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ABSTRACT	
	
In	 this	 work,	 I	 use	 first-principles	 molecular	 dynamics	 (FPMD)	 to	 examine	 the	
structural,	 thermodynamic	 and	 transport	 properties	 of	 silicate	 liquids	 in	 the	
extreme	conditions	associated	with	giant	impacts	and	super-Earth	interiors,	with	
temperatures	ranging	between	3000	K	and	20,000	K,	and	pressures	of	up	to	~4	
TPa.	I	focus	primarily	on	MgSiO3	liquid,	with	some	initial	results	reported	for	the	
hydrated	form	of	approximately	10	wt%	water.	
	
I	 found	that	mean	Si-O	coordination	 in	MgSiO3	 increases	 linearly	with	pressure,	
from	between	4	and	4.5	at	upper	Earth	mantle	conditions	(~2	GPa),	to	between	6	
and	6.5	in	Earth’s	lower	mantle	(~130	GPa),	and	finally	to	between	8	and	8.5	in	the	
conditions	associated	with	super-Earth	mantles	and	giant	impacts	(~2.5	to	3	TPa).			
	
Average	heat	capacity,	in	the	case	of	MgSiO3	decreases	on	compression	from	~4.6	
N	k	at	the	reference	volume	of	V/Vx=1	to	~3.35	N	k	at	the	highest	compression	
level	of	V/Vx=0.2.		
	
My	analysis	of	 self-diffusion	over	a	very	 large	pressure-temperature	 range	may	
reveal	the	limitations	of	the	Arrhenius	form,	when	applied	to	self-diffusion	in	liquid	
silicates.	 Although	 the	Arrhenius	 form	describes	 diffusive	 behaviour	 across	 the						
T-P	 (temperature-pressure)	 regime	 of	 Earth’s	 mantle,	 I	 discovered	 that	 self-
diffusion	 coefficients	 in	 the	 conditions	 of	 super-Earth	mantles	 are	much	 larger	
than	 those	 obtained	 via	 Arrhenius	 extrapolation	 from	 lower-pressure.	 This	
suggests	that	chemical	exchange	between	magma	oceans	and	the	crystals	freezing	
out	of	them	are	not	as	limited	as	what	once	might	have	been	thought.		
	
This	work	represents	the	first	step	toward	a	complete	set	of	results	for	all	materials	
studied,	including	MgSiO3,	and	hydrated	MgSiO3,	across	a	wide	temperature	and	
pressure	 regime.	 The	 results	 may	 have	 important	 implications	 for	 our	
understanding	of	the	behavior	of	silicate	liquids	in	super-Earth	magma	oceans,	and	
as	the	result	of	high	velocity	impacts.	The	work	will	motivate	experimental	studies	
of	structure	and	physical	properties	of	amorphous	silicates	over	a	wider	pressure-
temperature	regime	than	has	previously	been	explored.		
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IMPACT	STATEMENT	
	
The	overarching	goal	of	this	thesis	was	to	contribute	to	our	understanding	of	how	
silicate	liquids	behave	in	the	extreme	conditions	associated	with	planetary	impact	
events	 and	 super-Earth	 mantles.	 Throughout	 my	 time	 on	 this	 project,	 I	 was	
involved	 with	 designing	 and	 implementing	 experiments,	 generating	 data,	 and	
analyzing	and	interpreting	results.	This	lead	to	some	valuable	insights,	particularly	
to	other	researchers	within	my	own	research	field,	but	also	to	researchers	more	
broadly	involved	with	FPMD	materials	modelling	who	may	wish	explore	the	effects	
of	 ultra-high	 temperatures	 or	 pressures	 on	 their	 own	 experimental	 materials.	
Some	of	these	insights	were	technical	in	nature,	and	derived	from	my	attempts	to	
adequately	model	silicate	materials	 in	extreme	T-P	regimes	that	have	remained	
largely	 unexplored.	 In	 doing	 so,	 I	 identified	 some	 instances	 where	 existing	
analytical	techniques	proved	inadequate.		
	
For	example,	I	noted	that	there	were	two	popular	methods	for	obtaining	the	heat	
capacity;	 the	 ‘finite	 differences’	method,	 and	 the	 ‘fluctuations’	method.	 ‘Finite	
differences’	allows	 from	the	heat	capacity	 to	be	computed	directly	 from	FPMD	
results,	but	requires	data	from	two	simulation	cells,	and	approximates	the	heat	
capacity	at	a	temperature	between	the	two.	Conversely,	the	‘fluctuations’	method	
can	generate	the	heat	capacity	for	any	given	simulation	cell,	but	it	requires	that	
the	 researcher	 input	 some	 parameters	 from	 external	 models.	 I	 was	 keen	 to	
compare	how	each	method	performs	across	the	T-P	range	of	my	own	work.	The	
two	methods	agreed	well	at	temperatures	below	10,000	K,	but	diverged	at	higher	
temperatures.	On	analysis,	I	identified	that	my	group’s	method	of	estimating	the	
electronic	 contribution	 to	 the	 heat	 capacity	 –	 as	 required	 by	 the	 ‘fluctuations’	
method	 –	 broke	 down	 at	 high	 temperatures.	 A	 solution	was	 engineered	 by	 R.	
Scipioni,	 and	 reported	 in	 Scipioni	 et	 al.	 2017.	 Additionally,	 my	 self-diffusion	
analyses	 demonstrated	 that	 the	 method	 of	 linear	 extrapolation	 from	 lower	
temperature	results	does	not	yield	accurate	results.		
	
Given	the	extreme	conditions	replicated	in	the	current	work,	there	are	no	clear	
commercial	applications	that	could	derive	from	my	results.	However,	the	study	of	
silicate	 liquid	 properties	 in	 the	 conditions	 associated	with	 Earth’s	mantle	 is	 of	
considerable	importance	to	furthering	our	understanding	of	mantle	dynamics	and	
thermal	evolution	on	Earth.	These	processes	are	linked	to	tectonic	motion,	to	the	
transport	 properties	 of	 magma,	 and	 thus	 contribute	 to	 our	 understanding	 of	
volcanism	and	earthquakes.		
	
Finally,	 while	 research	 of	 this	 nature	 may	 not	 have	 practical	 applications	 to	
commerce,	 and	 nor	may	 it	 be	 particularly	 relevant	 to	 the	 great	 socio-political,	
economic,	or	technical	challenges	of	our	time,	it	 is	of	paramount	importance	to	
our	sense	of	wonder	and	curiosity	about	the	universe	around	us,	and	our	place	
within	 it.	 This	 is	 a	 powerful	means	 of	 invoking	 a	 sense	 of	 perspective,	 and	 for	
encouraging	us	to	face	these	great	challenges	together.	
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1.	INTRODUCTION		
	
	
Silicates	are	the	most	abundant	materials	on	Earth;	between	them,	silicon,	oxygen	
and	magnesium	make	up	around	85%	of	the	mantle,	which	itself	comprises	2/3	of	
Earth’s	total	mass	(Robertson,	2007).	These	rock-forming	materials	are	abundant	
throughout	 the	 rest	 of	 the	 solar	 system	 too,	 occupying	 a	 wide	 range	 of	
environments,	 from	 the	 freezing	 conditions	 at	 the	 surface	 of	 asteroids,	 to	 the	
extremely	 high	 temperature	 and	pressure	 environments	 of	 the	 gas	 giant	 cores	
(Low	et	al.,	1984;	de	Pater	&	Lissauer,	2015),	with	silicate	materials	thus	occupying	
a	corresponding	range	of	physical	states,	from	vapour,	to	liquid,	to	solid	rock.			
	
In	 the	 current	 work,	 we	 use	 first	 principles	 molecular	 dynamics	 (FPMD)	 to	
investigate	thermodynamic	properties	and	behaviours	of	fluid	silicates.	Here,	we	
place	an	emphasis	on	extending	the	results	of	previous	theoretical	work	spanning	
the	 conditions	 of	 Earth’s	 mantle,	 into	 even	 higher	 pressure	 and	 temperature	
regimes;	namely,	those	that	are	relevant	to	planetary	impact	events	of	a	Moon-
forming	magnitude,	and	to	the	interior	of	super-Earth	exoplanets.		
	
Impacts	are	known	to	occur	frequently	as	planetary	systems	accrete,	stabilise	and	
evolve	(Ciesla	et	al.,	2013).	Although	less	frequent,	giant	impacts	between	planet-
sized	bodies	also	occur,	and	may	be	no	less	ubiquitous.	Indeed,	recent	research	by	
(Quintana	et	al.,	2016)	revealed	that	Earth-analogue	planets	orbiting	Sun-like	stars	
could	expect	to	experience	at	least	one	giant	impact	during	the	first	2	Gyr	of	its	
evolution.	When	 these	 cataclysmic	 events	occur,	 they	 can	 generate	 large	 scale	
melting	and	vapourisation	of	both	 the	 target	planet	 and	 the	 impactor,	 altering	
their	thermal,	chemical	and	dynamical	evolution.	Such	an	event	is	also	the	leading	
theory	of	Moon	 formation	 (Hartmann	&	Davis,	 1975),	 although	 this	 scenario	 is	
complicated	by	the	chemical	and	isotopic	similarity	of	the	Earth	and	the	Moon.	
This	implies	that	either	the	proto-Earth	and	its	impactor	were	of	almost	identical	
composition	(considered	unlikely),	or	that	extensive	post-impact	mixing	occurred.		
	
To	gain	 some	understanding	of	Earth’s	 response	 to	 impacts	 -	 from	post-impact	
mixing	to	the	cooling	and	crystallization	of	magma	oceans,	and	from	liquid	density	
and	 crystal	 buoyancy	 to	melting	 points	 and	 phase	 transitions	 -	 we	 require	 an	
accurate	understanding	of	the	thermodynamic	and	transport	properties	of	silicate	
materials	in	extreme	conditions.	However,	while	we	have	probed	the	temperature	
and	pressure	range	of	the	Earth’s	mantle	with	both	experimental	and	theoretical	
work,	 there	 is	 currently	 a	 paucity	 of	 data	 with	 respect	 to	 more	 extreme	
environments,	due	to	the	relative	complexity	of	replicating	these	conditions.		
	
What,	more	 precisely,	 can	we	 learn	 from	directly	 studying	 silicates	 in	 extreme	
conditions?	Let’s	look	at	density,	in	the	first	instance.	Density	is	the	primary	factor	
that	 controls	 liquid	 silicate	 evolution	 at	 depth	 in	 the	mantle,	 which	 guides	 us	
toward	key	questions	over	whether	 the	melted	material	 is	 less	dense,	or	more	
dense	than	the	surrounding	solid,	and	thus	whether	is	rises	or	remains	trapped	at	
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depth.	 Certainly,	 there	 is	 seismological	 evidence	 of	 liquid	 silicates	 at	 the	 core-
mantle	 boundary	 (Williams	 &	 Garnero,	 1996),	 and	 theoretical	 evidence	 of	 the	
silicate	 liquid	 being	 denser	 than	 the	 coexisting	 solid	 in	 the	 same	 pressure-
temperature	regime	(Stixrude	&	Karki,	2005).	But	how	does	this	relationship	look	
in	the	much	higher	P-T	regimes	of	giant	impacts	and	Super-Earth	interiors,	which	
themselves	may	go	through	an	early	magma-ocean	stage,	or	giant	impact	events?		
	
We	 can	 follow	 similar	 lines	 of	 reasoning	with	 respect	 to	 extending	 previously-
explored	quantities	into	the	extremes	of	pressure	and	temperature.	For	example,	
we	can	explore	the	behavior	of	the	equation	of	state,	which	controls	the	response	
of	the	material	to	impacts,	and	determines	crystal	buoyancy;	we	can	calculate	and	
extend	the	Hugoniot	curve	for	easy	comparison	to	shock	wave	experiments,	and	
we	 can	 investigate	whether	 the	Grünisen	parameter	 of	 the	 liquid	 continues	 to	
increase	on	compression,	as	surprisingly	identified	by	Stixrude	&	Karki	(2005).	How	
does	the	heat	capacity	behave	with	respect	to	increases	in	temperature?	Does	it	
decrease,	 as	 per	 the	 fundamental	 measure	 theory	 (Rosenfeld	 and	 Tarazona,	
1998)?	Does	it	increase	with	pressure?	How	does	the	coordination	of	key	silicate	
bonds	 (such	as	Si-O)	behave	 in	 the	 liquid	under	 these	conditions?	Do	we	see	a	
liquid-liquid	phase	 transition	 in	MgSiO3	 liquid	over	 the	 range	~300-400GPa	and	
10,000	–	16,000K	as	per	Spaulding	et	al.,	2012	,	or	don’t	we?	And	what	of	chemical	
diffusion	in	the	liquid?	Does	its	behavior	continue	to	follow	the	Arrhenian	form,	as	
it	does	in	the	lower	pressure	and	temperature	regimes	of	Earth’s	mantle	(Nevins	
et	 al.,	 2009)?	What	 if	we	 include	 common	 volatiles	 such	 as	H2O	 alongside	 our	
exploration	of	bulk	 silicates	–	does	 this	 significantly	 change	any	of	our	 results?	
Finally,	 is	the	concept	of	a	silicate-dynamo	valid	(Ziegler	&	Stegman,	2013)	with	
respect	to	the	electrical	conductivity	of	silicate	liquids	in	extreme	conditions?	And,	
if	so,	is	its	strength	affected	by	proton	conductivity	in	hydrated	silicate	melts?	 
	
Constraining	 these	 thermodynamic	 and	 transport	 properties	 is	 key	 not	 only	 to	
understanding	Moon-formation,	 but	 early-Earth’s	 evolution	 too,	 particularly	 in	
terms	 of	 its	 differentiation	 into	 core,	 mantle	 and	 crust.	 In	 addition,	 further	
exploring	how	silicates	behave	in	extreme	conditions	will	also	allow	us	to	probe	
conditions	 in	 the	 interior	of	 super-Earth	exoplanets,	which	 reach	 temperatures	
and	pressures	that	are	substantially	greater	than	those	in	the	interior	of	Earth.	
	
We	explore	liquid	silicates	at	pressures	and	temperatures	ranging	from	2	GPa	to	
4.5	 TPa,	 and	 from	3000	 K	 to	 20,000	 K	 by	 performing	 first	 principles	molecular	
dynamics	 simulations	 using	 VASP.	 Our	 primary	 material	 of	 interest	 is	 MgSiO3	
liquid,	selected	both	for	its	abundance	in	the	Earth’s	mantle,	and	for	the	wealth	of	
previous	 experimental	 and	 theoretical	 data	 across	 a	 broad	 range	 of	 P	 and	 T	
regimes.	 This	 is	 supplemented	with	 some	preliminary	 studies	 on	MgSiO3	 liquid	
with	added	water	(10	wt%).	
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2.	BACKGROUND	
	
	
In	this	section,	we	will	briefly	review	a	selection	of	the	background	research,	as	
relevant	 to	 both	 giant	 impacts	 (with	 a	 focus	 on	 the	 proposed	 Moon-forming	
impact)	 and	 super-Earth	 interiors,	 drawing	 on	 a	 variety	 of	 evidence	 from	
observational,	experimental,	and	theoretical	research.	The	aim	of	this	section	is	to	
familiarise	the	reader	with	the	body	of	research	leading	up	to	that	generated	by	
the	author,	both	in	terms	of	the	more	general	work	associated	with	the	field,	and	
in	terms	of	the	specific	sets	of	results	we	aim	to	reproduce,	and	then	extend	into	
the	conditions	of	interest.	However,	before	we	do	so,	it	is	first	necessary	to	gain	
some	 understanding	 of	 the	 temperature-pressure	 regime	 relevant	 to	 giant	
impacts	and	super-Earth	 interiors,	 in	order	to	obtain	reasonable	constraints	 for	
our	own	investigation.			
	
	
2.1	Giant	Impacts	&	Super-Earths		
	
The	 physical	 and	 chemical	 evolution	 of	 Earth-like	 planets	 proceeds	 via	 the	
gravitational	separation	of	a	liquid	phase	into	dense,	metallic	core,	rocky	mantle,	
and	atmosphere	(Davies,	1982).	Giant,	high-velocity	impacts	that	occur	during	the	
latter	stages	of	planetary	accretion	are	likely	to	generate	large-scale	melting	and	
result	in	extensive	magma	oceans	that	may	encompass	much	of	the	rocky	mantle	
(Canup,	 2012;	 Elkins-Tanton,	 2012).	 Any	 further	 freezing	 of	 the	magma	 ocean	
would	lead	to	a	vast	increase	in	mantle	viscosity	(by	10	to	15	orders	of	magnitude	
–	Stixrude,	2014),	and	thus	considerably	influence	the	planets	thermal	evolution,	
geochemistry	and	magnetic	field.	Understanding	the	effects	of	planetary	melting	
and	 freezing	processes	on	 the	magnetic	 field	 is	 regarded	by	some	as	especially	
important,	due	to	its	role	in	protecting	any	extant	surface	life	(as-we-know-it)	from	
high-energy	 solar	 radiation,	 which	 may	 act	 to	 strip	 planetary	 atmospheres	 of	
water-vapour	and	other	gases	necessary	for	the	development	and	sustenance	of	
life	(Tarduno	et	al.,	2015).			
	
Academic	 dialogue	 surrounding	 planetary	 impact	 events	 tends	 to	 pay	 special	
attention	to	 the	 formation	of	 the	Moon;	 the	Moon	 is,	after	all,	our	closest	and	
most	 familiar	 astronomical	 body,	 and	 has	 been	 the	 subject	 of	 folklore	 and	
mythology	 through	human	history.	 In	 the	modern	era,	 a	number	of	 competing	
theories	have	been	proposed	to	explain	the	origin	of	Earth’s	Moon,	ranging	from	
the	Moon	being	gravitationally	captured	by	the	proto-Earth	(Gerstenkorn,	1969;	
Öpik,	 1972;	 Mitler,	 1975),	 to	 dual-accretion	 (a.k.a.	 co-formation)	 from	 the	
protoplanetary	disk	(e.g.	Weidenschilling	et	al.,	1986).			
	
In	more	 recent	 years,	 a	 range	of	 compelling	evidence	has	 supported	 the	 ‘giant	
impact	 hypothesis’,	 whereby	 the	 Moon	 accreted	 from	 an	 equatorial	 circum-
terrestrial	disk	following	an	 impact	event	between	the	proto-Earth	and	a	Mars-
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sized	 impactor	 (e.g.	 Hartman	 &	 Davis,	 1975;	 Canup	 &	 Asphaug,	 2001;	 Canup,	
2004).	This	impact	lead	to	a	differentiated	Moon	by	roughly	4.51	billion	years	ago	
(Barboni	et	al.,	2017),	according	to	the	latest	findings.		
	
