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This preview describes predictive processing as a computational framework for understanding cortical 

function in the context of emerging evidence with a focus on sensory processing. We discuss how the 

predictive processing framework may be implemented at the level of cortical circuits and how its 

implementation could be falsified experimentally. Lastly, we summarize the general implications of 

predictive processing on cortical function in healthy and diseased states. 

 

INTRODUCTION 

How does the brain distinguish between self-generated and externally generated sensory input? This 

was the basis of a disagreement between Hermann von Helmholtz and Charles Sherrington over a 

century ago. The echoes of this exchange enrich our pursuit of understanding the function of the 

neocortex to this day. Hermann von Helmholtz speculated that the absence of motion perception during 

eye movements is the result of an efference copy signal that cancels the visual feedback arising from 

self-generated eye movements (Helmholtz, 1867). He argued that when pushing gently on one's eye this 

cancellation does not occur and we perceive a moving world. Less well known perhaps is the case of a 

patient with a unilateral traumatic lesion of the lateral rectus muscle that moves the eye temporally. 

When the patient would close the unaffected eye and attempt to initiate a movement of the affected 

eye temporally, he would report seeing the world rapidly moving in the direction of intended eye 

movement (Helmholtz, 1867). Thus, the motor command to move the eye could drive perception in 

absence of any change in visual input. Based on these observations Helmholtz speculated that the brain 

must have an internal model of the sensory consequences of self-generated movements. He called this 

the sense of innervation. Four decades later, Charles Sherrington revisited these ideas and argued that 

we have a sensory system in the musculature - the muscular sense (proprioception) - that provides 

direct sensory evidence of the position of our muscles. Based on this, he concluded that a sense of 

innervation would be an unnecessary assumption (Sherrington, 1900). Sherrington’s reliance on bottom-

up driven sensory computations would extend to one of his most influential concepts - the receptive 



field – paving the way for a view of the brain that is driven to move by its sensorium. Sherrington’s views 

of a nervous system built upon sensory driven receptive fields would flourish over the next several 

decades. Describing the responses of ganglion cells in the frog’s retina to small black spots, Horace 

Barlow argued that it is hard to avoid the conclusion that these neurons function as fly detectors 

(Barlow, 1953). Born was the concept of the feature detector, the postulate that the activity of neurons 

in sensory pathways is driven primarily by feed-forward sensory input and represents the presence of a 

feature or an object in the environment. The effects of this revolutionary idea are still apparent in most 

of our thinking of brain function. With the discovery of the simple cells in cat primary visual cortex 

(Hubel and Wiesel, 1959), the feature detector rapidly became the dominant narrative for our thinking 

about cortical function (Martin, 1994). This concept has been a guiding principle for scientific inquiry; it 

is apparent not only in the concept of receptive fields of neurons in visual cortex, but also in place cells 

(O’Keefe and Dostrovsky, 1971), grid cells (Hafting et al., 2005), face cells (Perrett et al., 1982), and 

concept cells (Quiroga et al., 2005). Once sensory systems of the brain have extracted an invariant 

representation from the sensory input, a separate part of the brain is then tasked with deciding and 

acting upon that representation. Following David Marr, we will call this the representational framework 

for describing the function of neocortex (Marr, 1982).  

In parallel, the ideas of Helmholtz would resurface in the work of Erich von Holst, Horst Mittelstaedt 

(von Holst and Mittelstaedt, 1950), and Roger Sperry (Sperry, 1950). They were unsatisfied with an 

account of perception driven bottom-up by sensory input because it failed to explain how animals 

distinguish self-generated sensory feedback from externally generated input. One prominent example 

they used to illustrate that the brain must be able to make this distinction is the fact that the optokinetic 

reflex does not prevent self-motion of the eye. During passive viewing, full field visual flow results in a 

movement of the eye that stabilizes the image on the retina – this is called the optokinetic reflex. If the 

animal could not distinguish between self-generated and externally generated visual input, then the 

optokinetic reflex would prevent any active movement of the eye. The argument is that the visual flow 

resulting from an eye movement would trigger the optokinetic reflex just as visual flow during passive 

viewing does and thus result in a reflexive eye movement that counteracts the original eye movement. 

They concluded that one simple strategy to solve this problem would be to cancel the predictable 

consequences of self-generated sensory feedback using an efference copy of a motor command. This 

requires that the brain has a mechanism to transform the efference copy of the motor command into 

the sensory coordinate system to cancel the reafferent sensory feedback. The transformed version of 

the efference copy is often referred to as a corollary discharge. These transformations, or internal 



models, are equivalent to a simulation of the external world and function to make predictions of sensory 

input. Kenneth Craik formulated this idea in the early 1940s as: “My hypothesis then is that thought 

models, or parallels, reality – that its essential feature is not ‘the mind’, ‘the self’, ‘sense-data’, nor 

propositions but symbolism, and that this symbolism is largely of the same kind as that which is familiar 

to us in mechanical devices which aid thought and calculation” (Craik, 1943).  

The mapping of the motor command onto the sensory consequences of the movement functions to 

simulate the environment and thus is the internal model of the world. The idea that the brain uses an 

internal model to predict sensory input based on movements and past sensory experience has been 

formalized in several different variants: predictive coding, hierarchical temporal memory, and Bayesian 

inference (Friston, 2005; Hawkins and Blakeslee, 2004; Körding and Wolpert, 2004; Rao and Ballard, 

1999; Spratling, 2010). All of these are based around the idea of a generative model of the world used to 

predict sensory input. Following Andy Clark (Clark, 2016), we will refer to this family of theories as the 

predictive processing framework. Note, we do not wish to diminish the importance of the discrepancies 

between the different theories we are grouping here (see e.g. (Spratling, 2017) for a review of different 

variants of predictive coding), but will focus on their common premise. Here, we will focus on aspects of 

predictive processing that are based on a comparison of sensory input with a generative model of the 

environment.  Our aim is to discuss the physiological evidence that has convinced us that the predictive 

processing framework is more consistent with the data than the representational framework (see e.g. 

