griliches, 1990];

[Jaffe et al., 1993]. Even though several limitations of patent data have been men-

tioned in previous literature (e.g. [Jaffe and Palmer, 2006]), most of them are void

in the drug industry and patent references provide one of the most accepted and

reliable resources to measure innovation. I obtained the list of all patents assigned

to the biotechnology firms from 1975 through 2006 using data from the National

Bureau of Economic Research (NBER) Patent Data Project [Hall et al., 2001]. This

database links patent data from the U.S. Patent Office to COMPUSTAT.

The raw patent count provides a first approximation of the innovation per-

formance of each firm. However, previous research has shown a high variance in

patent value [Griliches, 1990], thus I used the number of forward citations as an

alternative measure. Forward citations are a well-established proxy for innovation

since they correlate with patent quality, intellectual property value and the market

value of the firms [Hall et al., 2001]. To account for the truncation of the citation

measurement, I deployed the exponentially decaying factor (e−
2007−Yt

C ) to discount

the older citation count, where Yt is the year in which the patent was granted and C

is a constant of knowledge loss, which is set at 5 years, following Fleming (2001).



4.3. Data and Sample 113

4.3.3 Measuring Network Density

To measure network density, I used Burt’s indicator of constraint (1992), a

measure of triadic closure. This captures the extent of connections that a focal firm

forms with its network partners that also have their own level of connectedness.

Higher constraint values indicate higher connectedness and density in a focal firm’s

ego network. Many researchers have used this constraint measure in alliance net-

work studies (e.g. [Shipilov and Li, 2008]; [Phelps, 2010]), as a substitute for ego

network density which is defined as the percentage of all possible ties among an

egos alters that have been formed.

4.3.4 Descriptive statistics

To minimize alternative explanations and isolate the marginal effects of the

explanatory variables, I controlled for several firm-level and alliance-level fac-

tors whose influence on innovation might be confused with the explanatory vari-

ables. For each biotechnology firm, I gathered data from Compustat on each

firm’s age, R&D expenditure, and sales. I also recorded each firm’s current ra-

tio as the proxy for slack resources from the same source, since previous re-

search has shown that slack resources lead to greater innovative performance

[Nohria and Gulati, 1996]. Current ratio is calculated as current assets divides by

current liabilities [Singh, 1986].

I calculated alliance experience as the cumulative alliances of the past five

years based on the alliance data from SDC Platinum, since alliance experience en-

hances the collaborative capability of a firm, which in turn facilitates knowledge

transfer [Sampson, 2007]. This five-year window is widely accepted as acknowl-

edging knowledge depreciation [Katila and Ahuja, 2002]. Therapeutic areas, R&D

stages and alliance formation years were also obtained from SDC Platinum. Firm

patent stock was also included, so as to control for the absorptive capacity. The

patent stock was measured using the number of patents a firm had obtained in the

previous four years. I also used a modified Herfindahl index [Phelps, 2010] as the

proxy for technological diversity since diverse firms may be more innovative with
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Variables Mean Median SD Minimum Maximum
New Partner
Firm Age 16.85 14.32 15.07 4 36
R&D Expenditure 1.36 1.56 1.03 0.46 6.94
Firm Sales 4.89 5.24 7.21 0 21.68
Current Ratio 2.76 3.03 1.49 0.06 15.27
Alliance Experience 7.82 8.91 6.36 2 28
Therapeutic Area 21.34 18.93 10.24 1 34
R&D Stage Alliance Formation 4.01 3.78 3.75 1 9
Year 1996.21 1997.48 9.28 1980 2006
Patent Stock 13.21 10.28 8.57 2 28
Herfindahl Index 0.39 0.43 0.11 0.15 0.85
Network Density 24.51 17.46 29.67 0 100

Old Partner
Firm Age 18.97 16.21 13.24 6 41
R&D Expenditure 1.49 1.98 1.46 0.35 7.62
Firm Sales 6.73 6.05 7.36 0 24.57
Current Ratio 2.12 3.24 1.28 0.02 13.29
Alliance Experience 7.46 9.56 7.31 4 34
Therapeutic Area 20.31 18.27 9.87 1 34
R&D Stage Alliance Formation 4.24 3.91 3.65 1 9
Alliance Formation Year 1997.14 1997.1 8.02 1980 2006
Patent Stock 10.53 14.27 10.73 2 31
Herfindahl Index 0.48 0.54 0.12 0.17 0.79
Network Density 25.19 22.76 27.45 0 100

Table 4.1: Descriptive Statistics of Partner Selection

the diverse knowledge flow.

New partner and old partner alliance samples at the baseline. Table 4.1

presents baseline descriptive statistics. Companies that choose new partners as al-

liance partners are approximately two years younger than companies that choose

old ones. Firms with more R&D investment, firm sales and slack resources tend to

choose new partners instead of old partners. They also have more alliance experi-

ence and patent stock than their counterparts.

In summary, characteristics that determine selection into the new partner al-

liance are not especially well balanced at the baseline comparing with old partner

alliances. However, the region of common support is wide, indicating that it should

be possible to create comparable samples on these important dimensions.

Equity and non-equity alliance samples at the baseline. Table 4.2 presents
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Variables Mean Median SD Minimum Maximum
Equity
Firm Age 18.23 14.19 16.23 5 38
R&D Expenditure 1.49 1.63 1.06 0.35 6.94
Firm Sales 4.89 5.24 7.21 0 24.57
Current Ratio 3.02 3.46 1.63 0.06 15.27
Alliance Experience 8.69 10.43 6.15 3 34
Therapeutic Area 20.16 19.56 10.54 1 34
R&D Stage Alliance Formation 3.06 3.65 3.97 1 9
Alliance Formation Year 1998.45 1997.34 8.78 1975 2006
Patent Stock 14.62 12.68 8.52 2 31
Herfindahl Index 0.51 0.47 0.13 0.16 0.85
Network Density 26.79 20.67 25.45 0 100

Non-equity
Firm Age 19.23 17.31 15.32 4 41
R&D Expenditure 1.12 1.48 1.57 0.41 7.62
Firm Sales 4.78 5.04 6.15 0 22.27
Current Ratio 2.15 2.96 1.43 0.02 13.65
Alliance Experience 7.86 8.54 9.48 2 32
Therapeutic Area 22.15 19.03 8.78 1 34
R&D Stage Alliance Formation 4.12 4.34 3.27 1 9
Alliance Formation Year 1997.38 1996.34 7.59 1975 2006
Patent Stock 9.78 15.64 11.57 2 30
Herfindahl Index 0.47 0.41 0.14 0.15 0.81
Network Density 24.99 23.89 25.98 0 100

Table 4.2: Descriptive Statistics of Ownership Structure

baseline descriptive statistics. Companies that choose equity alliance form are ap-

proximately one year younger than companies choosing non-equity alliance. Firms

with more R&D investment and slack resources also tend to choose the equity al-

liance. They also have more alliance experience and patent stock than their counter-

parts. However, the sale for organisations choosing different equity forms are quite

similar.