Several	 lines	 of	 evidence	 support	 this	 hypothesis.	 For	 example,	we	 know	 from	
studying	lunar	rock	samples	and	their	isotopic	composition,	and	from	a	wide	range	
of	simulations,	that	the	two	bodies	are	likely	to	have	shared	a	common	origin,	and	
that	the	surface	of	the	Moon	was	likely	to	once	have	been	molten	(Wood,	1972;	
Wiechart	et	al.,	2001;	Brandon,	2007;	Elardo	et	al.,	2011;	Young	et	al,	2016).	The	
Earth’s	spin	and	the	orbital	dynamics	of	the	Moon	are	matched,	also	corroborating	
a	giant	impact	origin	(Morishima	&	Watanabe,	2004;		Ćuk	et	al.,	2016).	The	Moon	
has	a	mean	density	of	3344	kg/m3	to	the	Earth’s	5514	kg/m3	(NASA),	which	giant	
impact	 proponents	 suggest	 is	 expected,	 as	 it	 follows	 the	 conclusion	 that	 any	
dense,	 iron-rich	material	of	the	 impactor’s	core	gravitationally	merged	with	the	
iron	core	of	Earth,	leaving	the	Moon	to	accrete	from	less	dense	mantle	material.		
	
Finally,	it	helps	to	explain	why	other	planets	do	not	have	similar	moons,	such	that	
if	evolutionary	processes	were	responsible	for	the	Earth-Moon	system,	we	should	
expect	to	see	similar	systems	appear	more	commonly	elsewhere;	instead,	invoking	
a	 stochastic	 catastrophe	 explanation,	 such	 as	 giant	 impact	 events,	may	 better	
explain	what	we	observe	(Hartmann,	1997).		
	
The	giant	impact	hypothesis	is	by	no	means	uncontested,	and	the	evidence	for	it	
remains	 incomplete.	 For	 example,	 if	 the	Moon	 accreted	 from	 ejected	material	
orbiting	 the	 Earth’s	 equator,	 then	 the	 Moon	 should	 orbit	 in	 the	 plane	 of	 the	
ecliptic,	when	it	is	instead	tilted	five	degrees	off.	This	implies	that,	although	models	
have	been	successful	in	matching	the	Moons	mass	and	the	rotational	rates	of	Earth	
and	 the	 Moon,	 some	 unknown	 dynamical	 process	 –	 for	 example,	 subsequent	
impacts	-	must	be	invoked	in	order	to	explain	orbital	tilt	(e.g.	Touma	&	Wisdom,	
1998;	Ward	&	Canup,	2000;	Pahlevan	&	Morbidelli,	2015).		
	
In	addition,	 lunar	and	Earth	materials	are	more	 isotopically	similar	than	what	 is	
expected	in	the	aftermath	of	an	impact	that	does	not	violate	angular	momentum	
constraints.		In	other	words,	impact-based	models	that	most	accurately	replicate	
Earth-Moon	masses	 and	dynamics,	 are	 also	 those	 in	which	 the	 impactor	 is	 the	
primary	contributor	to	the	Moons	mass,	so	we	should	expect	to	see	more	clear	
chemical	 differentiation	 in	 the	 samples	 	 (Burkhardt,	 2014;	 Young	 et	 al.,	 2016).	
Despite	these	inconsistencies,	for	the	giant	impact	scenario	to	work,	researchers	
have,	 to-date,	 invoked	 sets	 of	 very	 specific	 conditions,	 each	 of	 which	 further	
reduce	the	probability	of	the	event.		
	
These	 evidential	 gaps	 have	 led	 some	 researchers	 to	 provide	 updated	 and	
alternative	 impact-oriented	 solutions	 to	 the	 Moon’s	 origin	 story,	 in	 order	 to	
account	 for	 these	 inconsistencies.	 Rufu	 et	 al.,	 (2017)	 suggest	 that	 the	 Moon	
originated	not	 from	a	single	 impact	event,	but	 from	a	series	of	smaller	 impacts	
during	 the	 solar	 system’s	 tumultuous	 early	 evolution.	 From	 their	 numerical	
simulations,	they	demonstrate	a	scenario	and	a	timescale	whereby	each	collision	
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creates	 a	 debris	 disk	 around	 the	 proto-Earth	 which	 then	 accretes	 to	 form	 a	
‘moonlet’.	They	find	that	sub-lunar	moonlets	occur	commonly	following	smaller	
impacts	that	are	expected	to	have	been	common	in	the	early	Solar	System,	and	
that	 planetary	 rotation	 limits	 the	 drain	 of	 impact	 angular	 momentum.	 Their	
concept	 then	 requires	 that	 the	 separate	moonlets	each	advance	outward	 from	
Earth	tidally,	before	eventually	merging	to	form	the	Moon	as	we	know	it	today	
(Fig.	1).			
	
	

 
Figure 1: A multiple-impact origin for the Moon. A series of smaller impacts each create debris disks, which 
accrete into ‘moonlets’. Moonlets migrate outward before eventually merging to become the Moon. Image from 
Rufu et al., (2017).	

	
	
Meanwhile,	Ćuk	&	Stewart	(2012)	and	Ćuk	et	al.,	(2016)	propose	a	variant	of	the	
single-impact	 origin	 in	 which	 Earth-Moon	 system	 is	 a	 product	 not	 of	 a	 single,	
glancing	blow,	but	of	an	extremely	high-velocity,	high-energy,	head-on	collision.	
During	this	collision,	the	energy	is	such	that	the	material	from	the	proto-Earth	and	
the	impactor	become	highly	mixed,	accounting	for	the	isotopic	similarities	that	we	
see	today.	They	find	that	an	impact	of	this	nature	results	initially	with	the	accretion	
of	the	Moon	from	highly-mixed	material	in	equatorial	orbit	around	an	initially	fast-
spinning,	 high-obliquity	 Earth.	 As	 their	model	 evolves	 dynamically,	 the	Moon’s	
orbit	is	affected	by	solar	perturbations,	inducing	the	lunar	inclination	and	lessening	
the	angular	momentum	of	the	Earth-Moon	system.	Canup	(2012)	also	explored	
Moon-formation	with	an	extra-large	impactor,	showing	that	these	can	produce	a	
disk	 with	 a	 composition	 similar	 to	 that	 of	 Earth’s	 mantle,	 and	 suggested	 that	
angular	momentum	could	be	removed	from	the	system	via	resonance	with	the	
Sun.		
	
These	latest	Moon	formation	hypotheses	therefore	also	support	an	impact	origin,	
albeit	 with	 variations	 that	 attempt	 to	 negate	 prior	 inconsistencies.	 Thus,	 we	
consider	it	justifiable	to	use	some	of	the	more	recent,	and	well-received	studies	in	
constraining	 the	 temperature-pressure	 environment	 of	 the	 current	 work.	 To	
model	 the	 Moon-forming	 giant	 impact,	 Canup	 (2004)	 conducts	 around	 100	
smooth	 particle	 hydrodynamic	 simulations;	 a	 Lagrangian	 technique	 whereby	 a	
large	number	of	overlapping	particles	which	are	 tracked	over	 time	 (in	 terms	of	
changes	in	e.g.	position,	velocity,	internal	energy)	and	used	to	represent	a	given	
material.	They	consider	impactors	and	targets	with	a	composition	of	30%	iron	and	
70%	 silicate	 (forsterite/dunite)	 by	 mass,	 differentiated	 into	 core	 and	 mantle,	
respectively,	and	include	up	to	120,000	particles	per	simulation.		
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In	generating	their	initial	conditions,	one	approach	used	by	Canup	(2004)	was	via	
collisional	generation,	whereby	an	iron	particle	is	projected	into	a	dunite	target.	
For	 a	 nearly-Earth	 sized	 target	with	 a	 nearly-Mars	 sized	 impactor,	 this	 process	
generates	temperatures	ranging	between	2000	K	and	20,000	K,	which	the	authors	
state	 would	 be	 expected	 temperatures	 if	 a	 planet	 had	 recently	 experienced	
another	 large	 impact,	 or	 had	 cooled	 inefficiently	 (they	 call	 this	 a	 ‘hot	 start’	
scenario).	 As	 such,	 although	 the	 simulations	 themselves	 generate	 post-impact	
silicate	temperatures	of	between	2000	K	to	10,000	K	(Fig.	2),	we	select	20,000	K	as	
the	upper-bound	temperature	for	our	own	work,	to	account	for	the	possibility	of	
a	‘hot	start’.			
	

 
Figure 2: The post-impact proto-Earth. (a) The temperatures (K) of a 2000 km thick slice through the proto-
Earth, parallel with the equatorial plane of the planet. (b) The same slice, however, in this case colour scales 
to particle origin, with the red particles originating from the impactor, and blue from the target. From Canup 
(2004).  

		
To	gain	some	understanding	of	the	maximum	pressures	experienced	by	materials	
during	impacts,	we	first	turn	to	the	Rankine-Hugoniot	equations,	first	derived	by	
W.J.M.	Ranking	(1870a,	1870b)	and	P.H.	Hugoniot	(1887,	1889).	During	an	impact	
event,	both	the	projectile	and	the	target	are	compressed,	generating	strong	shock	
waves.	 The	 Rankine-Hugoniot	 equations	 relate	 quantities	 in	 front	 of	 the	 shock	
(subscript	0)	to	quantities	behind	the	shock	(no	subscript),	as	shown	below:	
	
	
𝜌 𝑈 − 𝑢% = 𝜌'𝑈																																																																																																								[1]	

	
𝑃 − 𝑃' = 	𝜌'𝑢%𝑈																																																																																																										[2]	

	

𝐸 − 𝐸' =
1
2 𝑃 + 𝑃'

1
𝜌'
−
1
𝜌 																																																																																				[3]				

	
	
where	𝑃	 is	pressure,	𝜌	 is	density,	𝑢%	is	particle	velocity	behind	 the	 shock,	 (any	
unshocked	material	is	assumed	to	be	at	rest),	𝑈	is	shock	velocity,	and	𝐸	is	internal	
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energy	(per	unit	mass).	Respectively,	these	relations	represent	the	conservation	
of	mass,	momentum	and	energy	across	 the	shock	 front.	 In	order	to	specify	 the	
outcome	of	(in	this	case)	an	impact,	we	must	supplement	these	relations	with	an	
equation	 of	 state,	 which	 relates	 pressure,	 density	 and	 internal	 energy	 (𝑃 =
𝑃(𝜌, 𝐸))	for	all	materials.	When	used	in	combination,	we	are	able	to	compute	the	
maximum	pressure,	particle	velocity	and	shock	velocity	of	a	given	impact	(Melosh,	
1989).	
	
	
Table 1: Maximum shock pressures in vertical impacts. From Melosh (2013). 

Impact	Velocity	
(km/s)	

Pressure	(GPa)	
	

	 Iron	on	Basalt	 Basalt	on	Basalt	 Serpentinite	on	Ice		
5	 78	 48	 22	
7.5	 150	 93	 44	
10	 250	 150	 73	
15	 500	 320	 160	
30	 1800	 1200	 580	
45	 3900	 2500	 1300	

	
	
	
	
Stixrude	(2014)	explored	the	melting	of	silicate	materials	both	as	a	response	to	
giant	 impacts,	 and	 in	 the	 interior	of	 super-Earths.	 Following	Tonks	 and	Melosh	
(1993),	 the	 author	 selected	 dunite	 as	 a	 reasonable	 and	 convenient	 analogue	
material	 for	 the	 rocky	 component	 of	 planetary	 mantles,	 primarily	 because	 its	
Hugoniot	is	well-characterised	and	studied.	They	found	that	the	isobaric	core	of	
the	impact	(an	internal	tangent	sphere	with	a	radius	equal	to	that	of	the	impactor)	
is	entirely	melted	following	an	impact	with	a	critical	velocity	of	just	8.6	km/s	(Fig.	
3).	 This	 is	 equivalent	 to	 the	 escape	 velocity	 for	 a	 planet	 of	 just	0.5𝑀⨁	 (Earth	
masses),	and	is	a	low	velocity	compared	with	typical	impact	velocities	of	late-stage	
accretion,	 which,	 according	 to	 the	 Nice	 model	 (Gomes	 et	 al.,	 (2005)),	 was	
approximately	 21 − 25	km/s.	 Thus,	 we	 can	 feasibly	 justify	 an	 exploration	 of	
impact-generated	 fluid	 silicates	 within	 a	 pressure-temperature	 regime	
constrained	up	to	20,000	K,	and	up	to	several	TPa.	
	
The	 analysis	 of	 Tonks	&	Melosh	 (1993)	was	 also	 applied	 by	 Stixrude	 (2014)	 to	
understanding	impact	melting	in	more	general	terms,	taking	into	account	a	wide	
range	of	rocky-planet	masses	–	from	sub-Earth	to	super-Earth	-	and	the	possibility	
of	 impacts	 occurring	 during	 accretion	 and	 heating	 the	 proto-planets,	 and	
concluded	that	many	super-Earths	may	be	entirely	molten	by	the	end	of	accretion.		
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Figure 3: The fraction of planetary mass melted during impact as a function of planetary mass, assuming the 

minimal impact velocity of 11.2 km/s.   
=>

=?
= 0.1	for solid lines and  

=>

=?
= 0.4 for dashed lines (where 𝑀A and 

𝑀% are impactor and planet mass, respectively). The blue lines represent an initial temperature of 300 K while 
the red lines are the solidus temperature. Inset bottom right is the distribution of melt fraction for 𝑀% = 5𝑀⨁,     
=>

=?
= 0.1 and initial temperature is at the solidus temperature. The pink circle is entirely molten. From Stixrude 

(2014).	

	
But	what	are	the	conditions	experienced	by	materials	in	the	interior	of	super-Earth	
exoplanets,	and	do	we	expect	silicate	materials	 to	occupy	a	 fluid	state	 in	 these	
extreme	pressure	environments,	even	at	 temperatures	as	high	as	20,000	K?	To	
gain	 some	 understanding,	 particularly	 in	 terms	 of	 constraining	 the	 pressure-
temperature	regime	of	super-Earth	interiors,	we	turn	to	the	example	of	previous	
theoretical	 and	 experimental	 work	 in	 the	 literature.	 Among	 the	 more	 recent	
experimental	studies,	Millot	et	al.,	(2015)	used	laser-driven	shock	experiments	to	
emulate	 the	 pressure	 and	 temperature	 conditions	 expected	 within	 rocky	
exoplanets,	ranging	from	1	𝑀⨁to	roughly	15	𝑀⨁.	Here,	they	expose	a	variety	of	
Earth	materials	 (namely	 fused	 silica,	𝛼-quartz	 and	 stishovite)	 to	 intense	 laser-
driven	shock	compression,	obtaining	pressure-density	data	for	up	to	2.5	TPa	and	
several	tens	of	thousands	of	Kelvin	(Fig.	4).		
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Figure 4: Laser shock compression of silicate materials; experimental concept. (A) A large stishovite crystal 
is synthesized at 13.5 GPA and 1800 K. (B) Intense laser pulse is focused on the ablator layer and a shock 
wave is sent through the planar package. From Millot et., al. (2015) 

	 
They	 documented	 the	 pressure-temperature	 equation-of-state	 of	 each	 of	 their	
starting	materials,	as	well	as	optical	properties	(and	hence	electrical	conductivity).	
They	also	derived	a	new	experimental	SiO2	melting	line,	and	plotted	it	alongside	
derived	and	extrapolated	melting	lines	for	MgSiO3,	MgO,	and	Fe,	with	a	scale	that	
shows	 the	 expected	 core-mantle	 boundary	 pressure	 for	 Earth-like	 large	
exoplanets.	We	can	see	from	Fig.	5	that	the	derived	melting	line	for	MgSiO3	that,	
at	20,000	K,	MgSiO3	is	expected	to	be	molten	at	core-mantle	pressure	boundaries	
for	super-Earths	of	up	to	10	𝑀⨁	(roughly	1	TPa).		
	

 
Figure 5: Taken from Millot et al., 2015 (Fig. 3b). Experimental SiO2 melting line and core-mantle boundaries 
(gray circle) for Earth, Uranus, Neptune, Saturn and Jupiter (E, U, N, S, J, respectively). Melting lines of other 
materials (MgSiO3 line from Stixrude, 2014) shown for comparison. Dashed lined indicate extrapolation. Top 
scale gives core-mantle boundary pressure conditions for Earth-like exoplanets as a multiple of earth’s mass 
(e.g. 1 .. 15𝑀⨁). Inset shows discovered exoplanets and the mass-radius relation for pure iron, water, or Earth-
like structures that allow us to identify potentially terrestrial exoplanets.   	
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From	the	perspective	of	probing	fluid	silicate	behaviours	within	super-Earths,	 it	
thus	 seems	 reasonable	 to	 explore	 temperatures	 ranging	 up	 to	 20,000	 K	 and	
pressures	up	to	several	TPa,	as	these	conditions	are	as	equally	applicable	to	the	
super-Earth	 temperature-pressure	 regime	 as	 to	 the	 super-Earth	 interior	
temperature-pressure	regime.	Now	that	we	have	a	better	idea	of	our	constraints,	
we	can	discuss	the	specific	materials	that	we	wish	to	examine,	and	the	properties	
that	we	might	like	to	analyse	in	order	to	better	understand	the	behavior	of	fluid	
silicates	in	extreme	conditions.		
	
	
	
	
2.2.		Silicate	Melts		
	
	
For	 the	 purposes	 of	 the	 current	 thesis,	we	 have	 decided	 to	 focus	 primarily	 on	
MgSiO3.	This	selection	has	been	made	both	because	MgSiO3	perovskite	is	the	most	
abundant	mineral	phase	in	Earth’s	mantle	(Murakami	et	al.,	2007),	and	because	
the	abundance	of	previous	experimental	and	theoretical	work	on	MgSiO3	melt	in	
less	extreme	conditions	(including	that	produced	by	the	current	authors	research	
group)	provides	an	excellent	reference	point	upon	which	we	can	extend.	The	main	
body	 of	 work	 is	 supplemented	 with	 some	 preliminary	 results	 from	 a	 short	
investigation	 into	 how	 the	 addition	 of	 water	 can	 affect	 a	 variety	 of	 material	
properties	in	these	conditions.	Before	we	discuss	the	background	theory	of	first	
principles	molecular	dynamics	 (the	computational	approach	used	to	model	and	
investigate	 our	 chosen	 materials),	 and	 the	 specific	 methods	 employed	 in	
generating	 our	 results,	 we	 must	 first	 specify	 the	 properties	 of	 interest	 in	 the	
current	study,	and	explore	the	related	academic	landscape.		
	