(Marr, 1982; Martin, 1994) for discussions of the representational framework).  

Predictive processing as a conceptual framework for understanding brain has a long tradition in the 

fields of computational and cognitive neuroscience, and has been elegantly summarized elsewhere 

(Clark, 2013; Koster-Hale and Saxe, 2013). The principle of a comparison between predicted and actual 

feedback is also often used to model the function of the cerebellum (Wolpert et al., 1998) and the 

dopaminergic reward system (Schultz et al., 1997). Surprisingly, however, predictive processing in the 

neocortex has received little attention at the physiological level. This is in part due to the difficulty of 

designing experiments that can effectively disambiguate between the neuronal activity associated with 

bottom-up representation and that associated with predictive processing hypotheses, and in part 

because we have poor experimental access to internal models or control over the associated 

predictions. In this review, we argue that existing data about neural activity and neural circuit 

organization of the (sensory) cortex can be understood in the context of a predictive processing 

framework and highlight recent direct evidence in its support. We then discuss how computations 



required for predictive processing might be implemented at the circuit level, and propose experiments 

that would provide a mechanistic corroboration.  

THEORETICAL FRAMEWORK FOR PREDICTIVE PROCESSING  

Prediction error neurons and internal representation neurons 

At the core of all predictive processing theories is the idea that the brain develops a generative model of 

the world that it uses to predict sensory input (Barlow H.B., 1961; Craik, 1943; Gregory, 1980). The 

comparison of predicted and actual sensory input then updates an internal representation of the world. 

This process is often described as a processing hierarchy. A brain area at a higher level of the hierarchy 

sends a top-down signal to an area at lower level in the form of a prediction of the bottom-up input to 

that area. Predictions are compared to bottom-up input to compute the difference between the two 

(Figure 1A,B). This requires at least two functional classes of neurons: an internal representation 

neuron and a comparator or prediction error neuron. Internal representation neurons project 

downwards in the neural hierarchy and encode predictions about the bottom-up input. Prediction error 

neurons project upwards in the hierarchy and encode a difference between prediction and bottom-up 

input. Thus, in the lowest level of the hierarchy, the bottom-up input is the sensory input, while in 

higher levels of the hierarchy, it is the prediction errors from lower levels. When the bottom-up 

information matches the information carried by internal representation neurons, the responses in 

prediction error neurons decrease. In sensory cortex, both internal representation neurons and 

prediction error neurons are expected to be selective for specific stimulus features.  

Prediction errors may come in two flavors. The bottom-up input can be stronger than predicted (for 

example, when an unpredicted stimulus appears), or it can be weaker than predicted (for example, 

when the expected stimulus does not appear, or a stimulus disappears). In theory, a bidirectional 

change could be signaled by one neuron that has a sufficiently high basal firing rate. Increases in activity 

would signal more input than predicted, while a decrease would signal less input than predicted. Such a 

bidirectional modulation of a prediction error signal has been observed in the dopaminergic system 

(Schultz et al., 1997). In the neocortex, and particularly in layer 2/3, the baseline firing rates of principal 

neurons are much lower (de Kock et al., 2007; Niell and Stryker, 2008; Sakata and Harris, 2009), 

bidirectional modulation of activity is less plausible. In agreement with previous suggestions (Rao and 

Ballard, 1999), we think it is more likely that the error computation is carried out by two separate 

prediction error circuits: one to signal more and one to signal less input than predicted (Figure 2). We 



will refer to these two types of prediction error as positive prediction error and negative prediction 

error.  

In the predictive processing framework, predictions that arrive in a target area are based on an internal 

representation in the source area. To illustrate this, assume two hypothetical visual areas, one coding 

for geometric shapes, the other for edges. If the internal representation of a triangle is active in the 

geometric shape area, it will send a prediction of three edges to the edge area. Prediction error neurons 

will be activated only if the bottom-up input does not match the top-down prediction. In absence of 

prediction errors, the internal representation for edges in the edge area and the internal representation 

for the triangle in the geometric shape area will remain active. These internal representations (of the 

triangle in the geometric shape area and edges in the edge area) are equivalent to those postulated by 

the representation framework. The key difference lies in how the internal representations are updated: 

In the representation framework through feature detectors and bottom-up drive, in predictive 

processing through a comparison between bottom-up input and top-down predictions based on an 

internal representation.  

A common assumption is that predictive processing is advantageous because it is efficient; fewer spikes 

are necessary because only prediction errors are transmitted up the hierarchy. While prediction error 

signals are sparser when input is predictable, for every bottom-up spike cancelled there needs to be a 

spike in a top-down prediction. In a first approximation, this means that the total number of spikes 

(bottom-up and top-down) remains unchanged. Hence, although there are circumstances under which 

predictive processing can be more efficient, in cortex this is likely not the case if efficiency is measured 

as the number of spikes per bit of information transmitted. We propose that the main advantage of 

predictive processing is that the internal representation is updated by a combination of bottom-up and 

top-down input and can thus be modified in absence of bottom-up input. This would provide a 

framework to simulate and predict the environment.  

Coordinate transformations across cortical areas (internal models). 

Cerebral cortex is a network of interconnected areas that are distinguishable by their connections to the 

sensory input and motor output streams, and their connections to each other. We refer to the part of 

cortex that is the principal target of the afferents from primary sensory thalamus as primary sensory 

cortex. By virtue of its connectivity to the periphery, each cortical area has a unique basis for the 

representation of body and environment. We refer to this basis of representation as the area’s 

coordinate system. The coordinate system of visual cortex, for example, appears to be built on Gabor 



filters of the visual input (such as the receptive field of simple cells), and that of auditory cortex is built 

on spectro-temporal filters of the auditory input. In motor-cortex the coordinate system is built on 

motor commands, and in inferotemporal cortex possibly on objects or concepts (Quiroga et al., 2005). 

