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Developmental trajectory of 
movement-related cortical 
oscillations during active sleep in a 
cross-sectional cohort of pre-term 
and full-term human infants
Kimberley Whitehead   1, Judith Meek2 & Lorenzo Fabrizi   1

In neonatal animal models, isolated limb movements during active sleep provide input to immature 
somatomotor cortex necessary for its development and are somatotopically encoded by alpha-beta 
oscillations as late as the equivalent of human full-term. Limb movements elicit similar neural patterns 
in very pre-term human infants (average 30 corrected gestational weeks), suggesting an analogous role 
in humans, but it is unknown until when they subserve this function. In a cohort of 19 neonates (31–42 
corrected gestational weeks) we showed that isolated hand movements during active sleep continue 
to induce these same somatotopically distributed oscillations well into the perinatal period, but that 
these oscillations decline towards full-term and fully disappear at 41 corrected gestational weeks 
(equivalent to the end of gestation). We also showed that these highly localised alpha-beta oscillations 
are associated with an increase in delta oscillations which extends to the frontal area and does not 
decline with age. These results suggest that isolated limb movements during active sleep could have an 
important role in experience-dependent somatomotor development up until normal birth in humans.

Isolated limb movements are fundamental for the maturation and mapping of spinal and supraspinal somatomo-
tor circuitry in neonatal animal models1,2. The afferent input from these movements is somatotopically encoded 
in the cortex by alpha-beta neural oscillations nested within a delta wave, anchoring representation in primary 
somatomotor cortices to the physical layout of the body3–5. These alpha-beta oscillations are in fact a hallmark 
of primary sensory processing in young mammals, across sensory modalities6,7. Interfering with these patterns 
compromises the normal development of cortical maps suggesting a permissive role in cortical development8. 
These brain oscillations are much more likely to be triggered by spontaneous motor activity during active sleep 
(precursor to rapid eye movement sleep) than during wakefulness9, and persist as late as postnatal day 12, which 
is broadly equivalent to human full-term9–11.

Isolated limb movements in very pre-term human infants (30 weeks corrected gestational age (CGA)) evoke 
similar somatotopically organised alpha-beta oscillations, sometimes over riding slow delta waves, especially dur-
ing active sleep12,13. This suggests an analogous permissive role of these movement-elicited patterns in human cor-
tical development14. However it is not known until what developmental stage limb movements fulfil this function.

In this study we investigated (i) whether isolated movements during active sleep are associated with somato-
topically organised alpha-beta and delta oscillations in late pre-term and term infants, and ii) at which age they 
cease to evoke these patterns.

Results: Movement is Associated with a Localised Alpha-Beta and Delta Power 
Increase
A total of 143 isolated right hand movements were recorded during active sleep across 19 subjects (Fig. 1; Videos 1 
and 4). The number of movements recorded was not associated with CGA (p = 0.518) (Fig. 2).
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Right hand movements were associated with a significant increase in alpha-beta power localised at the left 
central-parietal and central electrodes (CP3 p = 0.007 and C3 p = 0.030; 69.2% of movements were associated 
with a power increase at one or both electrode sites (Figs 1 and 3); all other electrodes p ≥ 0.052).

Right hand movements were also associated with an increase in delta power over the left frontal and 
central-parietal area (CP3 p = 0.018 and F3 p = 0.016; 68.5% of movements were associated with a power increase 
at one or both of these electrode sites (Figs 1 and 4); all other electrodes p ≥ 0.104).

There were no movement-associated changes in the control theta frequency band (p ≥ 0.267 at every 
electrode).

Results: Movement-Related Increase in Alpha-Beta Power Declined with Age
The right hand movement-related increase in left central and central-parietal alpha-beta power declined with 
CGA and fully disappeared by 41 weeks CGA (C3: r −0.253 p = 0.002, CP3: r- 0.211 p = 0.012) (Fig. 5). The 
movement-related increase in left frontal and central-parietal delta power did not change with age (CP3 and F3 
p ≥ 0.236) (Supplementary Fig. S1).

Figure 1.  Examples of movement-related localised EEG changes. EEG recording during isolated right hand 
movement (yellow vertical line) in infants with corrected gestational age 34 weeks (left panels) and 39 weeks 
(right panels). Both infants are in active sleep, with continuous EEG activity as expected in this sleep state; 
in these short examples rapid eye movements and irregular respiratory rate and depth are only evident in the 
older infant. The arrow points to the localised increase in alpha-beta oscillations post-movement over the 
contralateral central region (C3). Only EEG recordings overlying frontal, central and central-parietal regions 
are shown for illustrative purposes.
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Discussion
We have shown that topographically organised movement-related alpha-beta activity is specific to pre- and 
early-term infants, linearly declines with corrected gestational age, and fully disappears at full-term15. This 
suggests that movement-related alpha-beta oscillations fulfil a role throughout the equivalent of the third 

Figure 2.  The amount of isolated right hand movements did not change with corrected gestational age. Amount 
of isolated right hand movements per 30 minutes of active sleep for each of 19 infants.