Broadly	 speaking,	 the	 work	 contained	 in	 this	 thesis	 can	 be	 broken	 into	 three	
distinct	‘groups’	of	results:	those	related	to	the	structural,	the	thermodynamic,	or	
the	transport	properties	of	a	given	system.	Structural	properties	describe	how	the	
atoms	in	a	system	relate	to	one	another.	Here,	we	consider	the	radial	distribution	
function,	mean	coordination	number,	and	average	bond	length,	throughout	the	
body	of	work.	The	thermodynamic	properties	that	we	examine	include	pressure,	
heat	capacity,	and	Grüneisen	parameter,	as	well	as	the	equation	of	state,	which,	
for	example,	is	an	important	factor	in	understanding	the	relative	density	of	partial	
melts	 produced	 during	 impacts	 or	 in	 the	 extreme	 conditions	 of	 super-Earth	
interiors,	and	whether	the	melts	are	likely	to	rise	or	sink	(Karki	et	al.,	2006).	Finally,	
the	dynamical	properties	of	interest	include	the	self-diffusion	coefficients	of	the	
material	 components,	 which	 relate	 to	 the	 rate	 of	 chemical	 reactions	 between	
liquids	and	their	surroundings,	and	which	can	be	related	to	viscosity	and	thus	rate	
of	 transport.	 Note	 that	 this	 material	 will	 be	 covered	 in	 a	 primarily	 qualitative	
manner	in	this	section;	they	will	be	given	a	more	rigorous,	quantitative	treatment	
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in	the	‘Methods’	section	below.	For	now,	our	aim	is	merely	to	provide	an	overview	
of	some	of	the	previous	work	that	has	informed	the	basis	of	this	thesis.	We	start	
with	 the	 structural	 properties,	 and	 continuing	 to	 thermodynamic	 and	 finally,	
transport	properties.		
	
The	radial	distribution	function	(RDF)	describes	the	probability	of	finding	another	
atom	at	a	distance	r	from	another	atom.	We	can	use	the	periodicity	of	computed	
supercells	(described	in	‘Methods’)	to	extend	the	system	and	calculate	the	RDF	at	
distances	 that	 are	 larger	 than	 the	 sizes	 of	 the	 simulation	 cells.	 We	 can	 also	
calculate	the	partial	RDFs	between	specific	atomic	pairs	(such	as	Si-O,	Mg-O	or	O-
O)	to	determine	the	level	of	short	or	long	range	order	of	the	system.	In	this	study,	
we	primarily	use	the	RDF	as	a	diagnostic	 tool,	 in	 terms	of	gauging	whether	 the	
order	of	the	system,	and	contribute	to	confirming	whether	or	not	we	are	dealing	
with	a	solid	or	a	liquid,	as	outlined	in	later	sections.	As	such,	we	will	not	discuss	
the	RDF	in	detail	here,	in	terms	of	the	results	that	we	wish	to	compare	to.		
	
Thus,	the	first	structural	property	that	we	will	discuss	is	coordination	number,	and,	
in	doing	so,	we	will	take	the	opportunity	to	introduce	the	specific	paper	that	forms	
the	basis	for	much	of	this	thesis,	in	terms	of	replicating	–	and	extending	upon	–	
results.	 Stixrude	 et	 al.	 (2005)	 performed	 a	 similar	 set	 of	 analyses	 to	 those	
performed	over	the	course	of	the	current	work.	Using	first	principles	molecular	
dynamics,	they	analysed	the	structure	and	thermodynamic	properties	of	MgSiO3	
liquid	over	the	pressure	regime	of	the	Earth’s	mantle,	and	at	temperatures	ranging	
between	 3000	 K	 and	 6000	 K.	With	 respect	 first	 to	 coordination	 number,	 they	
inspected	 the	 equilibrated	 liquid	 structure	 and	 found	 that	 compression	 had	 a	
substantial	 effect	 on	 atomic	 arrangement.	 At	 the	 reference	 volume	 (an	
experimental	zero-pressure	volume,	as	used	in	the	current	work,	and	discussed	in	
‘Methods’),	Si-O	coordination	is	four-fold,	as	it	is	for	the	stable	crystalline	phase	
(pyroxene)	at	that	pressure,	minus	the	long-range	order	exhibited	by	the	crystal.		
	
Through	 the	 analysis	 of	 data	 produced	 via	 first-principles	 molecular	 dynamics	
(FPMD)	simulations,	Stixrude	et	al.	 (2005)	found	that	Si-O	coordination	number	
changed	almost	linearly	from	4	to	6	across	the	pressure	range	of	the	mantle	(up	
to	~150	GPa	-	see	Fig.	6)	contrary	to	the	predictions	of	Rigden	et	al.,	(1988),	who	
suggested	that	the	coordination	change	would	take	place	over	a	narrow	pressure	
interval.	Spera	et	al.,	(2011),	used	empirical	potential	molecular	dynamics	(EPMD)	
to	investigate	liquid	MgSiO3	over	temperature	and	pressure	ranges	relevant	to	the	
Earth’s	mantle,	and	found	results	in	agreement	with	the	FPMD	results	of	Stixrude	
and	Karki	(2005).	In	the	current	work,	we	aspire	to	extend	this	analysis	of	mean	
coordination	number	(and	coordination	fraction,	given	the	greater	disorder	of	the	
molten	 system	 as	 opposed	 to	 crystalline)	 into	 the	 ultrahigh	 temperature	 and	
pressure	regime	of	super-Earths	and	giant	impacts.		
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Figure 6: (Top) Mean Si-O coordination in MgSiO3 liquid at 3000 K (blue), 4000 K (green), 6000 K (red), with 
crystalline phases shown over approximate range of stability. (Bottom) Distribution of Si-O coordination 
environments along the 3000 K isotherm. Snapshots from V/Vx=1.0 (right) and V/Vx=0.5 (left) are also shown, 
with Si-O polyhedral in blue and Mg ions in yellow. Taken from Stixrude et al., (2005).  	

	
Stixrude	 et	 al.,	 (2005)	 also	 computed	 the	 isochoric	 heat	 capacity	 (Cv)	 and	 the	
Grüneisen	parameter	of	the	liquid	directly	from	their	simulations.	They	found	that	
the	isochoric	heat	capacity	decreases	by	around	10%	over	the	pressure	regime	of	
the	mantle,	while	the	Grüneisen	parameter	 (𝛾)	 increases	by	roughly	a	 factor	of	
three	over	the	same	range,	reflecting	the	increase	in	thermal	pressure	(see	Fig.	7	
&	8).	This	was	an	important	result,	given	that	all	known	mantle	crystalline	phases	
show	a	decrease	in	𝛾	on	compression	(Stixrude	&	Lithgow-Bertelloni,	2005).		
	
The	authors	explained	that	this	unusual	behavior	was	best	understood	from	the	
perspective	of	changes	in	liquid	structure	in	compression.	For	crystalline	phases,	
experimental	 data	 shows	 that	 compression	 reduces	 the	 value	 of	 𝛾	 in	 each	
individual	mineral	phase,	but	polymorphic	phase	 transformations	have	a	 larger	
and	 opposing	 effect,	 with	 the	 larger	 value	 of	 𝛾	 being	 shown	 by	 the	 higher	
coordinated	phase.	Given	that	the	coordination	number	of	the	liquid	increases	on	
compression,	 the	 liquid	 adopts	 values	 of	 𝛾	that	 are	 characteristic	 of	 the	more	
highly	 coordinated	 state;	 this	 is	 consistent	 with	 theoretical	 and	 experimental	
analyses	 of	 how	 coordination	 changes	 on	 increased	 pressure	 can	 influence	 𝛾	
(Jeanloz	&	Roufosse,	1982;	Wasserman	et	al.,	1996;	Vočadlo	et	al.,	2003),	and	the	
theoretical	results	from	FPMD	have	been	repeated	on	several	occasions	since	the	
publication	of	Stixrude	et	al.,	(2005)(see	e.g.	Karki	et	al.,	(2007)	and	De	Koker	&	
Stixrude	(2009)).			
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However,	 what	 is	 currently	 unknown,	 is	 whether	 this	 approximately	 linear	
increase	 in	𝛾	 on	 compression	will	 continue	 into	 the	ultrahigh	 temperature	and	
pressure	regimes.	
	

 
Figure 7: Mie-Grüneisen equation of state for MgSiO3 liquid (lines) with FPMD results (open symbols) plotted 
at 3000 K, 4000 K and 6000 K (blue, green and red, respectively). (Inset) Grüneisen parameter of the liquid 
(open circles) and perovskite (open squares) from FPMD simulations, with experimental value for the liquid 
at ambient melting point.	𝛾	for	the	solidus	crystalline	phases	at	ambient	conditions	(filled	squares)	and	under	
compression	(dotted	lines)	also	shown.	From	Stixrude	et	al.,	(2005).	   

 

 
Figure 8: (b) Equation of State for MgSiO3 liquid, where purple circles are at 2000 K, blue is 3000 K, green is 
4000 K, yellow is 6000 K and red is 8000 K.   (d) is isochoric heat capacity and (e) is Grüneisen parameter, 
where in each case the white circles are average values from Stixrude and Karki (2005), except at the V/Vx=0.4 
volumes, and the 2000 K cases.   
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In	the	current	work,	we	also	consider	both	the	mean	squared	displacements	and	
the	self-diffusion	coefficients.	This	allows	us	to	gain	some	insight	into	the	rate	of	
mass	 transfer,	 and	 ultimately,	 the	 time	 taken	 for	 a	 system	 to	 reach	
thermodynamic	equilibrium.	 In	 this	work,	we	don’t	 explicitly	 examine	 chemical	
diffusion	–	defined	broadly	as	both	local	and	directional	mass	transfer	in	response	
to	chemical	potential	differences.	Instead,	we	consider	the	measure	of	the	random	
walk	of	a	material’s	constituents	in	the	absence	of	chemical	gradients	–	i.e.	self-
diffusion.		
	
In	previous	FPMD	work	across	the	temperature-pressure	range	of	Earth’s	mantle,	
self-diffusivities	 of	 Mg,	 Si	 and	 O	 in	 MgSiO3	 and	Mg2SiO4	 liquid,	 have	 shown	 a	
pressure	and	temperature	dependence	that	fits	very	well	to	an	Arrhenian	form,	
and	 the	 fit	 parameters	 are	 found	 to	 be	 independent	 of	 temperature	 over	 this	
range	(Lacks	et	al.,	2007;	De	Koker	et	al.,	2007;	Nevins	et	al.,	2009).	According	to	
the	FPMD	simulations	of	Karki	&	Stixrude	(2010),	the	overall	viscosity	of	MgSiO3	
liquid	 increases	 with	 temperature	 and	 pressure,	 with	 a	 10-fold	 increase	 along	
model	geotherms,	from	the	surface	to	the	base	of	the	mantle.	On	the	introduction	
of	 water	 to	 this	 temperature-pressure	 environment,	 viscosity	 is	 systematically	
lowered,	thus	increasing	mean	self-diffusion.	Will	this	remain	true	for	the	ultrahigh	
temperature	and	pressure	regimes	of	interest	in	this	work?		
	
These	FPMD	findings	are	corroborated	by	Adjaoud	et	al.	(2011),	who	performed	
large-scale	classical	molecular	dynamics	simulations	(2016	ions,	288	formula	units)	
on	self-diffusivity	and	viscosity	in	Mg2SiO4	melt.	They	found	that	a	closed	Arrhenius	
expression	was	readily	fitted	to	both	transport	properties	over	the	temperature	
and	 pressure	 regime	 explored	 (up	 to	 32	 GPa	 and	 between	 2600	 and	 3200	 K),	
however,	it’s	worth	noting	that	this	range	is	much	smaller	than	the	range	that	we	
aim	to	explore	in	the	current	work.		
	
Meanwhile,	exploring	the	affect	from	volatile	addition,	the	FPMD	simulations	of	
Ghosh	 &	 Karki,	 (2017),	 demonstrated	 that	 dissolved	 CO2	 –	 thought	 to	 be	 the	
second	 most	 abundant	 volatile	 in	 silicate	 melts	 on	 Earth	 -	 also	 systematically	
enhanced	the	diffusivity	of	the	constituent	elements	of	MgSiO3,	and	the	electrical	
conductivity,	lowering	viscosity	by	a	factor	of	1.5	–	3	over	the	pressure	range	of	
Earth’s	mantle.		
	
In	the	case	of	hydrated	MgSiO3,	some	interesting	research	possibilities	arise	from	
tracking	the	diffusivity	of	hydrogen.	For	example,	in	extreme	conditions,	we	might	
feasibly	ask	whether	or	not	hydrogen	is	ionic,	and	thus,	what	the	strength	of	any	
proton	 conductivity	 might	 be,	 in	 relation	 to	 the	 electrical	 conductivity	 of	 the	
system.	 It	 has	 been	 suggested	 that	 spontaneous,	 impact-generated	 magnetic	
fields	 might	 be	 behind	 the	 anomalously	 high	 thermal	 magnetic	 remanence	
observed	in	the	early-Lunar	impact	melt	returned	from	Apollo	17	(Sugiura,	1979)	
as	well	as	a	variety	of	more	broad-scale	magnetic	anomalies	(Crawford	&	Schultz,	
1988;	Oran	et	al.,	2015)).	How	might	this	process	have	been	affected	for	impacts	
on	planets	with	water,	and	thus	hydrogen?		
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These	are,	of	course,	arguably	even	more	important	considerations	with	respect	
to	 magnetic	 field	 generation	 in	 the	 interior	 of	 super-Earths,	 with	 the	 well-
documented	 link	between	the	survival	of	complex	 life	on	Earth,	and	 its	 level	of	
shielding	from	high	energy	solar	and	cosmic	particles.		

	
	

	

 
Figure 9: Self-diffusion of Mg2SiO4 liquid over the temperature-pressure range of Earth’s mantle at 3000 K, 
4000 K and 6000 K (blue, green, red, respectively), fit with an Arrhenius relation. Open diamonds show 
empirical potential calculations from Lacks et al., (2007). Taken from De Koker et al., (2008). 	
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Figure 10: Self-diffusion of hydrogen in hydrated MgSiO3 liquid at 3000 K, where blue is 3000 K, green is 
4000 K and red is 6000 K. Fitting performed via the Arrhenius relation. The value of diffusivity agrees well 
with that extrapolated to 3000 K from lower temperature, low pressure experiments on basaltic melt 
(Mookherjee et al., 2008) indicating that proton diffusivity is not strongly dependent on the composition of the 
melt. 	

	
	

𝝆(𝒈/𝒄𝒎𝟑) 𝑷(𝑮𝑷𝒂) 𝑫𝑶	𝟏𝟎𝟏𝟎𝒎𝟐/𝒔 𝑫𝑺𝒊	𝟏𝟎𝟏𝟎𝒎𝟐/𝒔 𝑫𝑴𝒈	𝟏𝟎𝟏𝟎𝒎𝟐/𝒔 
2.198 −1.09 23.1 15.5 114 

2.3624 −0.32 25.4 19.8 108 
2.6012 1.54 30.9 20.7 105 
2.7967 3.67 34.7 25.6 99.9 
2.9943 6.39 35.4 24.4 79.9 
3.401 14.3 26.2 17.7 47.7 

3.7982 26.9 12 7.66 24.2 
4.1939 46.8 2.53 1.76 7.31 

Table 2: Property data for MgSiO3 melt at 3000 K, from Lacks et al., (2007), including density, pressure, and 
diffusivity of the three atomic components	
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3. THEORY	
	
	
The	extreme	conditions	of	 temperature	and	pressure	that	are	relevant	 to	giant	
impact	 events	 –	 and	 to	 the	 interiors	 of	 Super	 Earth	 exoplanets	 –	 are	 largely	
inaccessible	 by	 experimental	 studies.	However,	 direct	 experimental	 studies	 are	
only	one	way	of	investigating	the	properties	of	matter	in	a	variety	of	conditions.	
Another	method	relies	on	the	observation	that	many	physical	phenomena	can	be	
explained	and	predicted	by	analysing	the	behaviour	of	electrons	as	they	interact	
with	each	other,	with	atomic	nuclei,	electromagnetic	fields	and	other	fundamental	
forces.	 Indeed,	 it	 is	 possible	 to	 quantitatively	 predict	 certain	 properties	 of	
materials	 in	a	given	set	of	conditions,	using	quantum	mechanical	principals,	the	
periodic	table,	and	computational	techniques.		
	
The	most	commonly	used	method	of	achieving	this	–	and	that	which	is	used	in	the	
current	 work	 -	 is	 to	 perform	 first	 principles	molecular	 dynamics	 (FPMD)	 using	
density	functional	theory	(DFT).	In	this	chapter,	we	discuss	the	general	background	
theory	to	this	approach	-	 including	some	basic	electronic	structure	theory	-	and	
leading	up	to	an	overview	of	the	development	of	DFT.		
	
	
	

3.1 FUNDAMENTALS		
	
In	 the	 current	 work,	 our	 primary	 objective	 is	 to	 understand	 the	 properties	 of	
common	Earth	materials	(MgSiO3	and	select	volatiles),	by	examining	the	behaviour	
of	the	same	materials	at	the	atomic	scale.	In	approaching	this	problem,	it	is	useful	
to	recall	that	these	materials	are	best	conceptualised	–	in	the	first	instance	-	as	a	
collection	 of	 electrons	 and	 nuclei	 that	 are	 held	 together	 with	 a	 balance	 of	
attractive	and	repulsive	forces	governed	by	the	Coloumb	interaction.		
	
It	is	instructive	to	observe	how	the	kinetic	energy	of	the	electrons	and	nuclei,	and	
the	 repulsive/attractive	 forces	 between	 electrons-electrons,	 nuclei-nuclei,	 and	
electrons-nuclei,	all	interact	in	atomic	units	as	follows:	
	
	
𝐻 = −V

W
∇AWA +	 YZ

[>\]ZA,^ + V
W

V
[>\[_A`a −	 V

W=Z
^ ∇^W +

V
W

YZYb
]Z\]b^`c 	,											[4]	

	
	
where	 𝐻	 is	 the	 many-body	 Hamiltonian	 operator,	 summations	 over	 i	 and	 j	
represent	the	electrons	of	the	system,	and	summations	over	I	and	J	represent	the	
nuclei.	 The	 kinetic	 energy	 terms	 are	 represented	 by	 the	 spatial	 differential	
operator	∇	and	𝑀^	is	the	mass	of	the	𝐼ef	nucleus,	𝑍^	the	atomic	number,	and	the	
positions	of	the	electrons	and	nuclei	are	denoted	by	the	three-dimensional	vectors	
𝑟A 	and	𝑅^,	respectively.		
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We	now	introduce	the	wavefunction	Ψ(	𝒓𝑵,t),	where	t	is	time	and	𝒓𝑵	represents	
the	positions	of	all	the	electrons	in	the	system.		The	square	of	the	wavefunction	
represents	 the	 probability	 density	 of	 electrons.	 Incorporating	 this	 probability	
density	function	brings	us	to	the	many-body	Schrödinger	equation;	one	of	the	core	
relations	of	quantum	mechanics,	and	one	that	gives	us	almost	everything	we	need	
to	know	to	study	the	behavior	of	materials.		
	
