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Abstract Optical super-resolution microscopy techniques enable high molecular specificity with

high spatial resolution and constitute a set of powerful tools in the investigation of the structure of

supramolecular assemblies such as viruses. Here, we report on a new methodology which combines

Structured Illumination Microscopy (SIM) with machine learning algorithms to image and classify the

structure of large populations of biopharmaceutical viruses with high resolution. The method offers

information on virus morphology that can ultimately be linked with functional performance. We

demonstrate the approach on viruses produced for oncolytic viriotherapy (Newcastle Disease Virus)

and vaccine development (Influenza). This unique tool enables the rapid assessment of the quality

of viral production with high throughput obviating the need for traditional batch testing methods

which are complex and time consuming. We show that our method also works on non-purified

samples from pooled harvest fluids directly from the production line.

DOI: https://doi.org/10.7554/eLife.40183.001

Introduction
The potential of super-resolution microscopy (SRM) to unravel details of the structure and replication

of viruses was recognised early on in the development of the methodology (Betzig et al., 2006;

Müller and Heilemann, 2013). Since then, SRM has been used to provide unprecedented insights

into viral protein architecture (Laine et al., 2015; Zhang et al., 2015; Gray et al., 2016;

Albecka et al., 2016). Previous work has focused on those SRM techniques that achieve the highest

theoretical resolution, such as Stimulated Emission Depletion (STED) (Hell and Wichmann, 1994)

and Single Molecule Localisation Microscopy (SMLM) (Rust et al., 2006; Heilemann et al., 2008).

Whilst offering high fidelity data, the downside is the associated long acquisition time required by

these methods, limiting their application to the imaging of static samples at low throughput. A much

faster technique, although inferior in spatial resolution, is Structured Illumination Microscopy (SIM)

(Gustafsson, 2000; Heintzmann and Cremer, 1999) and this has been applied to study large

viruses such as the prototypic poxvirus (Gray et al., 2016; Horsington et al., 2012). In addition to

understanding the structure of viruses, there is also a need to identify and analyse classes of struc-

tures within large viral populations, especially in the biotechnology industry where virus quality is

often compromised by large scale production operations and the virus product is often characterised

by significant morphological heterogeneities. In particular, campaigns of influenza immunization rely

heavily on the timely and efficient production of specific virus strains. Similarly, a deeper understand-

ing of the structural heterogeneity of oncolytic viruses such as Newcastle Disease Virus (NDV)
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(Ganar et al., 2014; Lichty et al., 2014) would enable optimization of the production processes and

in turn improve the development of viriotherapy. However, quantifying and understanding this struc-

tural heterogeneity and relating it to virus efficacy requires the imaging of large numbers of viruses

at sufficient spatial resolution to reveal characteristic morphological details. Typically, this is achieved

by extracting batches from the production process, with elaborate subsequent purification and prep-

aration steps before characterisation by Transmission Electron Microscopy (TEM) (Gad, 2007;

Goldsmith and Miller, 2009; Brenner and Horne, 1959). Although TEM can achieve relatively high

imaging throughput if the highest resolution is not necessary, its contrast remains unspecific and

therefore does not typically permit discerning the presence of particular proteins in the virus enve-

lope. Also, the typical signal-to-noise ratios achieved by TEM are not sufficient to permit automated,

robust and efficient downstream analysis of structural features at the single particle level. It is there-

fore challenging for TEM to be of practical use during production operations.

Here, we demonstrate that rapid high resolution imaging with Total Internal Reflection SIM fluo-

rescence microscopy (TIRF-SIM) (Shao et al., 2011; Kner et al., 2009; Young et al., 2016), com-

bined with a machine learning (ML) approach to analyse and classify structures in virus batches offer

a great opportunity to circumvent these problems. We present MiLeSIM (Machine Learning

eLife digest Viruses are like the Trojan horses of the biological world; they sneak their genetic

code into a living cell and then hijack it, forcing that cell to produce their own viral proteins. Yet, if

scientists replace the harmful genes in a virus with other genes, the virus can be transformed into a

powerful tool for biology and medical science. For example, viruses can be turned into vaccines that

prime the immune system to ward off future infections. Viruses could also be made to deliver the

genetic code needed to repair faulty cells, and thus treat the cause of an illness from inside the

body. Nevertheless, it is complicated to produce viruses like these on a large scale.

The individual viruses in one batch can be very different shapes and sizes; they can also end up

displaying different proteins on their outer surface – which is the part of the virus that our immune

system will see first. To optimise the production of standardised viruses, scientists need a way to

test the viruses throughout the manufacture process. At the moment, the best way to do this would

be with electron microscopes. Yet these microscopes cannot tell exactly which proteins are in the

outer surface of the virus. Also, these methods often need purified samples of virus, so cannot be

used to look at the viruses until the final stage of production.