To sum up, although there is a selection bias between equity alliance and

non-equity alliance, the overlapping of the important characteristics facilitates the

matching to generate analogous samples.
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4.4 Econometric Considerations

Governance choices are sometimes driven by expectations about the innovative

potential of each alliance, and the innovation performance might occur irrespective

of the governance that has been selected. Therefore, traditional econometric tech-

niques, which assume that assignment into different governances is random, cannot

determine causal effects. I follow Azoulay and his colleagues’ methods (2010,

2011) to estimate the innovation outcomes of different governance alliances.

4.4.1 Propensity-score weighting

To overcome the above-mentioned challenge, I estimate the effects of al-

liance governance using inverse probability of treatment-weighted estimation

[Rosenbaum and Rubin, 1983]; [Hirano and Imbens, 2001]; [Abadie and Imbens, 2016].

Suppose we are interested in the causal impact of a treatment Ti (governance choice)

on the outcome Yi (innovation performance), and that we have a vector of exogenous

control variables Xi. Matching methods assume that the treatment is strongly ig-

norable or conditionally independent of outcomes. This is often written as Y⊥T | X

with 0 < P(Ti = 1 | Xi)< 1.

The unconfounded assumption depends on other three conditions: first, a rich

list of covariates is used to model the probability of treatment; second, units are

drawn from similar circumstances; third, outcomes are measured in the same way

for both treatment and control groups [Dehejia and Wahba, 2002]. The latter two

conditions are trivially satisfied, but the first one, namely the extent to which the

analysis accounts for the relevant determinants of governance choice, is arguable.

To address this issue, I include most of the variables in the alliance database which

divide the alliances into difference governance based on my personal communica-

tion with senior scientists from those biotechnology companies.

According to the findings from the interviews with these senior scientists, or-

ganisations appear to focus on their scientific resources and innovative capabilities

when choosing governance form. Scientific resources include therapeutic areas,

stage of the alliance project and firm R&D resources (using current ratio to proxy
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firm slack resources). I capture the innovation capability by counting the cumulative

patent stock, cumulative alliance experience, and Herfindahl Index of technological

diversity. I also include firm age, firm sale, and R&D expenditure to control for

the scale in the selection equation. Last but not least, since partner selection and

ownership structure are simultaneous decisions, I separate these two elements in

propensity score weighting.

Rosenbaum and Rubin (1983) show that if treatment is strongly ignorable con-

ditional on X, it is also strongly ignorable after conditioning on a balancing score

b(X). The coarsest balancing score (i.e. the b(X) with fewest dimensions) is the

propensity score p(X), i.e. the conditional probability of being assigned to the treat-

ment group.

Propensity scores are often used to check the common support assumption.

They can also be used as sampling weights in an ordinary least squares (OLS) re-

gression. The choice of weights depends on whether we wish to estimate the aver-

age treatment effect (ATE), the treatment effect for the treated (ATT) or some other

quantity [Abadie and Imbens, 2006]. ATE elucidates the average effect of treatment

for an individual picked at random from the population, and ATT measures the av-

erage effect for the sub-population that is likely to receive treatment. Suppose we

stratify based on estimates of the propensity score, the strata are indexed by j and

defined by a set of lower and upper cut-points (p j, p j). Let n1 j represent the num-

ber of treatment (control) observations in each group and N j = n1 j +n0 j. For each

strata, α j = E[Y1−Y0| p̂ ∈ (p j, p j)] is an estimate of the local treatment effect. To

calculate ATE, we can take a weighted average of the α j’s

AT E = ∑
j

N jα j

N
=

1
N ∑

j

{(
N j

n1 j

)
∑Y1 j−

(
N j

n0 j

)
∑Y0 j

}
= E

[
Yi1

p j
− Yi0

1− p j

]

where p j = n1 j is the probability of treatment (propensity weighting) for group

j. As we allow the size of the strata to diminish, this leads to an estimator where

each observation is given its own inverse probability of treatment weight.
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A similar argument shows that we can estimate

AT T = ∑
j

ni jα j

N1

by assigning a weight of 1 to treated observations, and a weight of p
1−p to control

observations. Therefore,

AT T = E
[
Yi1 +

Yi0 ∗ p j

1− p j

]

4.4.2 Semiparametric difference in difference

An alternative econometric analysis relies on within-organisation variation to

identify the governance’s treatment effect. The organisation fixed effects elimi-

nate any influence of unobserved heterogeneity that is constant over time. How-

ever, the assumption of difference in differences (DD) estimation is that the average

outcomes of the treated and control groups follow parallel paths over time in the

absence of treatment.

This assumption is implausible since some drug projects require specific gov-

ernance structures to reduce risk or improve innovation efficiency. Therefore, some

alliance characteristics that are associated with the innovation performance are un-

balanced between different governance modes. To address this issue, I use a semi-

parametric difference in differences (SDD) estimator [Abadie, 2005] that combines

adjustment for observed heterogeneity with difference in differences. The idea is to

apply propensity-score weighting to the differences in outcomes between post- and

pre-treatment periods so that a pseudo-population of old-partner (equity) alliance

is created which follows similar dynamics to the new-partner (non-equity) alliance

in the pre-treatment period. The SDD estimator calculation is similar to the DD

estimator calculation but with the pseudo-population and the inference is obtained

using a non-parametic pairwise bootstrap procedure with 500 replications. The ATT

of SDD is calculated as follows:
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SDD = E
[
(Yi1−Yi0)∗ (Ti−Pj)

π ∗ (1− p j)

]
where p j is still the propensity weighting, T is the indicator of the treatment,

and π denotes the unconditional odds of treatment Prob(Ti = 1).

This method is still vulnerable to the critique that time-varying sources of

unobserved heterogeneity could produce biased effects. However, the selection

concerns will not jeopardise my analysis since it is unlikely that any innovative ten-

dency would be recognised and selected before any governance decision is made.