	
	

−
∇AW

2
	−

A

∇^W

2𝑀^
−

𝑍^
𝑟A − 𝑅^

+
1
2

1
𝑟A − 𝑟a

+
1
2

𝑍^𝑍c
𝑅^ − 𝑅c

+	
^`c

	
A`aA,^^

Ψ = 𝐸emeΨ	

	
	 	 	 	 	 	 	 	 	 														[5]	
	
	
When	materials	are	modelled	using	first	principles	methods,	 it	 is	this	version	of	
the	time-independent	many-body	Schrödinger	equation	that	is	most	often	used,	
clearly	 showing	 that	only	atomic	numbers	and	masses	are	 required	as	external	
parameters	(Schrödinger,	1926).		
	
However,	 in	 order	 to	 begin	 the	 process	 of	 solving	 the	many-body	 Schrödinger	
equation	for	a	system	of	interest,	some	simplifications	are	necessary.	Equation	[5]	
is	not	only	very	general,	it	also	become	extremely	complex	to	solve	in	the	case	of	
many-electron	systems,	owing	to	the	need	to	process	solutions	for	3N	Cartesian	
coordinates	 in	 the	 many-body	 wavefunction	 Ψ 𝒓V, 𝒓W, … , 𝒓𝑵 .	For	 example,	
Giustino	(2014)	demonstrated	that	obtaining	a	full	quantum	description	of	a	unit	
cell	of	silicon	in	the	diamond	structure	would	mean	performing	a	huge	number	of	
matrix	operations,	with	the	complexity	of	the	solution	scaling	exponentially	with	
system	size.		
	
The	following	few	subsections	will	deal	with	the	topic	of	simplifying	equation	[5]	
to	 allow	us	 to	 solve	 it	 in	 a	more	practical	manner;	 such	 is	 the	 aim	of	ab	 initio	
methods.	
	
	
	

3.2 BORN	OPPENHEIMER	APPROXIMATION	
	

One	such	simplification	is	known	as	the	Born-Oppenheimer	Approximation	(Born	
&	Oppenheimer,	 1927),	 which	 effectively	 enables	 us	 to	 separate	 the	 electron-
nuclei	 interaction	 term	 in	 equation	 [5].	 In	 this	 approach,	 we	 assume	 that	 the	
degrees	 of	 freedom	 for	 both	 the	 electrons	 and	 the	 nuclei	 can	 be	 treated	
separately.	This	is	justified	via	the	observation	that	electrons	are	many	orders	of	
magnitude	less	massive	than	nuclei,	but	experience	similar	forces.	Given	the	mass	
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disparity,	it	can	be	seen	that	electrons	will	respond	almost	instantaneously	to	an	
applied	 force,	 whereas	 the	 nuclei	 may	 be	 considered	 as	 effectively	 stationary	
relative	 to	 the	 electron.	 We	 can	 further	 assume	 that,	 although	 the	 spatial	
configuration	of	 the	nuclei	may	change,	 the	relative	agility	of	 the	electrons	will	
allow	them	to	rapidly	respond	and	adjust	to	these	changes.		
	
As	such,	 in	 the	Born-Oppenheimer	Approximation,	 the	nuclei	 in	 the	system	are	
fixed	to	some	spatial	configuration	𝑅',	allowing	for	the	effective	parameterization	
of	 the	 equation	 [5],	 and	 simplifying	 our	 system	 to	 a	 sea	 of	 moving	 electrons	
interacting	 with	 each	 other,	 and	 with	 the	 stationary	 nuclei.	 Given	 the	 fixed	
position	 of	 the	 nuclei,	 the	 potential	 energy	 between	 them	 –	 described	 by	 the	
Coloumb	repulsion	–	becomes	constant,	and	we	thus	adopt	the	time-independent	
Schrödinger	equation	[Eq.	5].	To	emphasize	these	points,	we	rewrite	equation	[5]	
as:	
	
	

−
∇AW

2 +
A

𝑉pqe 𝒓𝒊 +
1
2

1
𝑟A − 𝑟aA`aA

Ψ = 𝐸Ψ																																																		[6]	

	
	
where	 𝑉pqe(𝒓)	 is	 defined	 as	 the	 external	 Coulomb	 potential	 of	 the	 nuclei	 as	
experienced	by	the	electrons,	given	by:	
	
	

𝑉pqe 𝒓 = 	−
𝑍^

𝑟 − 𝑅^^

																																																																																																[7]	

	
	
We	can	thus	define	the	many-electron	Hamiltonian	as:	
	

𝐻 𝒓V …𝒓t = −
∇AW

2 +
A

𝑉pqe 𝒓𝒊 +
1
2

1
𝑟A − 𝑟aA`aA

																																							[8]	

	
	
Allowing	us	 to	 simplify	 equation	 [5]	 as	𝐻Ψ = EΨ	,	or,	 in	 a	new,	parameterized	
version	as	follows:		
	
	
	
𝐻 =	𝑇p 𝒓 +	𝑉pt 𝒓; 𝑹𝟎 + 𝑉pp 𝒓 + 𝐸tt																																																																		[9]	
	
	
where	 the	various	kinetic	𝑇	 and	potential	𝑉	operators	 refer	 to	electrons	𝑒	 and	
nuclei	𝑁	at	 positions	 𝒓	 and	𝑹,	 respectively,	 and	𝐸tt	is	 the	 constant	 potential	



	 	
BARDON,	LEE	 26	

	

energy	from	fixed	nuclei	interactions.	It	should	be	noted	that	we	can	consider	the	
term	𝑇p 𝒓 +	𝑉pt 𝒓; 𝑹𝟎 + 𝑉pp 𝒓 	as	equal	to	the	electronic	Hamiltonian,	𝐻p.	
	
Further	to	this,	 if	we	examine	equation	[5],	we	can	see	that,	via	the	summative	
nature	of	the	equation,	it	is	reasonable	to	define	a	single-electron	Hamiltonian	as:	
	
	

𝐻' 𝒓 = 	−
1
2∇

W + 𝑉pqe 𝒓 																																																																																												[10]	
	
	
	
and	thus	split	the	many-electron	Hamiltonian	up	according	to:	
	
	
	

𝐻 𝒓V …𝒓t = 	 𝐻'(𝒓𝒊
A

) +	
1
2

1
𝑟A − 𝑟aA`a

																																																														[11]	

	
	
	
Equation	 [9]	 demonstrates	 how	 a	 system	 of	 N	 electrons	 will	 behave	 in	 the	
presence	 of	 fixed	 atomic	 nuclei,	 as	 described	 by	 their	 spatial	 coordinates	 {𝑟A}.		
However,	 it	 does	 not	 include	 their	 spin	 state,	 an	 intrinsic	 angular	 momentum	
property	that	is	necessary	to	include	for	a	fuller	description.	In	order	to	do	so,	we	
must	include	a	fourth	degree	of	freedom	in	addition	to	the	three	spatial	degrees	
of	 freedom,	 as	 represented	 by	 the	 spin	 coordinate	𝜔.	 This	 addition	 does	 not	
directly	 affect	 equation	 [9],	 given	 that	 the	 electronic	 Hamiltonian	 is	 not	 spin-
dependent.	 However,	 it	 does	 lead	 us	 to	 one	 of	 the	 more	 famous	 quantum	
mechanical	principles;	the	Pauli	Exclusion	Principle.		
	
The	Pauli	Exclusion	Principle	states	that	fermions	(such	as	electrons	and	nucleons)	
will	 cause	 the	 many-body	 wavefunction,	Ψ,	 to	 change	 sign	 if	 they	 exchange	
variables	(position,	spin)	with	a	like	fermion.	In	other	words,	no	two	electrons	can	
occupy	the	same	quantum	state	in	the	same	position	in	space.	We	can	enforce	the	
principal	 by	 constructing	 a	wavefunction	 that	 is	 anti-symmetric,	 e.g.	𝑓 𝑥, 𝑦 =
−𝑓 𝑦, 𝑥 ,	meaning	that	an	interchange	of	any	two	electrons	in	the	system	obeys:	
Ψ 𝑥V …𝑥t = 	−Ψ 𝑥V …𝑥t .		
	
	
The	many-body	wavefunction	(equation	[5])	can	be	considered	in	terms	of	it	being	
a	probability	amplitude;	that	is	to	say,	the	wavefunction	describes	the	probability	
of	finding	an	electron	at	a	given	position	in	space.	To	illustrate	this	concept,	the	
wavefunction	is	typically	normalized,	e.g.	
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Ψ(𝒓V, … 𝒓t) W𝑑𝒓V …𝑑𝒓t = 1																																																																														[12]	

	
	
where	equation	[12]	describes	a	system	of	N	electrons	existing	with	a	probability	
of	1.	However,	actually	determining	this	ground	state	wavefunction	–	and	thus,	
more	usefully,	the	total	energy	of	the	system	-	for	a	system	of	N	electrons	is	only	
really	tractable	for	systems	with	very	few	electrons.	In	this	section,	we	discuss	how	
the	 many-body	 wavefunction	 can	 be	 broken	 into	 a	 series	 of	 single-particle	
wavefunctions,	and	how	these	single-particle	wavefunctions	can	be	combined	to	
find	 the	 total	 energy	 of	 a	 many-electron	 system,	 without	 having	 to	 deal	 with	
exponential	 increases	 in	 the	 number	 of	 electron	 configurations	 that	 must	 be	
calculated	to	determine	a	ground	state	wavefunction	from	equation	[5].		
	
	
	
	
	
3.3	HARTREE-FOCK	THEORY	
	
When	the	Born-Oppenheimer	approximation	is	applied	to	the	time-independent	
Schrödinger	equation,	the	result	is	the	electronic	Schrödinger	equation,	which	we	
can	state	using	the	compact	notation	of	equation	[13]	as:	
	
	
	
𝑇p 𝒓 +	𝑉pt 𝒓; 𝑹 + 𝑉tt 𝑹 +	𝑉pp 𝒓 Ψ 𝒓;𝑹 = 	𝐸Ψ	 𝒓; 𝑹 																			[13]							
	
	
	
Solving	the	electronic	Schrödinger	equation	also	allows	us	to	gain	access	to	the	
electronic	wavefunction,	and	with	it	a	whole	host	of	molecular	properties.		
	
Hartree-Fock	theory	allows	us	to	move	closer	to	solving	the	Schrödinger	equation	
for	 a	many-body	 system	 by	making	 further	 assumptions	 about	 the	 interaction	
strength	 between	 electrons,	 and	 looking	 for	 solutions	 in	 the	 form	 of	 a	 Slater	
determinant.		
	
The	anti-symmetry	principle	-	as	a	consequence	of	the	Pauli	Exclusion	principle	-	
can	 be	 satisfied	 for	 a	 two-electron	 system	 for	 any	 given	 orbital	 by	 the	
wavefunction:	
	
	

Ψ 𝒓𝟏, 𝒓W =
1
2
[𝜙V 𝒓V 𝜙W 𝒓W − 𝜙V 𝒓W 𝜙W 𝒓V 																																														[14]						
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or	
	
	

Ψ 𝒓𝟏, 𝒓W =
1
2
𝜙V 𝒓V 𝜙W 𝒓V
𝜙V 𝒓W 𝜙W 𝒓W

																																																																							[15]	

	
	
Which	is	known	as	a	Slater	determinant.	This	functional	form	–	in	opposition	to	a	
classical	 mean	 field	 approximation	 -	 coincides	 well	 with	 quantum	 mechanical	
principles,	 given	 that	 it	 allows	 for	 every	 electron	 to	 be	 associated	 with	 every	
orbital,	 and	 thus	 for	 electrons	 to	 remain	 indistinguishable,	 while	 obeying	
antisymmetry.		
	
But	how	do	we	find	the	single-particle	wavefunctions	required	by	equation	[15]?	
Consider	 the	 lowest	energy	quantum	state	Ψ,	 the	energy,	𝐸,	of	which	we	may	
obtain	by	multiplying	both	sides	of	𝐻Ψ = EΨ	by	Ψ*	and	integrating.	This	leads	us	
to:		
	
	

𝐸 = 𝑑𝒓V …𝑑𝒓t 	Ψ	∗𝐻	Ψ																																																																																								[16]	

	
	
Or,	using	Dirac’s	bra-ket	notation:	
	
	
𝐸 = Ψ 𝐻 Ψ 																																																																																																																			[17]		
	
	
The	Hartree-Fock	equations	(Fock,	1930b)	are	then	obtained	by	minimizing	𝐸	with	
respect	 to	variations	 in	the	single-particle	wavefunctions,	with	the	requirement	
that:	
	
𝛿𝐸
𝛿𝜙A∗

= 0																																																																																																																													[18]	

	
and:	
	

𝑑𝒓𝜙A∗(𝒓)𝜙a(𝒓) = 𝛿Aa																																																																																															[19]					

	
	
are	orthonormal,	where	𝛿Aa 	is	the	Kronecker	delta	which	is	equal	to	1	if	𝑖 = 𝑗	or	0	
when	 𝑖 ≠ 𝑗.	 As	we	will	 see,	 the	Hartree-Fock	 equations	 are	 distinguished	 from	
classical	mean-field	approximations	by	 the	appearance	of	what’s	 known	as	 the	
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Fock	 exchange	 potential,	𝑉�(𝒓, 𝒓�),	which	 arises	 as	 a	 consequence	 of	 the	 Pauli	
Exclusion	 Principal,	 which	 forbids	 two	 electrons	 from	 occupying	 the	 same	
quantum	state,	and	which	is	given	as:	
	
	

𝑉� 𝒓, 𝒓� = −
𝜙a∗ 𝒓� 𝜙a 𝒓�

𝒓 − 𝒓�
a

																																																																																	[20]	

	
	
The	derivation	of	the	Hartree-Fock	equations	involves	a	lengthy	process.	As	this	
level	 of	 detail	 is	 not	 the	 primary	 focus	 of	 this	 thesis,	we	will	merely	 state	 the	
equations	below:	
	
	

−
∇W

2 + 𝑉pqe 𝒓 + 𝑉� 𝒓 𝜙A 𝒓 + 𝑑𝒓� 𝑉q 𝒓, 𝒓� 𝜙A 𝒓�

= 𝜀A𝜙A 𝒓 ,																																																																																											[21]					
	
	
	
	
	

𝑛 𝒓 = 𝜙A 𝒓 W

A

,																																																																																																							 22 	

	
	
∇W𝑉� 𝒓 = −4𝜋𝑛 𝒓 																																																																																																					[23]		
	
	
	
Where	𝑛 𝒓 	is	the	distribution	of	electronic	charge	–	also	known	as	the	electron	
density	-	generated	according	to	Poisson’s	equation,		and	𝑉� 𝒓 	is	the	potential	
energy	of	the	electrons	within	the	generated	electrostatic	charge,	known	as	the	
Hartree	potential.		
	
While	 the	 addition	 of	 this	 non-local	 Fock	 potential	makes	 progress	 toward	 the	
introduction	 of	 quantum	 electrons	 in	 solving	 the	 many-body	 Schrödinger	
equation,	the	Hartree-Fock	equations	are	also	quite	tricky	to	evaluate	in	a	practical	
way,	owing	to	the	need	to	integrate	over	the	additional	variable	𝒓�	during	their	
solution.	In	the	next	section,	we	discuss	DFT	more	directly,	including	how	we	might	
replace	the	exchange	potential	𝑉�	with	a	more	practical	local	exchange	potential.	
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3.4	 DENSITY	FUNCTIONAL	THEORY		
	
	
Density	Functional	Theory	supposes	that,	instead	of	considering	the	ground	state	
electronic	wavefunction	as	the	fundamental	variable	in	our	equations,	we	instead	
turn	 to	a	calculation	of	 the	ground	state	electron	density.	 It	 turns	out	 that	 this	
allows	us	to	treat	the	many-body	Schrödinger	equation	as	a	numerically	solvable	
one-electron	equation,	and	effectively	to	go	from	having	a	3N	degrees	of	freedom	
to	 calculate	 over,	 down	 to	 3	 degrees	 of	 freedom	 for	 an	 N-electron	 system.	
Although	DFT	 is	unable	 to	handle	excited	states,	 it	does	provide	a	 theoretically	
precise	description	of	the	ground	state	of	the	system,	which	yields	many	useful	
properties.	 Nonetheless,	 and	 as	 we	 shall	 see,	 it	 requires	 that	 we	 use	 an	
approximation	of	 the	 so-called	 exchange-correlation	 functional,	many	of	which	
exist	and	vary	in	levels	of	sophistication	and	computational	cost.		
	
	
	
3.4.1	HOHENBERG-KOHN	
	
We	 can	 obtain	 the	 total	 energy,	 𝐸,	 of	 a	 many-electron	 system	 according	 to	
equations	[11]	and	[12],	while	the	associated	many-electron	Hamiltonian	is	given	
by	 equation	 [5].	 Given	 that	 the	 Hamiltonian’s	 structure	 is	 independent	 of	 the	
specific	material	in	question	(Giustino,	2014),	changes	in	the	total	energy	of	the	
system	must	be	linked	to	changes	in	the	many-body	wavefunction,	and	thus	that:	
	
	
𝐸 = ℱ Ψ 																																																																																																																						 24 	

				
	
In	1964,	Hohenberg	and	Kohn	demonstrated	that	the	groundstate	energy	of	the	
system	 is	 a	 functional	 only	 of	 the	 electron	 density	
𝑛 𝒓 	(Hohenberg	and	Kohn, 1964)	,	 rather	 than	 being	 a	 functional	 of	 the	
wavefunction	as	a	whole,	as	is	the	case	with	any	excited	state.	This	observation	is	
derived	from	the	first	of	their	two	theorems:	
	
	
Theorem	1:	The	external	potential	𝑉pqe	acting	on	a	system	of	electrons	is	uniquely	
determined	 –	 with	 the	 exception	 of	 a	 constant	 -	 by	 the	 ground	 state	 electron	
density	𝑛' 𝒓 	
	
If	 true,	we	 can	 see	how	 the	we	 can	obtain	 the	Hamiltonian	operator	 from	 the	
external	potential	and	total	number	of	electrons,	and	thus	the	wavefunctions	of	
all	 states	 in	 the	 many-body	 system,	 leading	 to	 an	 elucidation	 of	 material	
properties.		
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Theorem	2:		A	universal	functional	of	the	energy	in	terms	of	the	density	𝐸[𝑛(𝒓)]	
can	be	found	variationally;	the	trial	density	that	succeeds	in	minimizing	the	total	
energy	is	also	the	groundstate	density.		
	
To	 elaborate,	 an	 energy	 functional	 given	 in	 terms	 of	 the	 density	𝑛 𝒓 	 can	 be	
defined	 according	 to	 an	 external	 potential.	 The	 global	minimum	of	 the	 energy	
functional,	 is	 the	 ground	 state	 energy	 of	 the	 system,	 and	 the	 density	 that	
minimized	 the	 functional,	 is	 the	 groundstate	 density.	 In	 other	 words,	 𝑛 𝒓 	
determines	𝑉pqe(𝒓),	 while	𝑁	 and	𝑉pqe(𝒓)	 determine	𝐻	 and	 thus	Ψ,	 ergo:	𝐸 =
𝐹 𝑛 .			
	