Each coordinate system only spans part of the total space of all sensory input and motor output. The 

transformation from one coordinate system to another is referred to as an internal model. For instance, 

given a current motor state and visual input, an efference copy of a motor command can be 

transformed to a prediction of the corresponding consequences in visual input. The motor command for 

an eye movement to the left can be transformed to the corresponding shift of the visual image to the 

right. The transformation from a motor coordinate system to a sensory coordinate system is referred to 

as a forward model, while a transformation from a sensory coordinate system to a motor coordinate 

system is referred to as an inverse model (Jordan and Rumelhart, 1992; Wolpert et al., 1995) (Figure 1C). 

More generally, any communication between two cortical areas will require a transformation that 

describes how activity in the source area relates to activity in the target area. If such a transformation 

between two areas exists, activity in one area can serve as a prediction of bottom-up input in the other 

area. Although cortical processing can be hierarchical, especially in the vicinity of primary sensory areas, 

cortex as a whole is likely not arranged as a hierarchy (Gămănuţ et al., 2018). Given that there are 

systematic correlations between auditory and visual inputs, for example, activity in an auditory area 

could serve as a prediction of bottom-up input in a visual area and vice-versa. Thus, predictive 

processing does not have to follow a strict hierarchical arrangement of inter-areal connections (Figure 

1D). Interestingly, a model that has been proposed recently as an alternative to hierarchical predictive 

processing is a variant of a predictive processing architecture in which the flow of signals is reversed, 

predictions are sent up the and errors down the hierarchy (Heeger, 2017). In the absence of a strict 

hierarchy, the communication between areas would always entail the exchange of predictions and 

errors in both directions.  

Experimental considerations 

When evaluating evidence that may distinguish the two alternative descriptions of cortical function, it is 

worth noting that the predictive processing framework is an extension of the representational 

framework. To illustrate this, we will make a few simplifying assumptions. In the representational 

framework, the response R of a neuron can be modelled as a function V of the bottom-up input.  

(1)  R = V(bottom-up) 



This function can be arbitrarily complex, and in the case of visual or auditory receptive fields is in the 

form of a convolution with a receptive field. The predictive processing framework differs to this in that, 

in addition to internal representation neurons, it postulates the existence of prediction error neurons. 

The response of prediction error neurons is the difference between a function V that depends on the 

bottom-up input and a function P that depends on the top-down input, or more specifically the 

prediction of the bottom-up input V.  

(2)  R = ± ( V(bottom-up) - P(top-down) ) 

For simplicity we have ignored multiplicative gains of response magnitude, which can be incorporated in 

both frameworks. The reason the two response types are hard to distinguish is that experimentalists 

have some control over the bottom-up input – at least in sensory areas of the brain - but have only poor 

control of the top-down input or predictions generated on a moment-by-moment basis. If experiments 

are performed by averaging data over many trials, for each of which the top-down input may vary, or 

experiments are performed under conditions in which top-down input is altered or gated off (e.g. by 

anesthesia), P reduces to a constant and (2) can be written in the form of (1). With the prediction error 

driven just by the stimulus, the internal representation will be updated by bottom-up input and will look 

like the one postulated by the representation framework (Figure 2). Under these conditions, both 

internal representation neurons and positive prediction error neurons will have responses identical to 

the ones predicted by the representational framework. Thus, to design experiments that could 

distinguish between the two frameworks, experimentalists must be able to control or measure the 

prediction. Typically this is not possible, and instead a proxy is used for the animal’s predictions. In the 

context of sensory processing, self-generated motion is one possible proxy for a prediction of the 

resulting visual feedback (e.g. optic flow). This assumes that animals learn how sensory feedback 

couples to movement with experience. In a first approximation, the representational framework 

predicts that neuronal responses will not differ in conditions when the stimulus is externally generated 

versus when it is the consequence of self-motion. The predictive processing framework instead 

postulates that responses in a subset of neurons, the prediction error neurons, signal a deviation, or a 

mismatch, between predicted and actual sensory input. Based on this argument, much of the 

experimental focus in the effort to test the hypothesis of predictive processing in cortex was on 

prediction error responses. In the next section, we will summarize the evidence for cortical responses 

that are consistent with predictive processing. 



EVIDENCE FOR PREDICTIVE PROCESSING IN CORTICAL CIRCUITS 

Behavioral evidence 

The idea that our perception of the world is an active and constructive process has an intuitive appeal to 

explain much of our everyday experience of the world. Our predictions frequently interfere with what 

we perceive. Our voice sounds eerily different when we hear it in a recording, and we perceive our own 

singing to be much closer to pitch than it actually is. In visual illusions, we see color where there is none, 

simply because we know objects rarely change color (Foster, 2011), or miss things that happen right in 

front of our eyes (Simons and Chabris, 1999). In these cases, what we expect to hear or see interferes 

with, and even supersedes, what we actually hear and see. We refer to the conditions in which we can 

prove that our predictions interfere with perception as sensory illusions. Given our frequent 

disagreements with others over the attributes of objects we see, or over what we hear, it is probably 

appropriate to describe perception as a controlled hallucination (Clark, 2016). This tainting of our access 

to reality must come at some advantage. One advantage of having an internal model of the world is to 

allow us to predict the future. We cannot only anticipate the sensory consequences of our own 

movements, but also physical attributes or dynamics of objects and other agents in the world. You can 

look at a photograph of a football player - one leg on the ground in front of the player, the other 

retracted behind the ball – and know instantly and without deliberation what will happen next. Often 

such predictions are not trivial and depend on detailed knowledge about the physical properties of the 

objects we are looking at, our model of the intentions or actions of the agents, and their context in the 

particular moment. These examples, and many others like it, give intuitive support for the idea that the 

brain is a predictive processing machine. In this section, we highlight the physiological evidence for 

predictive processing in neural circuits of the sensory neocortex.  