The fact that treated and untreated organisations are well matched at baseline along

the dimension of innovation output provides the required support.

4.5 Results
4.5.1 Determinants of Governance Design

Table 4.3 shows the result of logit models of selecting into different gover-

nance designs. The regressions include scientific resources, innovation capabilities

and scale factors. Among the scientific resource characteristics, only R&D expen-

diture is significant for both governance selections. I also found that alliance experi-

ence, which is an innovation capability factor, has a consistent pattern of significant

positive for these two types of governances. However, the scale factors and other

scientific resource and innovation capability measurements have no role in the odds

of selection.

Hypothesis 1 is the baseline hypothesis which predicts an inverted U-shaped

effect of network density on firm innovation performance. Both Table 4.4 and 4.5

provide support for this hypothesis. In these two tables, network density exhibits a

positive and significant effect on innovation performance; and the squared term is

negative and also significant. Thus, I find evidence of a curvilinear effect.

4.5.2 Effects of Governance Design on Patent Application

With regard to the effect of governance design on patent application, the first
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Table 4.3: Determinants of Selection into Governance Design in Alliance Net-
work

Variables New Partner Selection Non-Equity Selection

Current Ratio 0.030 0.032
(0.103) (0.114)

Alliance Experience 0.009∗∗∗ 0.008∗∗∗

(0.002) (0.002)
Patent Stock 0.011 0.013

(0.007) (0.007)
Herfindail Index −0.113 −0.109

(0.067) (0.073)
Firm Age 0.017 0.015

(0.013) (0.021)
Firm Sale −0.003 −0.006

(0.021) (0.019)
R&D Expenditure 0.007∗ 0.006∗

(0.003) (0.003)
New Partner 0.151

(0.971)
Non-equity 0.147

(0.145)
Pseudo-R2 0.343 0.361
Number of Alliances 2299 2299

The dependent variable is the probability of an alliance being formed with a
new partner or a non-equity form structure being set up. Estimates correspond
to marginal effects from logit specification, with robust standard errors in paren-
theses. All models incorporate year fixed effect, therapeutic class dummy and
R&D Stage indicators.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

point to be considered is partner selection. Table 4.4 reports the effect of a new part-

ner alliance on the number of patents which firms apply for. There are five models

corresponding to the different ways of assessing the partner selection effect. The

first model presents the naive regression result, which ignores the selection process.

The second and third model include the propensity score weighting to recover the

ATE, which emphasizes the average effect of partner selection for a firm picked at

random from the population, and ATT, which measures the average effect for the

sub-population that is likely to select a new partner in order to form an alliance.

The fourth model reports simple DD regression. The last model reports results cor-
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Table 4.4: Effects of Partner Selection on Patent Counts

Variables Native ATE ATT DD SDD

Density 0.593∗∗ 0.412∗ 0.403∗ 0.278∗∗∗ 0.342∗

(0.17) (0.18) (0.18) (0.04) (0.15)
Density2 −0.605∗ −0.475∗ −0.442∗ −0.289∗∗ −0.278∗

(0.28) (0.24) (0.21) (0.10) (0.11)
New Partner 0.654∗ 0.517∗∗ 0.493∗∗ 0.193∗∗ 0.208∗∗

(0.27) (0.19) (0.18) (0.06) (0.07)
Density * New Partner −0.943∗ −0.877∗ −0.584∗ −0.598∗∗∗ −0.477∗

(0.40) (0.43) (0.23) (0.13) (0.12)
Density2 * New Partner 0.865∗∗ 0.843∗ 0.519∗ 0.471∗ 0.518∗∗

(0.31) (0.41) (0.24) (0.19) (0.18)

The dependent variable is the number of patent applications. Each coefficient corresponds to
the treatment effect of forming an alliance with a new partner in a specification that regresses
patent applications on treatment status, firm age and year indicators in all models. The first
three models also include therapeutic area, R&D stage, current ratio, Herfindahl Index and
firm size measurements (coefficients not reported). Estimates derive from a quasi-maximum
likelihood (QML) Poisson estimation, with robust standard errors in parentheses, clustered
around firms; bootstrapped standard errors are reported for the semi-parametric difference-
in-differences estimates. All models except the naive and the plain difference-in-differences
include regression weights computed by using fitted values for the probability of forming
an alliance with a new partner, as estimated in Table 3. For the differences between these
models see 4.4 Econometrics Consideration section for details.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

responding to SDD estimates. The SDD model is my preferred one since it adjusts

the selection effects while purging the estimates of time-invariant unobserved het-

erogeneity.

The naive model is always the largest in magnitude, whereas the DD estimate

is the smallest. The fact that the DD estimate is systematically lower than the SDD

estimates implies that they are on different output trends even before partner selec-

tion. This further proves the necessity of using SDD model instead of simple DD

one.

Table 4.5 presents the effect of non-equity alliance on the number of patents

that firms apply for. It seems that a non-equity alliance has a larger impact on patent

application than forming alliance with new partner does. Both Table 4 and Table 5
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Table 4.5: Effects of Governance Choice on Patent Counts

Variables Native ATE ATT DD SDD

Density 0.612∗∗ 0.477∗∗ 0.399∗ 0.301∗ 0.354∗∗∗

(0.21) (0.18) (0.19) (0.13) (0.19)
Density2 −0.647∗∗∗ −0.463∗ −0.478∗ −0.317∗ −0.379∗∗

(0.14) (0.22) (0.20) (0.14) (0.11)
Non-Equity 1.113∗ 0.940∗∗ 1.013∗∗ 0.204∗ 0.274∗

(0.53) (0.31) (0.34) (0.08) (0.10)
Density * Non-equity −1.347∗∗ −1.275∗ −1.047∗ −0.893∗∗∗ −0.814∗∗

(0.52) (0.47) (0.41) (0.14) (0.26)
Density2 * Non-equity 1.004∗∗∗ 1.134∗∗∗ 1.114∗∗∗ 0.817∗∗∗ 0.979∗∗∗

(0.17) (0.21) (0.31) (0.20) (0.27)

The dependent variable is the number of patent application. Each coefficient corresponds to
the treatment effect of forming a non-equity alliance in a specification that regresses patent
applications on treatment status, firm age and year indicators in all models. The first three
models also include therapeutic area, R&D stage, current ratio, Herfindahl Index and firm size
measurements (coefficients not reported). Estimates derive from a quasi-maximum likelihood
(QML) Poisson estimation, with robust standard errors in parentheses, clustered around firms;
bootstrapped standard errors are reported for the semi-parametric difference-in-differences es-
timates. All models except the naive and the plain difference-in-differences include regression
weights computed by using fitted values for the probability of forming a non-equity alliance,
estimated in Table 3. For the difference between these models see 4.4 Econometrics Consider-
ation section for details.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

show that network density increases innovation performance in the first place, but

reduces the patent application afterwards. Partnering with a new partner not only

enhances the initial positive effect of a dense network, but also amplifies the ampli-

tude of the effect. Furthermore, it reduces the negative effect of the dense network

on the innovation outcome when the density is high. Choosing a non-equity based

alliance has a similar effect but different magnitude.