However,	 Hohenberg	 and	 Kohn’s	 seminal	 work	 is	 only	 applicable	 for	 non-
degenerate,	 zero	 temperature	 many-body	 systems.	 Later	 work	 by	 Mermin	
(Mermin,	1965),	Levy	(Levy,	1979)	and	Lieb	(Lieb,	1983)(Jones	and	Gunnarsson,	
1989),	 was	 able	 to	 extend	 the	 work	 to	 include	 nonzero	 temperatures,	 and	
degenerate	goundstates.			
	
	
3.4.2	–	Kohn-Sham	theory	
	
While	 the	Hohenberg-Kohn	 theorem	developed	 in	1964	demonstrates	 that	 the	
total	 groundstate	 energy	 of	 the	 electrons	 in	 the	 system	 is	 a	 functional	 of	 the	
electron	density,	 it	does	not	 tell	us	anything	regarding	how	we	might	go	about	
constructing	such	a	functional.	Indeed,	the	exact	form	of	the	functional	remains	
unknown	to	this	day.		
	
Various	approximations	and	approaches	have	been	put	forward	since,	 including	
the	Thomas-Fermi	approach	(as	detailed	in	(Jones	and	Gunnarsson,	1989)),	which	
suffered	from	the	problem	of	requiring	the	kinetic	energy	term	–	a	considerable	
contribution	to	the	total	energy	of	the	system	–	to	be	approximated.		
	
Kohn	and	Sham	(Kohn	and	Sham,	1965)	approach	the	issue	by	assuming	that	the	
many-body	Hamiltonian	–	in	which	the	electrons	fully	interact	-	can	be	replaced	by	
a	similar	‘auxiliary	Hamiltonian’	in	which	the	electrons	do	not	interact,	but	which	
nonetheless	leads	to	the	same	solution,	such	that	the	groundstate	density	is	the	
same	 as	 that	 of	 a	 system	 of	 interacting	 electrons.	 Crucially,	 the	 Kohn-Sham	
approach	 leads	 to	 a	 Hamiltonian	 that	 preserves	 the	 original	 kinetic	 energy	
operator	𝑇 = 	− V

W
∇	but	replaces	the	original	potential	with	an	effective	ficticious	

potential,	 and	 stipulates	 that	 a	 given	 electron	 at	 a	 given	 point	 in	 space	 will	
effectively	interact	with	only	its	nearest	neighbors.	
	
In	 practical	 terms,	 Kohn	 and	 Sham	derived	 a	 functional	 that	 separately	 pieced	
together	external	potential	terms,	kinetic	terms	and	Hartree	energy	terms,	plus	an	
extra	term	known	as	the	exchange	and	correlation	energy:			
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𝐸 = 𝐹 𝑛 = 𝑇' 𝑛 + 𝑛 𝒓 𝑉pqe 𝒓 +
1
2𝑉�(𝒓) 𝑑𝑟 + 𝐸�� 𝑛 																									[25]	

	
	
where	𝑇'	is	the	kinetic	energy	of	the	system	with	electron	density	𝑛	within	which	
the	electrons	do	not	 interact	with	one	another	and		𝑉�	 is	the	Hartree	potential	
(the	classical	electronic	Coulomb	potential).	The	extra	term,	𝐸�� 𝑛 	incorporates	
the	exchange	and	correlation	energy,	and	fundamentally	serves	to	relate	a	system	
of	non-interacting	electrons	with	an	equivalent	interacting	system.	In	general,	we	
can	think	of	the	exchange	energy	as	the	energy	released	when	two	electrons	are	
exchanged	 symmetrically	 or	 unsymmetrically	 (changing	 sign),	 while	 the	
correlation	energy	can	be	thought	of	as	the	energy	associated	with	an	electron’s	
influence	 on	 the	 other	 electrons	 in	 the	 system.	 	More	 specifically,	𝐸�� 	 in	 the	
current	context,	is	the	sum	of	the	errors	made	from	treating	the	electron-electron	
interaction	as	if	they	are	non-interacting	particles,	or,	more	formally:			
	
	
𝐸�� 𝑛 = 𝑇 𝑛 −	𝑇' 𝑛 +	𝑈�� 𝑛 																																																																												[26]		
	
	
Where	𝑇 𝑛 −	𝑇' 𝑛 	is	the	kinectic	energy	difference	between	the	interacting	and	
non-interacting	 systems,	 and	 𝑈�� 𝑛 	 is	 the	 Coulomb	 interaction	 between	
electrons	and	the	exchange-correlation	hole	(the	space	around	an	electron	where	
electron	correlation	effects	-	due	to	instantaneous	Coulomb	repulsion	-	 	reduce	
the	probability	of	finding	another	electron	to	almost	zero).	
	
It	is	pertinent	to	observe	that	being	able	to	calculate	the	exchange	and	correlation	
energy	would	enable	us	to	calculate	the	total	groundstate	energy	of	the	system	
𝐸 = 𝐹[𝑛]	 via	 the	 electron	 density.	 In	 the	 previous	 section,	 we	 saw	 how	 the	
groundstate	electron	density	is	the	function	that	minimizes	the	total	energy.	This	
is	known	as	the	Hohenberg-Kohn	variational	principle,	and	is	given	by:		
	
	
𝛿𝐹[𝑛]
𝛿𝑛 ��

= 0																																																																																																																			[27]	

	
	
If	the	derivative	of	the	above	functional	must	be	equal	to	zero,	as	stated	by	the	
principle,	 then	we	can	create	an	equation	 for	 the	 single-particle	wavefunctions	
𝜙A 𝒓 	which	may	be	used	in	constructing	the	electron	density,	e.g:	
	
	

𝑛 𝒓 = 𝜙A 𝒓 W

A

																																																																																																							[28]	
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The	steps	required	to	go	from	equation	[28]	to	the	one	that	follows	will	not	be	
elaborated	 here,	 however,	 if	 we	 require	 the	 wavefunctions	 𝜙A 𝒓 	 to	 also	 be	
orthonormal,	 then	 the	 Hohenberg-Kohn	 variational	 principle	 gives	 us	 the	
following:	
	
	
	
	

−
1
2∇

W + 𝑉� 𝒓 +𝑉� 𝒓 + 𝑉��(𝒓) 𝜙A 𝒓 = 𝜀A𝜙A 𝒓 																																												[29]			
	
	
	
	
where	𝜀A	is	an	eigenvalue	of	 the	wavefunction	and	𝑉��(𝒓)	 is	 the	exchange	and	
correlation	potential,	as	given	by:	
	
	

𝑉�� 𝒓 =
𝛿𝐸��[𝑛]
𝛿𝑛 �(𝒓)

																																																																																																			[30]	

	
	
This	brings	us	back	to	the	idea	that	there	must	be	some	functional	𝐸��[𝑛]	that	can	
give	us	the	exact	groundstate	energy	and	allow	us	access	to	all	many-body	effects,	
and	that	the	functional	used	is	sufficiently	 inexpensive	and	accurate	for	a	given	
purpose.	And	so,	we	proceed	to	consider	some	of	the	methods	through	which	we	
might	construct	the	functional,	focusing	on	two	of	the	most	popular	and	relevant	
to	 the	 current	 thesis:	 the	 Local	 Density	 Approximation	 and	 the	 Generalised	
Gradient	Approximation.			
	
	
	
3.4.3.	Local	Density	Approximation	
	
	
The	task	of	approximating	𝐸�� 	has	spawned	a	vast	and	active	field	of	researchers,	
with	 different	 groups	 producing	 different	 ‘flavours’	 of	 functional,	 the	 eventual	
usefulness	of	which	is	typically	measured	by	agreement	with	experiment,	where	
possible.	The	most	standardized	version	of	this	approximated	functional	is	known	
as	 the	 Local	 (spin-)	Density	Approximation	 (LDA),	 first	 introduced	by	 Kohn	 and	
Sham	(Kohn	and	Sham,	1965)	(Jones	and	Gunnarsson,	1989).		
	
The	LDA	approach	was	based	on	a	homogenous,	free-electron	gas	system,	wherein	
the	charge	density	is	constant,	as	a	result	of	a	constant	external	potential,	and	the	
potential	of	the	nuclei	also	remains	constant.	This	system	can	be	specified	by	the	
value	of	the	constant	electron	density	𝜌 = 𝑁/𝑉.	However,	in	addition	to	the	free	
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electron	gas	model,	we	also	consider	the	electron-electron	Coulomb	interaction.	
It	 is	possible	to	obtain	the	exchange	energy	directly,	but	the	correlation	energy	
must	be	calculated	using	numerical	techniques.	
	
When	we	apply	this	approach	to	materials	other	than	a	homogenous	electron	gas,	
we	 can	 nonetheless	 apply	 it	 to	 understanding	 exchange	 and	 correlation	 in	
discretized	regions	where	the	density	varies	slowly.	Consider	electron	density	over	
position	in	a	molecular	system,	plotted	along	a	given	direction.	This	system	may	
be	partitioned	into	an	arbitrary	number	of	rectangular	regions,	which	may	then	be	
decreased	in	width	until	they	are	infinitesimally	small	volume	elements.	We	can	
then	associate	each	of	these	volume	elements,	𝑑𝒓	,	with	a	homogenous	electron	
gas	 of	 local	 density	𝑛 𝒓 	 	 at	 a	 particular	 point	𝒓.	 Each	 of	 these	 elements	 will	
contribute	an	exchange-correlation	energy	according	to:	
	
	

𝑑𝐸�� =
𝐸���� [𝑛 𝒓 ]

𝑉 𝑑𝒓																																																																																																		[31]	
	
		
where	HEG	is	homogenous	electron	gas	and		𝐸���� [𝑛 𝒓 ]	is	obtained	adding	the	
exchange	 and	 correlation	 energies.	 This	 equation	 defines	 the	 local	 density	
approximation.		
	
The	 exchange	 energy	 of	 the	 electron	 gas,	𝐸q,	 is	 given	 by	 the	 simple	 analytical	
equation	(given	in	Hartree	units)	below:	
	
	

𝐸q = −
3
4
3
𝜋

V
¡
𝑛
¢
¡𝑉																																																																																																									[32]		

	
	
and	the	exchange	energy	of	the	entire	system	is	therefore:	
	

𝐸q = −
3
4
3
𝜋

V
¡
𝑛
¢
¡𝑉	 𝑛

¢
¡ 𝒓 𝑑𝒓

£

																																																																													[33]						

	
	
We	do	not	have	such	a	simple	solution	for	the	correlation	energy,	but	stochastic	
numerical	methods	have	been	used	to	approximate	it	in	a	reasonable	way,	e.g.	via	
Quantum	Monte	Carlo	(Ceperley	and	Alder,	1980).	The	data	collected	by	Ceperley	
and	Alder	has	been	used	to	obtain	the	correlation	energy	of	the	electron	gas	by	
removing	known	kinetic,	exchange	and	Hartree	potentials	from	the	total	energies,	
and	 the	 work	 has	 since	 been	 parameterized	 by	 Perdew	 and	 Zunger	 (1981),	
obtaining:	
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𝐸�

= 𝑛𝑉.
0.0311ln𝑟¥ − 0.0480 + 0.002𝑟¥ln𝑟¥ − 0.0116𝑟¥											𝑖𝑓	𝑟¥ < 1

−0.1423
1 + 1.0529 𝑟¥ + 0.3334𝑟¥

																																															𝑖𝑓	𝑟¥ ≥ 1											[34]					

	
	
	
where	 𝑟¥	is	 the	 Wigner-Seitz	 radius,	 defined	 as	 the	 average	 spherical	 radius	
occupied	by	each	electron.		
	
Finally,	and	as	previously	mentioned,	given	the	availability	of	a	practical	solution	
for	obtaining	the	exchange	and	correlation	energy,	we	can	obtain	the	exchange	
and	correlation	potential	𝑉�� 𝒓 	via	the	functional	derivative	in	equation	[30],	and	
thus	solve	the	Kohn-Sham	equations.	Calculating	the	exchange	potential	is	fairly	
straight	forward	-	the	result	of	the	functional	derivative	gives	us	an	expression	that	
permits	calculation	of	the	exchange	potential	at	point	𝒓	via	the	local	density	at	the	
same	point	𝑛(𝒓).	
	
	

𝑉q 𝒓 = −
3
𝜋

V
¡
𝑛
V
¡ 𝒓 																																																																																																	[35]	

	
	
The	expression	for	obtaining	the	correlation	potential	at	point	𝒓	is	more	complex;	
however,	 it	nonetheless	 is	also	determined	by	the	equivalent	density	 (Giustino,	
2014).		
	
LDA	has	been	very	widely	used	by	materials	researchers	since	its	inception,	and	is	
considered	 excellent	 for	 obtaining	 properties	 such	 as	 structure,	 vibrational	
properties,	 and	 elastic	 properties	 for	 a	 great	many	 systems.	 However,	 since	 it	
approximates	the	energy	of	the	actual	density	via	the	energy	of	the	local	density,	
it	 runs	 into	 issues	 in	 scenarios	 where	 the	 density	 changes	 rapidly,	 such	 as	 in	
molecular	systems.	In	these	scenarios,	LDA	tends	to	be	less	accurate	when	used	to	
obtain	dynamical	properties	such	as	chemical	reaction	energetics,	e.g.	calculating	
activation	energy	barriers,	and	binding	energies	 (typically	overestimated	by	20-
30%)(Harrison,	2003).	For	these	more	elaborate,	involved	properties,	we	require	
more	elaborate	and	involved	ways	of	approximating	𝐸�� .	
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3.4.4.	Generalised	Gradient	Approximation		
	
The	LDA	gives	us	a	fully-local	way	to	approximate	𝐸�� .	However,	as	we’ve	seen,	it	
is	known	to	have	potential	accuracy	issues	in	certain	situations,	such	as	when	the	
density	 of	 a	 given	 system	undergoes	 rapid	 changes,	 and	 thus	 cannot	 easily	 be	
approximated	via	local	density	calculations.		
	
The	Generalised	Gradient	Approximation	(GGA)	approach	to	approximating	𝐸�� 	
depends	on	 the	density,	 as	with	 LDA,	but	also	defines	a	 factor	–	known	as	 the	
enhancement	 factor	𝐹�� 	 -	 that	 takes	 into	 account	 the	 gradient	 of	 the	 density	
∇𝑛(𝒓) ,	and	thus	the	non-homogenous	nature	of	the	true	electron	density:	
	
	
𝐸��  ¨ 𝑛 𝒓 		

= 	 𝑛 𝒓 𝜀����  𝑛 𝒓 𝐹�� 𝑛 𝒓 , ∇𝑛(𝒓)	 𝑑𝒓																																																														[36]	

	
		
where	𝐹�� 	 is	 typically	 defined	 in	 terms	 of	 the	Wigner-Seitz	 radius,	 𝑟¥,	 and	 the	
reduced	density	gradient,	given	as:	
	

𝑠 𝑟 =
∇𝑛(𝒓) ,

2𝑘« 𝒓 𝑛(𝒓)
																																																																																																							[37]	

	
where	𝑘« 	is	the	Fermi-wavevector	(Perdew	et	al.,	1996).	The	GGA	is	not	a	unique	
function,	thus	a	whole	‘family’	of	different	GGA	functionals	have	been	created	by	
plotting	𝐹��(𝑟¥, 𝑠)	against	𝑠	for	a	range	of	𝑟¥	values,	and	examining	and	comparing	
the	results.	The	end	result	has	been	a	considerable	reduction	in	the	overestimate	
of	 the	 overbinding	 error	 seen	 with	 LDA	 in	 the	 case	 of	 solids	 and	 molecules	
(Harrison,	2003).	
	
	
	
3.4.5.	Basis	Sets		
	
Basis	 sets	 provide	 us	 with	 a	 practical,	 mathematical	 method	 for	 representing	
molecular	 orbitals	 in	 DFT	 calculations.	 We	 can	 represent	 the	 wavefunction	
𝜙A 𝒓 	as	a	linear	expansion	of	basis	functions	in	a	unit	cell.	Bloch’s	theorem	states	
that	 if	 nuclei	 in	 a	 system	 are	 arranged	 periodically	 (as	 they	 are	 in	 all	 of	 our	
calculations),	then	the	potential	acting	on	the	electrons	must	also	be	periodic.	In	
other	words:	
	
	
𝑉 𝒓 + 𝑳 = 𝑉 𝒓 																																																																																																										[38]	
	
	



	 	
BARDON,	LEE	 37	

	

where	𝐿	is	a	given	lattice	vector.	If	the	potential	is	periodic,	then	so	must	be	the	
density	𝑛(𝒓)	 and,	 by	 extension,	 the	magnitude	of	 the	wavefunction,	 such	 that	
𝑛 𝒓 = 𝜙(𝒓) W.	The	possible	wavefunctions	are	all	thus	quasi-periodic:	
	
	
𝜙 𝒓 = 𝑒A𝐤∙𝒓𝑢° 𝒓 																																																																																																									 39 		
	
	
where	𝑢°	is	a	periodic	function	(𝑢° 𝒓 + 𝑳 = 𝑢°(𝒓))	and	𝑒A±∙𝒓is	an	arbitrary	phase	
factor,	with	𝑘	representing	a	wave-vector	confined	to	the	first	Brillouin	zone		(the	
primitive	unit	cell	defined	in	reciprocal	space).	Thus:	
	
													
𝜙° 𝒓 + 𝑳 = 𝑒A𝐤∙ 𝒓²𝑳 𝑢° 𝒓 + 𝑳 = 𝑒A𝐤∙𝑳𝜙° 𝒓 																																																							[40]	
	
	
The	periodicity	 of	𝑢° 𝒓 	 allows	us	 to	 express	 it	 as	 a	 three-dimensional	 Fourier	
series:	
	

	𝑢° 𝒓 = 𝑢°(𝑮)𝑒A𝐆∙𝐫			
 

																																																																																												[41]	

	
	
where	G	 is	 the	 reciprocal	 space	 lattice	of	 the	simulation	cell,	𝑢°(𝑮)	 represents	
complex	 Fourier	 coefficients	 –	 where	 the	 lowest	 eigenvectors	 decrease	
exponentially	with	the	kinetic	energy	(𝒌 + 𝑮)W/2	-	and	the	sum	is	over	all	vectors	
up	to	a	user-defined	cut-off	energy	(𝒌 + 𝑮)W/2 <	𝐸¶·e		;	i.e.	we	include	only	plane-
waves	with	energies	less	than	this	cut-off	in	order	to	achieve	a	finite	basis	set.	This	
value	 is	 selected	 on	 a	 trial-and-error	 basis,	 balancing	 the	 need	 for	 the	 total	
energies	to	converge,	with	the	need	to	reduce	computational	expense	and	thus	
efficiency.	 The	 value	 also	 depends	 on	 the	 type	 of	 pseudopotential	 used	 in	 the	
simulation,	which	we	will	discuss	in	the	next	section.		
		