Figure 3.  Isolated right hand movements were associated with a localised increase in alpha-beta power. Left: 
Median (and 95% CI) alpha-beta power pre and post movement at the contralateral central-parietal (CP3) and 
central electrode (C3). Right: Topographical heat map of the median change in alpha-beta power.
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trimester of gestation, which is exhausted at full-term age even when the movements themselves persist. These 
movement-related alpha-beta rhythms are likely to indicate activation of the somatomotor cortex representing 
the right hand, according to their topographical distribution which overlaps with that evoked by tapping the hand 
(Supplementary Results). Isolated movements of other limbs are also associated with somatotopically organised 
increases in alpha-beta activity from 31 weeks CGA (Supplementary Results and Videos 1–3)12 and therefore our 
findings can be likely generalised to other body areas, such as the facial region (Video 5)16,17, although the devel-
opmental trajectory may differ18.

Prior to full-term, alpha-beta oscillations may reflect unique aspects of the immature central nervous system 
which facilitate sensory cortical development including net excitation within cortical circuits19 and amplification 
of somatosensory input in the spinal cord20 or subplate, a transient brain structure that dissolves with develop-
ment21,22. Indeed, the subplate drives alpha-beta oscillations in somatosensory cortex in animal models8 and has 
been associated with alpha-beta activity in pre-term infants23. Here we show that movement-related alpha-beta 
activity overlying somatosensory cortex disappears at full-term age, concordant with reports that other sensory 
modality-associated bursts of immature alpha-beta oscillations also decline with CGA24–27. The timing of the 
disappearance of movement-related alpha-beta activity at full-term is broadly equivalent to the end of a crit-
ical period of experience-dependent somatosensory plasticity in animal models – to which movements con-
tribute28–30. Therefore our results suggest that movement-related alpha-beta oscillations occur during an early 
period of somatosensory plasticity prior to the average time of birth (41 weeks) and may support intra-uterine 
somatosensory development in preparation for entry into the external world at full-term.

Isolated limb movements occur during the vigilance state that dominates neonatal life - active sleep. 
Movements during active sleep are unique compared to wakefulness because they affect discrete muscle groups 
and occur on a background of low muscle tone9,10. In addition they are not associated with a corollary discharge –  
a mechanism which dampens sensory input when it matches a planned movement – so afferent input follow-
ing these movements is far more likely to evoke cortical activity because it is ‘unexpected’9,10. Meanwhile, quiet 
(non-REM) sleep does not feature any isolated limb movements16. Consequently, the high amounts of active sleep 
present in the newborn period may function to provide optimal input for the developing somatosensory system 
via frequent isolated movements. Our results show that the function of movement-related alpha-beta oscillations 
is exhausted at full-term age, in parallel with the onset of a reduction in the amount of active sleep31–33.

In contrast to the movement-related increase in alpha-beta activity, the increase in delta activity does 
not decline with age. This suggests that delta activity continues to subserve a function within somatosensory 

Figure 4.  Isolated right hand movements were associated with a localised increase in delta power. Left: Median 
(and 95% CI) delta power pre and post movement at the contralateral frontal (F3) and central-parietal electrode 
(CP3). Right: Topographical heat map of the median change in delta power.
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processing at full-term age34, even while overall delta activity declines as resting cortical activity patterns 
mature35–37. We suggest that movement-related alpha-beta activity may diminish first, after refining local pri-
mary somatosensory circuits. Meanwhile, movement-related delta activity may persist for longer because it 
travels across the cortex38–40, and therefore facilitates the integration of locally encoded proprioceptive feedback 
with other associative regions41–45. In line with this, we show that movement-related delta activity overlaps with 
alpha-beta activity in the parietal region, but also extends over frontal areas, which is likely to represent activation 
of frontal cortex46.

This study has some limitations. The variable number of hand movements across infants means that infants 
with a larger number of movements will contribute more to the results. Further, future longitudinal studies should 
investigate the influence of extra-uterine experience35 and intensive care admission47 on movement-related cor-
tical activity patterns. Nevertheless, our results help to build a model of experience-dependent somatosensory 
maturation in which isolated limb movements contribute to the mapping of somatomotor cortex over the equiva-
lent of the last eleven weeks of gestation, and underline the importance of protecting active sleep in newborns48–51.