Prediction error signals  

In neocortex, early evidence for the predictive processing framework did not arise with new data, but 

from the demonstration that classical visual phenomena, like end-stopping (Hubel and Wiesel, 1965), 

can be explained as a prediction error (Rao and Ballard, 1999). One central idea here was that the 

suppression of the response that appears when a stimulus extends into the surround of the classical 

receptive field is the consequence of top-down inhibition. In this way, the stimulus in a given location 

acts as a prediction of the stimulus in the neighboring region. This prediction, relayed via activation of a 

higher-level representation, inhibits responses of neurons with receptive fields in neighboring parts of 

the visual field to the same stimulus. In layer 2/3 of mouse visual cortex, somatostatin positive 



interneurons, likely driven by lateral projections from neighboring cortical neurons, have been shown to 

have a causal role in surround suppression (Adesnik et al., 2012; Angelucci et al., 2017). The idea of a 

top-down prediction that acts to inhibit bottom-up input was later used to demonstrate that a large 

variety of classical visual receptive field properties can be explained in a predictive processing 

framework (Spratling, 2010). This type of comparison is consistent with a positive prediction error: the 

top-down prediction acts to inhibit the predictable bottom-up input. A top-down prediction that 

functions to inhibit bottom-up input should result in a response decrease when stimuli become 

predictable. This is indeed the case when stimuli become predictable either as the result of a learned 

association with a preceding stimulus (Egner et al., 2010; Meyer and Olson, 2011), or after frequent 

presentation of the same stimulus, in which case the suppression is often described as sensory 

adaptation (Ulanovsky et al., 2003). Another simple form of increased predictability of a stimulus is 

prolonged presentation of the same stimulus, during which sensory responses typically decrease in 

magnitude. This form of sensory adaptation occurs at many levels in the sensory processing hierarchy, 

but certain forms, like contrast adaptation in visual cortex, are thought to be, at least in part, cortical in 

origin (Carandini, 2000; Keller et al., 2017; Maffei et al., 1973). Although adaptation would be consistent 

with top-down inhibition, early experiments studying mechanisms of contrast adaptation using 

intracellular recordings in visual cortex of anesthetized animals found no evidence of inhibition 

contributing to contrast adaptation (Carandini and Ferster, 1997). More recently, it was found that 

levels of inhibition increase with stimulus duration (Keller and Martin, 2015) and are selectively 

suppressed by anaesthesia (Haider et al., 2012). Consistent with a strong top-down influence, contrast 

adaptation has been shown to depend on the behavioural relevance of a stimulus (Keller et al., 2017). 

Hence, it is possible that certain forms of sensory adaptation in the awake animal are driven by top-

down inhibition.  

Similarly, there may be top-down inhibition of the sensory consequences of self-generated movement. 

There is evidence for this in auditory cortex, where responses are generally supressed during self-

generated locomotion via top-down projection that recruits local inhibition (Schneider et al., 2014). 

Consistent with the idea that the effect of these top-down predictions can be modulated in a context 

dependent manner, certain forms of response adaptation in visual cortex have been shown to be 

dependent on the task relevance of the stimulus (Keller et al., 2017). 

If increasing stimulus predictability results in a response reduction, a violation of a strong prediction 

should trigger a response increase. Evidence in support comes from the discovery of prediction error 



signals in primary sensory areas of cortex, where responses were quantified to unexpected changes in 

the coupling between self-generated movements and sensory feedback. Using manipulations of visual 

feedback from hand movements, work in humans found a selective activation of primary visual cortex to 

incongruences between hand movements and visual feedback that could not be explained by the visual 

input alone (Stanley and Miall, 2007). Manipulating auditory feedback of self-generated vocalizations in 

marmosets revealed responses in primary auditory cortex that were selective to deviations between 

expected and actual auditory feedback (Eliades and Wang, 2008). Similar observations were made in 

primary auditory pallium of the songbird (Keller and Hahnloser, 2009). These responses could not be 

explained by the change in sensory input, as they were only apparent during manipulations of self-

generated feedback and not when the animal was passively observing or hearing the same stimulus. 

However, in all of these experiments, the responses were triggered by an unexpected change to sensory 

feedback in the form of an additional stimulus that differed from the one expected. The key signal that is 

more difficult to explain in a representation framework is a response to the absence of a predicted 

sensory input, or a negative prediction error. Such signals have been found in layer 2/3 of primary visual 

cortex (V1) of the mouse, where a subset of neurons responds selectively to the absence of expected 

visual flow (Keller et al., 2012), or the absence of an expected visual stimulus (Fiser et al., 2016). We 

have referred to this type of negative prediction error as a mismatch response. Although mismatch 

responses also exist in layer 5 neurons, they are likely more prevalent in layer 2/3 (Saleem et al., 2013).  

In the predictive processing framework, prediction error signals in sensory cortices are expected to be 

feature-specific, and not simply the result of a surprise response. That is, they should signal the type of 

deviation from prediction, not simply the fact that there was a deviation. Accordingly, responses of 

mismatch neurons in layer 2/3 of mouse V1 were found to signal deviations between predicted and 

actual visual flow in spatially confined areas of the visual field (Zmarz and Keller, 2016). These mismatch 

signals parallel visual signals in magnitude, spatial resolution and retinotopic organization, suggesting 

that mismatch signals are computed based on local visual cues, and that visual and mismatch signals are 

separate aspects of the same computation.  

Circuits for predictive processing 

Observing prediction error signals in the neocortex does not prove they are computed therein. However, 

if cortical circuits do implement predictive processing, this requires at least three components: a 

comparator circuit that computes the prediction error between bottom-up input and predictions, a 

circuit to maintain an internal representation that gives rise to predictions, and a modulating or gating 



signal that sets the precision or weight of the prediction error. The circuit elements required to generate 

prediction errors are present in each module of the neocortex. Cortical areas receive bottom-up input 

from the thalamus or other cortical areas, as well as extensive top-down inputs from many nearby and 

distal cortical areas, and higher-order thalamic nuclei (Felleman and Van Essen, 1991; Markov et al., 