Laine et al. now report a method that can test virus production at every step of the process. This

new method uses a different type of microscopy called super-resolution imaging, which is quicker

than electron microscopy and more able to deal with impurities, but can still see objects that are

500 times smaller than the width of a human hair. First, Laine et al. took pictures of many viruses

with this new imaging technique, sorted the images into groups based on their appearance, and

then trained computer algorithms with the pre-sorted groups (a technique called “supervised

learning”). Next, the trained algorithms were shown new images of viruses and asked to classify

them. The algorithms could separate images of a mixed population of viruses into six groups

according to their shape and size, and then analyse each group in a specific way. For example, they

would measure and report the length of filament-shaped viruses, the radius of spherical viruses and

the length and width of rod-shaped viruses.

The first set of test images were of Newcastle Disease Virus, which is currently under

development as a treatment for cancer. But further testing revealed that the algorithm also works

for the influenza virus, which is used to make flu vaccines. The algorithm could classify the viruses in

pure and impure samples, and the imaging technique could handle over 200 viruses each second.

This approach of combining super-resolution imaging with artificial intelligence could help

scientists to understand what makes good vaccines and how best to optimise the production of

viruses for medical purposes. It could also allow researchers to respond more rapidly to outbreaks of

viral infections. The next step is to build this work into a system that can be used by the

pharmaceutical industry.

DOI: https://doi.org/10.7554/eLife.40183.002
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Structured Illumination Microscopy) as an efficient combination of SRM, ML-based classification

(Van Valen et al., 2016; Sommer et al., 2011) and advanced image analysis for the quantification

of morphological heterogeneities in large virus populations. We use ML algorithms to perform a

classification of super-resolved images of a heterogeneous virus population into particle classes with

distinct and characteristic structural features (e.g. spherical, filamentous). The classified subpopula-

tions are then further analysed through image analysis pipelines that are specifically adapted for

each structural class. We and others have shown that appropriate model fitting can lead to precision

in structural parameters beyond the resolution of the images used (Laine et al., 2015;

Manetsberger et al., 2015). The method combines speed and specificity and allows an in-depth

exploration of large virus populations that is unachievable by TEM. The method has potentials in the

industrial production of viruses, for example for oncolytic viriotherapy and vaccine development.

First, we compare TIRF-SIM with alternative imaging modalities and show that it is the method of

choice to investigate virus structure at high-throughput (~220 virus particles/s, see Supplementary

Note 1) with a spatial resolution reaching ~90 nm. The large datasets obtained with TIRF-SIM are

then fed into an ML algorithm for the automated classification of Newcastle Disease Virus (NDV) and

live attenuated influenza virus (LAIV) vaccines, enabling further shape-specific quantitative analyses

for a structural description of viral subpopulations. The purpose of our study is to validate the MiLe-

SIM approach as a powerful analysis tool for biotechnological processes involving virus production

both in industry and in the research laboratory.

Results

TIRF-SIM offers an optimal combination of throughput and resolution
for the imaging of virus structure
First, we explored and compared three common SRM modalities for the structural investigation of

purified NDV virus, namely direct stochastic optical reconstruction microscopy, dSTORM, stimulated

emission depletion microscopy, STED and TIRF-SIM. NDV viruses were labelled for the envelope gly-

coprotein Hemagglutinin-Neuraminidase (HN) and imaged with all three SRM imaging techniques

(see Figure 1). Labelling for HN allows us to directly and specifically observe the shape of the virus

particles. For comparison, a conventional (non-super-resolved) TIRF wide-field image is also shown.

Typical shapes observed with TIRF-SIM are shown in Figure 1(b). TIRF-SIM provides clear structural

details to discern filamentous, spherical and rod-like structures in large NDV populations. A compari-

son of performance parameters (resolution and imaging speed) for the different methods is pre-

sented in Figure 1—figure supplement 1(a). It is clear that improving resolution beyond the ~90

nm offered by TIRF-SIM (see Figure 1—figure supplement 1(b)) comes at a significant cost in acqui-

sition times and throughput. Furthermore, although dSTORM and STED offer theoretically higher

resolution than SIM, the images obtained with these methods do not reveal additional structural

details that are not also resolved by TIRF-SIM images. This indicates that the ~2 fold resolution

improvement provided by TIRF-SIM is sufficient for the structural study presented here.

Traditionally, EM has been the method of choice for observing sub-diffraction structures of virus

particles (see Figure 1—figure supplement 2 for examples of particles). Here we show that TIRF-

SIM can offer significant advantages compared to EM (summarized in Table 1). The improvement in

molecular specificity allows an unambiguous identification of viral components; the high signal-to-

noise ratio (SNR) furthermore enables a robust and straightforward application of further image anal-

ysis steps (identification and classification of virus particles). Also, the capability of investigating

unpurified and aqueous samples makes TIRF-SIM ideally suited to the present application.