Methods
Participants.  Nineteen infants with CGA of 31 + 4–42 + 5 weeks + days were included in this study (Table 1). 
CGA is defined as gestational age at birth plus postnatal age. Pre-term is defined as <37 weeks52. Infants were not 
eligible for inclusion if they: (i) were receiving sedative, analgesic or anti-seizure medication; (ii) had intra-ven-
tricular haemorrhage (grades I-IV), periventricular leukomalacia, or diagnosed chromosomal abnormality. No 
infants were on respiratory support or receiving caffeine as a respiratory stimulant at the time of study except for 
the youngest infant with CGA 31 + 4 weeks + days (high flow oxygen via a nasal cannula; caffeine 5 mg/kg once 
daily, which does not affect electrical brain activity at this age53). Ethical approval was obtained from the NHS 
Research Ethics Committee, and informed written parental consent was obtained prior to each study. Separate 
informed written parental consent was obtained to publish photographs of two infants and videos of three infants. 
The study conformed to the standards set by the Declaration of Helsinki guidelines.

Electroencephalography (EEG) and other physiological recordings.  EEG electrodes were 
positioned bilaterally overlying frontal (F3, F4), temporal (T7, P7, T8, P8) and occipital areas (O1, O2), with 
high-density coverage overlying central (C3, Cz, C4) and central-parietal areas (CP3, CPz, CP4), according to 

Figure 5.  Movement-related increase in contralateral central alpha-beta activity declined with age. Lower 
panel: Alpha-beta power changes at C3 electrode associated with each movement from 19 infants with best 
linear fit to the data (solid line, on a logarithmic scale). Top panel: Topographical heat map of the median 
change in alpha-beta power for younger (left: 31–35 weeks CGA) and older infants (right: 36–42 weeks CGA).
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the modified international 10/10 electrode placement system. The reference electrode was placed at Fz and the 
ground electrode was placed at FC6/5. Target impedance was <10 kΩ54. Electrooculography (EOG) was recorded 
from electrodes placed laterally to the eyes (F7, F8). Lead I electrocardiography (ECG) was recorded from both 
shoulders. EEG, EOG and ECG electrodes were disposable Ag/AgCl cup electrodes. Respiratory movement was 
monitored with a transducer at the thorax (Medifactory). Data were recorded with a direct current (DC)-coupled 
amplifier from DC-800Hz using the Neuroscan (Scan 4.3) SynAmps2 EEG/EP recording system. Signals were 
digitized with a sampling rate of 2 kHz and a resolution of 24 bit.

Experimental protocol.  EEG was continuously recorded at rest, and sleep-wake staged as described pre-
viously (Table S1 and Fig. S1 in35). All recordings included active sleep, which is the dominant vigilance state in 
pre-term and full-term infants. Active sleep was identified behaviourally according to cot side observation of 
rapid eye movements, largely irregular breathing, and frequent isolated limb movements. This categorisation was 
verified offline by assessing the presence of rapid eye movements (EOG), largely irregular respiratory rate and 
depth (transducer at thorax), and continuous relatively low voltage EEG (Fig. 1)16,55,56. EEGs were assessed as 
normal for age by a clinical neurophysiologist (KW) which included consideration of continuity, defined as unin-
terrupted electrical activity with <2 seconds of voltage attenuation <25 μV57. There was continuous EEG activity 
during active sleep in all infants, except the youngest with CGA 31 + 4 weeks + days. Isolated movements of the 
right hand during active sleep were monitored using a movement transducer on the right wrist (n = 17/19 infants) 
or video (n = 2/19 infants) synchronised with the EEG. When using the movement sensor, isolated movements 
were identified as deflections exceeding a set threshold and were discarded if there was less than one second of 
movement-free baseline preceding the movement, or if the sensors at the thorax or shoulders recorded the same 
displacement (suggesting artefact or widespread movement). All infants were monitored by the experimenter 
(KW) throughout each study and no generalised ‘startles’ were recorded during active sleep.

Data pre-processing.  Data pre-processing was carried out using EEGLAB v.13 (Swartz Center for 
Computational Neuroscience) and custom-written Matlab code. Mains interference was removed with a 50 Hz 
notch filter (4th order Butterworth filter) and, for each epoch, baseline correction was used to remove DC offset. 
Recordings from electrodes which had poor contact with the scalp were rejected. Missing and discarded record-
ings were then estimated with spherical interpolation as implemented in EEGLAB.

EEG power analysis.  Data analysis was carried out using EEGLAB v.13, custom-written Matlab code and 
IBM SPSS version 22. We compared the power content in the alpha-beta (8–20 Hz) and delta (0.2–2 Hz) fre-
quency bands in the 1 second after the movement with that in the 1 second preceding the movement at every 
electrode (Wilcoxon paired tests). Changes in the theta (4–6 Hz) band were calculated as a negative control. A 
tapering Hanning window was used in the calculation of the power spectrum to reduce spectral leakage. Data 
were analysed with non-parametric tests because they were not normally distributed (Shapiro-Wilk test <0.05). 
Movement-related power changes were expressed in decibels (Eq. 1). Their developmental trajectory against CGA 
was then assessed (Spearman’s correlation coefficients). Statistical significance threshold was set to 0.05 for all 
tests.
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Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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