2014; Oh et al., 2014; Sherman, 2016; Zingg et al., 2014), consistent with predictions from multiple 

modalities. The top-down inputs can be very dense, as for instance the top-down input from anterior 

cingulate cortex to V1 (Zhang et al., 2014), and target both excitatory and inhibitory neurons in layer 2/3 

monosynaptically (Leinweber et al., 2017; Mao et al., 2011; Yang et al., 2013; Zhang et al., 2014). The 

comparator circuits that generate negative and positive prediction errors require differential wiring of 

bottom-up and top-down inputs onto subsets of excitatory and inhibitory neurons. Negative prediction 

error neurons will respond when top-down excitation exceeds bottom-up inhibition (whereby increasing 

strength or saliency in predictions should result in increasing strength of mismatch). It follows that 

subsets of inhibitory neurons are mainly bottom-up driven, either directly or via local excitatory relays, 

and these provide input preferentially to negative prediction error neurons. In layer 2/3 of visual cortex, 

a subset of somatostatin-expressing interneurons are thought to provide visually driven inhibition to 

negative prediction error neurons (Attinger et al., 2017). Conversely, positive prediction error neurons 

will respond when bottom-up excitation exceeds top-down inhibition. Accordingly, a different set of 

interneurons is expected to be driven more strongly by top-down input, and provide inhibition to 

positive prediction error neurons. This form of top-down inhibition is a frequent circuit motif in cortex 

(Lee et al., 2013; Schneider et al., 2014; Zhang et al., 2014). 

Finally, we suggest that negative and positive prediction error neurons exert opposite effects on their 

targets. Negative prediction errors should act mainly by engaging bottom-up inhibition in their target 

areas, thus suppressing the current internal representation. Conversely, positive prediction error 

neurons provide bottom-up excitation to target areas, thus activating a new cohort of neurons. The 

combined effect of positive and negative prediction error neurons is to update the internal 

representation that best approximates, or predicts, the current environment.  

Top-down signals are predictions 

With the discovery of strong motor-related signals in primary visual cortex in the complete absence of 

visual input (Keck et al., 2013; Keller et al., 2012; Saleem et al., 2013) came further evidence that a 

representational framework could explain only a fraction of the responses even in primary sensory 

areas. Modulation of visual responses by locomotion or arousal (Niell and Stryker, 2010; Reimer et al., 



2016; Vinck et al., 2015) is thought to be the consequence of neuromodulatory inputs (Fu et al., 2014; 

Polack et al., 2013), which exert context dependent influence on responses in visual cortex (Pakan et al., 

2016). However, modulatory inputs alone cannot account for motor-related signals in visual cortex in 

the absence of visual input. A driving motor-related prediction of visual input, however, could account 

for these non-visual signals. We have recently argued that in visual cortex one source of the prediction 

of visual input given movement is the anterior cingulate cortex (Leinweber et al., 2017). Activity in axons 

of anterior cingulate neurons in visual cortex conveys an experience dependent prediction of visual flow 

(rather than copies of motor commands) as a function of the turning of the mouse in a virtual 

environment. Importantly, we found that this motor-related input is shaped by the coupling between 

movement and visual feedback the mouse had experienced previously.  

Locomotion is just one possible proxy for a prediction of visual input, and other signals, like spatial 

location, could serve a similar function. Consistent with this, neurons in layer 2/3 neurons of V1 respond 

robustly to the omission of a stimulus the mouse expects to see at a certain location in a virtual 

environment (Fiser et al., 2016). In principle, any signal that explains some of the variance in the visual 

input can serve as a prediction of visual feedback. Vestibular or eye movement signals could serve as 

predictions of full field visual flow. In a learned coupling between two sensory stimuli, e.g. a sound and a 

visual input, one can serve as a prediction of the other. It is therefore plausible that long-range cortical 

communication conveys specific predictions of input to the target areas that are associated by 

experience with signals in the source area (Larkum, 2013; Roelfsema and Holtmaat, 2018). Consistent 

with this view, specific signals related to self-generated movement, head-direction, animal’s spatial 

location and stimulus timing have been observed across several sensory areas (Lütcke et al., 2010; 

Manita et al., 2015; Mao et al., 2011; Poort et al., 2015; Schneider et al., 2014; Vélez-Fort et al., 2018). 

These diverse sources of contextual input may thus provide predictions required for computation of 

prediction errors and for updating internal representations based on information from a given sensory 

modality.  

Learning to predict 

A key assumption of the predictive processing framework is that internal models are learned and that 

experience shapes the circuits required for generating predictions and computing prediction errors. 

While evolution has generated a template of reproducible long-range projections linking cortical areas, 

often reciprocally, it is the interaction with the world that refines these connections to generate internal 

models. Sensory experience sculpts the connectivity between neurons in an activity dependent manner, 



such that nearby cortical neurons with similar responses (i.e. those that fire together) can preferentially 

link up into synaptically connected subnetworks with strong recurrent excitation (Cossell et al., 2015; Ko 

et al., 2011, 2013). We suggest that a similar principle may apply to the establishment of long-range 

networks across cortical areas, whereby a history of correlated firing determines which neurons become 

associated. In the context of predictive processing, this would apply equally to sculpting the bottom-up 

and top-down connectivity between internal representation neurons encoding components of the same 

object, as well as between prediction error neurons and internal representation neurons within and 

across areas. In visual cortex of rodents, predictive responses emerge in an experience dependent way 

(Fiser et al., 2016; Makino and Komiyama, 2015; Poort et al., 2015). Through passive sensory experience, 

visual cortex responses become predictive of upcoming visual stimuli (Gavornik and Bear, 2014; Xu et 

al., 2012). Through experience of visuomotor coupling predictions of visual flow are learned (Attinger et 

al., 2017; Leinweber et al., 2017), and through experience in a spatial environment responses emerge 

that are predictive of the visual input at a given spatial location (Fiser et al., 2016). These predictive 

responses is sensory areas may thus be driven by long-range inputs whose influence is shaped by 

experience.  