Workflow of MiLeSIM
The images obtained with TIRF-SIM show a number of stereotypical virus structures in NDV samples

labelled for HN, indicating a large morphological diversity in the virus populations that may stem

from variability occurring during viral replication or at the purification stage. Understanding the ori-

gins and consequences of such heterogeneity informs not only on the life cycle of the virus but can

also provide essential insights into the virus production process to manufacturers of virus-based ther-

apeutics. An automated classification of virus shapes would enable the quantification of virus
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heterogeneity and permit further analysis of each individual class independently. The workflow to

Figure 1. Super-resolution microscopy (SRM) for the study of NDV virus structure. (a) Representative images of purified NDV viruses with different

imaging modalities. (b) Representative images of a purified NDV virus population imaged with TIRF-SIM and their corresponding TIRF wide-field image.

WF: wide-field TIRF microscopy. Scale bar: 1 mm.

DOI: https://doi.org/10.7554/eLife.40183.003

The following figure supplements are available for figure 1:

Figure supplement 1. Resolution in SRM.

DOI: https://doi.org/10.7554/eLife.40183.004

Figure supplement 2. Electron micrographs of NDV and B-Victoria viruses.

DOI: https://doi.org/10.7554/eLife.40183.005

Table 1. Comparison of the key performance parameters of TIRF-SIM (proposed method) and EM in

the context of high throughput imaging of virus structure.

The resolution and acquisition time of EM were quoted for a standard TEM imaging (Philips CM 100

Compustage (FEI) Transmission Electron Microscope with an AMT CCD camera). *for a comparable

field-of-view.

Tirf-sim EM

Contrast Fluorescence Electron scattering

Molecular specificity Very high Medium to low

Spatial resolution achievable ~90 nm ~1 Å

Acquisition time/1000 virus particles* 2 s 2 s

Typical field of view size 30 mm x 30 mm 500 nm x 500 nm

Sample preparation complexity Low Low to Medium

Compatibility with aqueous buffers High Low

Compatibility with non-purified samples High Low

Signal to noise ratio achievable Very high Medium

Sample preparation time Low (2–3 hr) Low to High

Expertise required for imaging Medium Medium

Cost Low (£100 k) Medium (£250 k)

DOI: https://doi.org/10.7554/eLife.40183.006
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achieve these goals is shown in Figure 2.

Individual virus particles are first identified by automated segmentation and then fed to the ML

routine for classification. We used a supervised ML algorithm (here a random forest algorithm (Brei-

man, 2001)) to ensure the robustness of the method and for ease of implementation. We identified

six major structural classes in the NDV samples which we divide into long and short filamentous,

small and large spherical, rod-like and unknown structures. The unknown class is made of clumps of

viral material with no consistent and identifiable shapes. A control sample that was prepared identi-

cally to the other samples except without virus particles present allowed us to identify that non-spe-

cific bindings of antibodies appear as rare, dim and small point-like structures that could easily be

discriminated and excluded from further analysis.

Figure 2. Workflow of automated detection, classification and analysis of NDV viral particles. SIM image (a) and segmented particles (b). The classified

single-virus images (b) can be further analysed with a set of class-specific tools (c). For the backbone analysis the mask and backbone are showed in

blue and white respectively. For the model-fitting approach (spherical and rod-like), the data and model are showed in green and magenta

respectively. LF: long filamentous, SF: short filamentous, LS: large spherical, SS: small spherical, RD: rod-shape, UK: unknown. LF, DLS, LRD and WRD

represent the length of the filamentous particles, the diameter of the large spherical, the length of the rod-shaped particles and the width of the rod-

shaped particles respectively. Images of individual particles cover a field of view of 1.6 � 1.6 mm.

DOI: https://doi.org/10.7554/eLife.40183.007

The following figure supplement is available for figure 2:

Figure supplement 1. Image model for the analysis of the rod-shaped particles.

DOI: https://doi.org/10.7554/eLife.40183.008
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The filamentous (long and short) class is further analysed by automatic extraction of the linear

backbone of structures and measurement of their length. The width of these filamentous structures

appeared to be limited by the resolution of the imaging technique (~90 nm for TIRF-SIM, see Fig-

ure 1—figure supplement 1, but also observed in higher resolution approaches such as dSTORM)

and therefore, we considered the filamentous class as 1D structures. The spherical structures were

analysed by estimating their equivalent radius from the area of the particle. We note that other

methods for estimation of the radius, for example the ellipsoid localization microscopy (ELM) analysis

(Manetsberger et al., 2015), could also be used here. The latter fits a shape model to imaging data

to permit the extraction of structural parameters with precision higher than the inherent resolution

of the imaging method (Laine et al., 2015; Manetsberger et al., 2015). A similar model-based fit-

ting approach was used to fit rod-like viral particles and to obtain length and width parameters for

this structural class (see Materials and methods section and Figure 2—figure supplement 1 for

details).

Classification of virus structures using supervised machine learning
algorithms
The structural classification was performed using a supervised ML algorithm which allows for rapid

and automated classification of large datasets. The choice of algorithm and the set of features (often

called predictors) extracted for each identified particle were optimised to maximise the overall accu-

racy of the model based on the training dataset (comprising of 370 manually annotated particles).

Here, the model accuracy is defined as the fraction of correctly classified particles across all classes.