4.5.3 Effects of Governance Design on Patent Citation

The effect of partner selection and governance choice on patent citation is pre-

sented in Tables 4.6 and 4.7. As in the previous sections, the results show that patent

citation increases with the network density first, but decreases after a certain thresh-

old. Both partnering with a new partner and choosing a non-equity form alliance

moderate the inverted U-shaped relationship by improving the positive effect of the
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Table 4.6: Effects of Partner Selection on Patent Citation

Variables Native ATE ATT DD SDD

Density 2.034∗∗∗ 1.536∗∗∗ 1.457∗∗∗ 0.987∗∗∗ 1.324∗∗∗

(0.58) (0.35) (0.38) (0.24) (0.24)
Density2 −1.978∗∗ −1.324∗∗ −1.438∗∗ −1.132∗∗∗ −1.003∗∗

(0.64) (0.49) (0.51) (0.31) (0.38)
New Partner 1.896∗∗ 1.347∗∗∗ 1.515∗∗∗ 1.096∗∗ 1.434∗∗∗

(0.61) (0.32) (0.37) (0.29) (0.44)
Density * New Partner −3.763∗∗∗ −2.987∗∗∗ −3.014∗∗∗ −2.433∗∗∗ −1.895∗∗∗

(0.73) (0.54) (0.52) (0.34) (0.32)
Density2 * New Partner 3.123∗∗∗ 1.642∗∗∗ 2.014∗∗∗ 1.207∗∗∗ 1.783∗∗∗

(0.76) (0.45) (0.53) (0.29) (0.41)

The dependent variable is the patent citation. Each coefficient corresponds to the treatment effect
of forming an alliance with a new partner in a specification that regresses patent applications on
treatment status, firm age and year indicators in all models. The first three models also include thera-
peutic area, R&D stage, current ratio, Herfindahl Index and firm size measurements (coefficients not
reported). Estimates derive from a quasi-maximum likelihood (QML) Poisson estimation, with ro-
bust standard errors in parentheses, clustered around firms; bootstrapped standard errors are reported
for the semi-parametric difference-in-differences estimates. All models except the naive and the plain
difference-in-differences include regression weights computed by using fitted values for the proba-
bility of forming an alliance with a new partner, estimated in Table 3. For the difference between
these models see 4.4 Econometrics Consideration section for details.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

dense network when network density is low, reducing the negative effect of dense

network when network density is high and enhancing the amplitude of the effect.

4.6 Discussion and Conclusion

R&D alliances promote access to their partners’ technological assets, but also

place their own valuable technological assets at risk of appropriation. Previous re-

search has suggested two factors that affect this appropriation risk: network struc-

ture and interfirm governance, but such literature has largely ignored the potential

interaction between these two factors. This study is motivated by this important

limitation of research conducted on alliance networks and firm innovation. In addi-

tion, this research also draws on the seemingly incompatible theoretical arguments

by Burt (1992) and Coleman (1988) which have produced conflicting empirical re-

sults regarding the influence of network structure. These conflicts stem from an

assumption that a firm’s access to novel information and the innovation benefits of
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Table 4.7: Effects of Governance Choice on Patent Citation

Variables Native ATE ATT DD SDD

Density 2.536∗∗∗ 1.312∗∗ 1.423∗∗∗ 0.988∗ 1.253∗∗∗

(0.60) (0.43) (0.32) (0.44) (0.36)
Density2 −2.203∗∗ −1.521∗∗ −1.637∗∗ −1.013∗∗ −1.145∗∗

(0.52) (0.57) (0.61) (0.38) (0.42)
Non-Equity 2.873∗∗∗ 2.076∗∗∗ 2.164∗∗∗ 1.247∗∗∗ 1.538∗∗∗

(0.79) (0.47) (0.57) (0.36) (0.37)
Density * Non-equity −3.245∗∗∗ −2.745∗∗∗ −2.632∗∗ −2.103∗∗∗ −1.675∗∗∗

(0.87) (0.63) (0.82) (0.63) (0.41)
Density2 * Non-equity 2.104∗∗ 1.648∗∗ 1.528∗∗ 1.843∗∗∗ 1.947∗∗∗

(0.74) (0.51) (0.54) (0.34) (0.35)

The dependent variable is the patent citation. Each coefficient corresponds to the treatment effect
of forming non-equity alliance in a specification that regresses patent application on treatment
status, firm age and year indicators in all models. The first three models also include therapeutic
area, R&D stage, current ratio, Herfindahl Index and firm size measurements (coefficients not
reported). Estimates derive from a quasi-maximum likelihood (QML) Poisson estimation, with
robust standard errors in parentheses, clustered around firms; bootstrapped standard errors are
reported for the semi-parametric difference-in-differences estimates. All models except the naive
and the plain difference-in-differences include regression weights computed by using fitted values
for the probability of forming non-equity alliance estimated in Table 3. For the difference between
these models see 4.4 Econometrics Consideration section for details.
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

network closure are mutually exclusive.