	
	
	
3.4.6.	Pseudopotentials	
	
	
In	an	ideal	world,	where	computational	power	is	limitless,	we	would	include	every	
electron	 in	 our	 calculations.	 However,	 it	 is	 not	 efficient	 to	 do	 so,	 as	 the	
wavefunctions	 closest	 to	 the	 nuclei	 are	 generally	 not	 useful	 in	 understanding	
electronic,	chemical	or	mechanical	properties	of	materials.	That	is	to	say,	in	most	
conditions,	they	inhabit	locations	very	close	to	the	nucleus,	and	are	not	involved	
in	and	form	of	chemical	process.		Thus,	provided	the	screening	effect	that	the	core	
electrons	 exert	 on	 the	 outer	 electrons,	 and	 the	 Coulomb	 attraction	 from	 the	
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nucleus	are	taken	into	account,	it	is	possible	to	create	a	modified	pseudopotential	
that	combines	an	atoms	nucleus	and	its	core	electrons	into	an	ion	that	exerts	the	
same	force	on	the	outer	electrons.	With	the	projector	augmented	wave	method	
(PAW,	Kresse	and	Joubert,	1999),	we	are	able	to	reduce	the	cut-off	energy	and	
thus	the	number	of	states	we	need	to	compute,	increasing	efficiency.			
	
	
	
3.4.7.	K-Points	
	
Given	that	we	used	a	periodic	system,	we	replace	the	real-space	integrals	of	the	
Bravais	lattice	over	the	infinitely	extended	system,	with	integrals	over	the	finite	
first	Brillouin	zone	in	reciprocal	space.	When	we	specify	the	k-points	value	in	VASP,	
we	are	describing	how	we	want	the	calculation	to	be	divided	over	reciprocal	space.	
The	more	k-points	that	are	included	in	the	calculation,	the	more	accurate	it	is,	and	
the	more	expensive	 it	 is.	Thus,	 in	 selecting	 this	parameter,	our	aim	 is	 to	 find	a	
balance	between	accuracy	and	calculation	time.		
	
Following	convergence	tests	using	a	number	of	different	k-points,	we	note	that	
there	is	no	difference	between	results	from	sampling	the	Brillouin	zone	at	𝑘 = 0,	
also	 known	 as	 the	Γ	 point,	 and	 any	 of	 the	 higher	 order	 k-points	 investigated,	
because	the	number	of	atoms	in	our	system	is	large	(order	100).		
	
	
	
3.5	Molecular	Dynamics		
	
	
We’ve	given	an	overview	of	the	theory	behind	the	‘first	principles’	portion	of	‘first	
principles	molecular	dynamics’,	but	before	we	proceed	to	outline	the	specifics	of	
the	simulations	and	analyses	performed	over	the	course	of	the	current	work,	we	
must	first	ensure	that	we	have	some	understanding	of	molecular	dynamics.		
	
The	specific	type	of	molecular	dynamics	used	in	this	work	is	Born-Oppenheimer	
Molecular	Dynamics	(BOMD).	This	type	has	been	selected	following	previous	work	
(Sun	et	al.,	2011)	where	the	authors	noted	that,	although	BOMD	is	more	expensive	
than	some	of	the	popular	alternatives	such	as	Car-Parrinello	dynamics	(Car	and	
Parrinello,	1985),	it	is	more	robust	in	certain	circumstances.	This	is	due	to	reported	
inaccuracies	 in	 Car-Parrinello	 dynamics	 of	 system	 with	 conduction	 electrons	
(Vorberger	et	al.,	2007),	such	have	occurred	in	the	high	temperature	limit	of	other	
oxide	liquid	simulations	(Karki	et	al.,	2006),	and	which	may	thus	be	a	factor	in	the	
present	work.		
	
In	this	BOMD	regime,	as	we	have	seen,	we	are	able	to	calculate	the	self-consistent	
electronic	 ground	 state	 and	 thus	 the	 forces	 acting	 on	 the	 ions	 by	 defining	
molecular	dynamics	on	the	 ‘Born-Oppenheimer	surface’	with	electrons	that	are	
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instantaneously	in	the	ground	state.	Again,	this	assumption	is	a	consequence	of	
the	mass	disparity	between	electrons	and	nuclei,	and	the	nuclei	velocities	being	
correspondingly	 many	 orders	 of	 magnitude	 slower,	 that	 the	 electrons	 can	 be	
thought	 to	 instantaneously	 relax	 to	 their	 ground	 state.	We	evaluate	 the	 forces	
acting	on	the	ions	on	the	system	at	each	simulation	time-step	via	the	Hellmann-
Feynman	theorem	(Feynman,	1939),	and	apply	classical	equations	of	motion	to	
the	nuclei,	which	are	treated	as	point-particles.	The	force	on	an	ion	𝑭¨	is	given	by:	
	
	

𝑭¨ = 	𝑀^𝒂 = 	−
𝑑𝐸
𝑑𝒓𝑨

= 𝑀¨
𝑑W𝒓𝑨
𝑑𝑡W 																																																																												[42]	

	
	
where	𝑀¨	is	ionic	mass,	𝒓𝑨	is	the	position	and	𝒂	is	the	acceleration,	or	the	second	
derivative	 of	 position	 with	 respect	 to	 time,	 ¼

½𝒓𝑨
¼e½

.	 For	 atomic	 propagation,	 and	
subsequently,	 to	obtain	each	new	set	of	atomic	trajectories,	 the	velocity	Verlet	
algorithm	(Swope	et	al.,	1982)	is	used	to	integrate	the	equation	of	motion,	and	the	
forces	 are	 recalculated	 after	 allows	 the	 electrons	 in	 the	 system	 to	 reach	 self-
consistently.	
	
For	 the	 simulations	 in	 this	 work,	 the	 canonical	 ensemble	 is	 used	 (where	 the	
number	of	molecules,	the	volume,	and	the	temperature	are	held	constant),	and	
the	 system	 is	 free	 to	 exchange	 energy	 with	 a	 heat	 bath	 by	 the	 Nose-Hoover	
thermostat	(Nosé,	1984;	Hoover,	1985).	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 	
BARDON,	LEE	 40	

	

4. METHODS		
	
	
In	the	previous	chapter,	we	gave	an	overview	of	the	theory	behind	DFT,	in	effect	
setting	 the	 scene	 for	 what	 follows.	 In	 this	 chapter,	 we	 describe	 the	 specific	
computational	methods	and	analyses	used	to	produce	the	results	gathered	over	
the	course	of	this	thesis,	including	both	FPMD	simulations	and	data	analysis,	and	
the	specific	details	required	to	enable	the	reader	to	understand	–	and	replicate	–	
results.	 We	 begin	 this	 section	 with	 a	 description	 of	 ‘universal’	 processes	 and	
parameter	 selections	 that	 are	 common	 to	 setting	 up	 and	 running	 each	 of	 our	
experimental	systems,	before	detailing	the	analyses	specific	to	each	system.		
	
	
4.1.	FPMD	SIMULATIONS		
	
	
In	all	cases	(MgSiO3,	MgSiO3	+	H2O),	the	simulations	in	this	work	are	performed	
using	the	Vienna	Ab	Initio	Package	(VASP)	(Kresse	and	Hafner,	1993;	Kresse	and	
Furthmiller,	1996).	They	are	based	on	DFT,	as	described	earlier	in	this	thesis,	and	
are	each	performed	in	the	canonical	ensemble	(NVT	–	where	the	number	of	atoms,	
volume	 of	 the	 simulation	 cell	 and	 the	 temperature	 are	 held	 constant)	 with	 a	
periodic	boundary	condition.		We	use	the	generalized	gradient	approximation	of	
the	exchange-correlation	functional,	rather	than	the	LDA	,	primarily	to	avoid	the	
overbinding	 issue	 reported	 in	previous	work	on	silicate	oxides	 (e.g.	Karki	et	al.,	
2001),	among	others	(van	de	Walle	and	Ceder,	1999),	thus	eliminating	the	need	
for	semi-empirical	corrections.	Specifically,	we	use	the	recently	formulated	PBEsol	
functional	 (Perdew	 et	 al.,	 2008),	 selected	 for	 its	 improved	 accuracy	 regarding	
equilibrium	 properties	 for	 condensed	 matter	 (which	 may	 be	 a	 factor	 in	 high	
pressure	 simulations).	 Projector	 augmented	 wave	 potentials	 are	 appropriated	
selected	in	each	case,	keeping	the	high	pressure	conditions	in	mind.		
	
Despite	some	minor	variations	in	the	initial	conditions	and	total	simulation	length,	
all	material	simulation	sets	begin	by	melting	the	initial	configuration	at	20,000	K,	
for	between	8	and	10	ps.	The	presence	of	melt	is	confirmed	via	the	use	of	Radial	
Distribution	 Function	 plots,	 and	 Mean	 Squared	 Displacements.	 Each	 melted	
volume	is	then	cooled	isochorically	to	the	temperatures	of	interest	–	or,	in	the	case	
of	20,000	K	runs,	extended	for	a	further	8	–	10	ps.	Here,	we	examine	structural	
and	dynamical	properties	at	20,000	K,	10,000	K,	6000	K,	4000	K	and	3000	K.	The	
first	~20-40%	of	each	set	of	VASP	results	is	removed	before	equilibration	averages	
are	calculated.		
	
The	energy	cut-off	for	inclusion	in	the	plane-wave	basis	set	is	500	eV,	chosen	as	a	
balance	 between	 obtaining	 a	 high	 degree	 of	 accuracy,	 and	 ensuring	 that	 ionic	
iterations	can	converge	in	a	timely,	and	cost-effective	manner.	The	Brillouin	zone	
-	the	Wigner-Seitz	cell	of	the	reciprocal	lattice	-	is	sampled	at	the	centre,	where	
wavevector	k	=	0,	the	gamma	point.	
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4.2.	INITIAL	CONDITIONS	
	
The	initial	condition	for	all	experimental	MgSiO3	simulations	is	perovskite	crystal,	
homogenously	strained	 into	a	cubic	cell	at	 the	desired	volume.	 In	this	case,	we	
follow	the	method	outlined	in	Stixrude	and	Karki	(2005)	by	choosing	the	reference	
volume	𝑉q = 	38.9	𝑐𝑚¡	𝑚𝑜𝑙\V	,	which	is	the	experimental	value	for	the	liquid	at	
the	ambient-pressure	melting	point	 (1830	K)(Lange	and	Carmichael,	 1987).	We	
then	explore	a	range	of	volumes	from	𝑉q = 1	to	𝑉q = 0.5	at	intervals	of	0.1,	and	
then	from	𝑉q = 0.45		to	𝑉q = 0.2,	at	intervals	of	0.05.		
	
Note	that,	hereafter,	all	references	to	𝑉q	in	text	and	in	figures,	is	referring	to	the	
above	stated	definition.			
	
Stixrude	and	Karki	(2005)	used	a	similar	method	to	investigate	MgSiO3	liquid	with	
an	80	atom	(16	formula	unit)	MgSiO3	supercell,	and	run	durations	of	3	ps,	using	
the	final	2.4	ps	to	compute	equilibrium	averages.	To	test	for	possible	size	effects	
and	sensitivity	to	initial	conditions,	the	authors	also	performed	simulations	of	160	
atom	cells	for	a	total	of	6	ps,	and	found	that	their	results	were	unchanged,	within	
statistical	uncertainty.	Nonetheless,	in	this	work,	we	used	135	atoms	(27	formula	
units)	for	all	MgSiO3	volumes,	and	ran	for	a	total	of	8	to	10	ps,	using	the	final	3	to	
5	ps	to	compute	equilibrium	averages.		
	
The	initial	condition	for	the	mixture	-	MgSiO3	+	H2O	-	is	obtained	using	a	separate	
method,	that	will	be	discussed	in	greater	detail	in	the	following	section.	In	each	
case,	we	must	first	determine	the	number	of	molecules	of	each	dopant	that	needs	
to	be	added	such	that	the	added	molecule	is	equivalent	to	10	wt%	of	the	overall	
system.	This	proportion	of	the	total	system	was	selected	for	ease	of	comparison	
to	results	of	Mookherjee	et	al.,	(2008).		
	
We	achieve	this	by	obtaining	the	molecular	mass	of	the	current	system	(27	MgSiO3	

unit	cells	with	a	mass	of	2710.48),	and	calculating	𝑥,	where	𝑥 = 2710.48/0.9	=	
3011.64	is	the	new	weight	of	the	system	with	10	wt%	of	H2O	added.	Thus,	we	must	
find	 the	 number	 of	 H2O	molecules	 that	 is	 roughly	 equal	 in	molecular	mass	 to	
3011.64 − 2710.48 = 301.16.	For	 the	MgSiO3	+	H2O	system,	we	add	17	water	
molecules,	bringing	the	total	number	of	atoms	in	the	system	to	135 + 51 = 186.		
	
	
	
	
4.2.1.	SUPERCELL	CONSTRUCTION	
	
The	 initial	MgSiO3	perovskite	 computation	 cell	 is	 constructed	using	an	 intuitive	
software	package	called	Materials	Studio.	The	MgSiO3	unit	cell	is	first	built	using	
experimental	 values	 of	 the	 lattice	 parameters,	 in	 order	 to	 reduce	 the	
computational	 cost	 of	 static	 the	 calculations	 in	 VASP	 required	 for	 finding	 the	
equilibrated	 crystal	 structure.	 Once	 obtained,	 simple	 functionality	 in	Materials	
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Studio	permits	the	symmetrical	construction	of	a	specified	supercell	 in	terms	of	
atomic	 coordinates,	which	may	 then	 be	 exported	 as	 a	 .cif	 file.	 The	 .cif	 is	 then	
opened	in	another	software	package	known	as	Vesta,	and	exported	as	a	.vasp	file.	
We	now	have	a	135-atom	MgSiO3	supercell	ready	for	use	in	VASP.		
	
In	the	case	of	MgSiO3	+	H2O	the	presence	of	two	separate	molecules	means	that	
we	are	unable	to	reduce	the	problem	down	to	a	simple	multiplication	of	unit	cells	
into	a	crystalline	structure.	Instead,	we	employ	the	‘skew	start’	method	developed	
by	Refson	(2001)	to	populate	our	supercells.	To	integrate	the	equations	of	motion	
in	a	manner	that	remains	numerically	stable,	no	two	atoms	should	be	too	close	to	
one	another.	Thus	the	Skew	Start	method	was	developed	to	populate	a	supercell	
with	atomic	coordinates	that,	although	not	periodic,	have	a	guaranteed	minimum	
separation	distance,	𝑎,	allowing	for	more	stable	starting	conditions.	 
	
The	 basic	 concept	 behind	 the	 Skew	 Start	 is	 to	 create	 a	 line	 upon	which	 point	
particles	–	later	assigned	atomic	properties	–	can	be	placed.	The	line	is	then	folded	
back	into	itself	within	the	specified	boundaries	of	the	supercell,	lining	up	in	‘slices’	
from	one	corner	to	the	other,	allowing	the	space	to	fill	up	well,	corners	excepted.	
Different	atomic	species	may	then	be	assigned	to	the	various	points	along	the	line	
at	random,	with	a	separation	distance	given	by:	
	
	

𝑎 ≈ 𝑑 ≈ 𝐿𝑁\V¡																																																																																																													[43]						
	
	
	
where	𝑎	is	the	minimum	separation	distance	between	atoms	on	the	line,	𝑑	is	the	
separation	 distance	 between	 ‘slices’,	 𝐿	 is	 the	 length	 of	 the	 side	 and	𝑁	 is	 the	
number	of	atoms.	This	concept	is	illustrated	in	Fig.	11	below.	
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Figure 11: Illustration of the Skew-Start method of Refson (2001). Top: Atoms are placed onto a line with a 
minimum separation distance, a. Bottom: The line is folded within the boundaries of the simulation cell with a 
separation distance, d..	

	
Initial	 velocities	are	assigned	via	a	Gaussian	distribution,	 and	applied	 to	a	base	
velocity,	𝑣ÅÆ¥p,	as	per	Allen	and	Tildesley	(1987),	given	by:	
	
	

𝑣ÅÆ¥p =
𝑘Ç𝑇
𝑚ÆemÈ

																																																																																																						[44]	

	
	
	
Upon	testing,	the	Skew-Start	method	proved	to	be	a	success	for	our	systems,	using	
a	 starting	 temperature	 of	 20,000	 K,	 and	 using	 the	 software	 package	 VMD	 to	
visualize	the	trajectory	and	interaction	of	atoms	after	an	initial	run	of	2000	time	
steps.	A	snapshot	of	the	progress	of	one	of	these	test	runs	on	the	MgSiO3	+	H2O	
system	has	been	included	below	for	reference.	
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Figure 12: A snapshot from the MgSiO3 + H2O simulations at 3000 K and ~10 GPa. The yellow spheres 
represent Si atoms, the blue spheres are Mg, the red spheres are O and the white spheres are H. Images 
obtained using VMD software. 

	
4.2.2.	VASP	SET-UP	
	
Simulations	 are	 conducted	 in	 the	 canonical	 ensemble,	 wherein	 the	 number	 of	
particles,	the	volume	and	the	temperature	are	held	constant	(NVT).	We	opt	for	a	
GGA	functional	throughout	all	the	primary	work	in	this	thesis,	given	the	nature	of	
the	 research,	 in	 terms	 of	 examining	 various	 static	 and	 dynamic	molecular	 and	
thermodynamic	properties	across	a	wide	range	of	 temperatures	and	pressures.	
Specifically,	 we	 use	 PBEsol	 (Perdew	 et	 al.,	 2008)	 on	 account	 of	 its	 greater	
performance	for	calculating	e.g.	equilibrium	structures	(Demichelis	et	al.,	2010),	
which	are	particularly	relevant	to	the	structure-based	results	in	this	work.		
	
The	 selection	 of	 appropriate	 PAW	 potentials	 must	 take	 into	 account	 the	
environments	replicated	over	the	course	of	the	study.	Given	that	we	extend	the	
simulations	into	comparatively	high	pressure	and	temperature	regimes,	we	should	
seek	to	include	an	adequate	number	of	valence	electrons,	where	available.	This	
allows	us	to	account	for	a	greater	potential	overlap	in	atomic	orbitals,	as	compared	
to	interactions	at	ambient	temperature	and	pressure,	for	example.	In	the	current	
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work,	we	use:	an	Mg	PAW	potential	with	s2p6	valence	configuration;	an	Si	s2p2	
PAW	potential,	and;	an	O	s2p4	PAW	potential,	and	a	standard	H	pseudopotential.		
	
We	investigate	12	volumes	in	total,	for	each	experimental	system	(MgSiO3,	MgSiO3	
+	H2O).	For	each	volume,	our	first	course	of	action	is	to	produce	a	melted	system.	
To	obtain	this	the	crystalline	initial	conditions	are	entered	into	an	FPMD	simulation	
at	20,000	K	for	a	total	run	of	8	ps,	with	a	timestep	of	1.0	fs,	numbering	8000	ionic	
iterations	in	total.	This	proved	to	be	an	adequate	length	for	melting	to	occur	in	all	
experimental	 cases,	 as	 determined	 from	 inspection	 of	 the	 radial	 distribution	
functions,	and	then	each	volume	is	entered	into	an	equilibration	run	of	at	least	a	
further	8	ps	the	details	of	which	will	be	discussed	later	in	this	section.		
	