We assume that perception is linked to the internal representation of the world, and that we only 

perceive a stimulus if the internal representation for that stimulus is active. This internal representation 

is what predictions are based on. During a given percept, internal representation neurons, likely 

distributed across several associated areas, are active. If neurons maintaining the internal 

representation are the basis for predictions of bottom-up input impinging on the same or other cortical 

areas, they should exhibit a set of functional and connectional features. First, an internal representation 

requires a circuit mechanism that maintains the activity in a population of neurons for the time a 

stimulus is perceived. A number of plausible mechanisms have been proposed for the persistence of 

neural activity, including strong and selective recurrent excitation between coactive neuronal 

assemblies within the cortex (Cossell et al., 2015; Li et al., 2016; Perin et al., 2011; Song et al., 2005), or 

via thalamocortical loops (Guo et al., 2017; Reinhold et al., 2015; Schmitt et al., 2017). Moreover, 

internal representations may not require stable patterns of activity, but could be maintained using 

dynamic attractors. In either case, neurons representing the internal model are expected to exhibit 

more sustained and dense activity than neurons that function as comparators. Second, internal 

representation neurons should make connections within the area they reside, as well as provide top-

down input to lower areas within the same sensory modality and/or project to associated cortical areas 

dedicated to other modalities. Finally, as internal representations need to be updated by prediction 



errors, the neurons encoding the internal representation should be densely connected with the 

comparator circuit encoding the same feature. Interestingly, these functional and anatomical 

characteristics are hallmarks of a subset of cortical neurons, prevalent in deeper layers (Harris and 

Mrsic-Flogel, 2013; Harris and Shepherd, 2015). However, how internal representations are maintained 

in the cortical circuit and how may be are used to generate top-down predictions is still unclear.  

Precision signals 

In sensory cortex, responses can be modulated and given precedence depending on the context in 

which the stimulus is perceived. This implies that predictions and prediction errors may be modulated in 

a context dependent manner. Conceptually, a dynamic modulation of the influence of top-down and 

bottom-up input is consistent with an attentional modulation of sensory input (Posner and Gilbert, 

1999). Direct evidence for a modulation of prediction and prediction error signals comes from a variety 

of experiments. Experience dependent predictive responses in visual cortex, for example, are only 

apparent under quiet wakefulness, but not if the animal is active (Xu et al., 2012). Similarly, adaptation 

of sensory responses depends on context and the task-relevance of sensory input (Keller et al., 2017). In 

sensorimotor learning, prediction errors during movement function to correct the motor program. Here, 

the requirement for a context dependent gating of prediction errors stems from the fact that prediction 

errors that occur during passive observation should not interfere with the motor program. This requires 

an error signal that can gate plasticity, whose magnitude can be adjusted in a context dependent 

manner.   

The source of such a modulating or gating signal is not always clear. Attentional gain modulation in 

visual cortex has been speculated to be driven by long-range cortical input (Zhang et al., 2014), input 

from higher-order thalamus (Purushothaman et al., 2012; Roth et al., 2015; Wimmer et al., 2015), or 

neuromodulatory inputs (Fu et al., 2014; Polack et al., 2013). Neuromodulatory input can not only gate 

plasticity (Kilgard and Merzenich, 1998; Martins and Froemke, 2015; Weinberger, 2004), but also change 

the balance of top-down versus bottom-up influence (Yu and Dayan, 2005). Specifically, the 

neuromodulatory tone may shift the relative contribution of bottom-up and top-down signals such that 

the influence of prediction errors can be modulated according to the internal state of the animal, which 

would determine the extent to which bottom-up inputs are used to update the internal model. It 

remains to be seen how different modulatory signals are combined to alter the sensitivity by which 

cortical circuits prioritize and respond to sensory information or report prediction errors. A more 



complete understanding of these modulation mechanisms requires further exploration and may be key 

to understanding cortical dysfunction. 

IMPLICATIONS FOR CORTICAL FUNCTION AND DYSFUNCTION 

The immediate appeal of predictive processing is that it could be a basic computational primitive 

implemented in different variants throughout the brain. Evidence consistent with predictive processing 

has been found in a variety of different brain regions. The function of the dopaminergic system has been 

described in terms of reward prediction errors (Schultz et al., 1997). Many of the models of cerebellar 

function are based on the concepts of internal models and prediction errors (Wolpert et al., 1995, 1998). 

Cerebellum-dependent sensorimotor learning is thought to be driven by sensory prediction errors 

computed as a comparison between intended and actual sensory feedback (Brooks et al., 2015). 

Similarly, certain forms of cortex-dependent sensorimotor learning are thought to be driven by 

performance errors (Houde and Jordan, 1998; Konishi, 1965). In vocal learning, these performance 

errors have been suggested to be computed based on a comparison of intended and actual sensory 

feedback (Keller and Hahnloser, 2009).  

So, what could the implications be of describing brain function in terms of an internal representation of 

the world that is updated through comparison with incoming sensory information? Of course, we do not 

have a definitive answer to this question, but what we will attempt to do in this section is to explain 

where we see promise of predictive processing. First, temporarily decoupling the internal 

representation from sensory input would allow one to run the model as a simulation. In this way, one 

could simulate the consequences of one’s actions without having to perform them. This is likely what we 

refer to as thinking. Second, we would postulate that perception is based on a finely tuned process that 

continuously balances internal predictions against bottom-up signals to update an internal 

representation. If this process is imbalanced such that the internal representation is driven too strongly 

by top-down predictions, one might perceive things that are not there, or interpret intention into action 

of others where there is none. This would likely resemble positive symptoms of schizophrenia, as has 

been argued previously (Corlett et al., 2009; Fletcher and Frith, 2009; Frith, 2000). Conversely, if the 

effect of top-down predictions were too weak and the internal representation were dominated by 

bottom-up sensory input, one might be unable to adequately predict sensory input or understand 

intentions of others. Assuming the brain lacks the ability to generate an internal model with sufficient 

predictive capacity, a simple behavioral strategy would be to engage in stereotyped repetitive behavior 

that makes the input more predictable. A dysfunction in the brains ability to make accurate predictions 



has been proposed as one of the attributes of autism (Lawson et al., 2014, 2017; Sinha et al., 2014). 