This study addresses these limitations by examining the influence of the in-

teraction between network structure and interfirm governance of R&D alliances on

firms’ innovation performance. The study draws on innovation search and trans-

action cost economics literature and proposes that network structure and interfirm

governance play different, yet complementary, roles in innovation. The results sup-

port the prediction of the theoretical framework. More specifically, this research has

found that a new partner - which requires a trust-building process, but brings novel

information - increases innovation performance when the network density is low,

reduces the negative effect of network density when it is high, and boosts the max-

imum value of innovation performance. It has also found that the non-equity form

- which facilitates knowledge flows, alleviates the behavioural pressure to conform,

and optimizes search and learning cost - has a similar effect on innovation to that of

a new partner.
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This study has important implications for research and practice. First, it con-

tributes to the debate between Burt’s (1992) structure hole and Coleman’s (1988)

closure form of social capital by suggesting a contingency factor which moderates

the relationship between network structure and innovation performance. The prior

research assumption has been that a dense network promotes trust and cooperation,

whereas firms embedded in a sparsely connected network will enjoy efficiency and

brokerage advantages based on the ability to access novel information. Because

network closure and structure holes are inversely related, this argument implies that

the trust and cooperation benefits of network closure must come at the expense of

the benefits of structure holes, and vice versa. Several recent efforts have been made

to reconcile these differences. Burt (1998) suggests that these two forms of social

capital are not necessarily contradictory, but rather play different roles, which are

valuable and depend on the different populations and purposes. This paper utilizes

this contingency approach to explore the conditions under which network structure

and interfirm governance are positively related to innovation performance. It is sug-

gested that a new partner and a non-equity alliance form could provide diverse and

novel information, independent of the network structure. The benefits of network

closure and access to diverse information can coexist in a firm’s alliance network,

and the combination of the two enhances its innovation.

Second, this study contributes to the innovation search literature. Much of

this literature stresses the outcome of such search, notably knowledge creation

[Dosi, 1988]; [Schumpeter, 2010]. Little research explores how firms conduct in-

novation search to access their partners’ knowledge. This study suggests that in-

novation search is a two-part task. On the one hand, firms need to develop access

to heterogeneous sources of knowledge and in this way create potential forms of

novel combination. This emphasis on diversity, is related to Burt’s argument (1992),

which stresses the benefits of accessing non-redundant contracts to obtain novel in-

formation. New partners and non-equity forms also provide new knowledge when

network closure lacks information access. On the other hand, firms need to ensure

that such novel knowledge, once accessed, is evaluated, for absorption and recombi-
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nation. This process is more in line with Coleman’s view (1988), which highlights

the benefits of redundant network structure. This emphasize show network struc-

ture could rescue the lack of absorptive capacity of a new partner and non-equity

form. So an important contribution of this paper is that it illustrates two essential

components of innovation search - novel information and the build-up of absorptive

capacity - and how these two are played out in the interaction of network structure

and interfirm governance.

Third, this study contributes to the multi-level network research scheme. Al-

though research into social capital and social network analysis has been conducted

at multiple levels of analysis, researchers have largely limited their studies to a sin-

gle level of analysis and have failed to fully recognize that different levels of struc-

ture may interact with each other [Gilsing et al., 2008]. This study considers both

the role of global network density and dyadic interfirm governance choices. The fo-

cus on both levels illuminates the under-socialized view of alliances and illustrates

how far the dyadic level of interfirm governance choices could be rescued or ampli-

fied by the entire network structure [Gulati et al., 2012]; [Powell et al., 2005]. Thus

in this research it has been found that the network structure, in terms of its den-

sity, indeed plays an important role and conditions the potential benefits and cost of

interfirm governance.

Fourth, the research results show that complementary relationships exist be-

tween network structure and interfirm governance. This study suggests that partner

selection and ownership structure have opposite effects on information novelty and

on absorptive capacity compared to network structure. Here the interaction effects

complement each other. An increase in novelty, due to a new partner or non-equity

form, is complemented by an increase in the ability to absorb the novel knowledge

due to an increase in network density. Thus this work demonstrates a dynamic and

endogenous system of alliance network.

In terms of implications for managerial practice, an analysis in the present

study suggests that partner selection and ownership structure are not merely dyadic-

level alliance decisions, but rather portfolio-level decisions. Decision-makers
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should devise their partner selection strategy and ownership structure choices in

conjunct consideration of the network structure they are embedded in, which is de-

termined at the alliance portfolio level. Unless decision-makers look beyond their

direct ties and recognize the potential performance implications of such contingen-

cies, they might end up achieving an inferior innovation performance. In other

words, decision-makers have to be able to consider the whole network in order to

optimize their alliance strategy and in order to achieve better innovation perfor-

mance.

Despite the significant theoretical and practical contributions of this study,

however, there are several limitations. First, no mechanism story could be provided

due to the data limitations and the complex system. Rather, these effects appear to

be driven, at least in part, by the balance between benefits and costs of both gover-

nance and structure. When organisation decision-makers facing the choice between

a new partner or an old one, an equity form or a non-equity one, they also need

to take their network structure into consideration, because these two decisions are

interdependent on each other to determine innovation and entrepreneurship perfor-

mance. The increasing mean and decreasing variance of choosing these two types

of governance also suggest that there is always a trade-off between reward and un-

certainty.

In addition, this paper raises many questions and needs further work on the

decision-making process of alliance formation. It would be interesting to conduct a

qualitative study to see how organisational decision-makers decide on the interfirm

governance. The decision-making process not only provides an explanation for the

results of the present study, but also provides a bench-mark for other research in

decision science. Future work could also usefully match performance data to each

alliance. This could present evidence at the alliance level instead of the organisa-

tional one.

Furthermore, because patents were used in this study as a proxy for innova-

tion performance, the measurement may not capture all of the innovation in firms.

Therefore, other measurements of innovation could be used to supplement the re-
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sults. Although patent data is regarded as a reliable measure that can present a fairly

broad range of technical innovation, the data cannot capture process innovation and

commercialisation performance.

Last but not least, this research only considered two party alliances, while it

ignored multilateral R&D alliances. A multilateral alliance is a single cooperative

arrangement involving three or more partners [Lavie et al., 2007]. Increasing the

number of alliance partners introduces more complexity to knowledge exchange, so

trust-based governance is more suitable for overcoming the heightened challenge

associated with knowledge exchange [Li et al., 2011]. In addition, uncooperative

behaviour is more likely to be anonymous in a multilateral alliance, and the mon-

itoring and penalty of this kind of behaviour is more salient. So the results from

bilateral alliances may not be applicable to multilateral alliances, and so the topic

deserves separate research and investigation.

In sum, the research presented here suggests that firms can use both network

structure and interfirm governance to share knowledge and protect knowledge leak-

age. The complementary nature of these two factors is beneficial to innovation

performance. The results suggest that this line of inquiry has potentially important

implications for the theory and management of interfirm alliance.
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Conclusion

A large amount of scientific information internal and external to the firms has

created challenges for knowledge management, resulting in a loss of innovation and

decrease in productivity if the information cannot be employed effectively for R&D.