Figure 3(a) describes the list of chosen individual features (selected from basic shapes features, Hu’s

image moments (Hu, 1962), features obtained from the pre-trained convolutional neural network

(CNN) AlexNet (Krizhevsky et al., 2012) and from Speeded Up Robust Features, SURF (Bay et al.,

2008)). The predictors were selected based on the following criteria: basic structural features of the

particles (e.g. area, eccentricity) and Hu’s moments were chosen because they are rotationally and

translationally invariant. For the features from AlexNet and SURF a feature selection approach was

designed based on maximising the standard deviation across the different structural classes. This

approach constitutes a more rational choice compared to simple principal component analysis

(PCA), which does not typically take the information regarding the classes into account, therefore

our method selects for predictors that have high potential for class discrimination. This data reduc-

tion narrowed down the number of predictors to six for AlexNet and six for SURF.

A total of 24 predictors was finally chosen: seven based on basic shapes (area, ratio of axis

lengths, eccentricity, solidity, perimeter-to-area, mean intensity, standard deviation of pixel intensi-

ties), 5 of Hu’s image moments (Hu1, Hu4, Hu5, Hu6 and Phi4), six features obtained from the pre-

trained convolutional neural network (CNN) AlexNet and six from a SURF bag of features. The classi-

fication workflow is described in Figure 3—figure supplement 1.

Panels described in Figure 3(b) show examples of scatter plot from arbitrarily chosen pairs of pre-

dictors highlighting that some predictors support classification across specific classes better than

other combinations (identifiable clusters of certain classes). Here, the training dataset was used to

build a scatter plot of pairs of predictors with the knowledge of their true classification (see colour

scheme). For instance, the pair of predictors L1/L2 and Area shows a good separation between long

filamentous (dark blue labels) and unknown structures (black labels). The confusion matrix (Figure 3

(c)) highlights the effective true positive rate (TPR) and positive predictive values (PPV) across the dif-

ferent classes with a model accuracy of 88.4%. We note that some long filamentous viruses are mis-

classified as small filamentous, some small filamentous are misclassified as small spherical and that,

on occasion, some unknown structures populate the predicted long and large spherical structure

classes. Considering the simple shapes of these viruses, it is expected that a small fraction of par-

ticles are misclassified as structures with close resemblance.

The scoring of the predictors presented in Figure 3(d) indicates the average accuracy of each

individual predictor. A high score indicates a high capacity to discriminate between different classes.

The scoring was performed by measuring the accuracy of the classification for many combinations of

predictors and distributing the accuracy score across the predictors tested (see Materials and meth-

ods for details). In other words, if a combination of 2 predictors alone give an accuracy of 60%, a

score of 30% is awarded to both individual predictors. This method was repeated and scores repre-

sent averages across >13,000 different combinations of predictors.
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Structural details of an NDV virus population
We analysed a total of ~6500 particles using MiLeSIM and established that 49.7% of NDV particles

presented a filamentous shape whereas the large spherical, small spherical and rods represent

18.6%, 7.8% and 7.3% of the total population, respectively (Figure 4(a)). In addition to structural

classification, the high-resolution images also permitted a dimensional analysis to be performed at

the single particle level. We estimated the particle radius from both small and large spherical par-

ticles by calculating the equivalent radius from the particle area; backbone extraction to the short

and long filamentous particles, to estimate the particle length; and designed a model fitting for the

rod structures. Figure 4 shows the distribution of structural parameters for each class. We observe

that both long filamentous and large spherical are well described by a Gamma distribution whereas

the small filamentous and small spherical are well described by a Gaussian distribution. The model-

fitting applied to the rod-shaped particles (see Materials and methods and Figure 2—figure supple-

ment 1 for details) allows the extraction of both the width and length of each particle. Therefore, it

is possible to plot the distribution of structural parameters as a contour plot Figure 4(c)).

Figure 3. Machine learning-based classification. (a) Building the list of predictors from basic features, image moments, convolutional neural network

(CNN) features and SURF bag of features (BoF). (b) Example of 2D scatter plots of pairs of predictors showing how some predictors allow identification

of class clusters. (c) Confusion matrix obtained from the random forest showing the high true positive rate (TPR) and positive predictive values (PPV) of

the classification. All numbers shown here are in percentage. (d) Scoring of the predictors sorted in descending order. IM: image moment. AN: AlexNet

feature. BoF: SURF features. L1/L2: ratio of long axis over short axis. <I> : average intensity. P/A: perimeter to area ratio. sI: standard deviation of

intensity. LF: long filamentous, SF: short filamentous, LS: large spherical, SS: small spherical, RD: rod-shape, UK: unknown.

DOI: https://doi.org/10.7554/eLife.40183.009

The following figure supplement is available for figure 3:

Figure supplement 1. Flowchart describing the machine learning pipeline used here for image classification.