For	each	time	step,	VASP	determines	the	electronic	groundstate	by	initiating	the	
runs	with	a	trial	density,	and	then	progressing	through	a	series	of	self-consistent	
electronic	 iterations	 until	 the	 specified	 value	 for	 convergence	 is	 reached.	 The	
iterations	are	said	to	be	self-consistent	because	the	density	is	updated	when	the	
wavefunctions	are	changed,	such	that	they	are	consistent	with	each	other.	
	
In	 the	 current	 work,	 we	 specify	 the	 stopping	 criterion	 for	 the	 relaxation	 of	
electronic	degrees	of	freedom	to	be	10-6	eV.	In	other	words,	we	say	the	system	is	
converged	when	the	energy	difference	between	electronic	iterations	drops	below	
this	value,	and	thus	that	the	groundstate	has	been	 identified.	Here,	we	set	200	
electronic	 iterations	 as	 the	 convergence	 limit;	 that	 is,	 if	 the	 system	 has	 not	
converged	to	the	stopping	criterion	before	200	iterations	have	lapsed,	then	the	
program	 is	 shut	 down,	 and	 we	 investigate	 the	 cause.	 Once	 these	 electronic	
iterations	have	converged,	the	internal	energy	is	computed,	along	with	the	stress	
tensor	and	the	forces	acting	on	the	nuclei,	from	which	the	Newtonian	mechanics	
are	applied	(Stixrude	et	al.,	2009).	
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4.3.	DATA	PROCESSING	
	
In	 this	 section,	 we	 discuss	 the	 various	 techniques	 use	 to	 obtain	 the	 results	
reported	in	this	thesis,	beginning	with	the	checks	used	to	ascertain	the	structural	
and	 thermodynamic	 state	 of	 the	 system,	 and	 continuing	 with	 computing	
equilibrium	 averages	 and	 uncertainties,	 average	 coordination	 numbers	 and	
fractions,	average	bond	lengths,	equation	of	state,	mean	squared	displacements	
and	self-diffusion	coefficients.		
	
	
	
4.3.1.	DETERMINING	STATE	
	
Before	 proceeding,	we	must	 first	 determine	whether	 or	 not	 the	 system	 is	 in	 a	
liquid	state.	To	do	so,	one	of	the	first	analyses	we	can	perform,	is	to	examine	the	
radial	distribution	function	𝑔 𝒓 ,	which	describes	the	variation	of	density	relative	
to	a	reference	particle,	and	is	mathematically	defined	as:	
	
	

𝑔 𝒓 = 		
1
𝑁𝜌 𝛿 𝒓 + 𝒓° − 𝒓A

t

°`A

t

AÊV

																																																																				[45]	

	
	
where	𝑁	 is	 total	 number	 of	 particles,	 𝜌	 is	 the	 number	 density	𝑁/𝑉,	 𝒓	 is	 the	
distance	to	the	particle	from	the	reference	particle,	in	angstroms,	the	subscripts	𝑖	
and	𝑘	are	individual	species,	and	𝛿	is	the	Dirac	delta	function.		
	
The	underlying	premise	of	using	the	distribution	function	(RDF)	to	ascertain	the	
state	 of	matter	 is	 based	 on	 our	 understanding	 of	 typical	 atomic	 geometries	 in	
different	states.	In	a	solid,	we	can	find	neighbouring	atoms	to	a	reference	atom	at	
characteristic	distances	corresponding	to	bond	lengths	and	packing	coordination;	
or,	in	other	words,	we	have	both	short	and	long	range	order,	in	the	form	of	regular	
and	 predictable	 spacing	 between	 atoms.	 In	 a	 liquid,	 however,	 this	 spacing	 is	
irregular,	and	neighbouring	atoms	are	identified	at	more	approximate	distances.	
Finally,	 in	 a	 gas,	 there	will	 be	 an	 absence	 of	 long	 or	 short	 term	ordering.	One	
important	point	to	consider	is	that	an	amorphous	solid	(such	as	a	glass)	will	have	
an	RDF	that	looks	very	similar	to	that	of	a	liquid,	so	further	steps	must	be	taken	to	
ascertain	 the	 state	 of	 the	 system	when,	 for	 example,	 dealing	with	 a	 system	 in	
which	vitrification	might	occur.	The	diagram	below	has	been	added	 in	order	 to	
illustrate	these	concepts	visually.	
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Figure 13: An RDF plot of the solid, liquid and gas states of Argon, 𝑎𝑡	𝑇 = 50	𝐾, 𝑇 = 80	𝐾 and 𝑇 = 300	𝐾, 
respectively. The radii are stated as reduced units of the molecular diameter (𝜎 = 3.822Å). The peaks 
represent favoured separation distances. At distances below that of an atomic diameter, 𝑔 𝒓  goes to zero, due 
to repulsive forces. The height of the peak is thus the probability that the reference atom will have a neighbor 
at that distance. Observing the solid line (blue), the first peak is the nearest neighbor shell, the second is the 
next nearest, and so on. This indicates the presence of both short and long range order. In the liquid plot, we 
can see that, although there is a reduced nearest neighbor peak, indicating the existence of molecular species, 
disorder increases with distance beyond that, while the gas is disordered throughout. Image from (Chandler 
1987).	

	
	
A	 more	 practical	 way	 to	 consider	 how	 we	 might	 calculate	 the	 RDF	 from	 our	
simulation,	it	is	useful	first	to	conceptualise	the	RDF	as:	
	
	

𝑔 𝒓 =
𝜌(𝒓)
𝜌 																																																																																																																[46]	

	
	
Where	𝜌(𝒓)	is	the	local	density	and	𝜌	is	the	overall	number	density	of	the	system.		
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Figure 14: A visual illustration of the set-up and core components involved in calculating the radial distribution 
function. Image from R.I.N.G.S. (2010)	

	
Starting	with	a	single	‘snapshot’,	we	first	measure	the	distances	from	reference	
atoms	–	say	Si	-	to	their	nearest	neighbours.	Those	distances	are	then	measured	
for	all	the	particles	in	the	system,	and	an	average	is	taken.	Finally,	we	perform	the	
same	procedure	for	all	–	or	a	representative	selection	–	of	the	snapshots	across	a	
given	period	of	time.	We	calculate	the	RDF	of	a	discrete	spherical	shell	according	
to:	
	
	

𝑔 𝑟 =
< 𝑁 𝑟 ± ∆𝑟2 >

Ω 𝑟 ± ∆𝑟2
	
1
𝜌																																																																																									[47]	

	
	
where	𝑁 𝑟 ± ∆[

W
	is	the	number	of	atoms	in	the	interval	∆𝑟,		and	Ω 𝑟 ± ∆[

W
	is	the	

volume	of	the	shell	𝑑𝑟,	illustrated	in	Fig.	15	below:	
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Figure 11: A visualisation of the process of RDF calculation (image from Buehler (2011)). 	

	
	
With	 respect	 to	 the	 time	 over	 which	 the	 distances	 are	 averaged,	 we	must	 be	
careful	 not	 to	 include	 every	 snapshot.	 For	 example,	 our	 results	 might	 be	
compromised	if	we	seek	to	understand	the	state	of	the	system	at	the	end	of	the	
run,	if	we	include	the	state	of	the	system	at	the	beginning,	if	the	two	are	expected	
to	differ.	We	will	consider	this	point	in	greater	depth	later	in	the	thesis,	when	it	
comes	to	processing	and	analyzing	our	results.		
	
Following	 an	 8	 ps	 melting	 period	 for	 all	 volumes	 from	 the	 crystalline	 initial	
condition,	 RDF	 plots	 were	 obtained	 for	 representative	 volumes	 in	 order	 to	
ascertain	the	presence	of	melt.	Once	satisfied	that	the	systems	were	no	longer	in	
a	crystalline	state,	each	volume	was	then	quenched	to	various	temperatures	of	
interest	(3000	K,	4000	K,	6000	K,	10,000	K)	and	experimental	runs	were	initiated	
for	a	further	8	ps,	or	simply	extended	for	a	further	8	ps,	in	the	case	of	the	20,000	
K	volumes.	These	particular	temperatures	were	chosen	for	the	purposes	of	more	
direct	and	simple	comparison	to	the	earlier	work	of	Stixrude	&	Karki	(2005).		
	
	
	
4.3.2.	THERMODYNAMIC	AVERAGES	&	UNCERTAINTIES		
	
	
At	the	end	of	each	experimental	run,	we	remove	the	initial	transient	simulation	
steps	and	compute	thermodynamic	averages	of	internal	energy	and	pressure.	The	
transient	removed	is	typically	20-40%	of	the	total	run,	and	is	selected	by	plotting	
the	time	series	of	internal	energy	and	pressure,	as	well	as	their	moving	averages,	
to	 diagnose	 when	 the	 system	 is	 approximately	 in	 equilibrium.	 If	 visibly	 large	
fluctuations	continue	to	occur	in	the	moving	average	toward	the	latter	half	of	the	
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run,	we	extend	the	simulation,	monitoring	time	series	and	moving	averages	until	
the	final	~5000	time	steps	are	devoid	of	large	fluctuations,	and	the	moving	average	
is	 stationary.	When	 this	 occurs,	 we	 compute	 equilibrium	 averages	 for	 internal	
energy	and	pressure.		
	
Of	course,	these	ensemble	averages	must	also	be	qualified	through	the	estimate	
of	statistical	uncertainties.	For	this,	we	turn	to	the	Blocking	Method,	as	reported	
by	 Flyvbjerg	 and	 Petersen	 (1989).	 In	 this	 approach,	 the	 entire	 trajectory	 of	𝑁	
statistically	 independent	 snapshots	 is	 broken	 into	𝑀	 separate	 segments	 (or	
‘blocks’)	 of	 initially	 a	 very	 short	 block	 length,	 𝑛,	 for	 example	 𝑛 = 1.	 The	
relationship	is	thus	𝑁 = 𝑀 ∙ 𝑛,	and	the	average	of	the	observed	value	is	calculated	
for	each	segment,	such	that	we	obtain	𝑀	values	for	the	observed	quantity	 𝑓 A 	for	
𝑖 = 1…𝑀.		We	slowly	increase	the	block	length	and	recalculate	the	set	of	averages	
for	each	block	length.	In	addition,	for	each	𝑛	value,	the	standard	deviation	among	
the	block	averages,	𝜎�,	is	used	in	calculating	an	estimate	of	the	overall	standard	
error,	according	to:	
	
	

𝐵𝑆𝐸 𝑓, 𝑛 =
𝜎�
𝑀
																																																																																																												[48]	

	
	
Which	we	can	thus	describe	as	the	standard	error	(or	Block	Standard	Error,	BSE),	
for	 the	 observable	 value,	 in	 the	 estimate	 of	 the	 mean	 based	 on	 trajectory	
segments	of	block	length	𝑛.	When	block	lengths	are	small	(and	when	the	number	
of	 blocks	 is	 large)	 for	 highly	 correlated	 consecutive	 blocks,	 then	 𝐵𝑆𝐸	
underestimates	the	error,	since	the	expression	is	only	true	when	the	blocks	𝑀	are	
statistically	 independent.	 Conversely,	 when	 the	 blocks	 are	 statistically	
independent	(when	𝑛	 is	substantially	greater	than	the	correlation	time)	BSE	will	
not	vary	with	𝑛,	and	will	thus	function	as	a	reliable	estimate	of	the	true	standard	
error	of	the	mean	(Grossfield	&	Zuckerman,	2009).		
	
	
	
	
4.3.3.	COORDINATION	NUMBER	&	BOND	LENGTH	
	
	
We	 can	 use	 coordination	 statistics	 to	 give	 an	 indication	 of	 the	 short-range	
structure	of	a	given	material.	They	tell	us	how	many	nearest	neighbor	atoms	of	a	
particular	species	are	within	bonding	distance	of	a	reference	atom,	and	can	impart	
some	insight	into	the	coordination	state	of	a	particular	species	within	a	material,	
at	 temperature-pressure	 environments	 of	 interest.	 In	 order	 to	 compute	 the	
coordination	 statistics	 of	 atom	 𝛽	 around	 that	 of	 a	 central	 atom	 𝛼,	 we	 must	
compute	the	distance	from	a	single	𝛼	 to	every	atom	𝛽.	The	number	of	these	𝛽	
atoms	that	are	found	within	a	shell	-	of	a	thickness	less	than	the	nearest	neighbour	
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cutoff	distance	–	are	then	accumulated.	This	process	if	repeated	for	every	central	
𝛼	in	the	system,	first	for	that	snapshot,	and	then	over	all	other	snapshots.		
	
To	 describe	 this	 process	 mathematically,	 we	 must	 first	 extend	 our	 earlier	
discussion	 of	 the	 Radial	 Distribution	 Function.	 It	 is	 possible	 –	 and,	 indeed,	
preferable	in	this	case	-	to	compute	a	partial	RDF,	𝑔ÕÖ(𝒓)	-	that	is,	the	number	of		
𝛽	atoms	within	a	distance	𝒓	from	an	𝛼	atom	-	by	distinguishing	the	distinct	atomic	
species	in	a	system.	Via	the	discretization	method	discussed	earlier,	we	know	that	
for	a	given	central	atom,	we	can	compute	the	number	of	surrounding	atoms	𝑑𝑛(𝒓)	
at	 a	 distance	 between	𝒓	and	𝒓	 + 	𝑑𝒓.	When	we	 distinguish	 the	 species	 in	 the	
system,	we	find	the	partial	RDF	via:	
	
	

𝑔ÕÖ 𝒓 =
𝑑𝑛ÕÖ(𝒓)
4𝜋𝑟W𝑑𝒓𝜌Õ

																																																																																																		[49]	

	
	
where	𝜌Õ = 𝑁𝑐Õ/𝑉	and	𝑐Õ 	is	the	concentration	of	species	𝛼.		
	
Recall	that	the	RDF	is	a	definition	of	the	probability	of	finding	an	atom	at	a	distance	
𝑟	from	a	reference	atom.		The	coordination	number	thus	is	an	indication	of	how	
many	molecules	may	be	found	within	the	range	of	a	coordination	sphere,	meaning	
that,	if	we	integrate	𝑔ÕÖ 𝑟 ,	in	spherical	coordinates,	to	the	first	minimum	of	the	
RDF,	then	we	obtain	the	coordination	number	of	a	molecule:	
	
	

𝑍ÕÖ = 4𝜋𝑝𝑥Ö 𝑟W𝑔ÕÖ 𝒓
[ØÙ
Ú>Û

'
𝑑𝑟																																																																												[50]					

	
	
where	𝑟ÕÖÈA�	is	the	distance	to	the	first	minimum	in	𝑔ÕÖ,	𝑝	is	the	number	density,	
and	 𝑥Ö 	 is	 the	 number	 fraction	 of	 𝛽	 (Sun	 et	 al.,	 2011).	 Applying	 this	 over	 all	
reference	atoms	in	a	given	snapshot	(for	example,	all	Si	atoms,	𝛼,	coordinated	to	
O	atoms,	𝛽),	and	over	all	snapshots	in	the	duration	of	interest,	then	we	can	use	
the	results	to	obtain	both	coordination	fraction	and	mean	coordination	number.		
	
Finally,	 we	 can	 obtain	 the	 mean	 separation	 𝒓 	over	 the	 first	 coordination	
according	to:	
	

𝑟 =
𝑟¡𝑔ÕÖ 𝒓 	𝑑𝑟[ØÙ

Ú>Û

'

𝑟W𝑔ÕÖ 𝒓 	𝑑𝑟[ØÙ
Ú>Û

'

																																																																																										[51]						
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and	 bond	 length	 is	 defined	 as	 the	 mode	 of	 the	 first	 peak	 in	 the	 partial	 RDF	
(McQuarrie,	2000).	
	
	
	
	
4.3.4.	EQUATION	OF	STATE	
	
The	equation	of	state	is	a	useful	tool	for	bringing	together	state	variables	that	can	
describe	 the	 thermodynamic	 properties	 of	 our	 system	 in	 a	 given	 temperature-
pressure	environment.	Typically,	it	is	used	in	order	to	enable	correlation	between	
fluid	 system	densities	and	particular	 temperature	and	pressure	 regimes.	 In	 this	
work,	 we	 use	 the	 third-order	 isothermal	 Birch-Murnaghan	 equation	 of	 state,	
which	approximates	 the	 relationship	between	volume	and	pressure,	and	which	
can	be	obtained	via	the	expansion	of	the	free	energy	as	a	function	of	Eulerian	finite	
strain:		
	
	

𝑃 𝑉 =
3𝐵'
2

𝑉'
𝑉

Ü/¡

−
𝑉'
𝑉

Ý/¡

1 +
3
4 𝐵'� − 4

𝑉'
𝑉

W/¡

− 1 												[52]	

	
	
where	𝐵'	is	 the	 bulk	modulus,	𝑉'	 is	 a	 reference	 volume,	𝑉	 is	 the	 compressed	
volume	and	𝐵'�	 is	 the	derivative	of	 the	bulk	modulus	with	respect	 to	pressure.	
When	computing	the	Birch-Murnaghan	equation	of	state,	we	typically	guess	the	
bulk	modulus	and	its	derivative	using	any	available	experimental	data,	and	run	the	
computation	across	iterations	until	we	find	the	best	fitting	values	to	the	simulated	
pressure-volume	data.		
	
	
	
4.3.5.	HEAT	CAPACITY	AND	GRUNEISEN	PARAMETER	
	
	
A	material’s	 heat	 capacity	 informs	 us	 of	 the	 amount	 of	 energy	 that	 would	 be	
required	to	heat	a	given	mass	of	that	material	to	a	given	temperature;	that	is	to	
say,	 heat	 capacity	 is	 quantitatively	 linked	 to	 enthalpy	 and	 entropy,	 but	 is	 also	
directly	measurable.	Heat	 capacity	 can	 take	 two	 separate	 forms,	depending	on	
whether	 the	 system	 is	being	held	at	 constant	pressure,	or	 at	 constant	 volume.	
Here,	 we	 hold	 our	 systems	 constant	 in	 volume	 (𝑑𝑉 = 0),	 but	 the	 pressure	
fluctuates,	so	we’re	concerned	with	the	isochoric	heat	capacity,	𝐶£.	
	
We	use	two	different	method	to	obtain	𝐶£ 	values	in	the	current	work,	primarily	in	
order	to	compare	and	contrast	the	results.	The	first	is	a	finite	differences	method;	
a	discretization	method	in	which	finite	differences	approximate	derivatives.	This	is	
trivial	 to	 obtain	 by	 utilizing	 the	 thermodynamic	 average	 quantities	 of	 internal	
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energy	 at	 the	 same	 volume,	 over	 different	 temperatures,	 according	 to	 the	
following	relation:	
	
	

𝐶£ =
𝜕𝐸
𝜕𝑇 £

≈ 	
𝑑𝐸
𝑑𝑇 	£ =

𝐸W − 𝐸V
𝑇W − 𝑇V

		£																																																																				 53 	

	
	
Where	the	final	result	gives	the	value	for	𝐶£ 	at	a	temperature	midway	between	
𝑇V	and	𝑇W.			
	