Firms that manage knowledge more effectively may be more successful in bringing

new products to the market, and could be in a prominent position in the market-

place by recouping development expenses at an increased pace and subsequently

achieving greater profit. Ineffective knowledge management may cause decisions

to not be made, to be delayed, to be made in error, or to be made without thorough

analysis, which may further lead to budget overruns and time delays for new prod-

uct launches. The intent of this dissertation is to identify knowledge management

factors that contribute to technological innovation and business value.

As discussed in the introduction, the three studies in this dissertation provide

different perspectives on how firms manage knowledge to enhance technological in-

novation and improve competitive performance. Understanding exactly how expe-

rience and network structure affect both learning behaviour and innovation produc-

tivity is important to our knowledge of organisational learning, knowledge spillover

and alliance networks. In the context of drug innovation, these three studies address

how firms design innovation strategies to enhance learning and capability; how they

manage the new product development (NPD) process and knowledge spillovers and

define firm boundaries, and how they organise network structures and interfirm gov-

ernance to protect technological assets.
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The value of any technological innovation is only partly determined by what

the technology can do. A large part of the value of an innovation is determined

by the degree to which decision makers can manage and transform the knowledge.

Crafting an innovation strategy is not just a way for firms to realise innovation, but it

is a core part of the knowledge management and innovation process itself. Chapter

2 attempts to illustrate that innovation strategy can enhance learning from failure

and improve capability. The findings show that two innovation strategy choices

- novelty of innovation and primary ownership - not only improve learning from

failure experience but also enable prior experience of failure to better reduce the

incidence of future failure than prior experience of success.

Another important consideration regarding knowledge management in tech-

nological innovation relates to the combination of product innovation and learning

by doing to promote the productivity of innovation. Both factors are the principle

sources of productivity growth. Knowledge spillover is a source of increasing re-

turns in R&D and enhances technological development [Griliches, 1991]. Chapter

3 demonstrates that learning by innovating is a driving force of productivity and

explores the boundary conditions of learning by innovating. Most innovation firms

deploy stage-development processes instead of parallel-development processes, es-

pecially with the increasing uncertainty and risks involved in the innovation process.

Stage-development process can reduce commitment and shift the innovation direc-

tion with minimum cost. The findings show that drug research cannot fully exploit

the productivity gains acquired through experience with drug development. In other

words, learning is stage-specific owing to the presence of limited attention.

The structure and governance of innovation networks can significantly influ-

ence the capability of firms’ innovation, the effectiveness of that innovation, and

the speed of new knowledge production. A vast majority of firms use some types

of network structure to organise their NPD process. Chapter 4 examines the net-

work effect, especially dealing with the interaction between network structure and

interfirm governance. The findings show that interfirm governance contingently

determines the outcome of patent application and patent citation under dense net-
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works.

Together, these three studies analyse the determinants of innovation behaviour

and competitive performance. They show that both experience and structure play

an important role in developing capabilities and improving innovation productivity.

5.1 Research Setting and Generalisability

Even though the three studies are answering different questions, they focus

on the same industry setting - the biotechnology industry. While the general re-

search setting is the same, there are some differences in each setting to test specific

hypotheses addressed in each study. Table 5.1 summarises the setting, dependent

variables, independent variables and key descriptive information on the research

settings of these three studies.

Chapter 2 Chapter 3 Chapter 4

Setting Drug R&D Drug R&D Drug Innovation

Network

Dependent Variables Failure Hazard Ratio Failure Hazard Ratio Patent Application

Success Hazard Ratio Success Hazard Ratio Patent Citation

Independent Variables Failure Experience Research Experience Network Density

Success Experience Development Experi-

ence

Partner Selection

Innovation Strategy Equity Form

Level of Analysis Project Project Network

NPD Stage R&D R&D Pre-product

Table 5.1: Key Characteristics of Settings

Table 5.1 presents some interesting similarities and differences among the three

studies. The primary similarity is the complicated nature of the drug innovation pro-

cess. All three chapters focus on the drug innovation process; chapter 4 measures

the pre-product performance - patent, whereas chapters 2 and 3 consider the whole

drug research and development process. Another important similarity is that all

three studies focus on non-market based outcomes (success or failure hazard ratio,

patent application, and citation). For non-market outcomes, there is no requirement

for financial data, and the determinants of outcomes are more salient to technologi-
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cal innovation. This helps limit the influence of external factors, such as economic

conditions and industry cycles. The reduced importance of these outcomes of ex-

ternal factors makes the empirical contexts easily comparable with other types of

technological innovation.

There are also a number of differences among the research settings. First, these

three studies focus on different stages of technological innovation. As mentioned

above, chapter 4 tests hypotheses in the pre-product stage, whereas chapters 2 and

3 focus on the entire technological innovation process. A second difference is the

analytical level. Chapters 2 and 3 focus on project level, but chapter 4 addresses the

network level.

These two similarities and two differences provide some insights into the level

of uniqueness in each setting. Another issue with the research context is that it is

possible to test the hypotheses in other technological innovation contexts, such as

chemical or software development. In many industries, the ability to develop new

products quickly, effectively, and efficiently is now the single most important factor

driving success. In industries such as computer hardware and software, telecommu-

nications, auto mobiles, and consumer electronics, the failure rate for new product

development is very high. Per many estimates, more than 90% of all new prod-

uct developments fail to result in an economic return [Berggren and Nacher, 2001];

with drug R&D, many projects are never completed. Therefore, making new prod-

uct development more effective and efficient in other industry settings is also salient

and deserve attention.

In addition, for NPD process to be successful, technological innovation needs

to minimise the cycle time. Shortening innovation cycle time can help a firm build

brand loyalty, pre-emptively capture scarce assets, and reduce costs. Additionally,

a company that is able to complete innovation quickly has more time to develop

complementary goods that enhance the value and attractiveness of the main product

[Schilling, 1998]. Therefore, reducing innovation cycle time is a common goal for

all technological innovation.

Furthermore, to avoid escalating commitments that lead managers to support
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and push bad projects forward, many innovators use stage decision in the NPD pro-

cess. At each stage of the process, they are required to gather vital technological,

market, and financial information to use in the decision making process to forward,

recycle, hold or abandon a project. According to studies by the Product Develop-

ment and Management Association, nearly 60% of the firms use the stage decision

process to manage their new product development process.