DOI: https://doi.org/10.7554/eLife.40183.010
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We estimated the mean and standard deviation of the structural parameters from the distribu-

tions and obtained: LLF = 650 ± 430 nm, LSF = 200 ± 100 nm, DLS = 338 ± 94 nm, DSS = 190 ± 10 nm.

For the rod-shaped particles, we observed that the width WRD = 135 ± 30 nm and the length

LRD = 610 ± 350 nm (all rounded to two significant figures, ± represents the standard deviation of

the distribution). These values are distributed around two populations as shown on the contour plot

in Figure 4(d).

Figure 4. Quantitative analysis of NDV. The distribution of structural parameters for all classes was obtained from a total of ~6500 virus particles. LF:

long filamentous, SF: short filamentous, LS: large spherical, SS: small spherical, RD: rod-shape, UK: unknown. Images of individual particles cover a field

of view of 1.6 � 1.6 mm.

DOI: https://doi.org/10.7554/eLife.40183.011

The following source data and figure supplement are available for figure 4:

Source data 1. Source data for Figure 4.

DOI: https://doi.org/10.7554/eLife.40183.013

Figure supplement 1. ELM analysis of the large spherical NDV.

DOI: https://doi.org/10.7554/eLife.40183.012
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However, we note that the radius analysis based on the area of the particle used here constitutes

an overestimate of the physical radius of the particle due to the broadening caused by the point-

spread function. It is possible to estimate a more accurate diameter of the underlying spherical struc-

tures by using the ELM analysis. The results obtained from the ELM analysis of the large spherical

structures are shown in Figure 4—figure supplement 1(a). The ELM diameter obtained for the large

spherical particles (220 ± 69 nm) is in good agreement with an area-based diameter of 338 nm and a

resolution of 90 nm.

It should be noted that the small spherical distribution is centred on the value of optical resolu-

tion of our SIM microscope, which indicates that the small spherical structures the small spherical

structures are smaller than the point-spread-function.

MiLeSIM is capable of assaying influenza strains used for vaccine
production in purified and non-purified samples from the production
line
We applied our approach to four different strains of Live Attenuated Influenza Virus (LAIV) immuno-

labelled for the glycoprotein Hemagglutinin (HA) present on the exterior of the viral envelope. The

shape of the virus particles obtained here were classified using the same classifier as for NDV. The

LAIV virus population was dominated by spherical structures (>60%). Figure 5 shows the distribution

of particle sizes for four virus strains: a B-Victoria subtype (B/Brisbane/60/2008), a B-Yamagata sub-

type (B/Phuket/3073/2013) and two subtype A H1N1 strains (A/South Dakota/06/07 and A/Bolivia/

559/2013). The fractions of small and large spherical particles are shown, as well as the equivalent

radii and representative images of the viruses. It is clear that B-Victoria particles consist of mostly

large hollow particles with an equivalent radius of ~130 nm, a value that is in good agreement with

the ELM analysis and a resolution of 90 nm (Figure 4—figure supplement 1(b)).

In contrast, the B-Yamagata strain shows small and large particles of equal amount, indicating

that the particles sizes are distributed around the region of overlap between small and large par-

ticles. This is confirmed by the nearly identical equivalent radius distributions.

Both A strains appeared clearly dominated by small spherical particles with sizes close to the res-

olution limit of our imaging. However, our high-throughput approach reveals subtle differences in

the distribution of small spherical structures where the A/South Dakota viruses appear more hetero-

geneous (standard deviation ~10 nm), whereas the A/Bolivia viruses are sharply distributed (standard

deviation ~4 nm).

We also investigated the potential of directly imaging pool harvested fluid (PHF). LAIV are com-

monly propagated in embryonated hens’ eggs where progeny viruses are released into the allantoic

fluid of the egg. This fluid is harvested from numerous eggs and pooled. This constitutes a very basic

and commonly used virus material. It is easy to produce and does not undergo any downstream puri-

fication. Consequently, PHF is impure, containing a variety of egg-derived impurities. The high

molecular specificity of fluorescence microscopy allowed us to visualize the structure of the viruses

with the same image quality directly in PHF despite the presence of a large amount of impurities

(Figure 5—figure supplement 1(a)). The structural analysis of the B-Victoria strains from MVB (Fig-

ure 5) and PHF (Figure 5—figure supplement 1(b)) allows us to decipher the effect of purifications

steps on the structural properties of the population. The fraction of unknown structures dropped

from 23% to 8% between MVB and PHF respectively. This change in fraction of unknown structure

may be a result of the different densities of viruses on the cover slip. We observed a lower density of

virus particles in the PHF preparations, which may lead to fewer aggregated classes and therefore

fewer unidentifiable structures. In addition, whereas the PHF shows a nearly equal amount of small

and large spherical structures, the MVB preparation is missing a large population of small spherical

compared to the PHF. This is also reflected by the larger average diameters observed in the MVB

compared to the PHF (DSS = 191 ± 12 nm and 198 ± 14 nm and DLS = 241 ± 56 nm and 275 ± 49 nm

for PHF and MVB respectively).