Based on this, one could speculate that schizophrenia and autism are opposite ends of the same circuit 

imbalance in which the internal representation of the world is either driven too strongly or too weakly 

by predictions. We speculate that alterations in predictive processing circuits may be common to both 

disorders. Anti-NMDA receptor encephalitis, for example, in which NMDA receptors are targeted by the 

immune system, results in symptoms that resemble those of schizophrenia when adults are affected, 

while it results in symptoms that resemble those of autism when children are affected (Creten et al., 

2011; Dalmau et al., 2007; Titulaer et al., 2013). In addition, there is a common gene expression network 

that is dysregulated in the two conditions (Gandal et al., 2018), possibly in opposite directions (Crespi et 

al., 2010). Thus, the absence of key molecular regulators of synaptic plasticity (e.g. glutamate receptors) 

may lead to a failed experience-dependent adjustment of the connections in circuits that maintain an 

internal representation of the world through a comparison with incoming sensory input. In turn, this 

may cause aberrations in predictive processing and altered cortical function in these 

neurodevelopmental disorders.   

THE EXPERIMENTS THAT NEED TO BE DONE 

In this section, we outline experiments that may test, refine or reject the model of predictive processing 

in the cerebral cortex using currently available technologies. 

1. One of the core postulates is that there are neurons in each area of cortex that maintain an 

internal representation of the world in a local coordinate system. To the best of our knowledge, 

there has been no clear demonstration of the existence of such neurons. The problem with 

identifying such neurons is that they will exhibit responses that appear driven by a bottom-up 

input in many conditions. However, there are a few functional and anatomical characteristics 

that might aid in identifying them. First, internal representation neurons should comprise a class 

of neurons separate from the prediction error neurons. It is possible that internal representation 

neurons are intermixed with prediction error neurons in different cortical layers, or that they 

are enriched in deep layers of cortex (Bastos et al., 2012), which are the main source of top-

down signals (Felleman and Van Essen, 1991; Markov et al., 2014). Second, internal 

representation neurons provide input to both local prediction error neurons and, either directly 

or indirectly, give rise to projections, which convey predictions, to other cortical areas. Third, 

within a cortical area, the current internal representation should function like a prediction (the 

current scene is a decent predictor of future scenes). Therefore, internal representation neurons 



should interact with prediction error neurons in the same way top-down predictions do. 

Negative prediction error neurons should be net excited by internal representation neurons, 

while positive prediction error neurons should be net inhibited. Fourth, activity in prediction 

error neurons should update the local internal representation. Positive prediction error neurons, 

which report more bottom-up input than expected, should net activate the corresponding local 

internal representation neurons. Conversely, negative prediction error neurons, which report 

less input than expected, should net inhibit the corresponding internal representation neurons. 

Given that we do not have a genetic handle on the different functional neuronal classes, 

experiments would need to rely on the possibility that there is a predominance of one or the 

other neuron type in different cortical layers (for example, a preponderance of prediction error 

neurons in layer 2/3 and of internal representation neurons in layer 5). In this way, one could 

test the influence of activation of a subset of putative internal representation neurons, either in 

a given cortical layer or through targeted photostimulation (Packer et al., 2014), on functionally 

identified prediction error neurons in layer 2/3.  

2. Assuming that cortex is built based on a canonical circuit motif (Douglas et al., 1989), we should 

find prediction error neurons for every instance of a behaviorally meaningful correlation of 

activity across any two cortical areas. To illustrate this, let us take the interaction between 

motor areas and visual areas. Every movement that is coupled to a predictable change in visual 

input (whole body translation, eye, head, limb or whisker movements, etc.) should have a 

corresponding set of prediction error neurons in a sensory cortex. We think that a subset of 

layer 2/3 neurons in mouse V1 functions to compute prediction errors between whole body 

translation and visual input (Attinger et al., 2017; Zmarz and Keller, 2016). Similar predictions of 

sensory input may be based on spatial location, head direction or sensory input in other 

modalities. Consistent with this, a subset of neurons in layer 2/3 of mouse V1 signal a prediction 

error between a prediction of visual feedback based on spatial location and visual input (Fiser et 

al., 2016). Similar prediction error neurons may exist for predictions based on auditory input, 

vestibular input, etc.  

3. Most work on cortical circuits for predictive processing has focused on primary sensory areas. 

The advantage of examining in a primary sensory area is that there is some experimental control 

over bottom-up inputs. Assuming predictive processing describes a canonical cortical 

computation, we should find similar prediction error signals in other cortical areas. These 

prediction error signals would be encoded in the same coordinate system as the bottom-up 



input to the area. By this we mean, there should be neurons in prefrontal cortex that signal 

deviations in a conceptual rule the animal has learned, or a deviation in social patterns the 

animal expects to encounter in its conspecifics. There is some evidence that a subset of neurons 

in motor cortex signals a deviation between intended and actual motor state given 

proprioceptive or other sensory feedback (Heindorf et al., 2018).  

4. In neocortex, it is likely that the prediction error circuits are shaped by experience, as they are in 

primary visual cortex for sensorimotor and spatial predictions (Attinger et al., 2017; Fiser et al., 

2016). What is still unclear is which synapses in this circuit undergo experience dependent 

plasticity. In the case of the negative prediction error circuit in layer 2/3 of mouse V1, we can 

constrain the site of plasticity to some extent. The activity in the somatostatin-positive 

inhibitory interneurons, which mediate the bottom-up inhibition, is not dependent on 

sensorimotor experience (Attinger et al., 2017). Hence, experience dependent plasticity must 

modify at least one of the other connections in the circuit. This could be the synapse from the 

inhibitory neuron onto the prediction error neuron, or the one from the top-down predictive 

input onto the prediction error neuron. Identifying the site of plasticity could be achieved by 

preventing experience dependent plasticity in specific cell types during sensorimotor learning 

(Sawtell et al., 2003).  