Last but not the least, like biotechnology firms, all firms frequently face dif-

ficult decisions about the scope of activities to perform in-house, and whether to

perform them alone as a solo venture or to perform them collaboratively with one

or more partners. A significant portion of innovations can be attributed not to any

single individual or organisation, but to the collaborative efforts of multiple parties.

Collaboration can often enable firms to achieve more at a faster rate and with low

costs or risk.

The findings of the dissertation can be generalised based on the reasons dis-

cussed above. Of course, these statements are merely general claims considering

the mechanism and details of technological innovation across industries; additional

work would need to be done to test the hypotheses in this dissertation under other

industry contexts.

5.2 Contributions

The overall purpose of innovation management theory and research is to ex-

plain how and why there are differences in innovation performance. Some scholars,

thus, have a collective interest in understanding what role knowledge plays in the

innovation process. To determine the extent to which knowledge management con-

tributes to technological innovation, this dissertation contributes in the following

ways:

First, this dissertation illustrates that two factors, experience and alliance struc-

ture, explain the heterogeneity in firms’ behaviour and competitive performance.

Chapter 2 empirically confirms that failure experience and success experience have

differential impact on innovation performance, and organisations learn to improve
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their performance more significantly through experience with failure than through

experience with success. Chapter 3 demonstrates the boundary condition of expe-

rience in various stages and the scope of learning from these experiences. Chapter

4 explains the dynamic interaction of network structure and interfirm governance,

and shows that their interaction increases innovation.

Second, this dissertation complements transaction cost economics in three

ways. Coase suggests that firms exist because they are more effective than markets

in applying the price mechanism to negotiate contracts [Coase, 1937]. Williamson

explains that the control opportunism associated with specificity of assets, and

costs associated with the negotiation of contracts, determine the firm form or the

market form [Williamson, 1999]. Despite this progress, TCE cannot explain het-

erogeneous firm performance [Kaplan et al., 2001]. This dissertation demonstrates

that knowledge activities, which are partially explained by TCE [Grant, 1996], con-

tribute to innovation heterogeneity. In addition, Chapter 3 discusses how the KBV

can be applied to firm boundary decisions and efficient organisation approaches

besides TCE’s claim that boundaries depend on the bureaucratic costs associated

with the decision to take a transaction out of the market or organise it internally

[Williamson, 1999]; [Azoulay, 2004]. Furthermore, although TCE suggests that a

joint venture helps to reduce the hazard of opportunism, especially in technolog-

ical innovation projects where knowledge is complex, Chapter 4 proves that non-

equity venture increases innovation performance when firms are already embedded

in dense network.

Third, this dissertation shows the relationship between experience and re-

sources. Recent research in resource-based view has attempted to demonstrate that

the years of experience that firms have is an indicator of the presence or absence of

capabilities. Several research studies suggest that complementary assets are useful

in the commercialisation of a new innovation [Teece, 1986], and product market

experience can build these complementary assets [Eggers, 2012]. Researchers also

use years of experience to track the accumulation of complementary assets and

measure product quality [Levin, 2000]; [Nerkar and Roberts, 2004]. The above re-
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search linking experience and the development of resources (complementary assets

and capabilities) generally suggests that years of experience is the best available

measure of resource development. This implies that a year of experience for one

firm is identical for any two different firms in the market. One of the findings of

this dissertation is that there is heterogeneity in the experiences of different firms,

and that those experiences lead unevenly to the development of knowledge. In

addition, the strategic choices firms make also dictate how experience translates

into resources.

5.3 Limitation

While I use Coarsened Exact Matching and Propensity Score Weighting to

overcome the endogeneity of strategic choices in Chapter 2 and governance choices

in Chapter 4, and to uncover causal effects, these methods suffer some drawbacks.

Both matching methods rest on the strong assumption that assignment to the treat-

ment condition can be ignored after conditioning on X. Unfortunately, this assump-

tion cannot be tested. But I am able to examine the balance of exogenous pre-

treatment covariates across treated and control observations to make sure that they

are not imbalanced. Although we can view matching methods as a generalisation of

‘kitchen sink’ regression that is somewhat more likely to yield unbiased estimates

of causal parameters, they lack an explicit conceptual model of the process that

assigns observations to the treatment and control condition.

Even though I make every endeavour to understand the logic behind the find-

ings of each chapter, no complete mechanism story could be provided due to the

data limitation and the complex system. The underlying processes of strategy mak-

ing or interfirm governance decision are not fully explored in the dissertation. When

organisation decision-makers face these choices, they also need to take the type of

experience or network structure into consideration, which increases the complexity

of discovering a mechanism story. Future research should use qualitative methods

to uncover the process story and complement the results here.

Last but not least, although I use product launch as the proxy for innovation
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performance, I do not have sales data of these products to illustrate the underlying

economic significance of corporate incentive efforts. Admittedly, using product in-

novation output is complementary to the literature that examines more intermediate

indicators of innovation outcomes, such as R&D intensity or patent applications

[Stuart and Podolny, 1996], it is far from the perfect ‘market-relevant’ measure of

innovation output; many new products are not valued by the stock market. The use

of products as a measure of innovation performance is further undermined by the

observation that many innovations cannot influence firm performance until the prod-

uct has been introduced and tested in the market for a while [Kogan et al., 2017].

5.4 Future Opportunities for Research

The above discussions - evaluating how the findings of my current work would

play out in other empirical settings, and the limitations of this dissertation - provide

some further clarity on how I could leverage my current research work to initiate

important related projects. One stream relates to the reconfiguring of findings with

settings; another relates to the methods, and the third relates to the link between

experience and decision making.

As noted above, there are some potentially interesting opportunities to exploit

the findings discussed in this dissertation in different empirical settings. One of

the ideas noted above would be to repeat the three chapters in a very different set-

ting from the biotechnology industry, for example, in software development. Soft-

ware development also features multiple new product development projects for most

firms over a number of years. Both failure and success experience exist during the

product development process even though the failure rate is much lower than in the

biotechnology industry, research and development are clearly separated although

the R&D process takes less time, and strategic alliances prevail in the R&D pro-

cess. Support for the finding in the dissertation would further back the relationship

between knowledge management and technological innovation discussed here.