MiLeSIM therefore enables the study of unpurified samples and allows probing the virus produc-

tion at any intermediate levels of production and purification. This constitutes a strong advantage

over EMtechniques which require the use of highly purified samples and elaborate preparation

protocols.
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Discussion
We have demonstrated the potential of high-throughput imaging of virus structures, taking advan-

tage of the optimal combination of speed and resolution afforded by the TIRF-SIM imaging method.

TIRF-SIM provided sufficient resolution to identify, discriminate and analyse individual viral structural

classes with high specificity, even in non-purified samples. Our approach combines machine learning

to classify NDV viruses, followed by a model-based or direct quantification of virus structural param-

eters. The method yielded similar results both in purified samples and in samples from unfiltered

PHF offering promise for use as an assay during virus production. We were able to image up to ~220

particles/second at 90 nm resolution, vastly increasing imaging throughput compared to alternative

Figure 5. MiLeSIM approach applied to Live Attenuated Influenza Virus (LAIV). 2 types of B and A viruses were analysed here. The population was

dominated by small and large spherical particles. The distributions of equivalent radius are shown here for both the large and small spherical for direct

comparisons. The number of particles analysed were N = 3,821, 4704, 1062 and 1756 for B/Brisbane/60/2008 (B-Victoria), B/Phuket/3073/2013 (B-

Yamagata), A/South Dakota/06/2007 and A/Bolivia/559/2013 respectively. Images of individual particles cover a field of view of 1.6 � 1.6 mm.

DOI: https://doi.org/10.7554/eLife.40183.014

The following source data and figure supplement are available for figure 5:

Source data 1. Source data for Figure 5.

DOI: https://doi.org/10.7554/eLife.40183.016

Figure supplement 1. Structural analysis of B-Victoria LAIV obtained from pool harvested fluid (PHF).

DOI: https://doi.org/10.7554/eLife.40183.015
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super-resolution methods, improving sensitivity and specificity in comparison to EM. Furthermore

EM does not feature the specificity to analyse virus samples in their aqueous, unaltered unpurified

forms. We were able to observe large structural variabilities in the NDV population and also between

different strains of LAIV.

Our particular classification uses random forest with a selection of predictors from simple shape

parameters, rotational and translational invariant image moments and features from AlexNet and

common feature for image recognition such as SURF. The model accuracy is ~88.4% and the mis-

classifications occur between classes that are similar (between small spherical and small filamentous

for instance). The structural parameters that we extract from the model fitting are precise beyond

the image resolution as they take into account the finite optical resolution. This therefore reveals

subtle differences in populations such as the two sub-classes observed in the rod-shaped class. This

approach will be beneficial especially when heterogeneous populations are present and need to be

quantified. In future, such information can be correlated with functional characteristics of produced

virus classes and production parameters can accordingly be optimised. The approach thus holds

great promise for the production of virus-based therapeutics. We note, however, that the methods

presented are generally applicable to other systems and they are not restricted to a particular type

of fluorescence microscopy, SRM or not.

Materials and methods

Sample preparation
The purified NDV samples were prepared on cover slips as previously described (Laine et al., 2015).

Briefly, viruses were adhered on poly-L-lysine-coated Ibidi 8-well dishes, fixed, permeabilised and

immuno-labelled for the envelope glycoprotein Hemagglutinin-Neuraminidase (HN) with primary

antibodies (mouse anti-hemagglutinin-neuraminidase HN, Abcam, UK) followed by secondary label-

ling (goat anti-mouse labelled with Alexa Fluor 647 for dSTORM, with Alexa Fluor 488 for TIRF-SIM

and with ATTO647-N for STED, Abcam, UK).

The LAIV samples were prepared identically but using primary antibodies originating from MedI-

mmune in-house, non-commercially available monoclonals that target the viral glycoprotein Hemag-

glutinin (HA) present on the exterior of the viral envelope: F16 mouse antibody for B-Victoria,

Infa0121 mouse antibody for B-Yamagata and FY1 human antibody (Kallewaard et al., 2016) for A

South Dakota and A Bolivia. The corresponding secondary antibodies were used (donkey anti-mouse

DyLight 488 labelled or rabbit anti-human DyLight 488 labelled antibodies, ThermoFisher). All virus

samples originated from the monovalent bulk (MVB) and are therefore highly purified, unless indi-

cated in the text, where the direct pool harvest fluid (PHF) was used.

TIRF-SIM, STED and dSTORM imaging
Our custom-built TIRF-SIM system was described previously (Young et al., 2016). We used an Olym-

pus UAPON 100x TIRF NA = 1.49 and an Orca Flash 4.0 camera, with a sample pixel size of 64 nm.