5. To explain the phenomenon of attention and the fact that passive experience does not modify 

the motor program during sensorimotor learning, we predict the existence of a modulating 

signal that can attenuate or amplify prediction error signals. In vocal learning, for example, 

listening to conspecific vocalizations should not generate prediction errors that update the 

motor program for vocalization. Hence, prediction error signals have to be gated on only during 

times of self-vocalization. A similar modulation mechanism is necessary to explain attention-

related phenomena. There may be at least three defining characteristics of such a signal. First, 

this input should selectively alter the coupling between prediction error neurons and internal 

representation neurons. Second, in sensory and motor regions, the modulating signal should be 

correlated with movement. Third, manipulations of the modulating system should result in shifts 

in the balance between top-down and bottom-up inputs, and this may change the gain of 

responses in prediction error neurons according to internal state. Possible sources of 

modulatory signals include classical neuromodulatory systems (e.g. acetylcholine, 

noradrenaline) or the thalamus, both of which have been shown to change the operating regime 



of cortical circuits (Fu et al., 2014; Polack et al., 2013; Purushothaman et al., 2012; Wimmer et 

al., 2015). 

6. Assuming psychosis is a state of imbalance in processing in which the internal representation is 

not updated by sensory feedback and thus dominated by predictions, and prediction errors are 

either too strong or too weak, we would expect to find a common functional signature of drugs 

that reduce psychosis. It is conceivable that antipsychotic drugs function by changing the 

balance between positive and negative prediction errors, or by changing the balance between 

top-down and bottom-up input. Testing this hypothesis requires systematic characterization of 

the effects of drugs that are anti- or pro-psychotic on prediction errors, predictions, and 

bottom-up signals.  

Predictive processing in the form we are proposing here will very likely not provide a complete 

description of cortical function. Hence, our intention should be to identify the limits and shortcomings of 

the framework in order to formulate a more complete theory. One thing is certain: we need to move 

away from a purely representational understanding of the cortex if we aim to make conceptual progress 

in this endeavor.  

CONCLUSION 

Inquiries into the function of any biological structure are best conducted with an eye on David Marr’s 

three levels of analysis (Marr, 1982). We have discussed a possible algorithm for the function of 

neocortex and how this algorithm could be implemented in cortical circuits. What remains to be 

addressed is what the goal of the computation is. In other words, what is the evolutionary advantage of 

having a cortex? Cortex emerged in evolution on top of a fully functional brain capable of sensory 

processing, movement control and decision making. It had to integrate its input and output circuitry into 

this functioning brain. It is highly probable that the influence of cortex was initially sparse and 

modulatory. Reminiscent of this idea is the fact that cortical lesions have relatively subtle phenotypes in 

rodents (Kawai et al., 2015; Miri et al., 2017) compared to the dramatic effect of similar lesions in 

humans (Twitchell, 1951). The effect of motor cortex lesions is pronounced however, during certain 

forms of motor learning (Kawai et al., 2015) or when animals need to initiate a behavioral response to 

unexpected sensory feedback perturbations (Lopes et al., 2016). Thus, the function of nascent cortex 

may have been to enable behavioral alternatives, to evaluate and select novel responses to a given 

sensory input. One strategy to expand behavioral flexibility is to employ a simulation of the world that 

allows for rapid testing and continuous preparation of possible motor plans. With the increasing 



importance of social interaction and coordination, this same mechanism may have been adapted to 

model and simulate other agents in the world (Rizzolatti et al., 2001). Thus, human neocortex may be 

the product of an evolutionary arms race to build a machine that allows us to make predictions of the 

ever increasingly complex behavior of our conspecifics - or in the words of the Scottish poet Robert 

Burns: 

“But, Mousie, thou art no thy-lane, 

In proving foresight may be vain; 

The best-laid schemes o' mice an' men 

Gang aft agley, 

An' lea'e us nought but grief an' pain, 

For promis'd joy! 

 

Still thou art blest, compar'd wi' me 

The present only toucheth thee: 

But, Och! I backward cast my e'e. 

On prospects drear! 

An' forward, tho' I canna see, 

I guess an' fear!” 

Robert Burns, from “To a Mouse”.  
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Figure 1: Inter-areal communication 

(A) In the representational framework, internal representations are generated by bottom-up input, 

while top-down inputs act as modulatory signals. 

(B) In a hierarchical predictive processing framework, internal representations are updated based on a 

comparison of a top-down prediction and bottom-up input. Prediction errors are sent forward in the 

hierarchy, while predictions are sent backwards. The coordinate transformations between the different 

areas are the internal models (M). 

(C) To predict the sensory consequences of self-generated movement, motor areas provide an efference 

copy of the motor command to sensory areas. The transformation from the motor coordinate system to 

the sensory coordinate system is referred to as a forward model (e.g. what do I hear when I speak). The 

transformed efference copy that can be directly compared to sensory signals is referred to as a corollary 

discharge. The transformation from the sensory coordinates to motor coordinates is referred to as an 

inverse model (e.g. what are the muscles I need to activate to reproduce a sound I just heard). 

(D) Predictive processing does not need to follow a strict hierarchy. In the communication between two 

areas both predictions and prediction errors can be sent in both directions.  

  



Figure 2: Schematic of the canonical microcircuit for predictive processing.  

(A) Positive prediction errors are computed in Type 1 neurons [Sensory Input - Prediction (S-P)], while 

negative prediction errors are computed by Type 2 neurons [Prediction – Sensory Input (P-S)]. Triangles 

represent excitatory neurons while circles represent inhibitory neurons. Note this schematic assumes 

hierarchical processing. In the case of a non-hierarchical communication between two areas, both areas 

will send and receive both top-down-like and bottom-up-like signals.  

(B) Schematic responses of positive and negative prediction error neurons and internal representation 

neurons. Assuming the bottom-up input (S) to the circuit increases unexpectedly, positive prediction 

error neurons will fire, activating both the internal representation neurons and the top-down prediction 

(P) from a higher area. This in turn will inhibit the positive prediction error neuron. If the bottom-up 

input decreases again, negative prediction error neurons will be activated and inhibit both internal 

representation neurons and top-down predictions. Responses of all three neuron types should be 

influenced by separate gating signals that modulate response amplitude.  
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