The second potential path for future work would be to further articulate the

knowledge and innovation link by exploring the knowledge management process.
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First, in future research I would like to look at how organisational experience is

stored and accessed later to create useful capabilities. Qualitative work looking at

the routines that firms and managers use to decide which existing knowledge and

memories to use for new projects within the firm may help illuminate this process.

Second, it may be instructive to look at how managers choose innovation strategies

or interfirm governance to match the experience or network structure. Archival data

on the managerial attention and decision-making process could help to illustrate the

process.

The third path involves the experience as the ‘context’ for decision-making.

An experiment on exactly how experience, especially failure experience, plays a

role in subsequent decision-making. In the experiment, I could look at how dif-

ferent types of failures or different stages of experience shape the relevant context

for learning and firm boundary. A simulation study on decision-making processes

could also shed light on how previous experience may lead to a firm to optimise

on decision-making processes, thus limiting the firm’s ability to retrieve knowledge.

5.5 Conclusion

Overall, this dissertation has investigated various aspects of the links between

knowledge management and technological innovation in the context of new drug

development. Understanding exactly how knowledge management processes affect

both capabilities and innovation performance is crucial to our knowledge of organ-

isational learning, knowledge boundary and knowledge appropriation. By placing

the studies in the context of new drug development in the biotechnology industry,

these three studies address more complicated knowledge creation and sharing than

product manufacturing, which rely in large part on similar past experience. In or-

der to increase innovation performance, decision makers must identify innovation

strategies, understand the difference between failure and success experience, figure

out the knowledge spillovers boundary in R&D projects, and implement a proper

alliance network structure to facilitate knowledge flow. These three studies each

address one or more aspects of these factors.
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Chapter 2 deals with the link between different experience (failure and success

experience) and innovation strategies, and the link between experience and inno-

vation outcomes (failure leading to superior product-level outcomes). Chapter 3

deals with the link between different stages of experience and innovation outcomes

(only same-stage experience leading to superior innovation performance). Chapter

4 deals with the links between network structure and interfirm governance, and the

link between their interaction and innovation performance. Together, these three

studies analyse the complicated relationship between knowledge management and

innovation outcomes, and lead to three distinct conclusions.

First, success and failure experience contribute differently to innovation out-

comes. Although innovation failures are devastating, organisations are able to learn

more from the failure experience. In addition, two types of innovation strategy

choices - innovation novelty and primary ownership - can enhance learning from

failure and improve learning from failure more than learning from success.

Second, while many prior researches have demonstrated that learning by in-

novation is a precondition for innovation success, this dissertation points to the

effect that learning by innovating has on productivity. Similar to findings in other

production settings [Syverson, 2011], this dissertation demonstrates that learning

by innovating is a key driver of innovation productivity. In addition, this disserta-

tion also discusses the boundary condition of learning by innovating, and finds that

knowledge spillovers are generally bounded in the same stage, that is, upstream in-

novation can only learn from upstream research experience, whereas downstream

innovation can only facilitate learning from downstream development experience.

Third, this dissertation also expands from firm level to alliance network level,

and suggests that firms use both network structure and interfirm governance to share

and protect knowledge. New partner alliance or non-equity alliance complements

dense network in novel information access and the build-up of absorptive capacity,

therefore, enhances innovation performance.



Appendix A

Missing Values

Three assumptions are illustrated here to calculate missing data: minimum,

maximum and middle point.
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Table A.1: Missing Value Calculation

Assumption Missing Data Additional Conditions Remedy
Middle Point Dc Mc 6= Mp or Mc 6= Mn Dc = 15

Dc Yc = Yp and Mc= Mp Dc = (Dp + Dldm)/2
Dc Yc = Yn and Mc= Mn Dc = Dn/2
Mc, Dc Yc 6= Yp or Yc 6= Yn Mc = 6, Dc = 30
Mc, Dc Yc = Yp McDc = (MpDp + Dldy)/2
Mc, Dc Yc = Yn McDc = MnDn/2
Yc, Mc, Dc YcMcDc = (YpMpDp - YnMnDn) * ratio

Minimum Dc Mc 6= Mp or Mc 6= Mn Dc = 1
Dc Yc = Yp and Mc= Mp Dc = Dp + 1
Dc Yc = Yn and Mc= Mn Dc = 1
Mc, Dc Yc 6= Yp or Yc 6= Yn Mc = 1, Dc = 1
Mc, Dc Yc = Yp Mc = Mp, Dc = Dp + 1
Mc, Dc Yc = Yn Mc = 1, Dc = 1
Yc, Mc, Dc YcMcDc = (YpMpDp - YnMnDn) * ratiomin

Maxmium Dc Mc 6= Mp or Mc 6= Mn Dc = 30
Dc Yc = Yp and Mc= Mp Dc = Dp - 1
Dc Yc = Yn and Mc= Mn Dc = 30
Mc, Dc Yc 6= Yp or Yc 6= Yn Mc = 12, Dc = 31
Mc, Dc Yc = Yp Mc = 12, Dc = 31
Mc, Dc Yc = Yn Mc = Mn, Dc = Dn - 1
Yc, Mc, Dc YcMcDc = (YpMpDp - YnMnDn) * ratiomax

Notations:

• Current stage year: Yc; Current stage month: Mc; Current stage day: Dc;

• Previous stage year: Yp; Previous stage month: Pc; Previous stage day: Pc;

• Next stage year: Yn; Next stage month: Mn; Next stage day: Dn;

• Last day of the year: Dldy; Last day of the month: Dldm

Stage duration ratio: ratio (this ratio is calculated based on existing data by using previous stage duration
divided by the previous stage duration plus next stage duration)
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List of Abbreviations

Table B.1: List of Abbreviations

ATE average treatment effect
ATT treatment effect for the treated
BLA biological license application
CEM Coarsened Exact Matching
DD difference-in-differences
FDA Federal Drug Administration
FDAAA Food and Drug Administration Amendments Act
FDAMA Federal Drug Administration Modernization Act
GDP gross domestic product
ICMJE International Committee of Medical Journal Editors
IND investigational new drug
KBV knowledge-based view
MEDLINE Medical Literature Analysis and Retrieval System Online
MeSH Medical Subject Headings
NBER National Bureau of Economic Research
NCE new chemical entity
NDA New Drug Application
NIH National Institute of Health
NLM National Library of Medicine
NPD new product development
OLS ordinary least squares
QML quasi-maximum likelihood
R&D research and development
SDD semiparametric difference-in-difference
TCE transaction cost economics
TFP total factor productivity
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