A total of 9 SIM images were acquired (three phases, three orientations) with a camera exposure

time of 200 ms and ~250 mW of 488 nm laser, measured at the back aperture of the objective. The

SIM images were obtained using the reconstruction code provided by Dr Lin Shao (Shao et al.,

2011), providing images with doubled resolution and 32 nm final pixel size using a Wiener filter of

0.01. The STED imaging was performed on our custom-built STED microscope as described previ-

ously (Mahou et al., 2015). The dSTORM imaging was performed on a custom-built single-molecule

microscope previously described (Ströhl et al., 2017; Wong et al., 2017) and with mercaptoethyl-

amine (MEA) buffer as previously described (Laine et al., 2015). The dSTORM image reconstruction

was carried out using rapidSTORM 3 (Wolter et al., 2012).

The resolution achieved by the TIRF-SIM microscope was assessed by identifying the edge of the

spatial frequency support using the SIMcheck plugin (Ball et al., 2015), as shown in Figure 1—fig-

ure supplement 1. For STED microscopy, the resolution was estimated from cross-sections of 20 nm

beads and reporting the full width at half maximum (FWHM). The dSTORM resolution reported here

was obtained from the FWHM of the localization precision, estimated by (Thompson et al., 2002).
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Classification
All segmentations, predictors extractions and classifications were performed using MATLAB (Math-

works). The code is freely available (Laine, 2018). A general diagram of the method is shown in Fig-

ure 1—figure supplement 1. The segmentation was obtained by an initial Otsu binarization and

refined by active contour. This allowed a better outline of the particles and efficient separation of

particles in close proximity. The particles that were judged too small or too dim to be real particles

(based on criteria obtained from the control sample) were excluded from further analysis.

The basic shape features were extracted using the MATLAB function regionprops. Hu’s image

moments were computed from the 71 � 71 pixels particle image centred on the centre of mass of

the particle. The absolute values of the logarithm of the moments were used in the classification. For

the features obtained from AlexNet (Krizhevsky et al., 2012), the individual 71 � 71 pixels images

were resized to 227 � 227 pixels and used as all three color layers of the RGB images taken by Alex-

Net. Then, feature extraction was performed using AlexNet as a pre-trained network. 4096 features

were obtained and data reduction was performed to limit the number of predictors used. For this,

the features were averaged within each individual class and the standard deviation of every feature

across the classes was computed. The six features with the highest standard deviation was selected.

For the SURF features, first a bag of visual words was created from the training dataset, this bag was

then used to check the presence of visual words in the 71 � 71 pixels images of individual particles.

Similarly to AlexNet features, we selected only the six visual word features with the highest standard

deviation across the different classes for classification. This allowed the computation of a total of 24

features for ML.

The classification was performed using a random forest algorithm. The training dataset was made

of 370 manually labelled individual particles and was used to train the random forest across 60

epochs. The classification was validated by 10-fold cross validation on the same dataset. The confu-

sion matrix obtained from this cross-validation is shown in Figure 3. At the training stage, the train-

ing dataset was augmented 5-fold by transforming the images with image translation and rotation

randomly picked between 0 and 1 pixel and between 0 and 360 degrees respectively.

The accuracy of the model was estimated by calculating the fraction of correctly classified par-

ticles across all classes.

accuracy¼
Number of particles correctly classified

Total number of particles

Predictor scoring
The predictors were scored by computing the accuracy of the random forest trained on the training

dataset but with only subsets of features. Out of the 24 predictors all combinations of 2, 3, 4, 24, 23

and 22 predictors were tested corresponding to a total of 13,227 combinations of predictors. For

each combination of predictors, the accuracy obtained was split equally across the different predic-

tors used, producing a ‘local’ accuracy for each feature. This local score was average across all com-

binations using a specific feature to obtain the global score.

Si ¼
1

N i
c

X

Nc

j¼1

aij
Pj

nj

Where Si is the global score of the feature i, Nc
i is the total number of combinations tested involv-

ing feature i, aij is a factor reflecting the presence of the feature i in the combination j. aij is equal to

one if i is present in j, 0 otherwise. Pj is the accuracy of the combination j, Nc is the total number of

combination tested and nj is the number of features present in the combination j.

Quantitative analysis
All quantitative analyses were performed using MATLAB (Mathworks). The code is freely available

(Laine, 2018). The length of the filamentous structures were extracted by measuring the geodesic

distance along the skeletonized image of the filament. The ELM analysis is freely available

(Manetsberger et al., 2015) and the code was adapted to insert within the workflow of our

approach. For ELM analysis, we observed no significant ellipticity in the spherical virus particles and

fitted spherical shapes to extract the radius of the particles (Figure 4—figure supplement 1).
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The equivalent radius r of the spherical particles were simply calculated from the area A of the

segmented particle.

r¼

ffiffiffiffi

A

p

r

The image model for the rod-shaped particles is presented in Figure 1—figure supplement 1.

Briefly, the backbone of the particle was extracted by image thinning and then dilated by a disk-

shaped kernel of radius equal to half of the width of the rod. The length of the rod could be

adjusted by shortening the ends of the backbone or by extrapolating it outwards to lengthen it. The

interior pixels of the image obtained were removed to leave the outline of the particle shape. This

outline was then convolved with a Gaussian kernel in order to take into account the effect of the

image resolution (here 90 nm). The intensity, the width and length of the model image were

adjusted to minimize the sum of the square difference of intensity �
2.

�
2 ¼

X

ij

Im i; jð Þ� Id i; jð Þ½ �2

Where i and j refer to the indices in the image, Im(i,j) is the image model, and Id(i,j) is the data

image.

Supplementary Note 1: Throughput of the method
The imaging throughput of the method can be assessed in terms of number of particles imaged per

second. The field-of-view achievable in our TIRF-SIM system is ~32 mm x 32 mm and a high quality

sample preparation can yield a virus particle density of ~1 particle/mm2. Therefore, with an acquisi-

tion time of 200 ms/SIM raw frame (with a total of 9 frames), we assess that our single frame particle

throughput can reach ~500 imaged particles/s. However, the acquisition of two consecutive fields-

of-view are affected by imaging dead time as a consequence of stage movement and refocussing. In

the study presented here, this step was done manually and took approximately 2–3 s. Therefore, a

practical throughput achievable for the imaging is of the order of ~220 particles/s. We note however

that both acquisition times and the stage movement time can be easily reduced by increasing illumi-

nation power and automation respectively. This makes the 500 particles/s not an unreasonable esti-

mation for the achievable throughput of a further optimised acquisition. The throughput of the

method can also be regarded as the time necessary to perform the complete study from sample

preparation to analysis. Table 2 indicates typical times necessary to perform the individual steps of

the workflow. This table indicates that a full structural analysis of a particular sample can be obtained

within a day.

Acknowledgements
RFL and GG were supported by funding from MedImmune Ltd. We thank C F van der Walle for criti-

cal reading of the manuscript. CFK acknowledges funding from the UK Engineering and Physical Sci-

ences Research Council, EPSRC (grants EP/L015889/1 and EP/H018301/1), the Wellcome Trust

(grants 3–3249/Z/16/Z and 089703/Z/09/Z) and the UK Medical Research Council, MRC (grants MR/

K015850/1 and MR/K02292X/1), MedImmune and Infinitus (China) Ltd. This project has received

funding from the European Union’s Horizon 2020 research and innovation programme under Grant

Agreement No. 722380. RFL acknowledges a BBSRC TRDF grant (BB/P027431/1). We would like to

thank Hong Jin and Xing Cheng from the Medimmune ID Vaccines group to supply the NDV virus.

We would also like to thank Dr Kathryn White and Tracey Davey from the EM Research Services at

the Newcastle Medical School for providing examples of TEM images of LAIV samples. Thanks also

go to Hong Jin and Dan Pappas for providing TEM images of NDV.

Laine et al. eLife 2018;7:e40183. DOI: https://doi.org/10.7554/eLife.40183 13 of 17

Tools and resources Epidemiology and Global Health Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.40183


Additional information

Funding

Funder Grant reference number Author

Engineering and Physical
Sciences Research Council

EP/L015889/1 Romain F Laine
Gemma Goodfellow
Laurence J Young
Clemens F Kaminski

Medical Research Council MR/K015850/1 Romain F Laine
Gemma Goodfellow
Laurence J Young
Clemens F Kaminski

Medical Research Council MR/K02292X/1 Romain F Laine
Gemma Goodfellow
Laurence J Young
Clemens F Kaminski

Wellcome Trust 3-3249/Z/16/Z Romain F Laine
Gemma Goodfellow
Laurence J Young
Clemens F Kaminski

Engineering and Physical
Sciences Research Council

EP/H018301/1 Romain F Laine
Gemma Goodfellow
Laurence J Young
Clemens F Kaminski

Biotechnology and Biological
Sciences Research Council

BB/P027431/1 Romain F Laine

MedImmune Romain F Laine
Gemma Goodfellow
Jon Travers
Danielle Carroll
Oliver Dibben
Helen Bright

Infinitus Clemens F Kaminski

Horizon 2020 - Research and
Innovation Framework Pro-
gramme

Clemens F Kaminski

Table 2. Estimation of the time necessary to perform individual steps involved in MiLeSIM.

Sample preparation was estimated based on standard immuno-labelling protocols. The computational times were assessed on an

analysis machine with an i7 processor at 3.5 GHz and 64 GB of RAM.

Step Description Time

Sample preparation Plating, permeabilising and immune-labelling of
virus particles

2–3 hr

Instrument set-up Quality check of set-up alignment, calibration and
sample mounting

30 min

Imaging Image acquisition, stage movement and refocus
for ~ 50,000 particles (50 fields-of-view)

30 min

SIM reconstruction SR reconstruction of 50 fields-of-view <30 min

Classification on unknown
data

Extraction of predictors and classification (for 50
fields-of view)

1h

Structural analysis Extraction of structural parameters for each classes
(for 50 fields-of view)

1h

Data curation for training
dataset

Generating manually labelled particle dataset
(performed only once) for ~ 500 particles

2h

Generating classification model Data augmentation, extraction of predictors, training
of the model, cross-validation on ~ 500 particles (performed only once)

5–6 hr
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