The	other	method	for	obtaining	𝐶£used	in	this	work	allows	us	to	obtain	the	value	
directly	from	the	results	of	a	single	simulation	cell.	In	the	canonical	ensemble,	it	is	
contact	 with	 a	 thermal	 bath	 (in	 this	 case	 the	 Nosé	 thermostat)	 that	 gives	 the	
system	its	temperature.	Thus	the	system	is	no	longer	isolated	and	the	Hamiltonian	
(total	energy)	is	not	conserved,	so	we	should	expect	fluctuations.	Thus,	we	must	
consider	 the	 total	 energy	 in	 thermodynamics	 as	 the	 ensemble	 average	 of	 the	
Hamiltonian	in	statistical	mechanics.	In	other	words:	
	
	
∆𝐸 W ≡ 	 𝐸W −	 𝐸 W																																																																																																	 54 	

	
	
To	consider	this	in	terms	of	extracting	a	value	of	𝐶£ 	from	our	simulations,	it	can	
further	be	shown,	via	derivation	of	the	partition	function,	that:	
	
	

𝐸W − 𝐸 W = 𝑘Ç𝑇W
𝜕𝐸
𝜕𝑇 £

= 	𝑘Ç𝑇W𝐶£_«âã																																																											[55]			

	
		
where	𝑘Ç	is	the	Boltzman	constant.		
	
It	should	be	noted,	however,	that	to	calculate	𝐶£ 	using	this	method,	we	do	not	use	
the	total	energy	values	that	are	outputted	from	VASP	directly.	The	total	energy	
itself	 has	 three	 contributions:	 the	 internal	 energy,	 primarily	 comprising	 the	
potential	 energy	 among	 atoms	 in	 the	 system;	 the	 kinetic	 energy	 from	 the	
translation-like	 motion	 of	 the	 atoms	 at	 finite	 temperature,	 and;	 the	 thermal	
energy	of	the	electrons.	In	our	simulations,	the	thermal	energy	of	the	electrons	is	
fixed	using	a	specific	tag	(SIGMA	in	VASP),	and	so	fluctuation	is	not	a	property	of	
the	 electronic	 subsystem.	 Thus,	we	 instead	use	 the	 internal	 energy	 from	VASP	
when	computing	𝐶£,	 and	 separately	add	 the	kinetic	energy	 contribution	of	 the	
ions,	and	the	heat	capacity	associated	with	the	electron	thermal	excitation:	
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𝐶£äåæ =
𝑈W − 𝑈 W

𝑘Ç𝑇W
+ 𝐾𝐸 +	𝐶£çèçé																																																																								 56 		

	
	
where	𝑈	is	the	internal	energy	of	the	system,	𝐾𝐸	is	the	kinetic	energy	of	the	ions,	
and	 𝐶£çèçé 	 is	 the	 heat	 capacity	 associated	 with	 the	 thermal	 excitation	 of	 the	
electrons.	We	follow	De	Koker	&	Stixrude	(2009)	in	approximating	a	functional	fit	
for	𝐶£çèçé 	as	follows:		
	
	

𝐶£çèçé = 	𝑇
𝑑𝑆pê
𝑑𝑇 £

																																																																																																							[57]	

	
	
where	𝑆pê 	 is	the	electronic	entropy,	and	can	be	fitted	at	different	temperatures	
using	the	following	expression:	
	
	

𝑆pê = 𝜁 𝑇 − 𝑇pê − 𝑇pêln
𝑇
𝑇pê

																																																																																								[58]		

	
where	 𝑇pê 	 is	 the	 temperature	 in	 silicate	 liquids,	 above	 which	 electronic	
contributions	become	significant,	and	is	related	to	the	melting	temperature,	𝑇	is	
the	temperature	of	the	system,	and	𝜁	is	the	thermo-electronic	heat	capacity;	both		
𝑇pê 	and	𝜁	must	be	assigned	initial	‘guess’	values.	We	calculate	𝑆pê 	separately	for	
the	 same	 volume	 across	 a	 range	 of	 temperatures,	 and	 fit	 the	 results	 to	 the	
following	expression	to	estimate	𝐶£çèçé:	
	
	
𝐶£çèçé 𝑉, 𝑇

= 𝜁 𝑉 𝑇 − 𝑇pê 𝑉 																												𝑇 ≥ 𝑇pê
0																																																										𝑇 ≤ 𝑇pê	

																																																									[59]	

	
	
Thus	 enabling	 us	 to	 obtain	 fitted	 values	 for	 𝑆pê 	 and	 𝐶£çèçé 	 ostensibly	 for	 any	
temperature,	for	a	given	volume	(De	Koker	&	Stixrude,	2009).	
	
Finally,	we	obtain	a	value	for	the	Grüneisen	parameter,	𝛾.	In	many	materials,	𝛾	is	
independent	 of	 temperature	 or	 internal	 energy,	 and	 is	 thus	 a	 one-parameter	
function	 of	 volume,	 leading	 directly	 to	 the	 Mie-Grüneisen	 approximation	 and	
equation	of	state	,	and	which	is	calculated	via	the	finite	differences	method	used	
to	obtain	𝐶£ 	and	discussed	above:	
	
	

𝛾 = 𝑉	
𝜕𝑃
𝜕𝐸 £

=
	𝑉	
𝐶£

𝜕𝑃
𝜕𝑇 £

≈ 	
	𝑉	
𝐶£

𝑑𝑃
𝑑𝑇

	£ =
	𝑉	
𝐶£

𝑃W − 𝑃V
𝑇W − 𝑇V

		£																																												[60]	
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4.3.6.	MEAN	SQUARE	DISPLACEMENT	AND	SELF-DIFFUSION	
	
The	mean	squared	displacement	(MSD)	is	a	useful	tool	in	statistical	mechanics	for	
diagnosing	whether	or	not	the	atoms	in	a	system	are	moving	diffusively,	and	at	
what	 rate.	 Thus,	we	 can	use	 the	MSD	 to	ascertain	dynamical	 convergence	and	
whether	or	not	our	system	is	a	fluid	state.	It	is	calculated	according	to:	
	
	
𝑀𝑆𝐷 ∆𝑡 = 	 (𝑥 𝑡 − 𝑥 𝑡' )W 																																																																																				[61]	
	
	
where	𝑥(𝑡)	is	the	position	of	an	atom	at	time	𝑡,	with	the	average	being	taken	over	
all	 snapshots	 from	 time	 origin	 𝑡'	 (here	 we	 include	 just	 the	 final	 3	 ps	 of	 each	
equilibrium	run)	and	∆𝑡	is	taken	as	the	difference	between	𝑡	and	𝑡'.		The	system	
can	be	concluded	to	be	in	a	fluid	state	and	in	dynamical	convergence	when	the	
MSD	shows	a	linear	trend	over	time.		
	
However,	we	must	pay	close	attention	to	the	fact	that	the	ensemble	average	is	
taken	over	all	atoms	in	the	system,	which	can	give	misleading	results	if	there	is	a	
large	mass	disparity	between	atomic	components.	For	example,	in	MgSiO3	+	H2O,	
hydrogen	 is	 substantially	 lighter	 than	 any	 other	 component.	 Observing	 the	
respective	 MSD	 plots,	 we	 may	 be	 tempted	 to	 conclude	 that,	 at	 the	 same	
temperature	 and	 pressure,	 MgSiO3	 +	 H2O	 is	 substantially	 more	 diffusive	 than	
MgSiO3,	when	in	fact	it	is	merely	the	hydrogen	in	the	system	artificially	boosting	
the	ensemble	average.		
	
Thus,	 it	 is	 useful	 also	 to	 examine	 the	 self-diffusion	 coefficient	 for	 atom	 types	
individually,	to	get	a	more	thorough	understanding	of	dynamical	behaviours.	The	
self-diffusion	coefficient,	𝐷,	is	calculated	by	dividing	the	linear	portion	of	the	MSD	
according	to:	
	
	

𝐷 =
1
2𝑑 lim∆→ð

𝑀𝑆𝐷(∆𝑡)
∆𝑡 																																																																																																			[62]	

	
	
where	𝑑	refers	to	the	dimensionality	of	the	system	(𝑑 = 3	in	our	case).	
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5. RESULTS		
	
	
In	this	section,	we	will	examine	our	results-so-far,	before	outlining	–	in	the	next	
section	 –	 possible	 future	 work.	 This	 section	 will	 be	 organized	 by	 composition	
(homogenous	 MgSiO3	 and	 MgSiO3	 +	 H2O)	 in	 the	 first	 instance,	 with	 each	
subsection	 comprising	 structural	 results,	 thermodynamic	 results,	 and	 transport	
properties.		
	
	
	
5.1.	MgSiO3	STRUCTURAL	PROPERTIES		
	
In	terms	of	structural	properties,	we	have	calculated	the	mean	Si-O	bond	lengths	
and	mean	Si-O	coordination	number	across	all	volumes	(𝑉 = 𝑉𝑥	𝑡𝑜	𝑉 = £q

Ý
)	and	

all	 isotherms	 (3000	 K,	 4000	 K,	 6000	 K,	 10,000	 K	 and	 20,000	 K).	 The	 Si-O	
coordination	 environments	 have	 also	 been	 plotted	 for	 the	 3000	 K	 and	 4000	 K	
isotherms.	All	 results	will	be	 compared,	where	possible,	with	 relevant	previous	
research,	including	both	experimental	and	theoretical	work.		
	
Prior	to	discussing	our	results,	it	would	first	be	instructive	to	examine	some	of	our	
radial	distribution	functions	(Fig.	16),	as	per	the	discussion	in	section	4.3.1.			
	

 
Figure 16: The RDF of Si-O, Mg-O and O-O pairs in MgSiO3 at 3000K, for the volume  

£
£ñ
= 1.0 (left) and 

£
£ñ
= 0.5 (right). Note that all species show nearest neighbour peaks, indicating strong charge ordering. 

However, the 'tails' are consistent with a liquid or amorphous solid state. From the current work.	

	
As	we	can	see	from	the	RDF	plots	from	the	3000	K	MgSiO3	simulations,	our	system	
for	each	given	volume	is	either	liquid,	or	an	amorphous	glass.	The	RDF	plots	show	
a	similar	distribution	for	all	examined	volumes	and	temperatures.		Analysis	of	the	
transport	properties	of	these	systems	(discussed	later	in	this	section)	will	give	a	
more	clear	 insight	 into	system	state	 (i.e.	whether	 liquid,	or	glass).	For	now,	we	
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assume	that	our	 system	has	 indeed	entered	 the	 liquid	phase	 from	a	crystalline	
initial	condition.		
	
	
	
5.1.1.	MEAN	Si-O	BOND	LENGTHS	
	
	
The	method	 for	 calculating	 bond	 lengths	 is	 outlined	 in	 section	 4.3.3.	 Here,	we	
begin	with	an	analysis	of	 the	mean	Si-O	bond	 length	 in	MgSiO3	 liquid	across	all	
volumes	and	isotherms.		These	data	are	plotted	in	Fig.	17	below.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
The	data	for	all	isotherms	behave	almost	linearly	at	the	lower	volumes	(i.e.	from	
V/Vx	=	0.5	to	V/Vx	=	0.2),	reflecting	much	more	homogeneous	compression,	as	
compared	 with	 the	 large	 volumes	 where	 the	 Si-O	 bond	 actually	 expands	 on	
compression.	 This	may	 be	 related,	 in	 some	 cases,	 to	 vitrified	 states,	 or	 it	may	
simply	be	a	function	of	reduced	degrees	of	freedom	due	to	extreme	pressures.	For	
the	 higher	 temperature,	 higher	 volume	 runs,	 the	 data	 behave	 erratically,	
especially	on	the	20,000	K	isotherm.	Further	investigation	is	required	to	determine	
the	 cause	 of	 this	 behavior,	 which	 may	 be	 simply	 a	 function	 of	 much	 greater	
thermal	energy	and	degrees	of	freedom	and	thus	noise	in	the	determination	of	
the	mode	of	the	radial	distribution	function.		
	
	

Figure 12: Mean Si-O bond length (in Å) of MgSiO3 liquid at temperatures ranging 
from 3000 K to 20,000 K and pressures from 2 GPa to 2.9 TPa, where  𝑉q =
	38.9	𝑐𝑚¡	𝑚𝑜𝑙\V	, the experimental value for the liquid at the ambient-pressure 
melting point (1830 K), as per Lange and Carmichael, 1987. Note that some of these 
data points may represent systems that have undergone vitrification, particularly as 
volumes decrease. Note also that this work was among the earliest that I completed, 
and I made an assumption that the error bars would be smaller than the size of the 
points, as per work from other researchers in my group. The higher temperature results 
seem to invalidate this assumption.  
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5.1.2.	MEAN	Si-O	COORDINATION	NUMBERS	AND	ENVIRONMENTS	
	
The	calculated	mean	coordination	numbers	are	given	in	Fig.	18,	and	compare	very	
well	with	the	work	completed	previously	by	Stixrude	&	Karki	(2005).	It’s	interesting	
to	 note	 that	 the	 coordination	 number,	 for	 all	 but	 the	 highest	 temperature	
isotherm,	 continues	 to	 increase	 in	 a	 linear	 manner,	 reaching	 a	 maximum	 of	
between	8	and	8.5.	Again,	we	see	erratic	behavior	from	the	larger	volume	20,000K	
points.	For	comparison,	the	equivalent	plot	from	Stixrude	&	Karki	(2005)	is	printed	
below	(Fig.	19).		
	

 
Figure 13: Mean Si-O coordination number of MgSiO3 liquid at temperatures ranging from 3000 K to 20,000 
K and pressures from 2 GPa to 2.9 TPa. The same caveat applies to the results for bond length, e.g. that some 
data points may be vitrified. Note that this work was among the earliest that I completed, and I made an 
assumption that the error bars would be smaller than the size of the points, as per work from other researchers 
in my group. The higher temperature results seem to invalidate this assumption. 

 
Figure 19: Mean Si-O coordination number in MgSiO3 liquid, from Stixrude and Karki (2005). Red, green and 
blue dots represent 3000 K, 4000 K and 6000 K runs, respectively, with a pressure range that spans the Earth’s 
mantle. 
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The	coordination	environment	plots	in	Fig.	20	and	Fig.	21	below,	demonstrate	the	
average	coordination	number	of	the	silicon	atoms	in	the	system,	and	the	fraction	
that	are	of	coordination	4,	5,	6	and	so	on.	These	plots	have	thus	 far	only	been	
produced	for	the	3000	K	and	4000	K	systems,	but	excellent	agreement	is	shown	
with	that	of	previous	work	by	Stixrude	&	Karki	(2005).	In	addition,	and	as	noted	in	
the	aforementioned	work,	there	does	not	appear	to	be	a	significant	temperature	
dependence	 on	 the	 overall	 shape	 of	 the	 coordination	 environments	 over	 the	
examined	temperatures	(3000	K	and	4000	K).	
	

 
Figure 14: Si-O coordination environment in MgSiO3 liquid at 3000K (this work). 	

 
Figure 15: Si-O coordination environment in MgSiO3 liquid at 4000K (this work)	
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5.2.	MgSiO3	THERMODYNAMIC	PROPERTIES		
	
5.2.1.	EQUATION	OF	STATE	
	
The	equation	of	state	(EOS)	for	silicate	liquids	has	been	explored	experimentally,	
but	has	primarily	been	limited	to	the	ambient	and	upper	mantle	temperature	and	
pressure	regimes	(e.g.	Lange	&	Carmichael,	1987;	Courtial	et	al.,	1997;	Ai	&	Lange,	
2008).	 The	 EOS	 at	 the	 higher	 temperatures	 and	 pressures	 of	 lower	 mantle	
environments	has	been	probed	by	several	shock	loading	and	multi-anvil	studies	
(e.g.	Rigden	et	al.	1989;	Chen	et	al.,	2002;	Sakamaki	et	al.,	2006),	but	little	exists	in	
terms	 of	 experimental	 EOS	 data	 at	 the	 extremes	 of	 temperature	 and	 pressure	
considered	in	this	paper.	As	a	first	step	toward	constraining	the	EOS	for	molten	
MgSiO3	in	these	extreme	conditions,	we	have	calculated	the	Birch-Murnaghan	EOS	
across	all	volumes	and	isotherms.			
	

 
Figure 22: The BM-EOS for MgSiO3 liquid, at temperatures ranging from 3000K to 20000K, and at pressures 
ranging from ~2 GPa to ~2.9 TPa. Note that the uncertainties in pressure are smaller than the FPMD symbols. 
Inset: A more close-up view of the higher-volume data points.  

The EOS parameters found at 3000 K are volume V0 of 1.45	𝑥	10¡𝐴¡ per cell, an 
isotheral bulk modulus, K0, of 9.84 GPa with a bulk modulus pressure derivative, 
𝐾'′ of 4.01. 
 
Comparing	our	EOS	in	the	inset	portion	of	Fig.	22,	with	that	of	previous	work	(e.g.	
De	Koker	&	Stixrude,	2009),	we	see	a	generally	good	agreement.	However,	 the	
BM-EOS	 is	physically	based	upon	the	concept	that	volumetric	strain	completely	
characterizes	the	thermodynamic	properties	of	materials,	and	that	temperature	
influence	can	be	applied	via	the	temperature	dependence	of	parameters	like	the	
bulk	modulus	(Jing	&	Karato,	2011).	This	 is	valid	when	free-energy	is	 influenced	
primarily	by	the	internal	energy	of	the	system.	If	it	transpires	(as	per	Jing	&	Karato,	
2011)	that	it	is	not	the	internal	energy,	but	instead	the	entropy,	that	changes	most	
when	silicate	liquids	are	compressed,	then	the	BM-EOS	may	not	be	so	simple	to	
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borrow	from	the	analysis	of	solids	to	be	used	in	the	case	of	silicate	melts.	Thus,	an	
alternative	approach	to	calculating	the	EOS	may	be	required.		
	
	
	
5.2.2.	HEAT	CAPACITY		
	
The	 heat	 capacity	 for	 each	 volume	 has	 been	 calculated	 using	 both	 the	 finite	
differences	 and	 fluctuation	methods	 described	 in	 4.3.5.,	 and	 plotted	 in	 Fig.	 23	
below.		

 
Figure 23: The average heat capacity for each volume, obtained using both the finite differences method 
(FinDiff, black) and the fluctuation formula (FDT, brown). Blue diamonds show values from De Koker & 
Stixrude (2009). Values per volume are calculated as averages from multiple isotherms, as described in section 
4.3.5.  	

	
Heat	capacity	averages	are	calculated	using	volumes	across	isotherms	(detailed	in	
section	4.3.5)	by	methodological	necessity	in	the	case	of	FinDiff	calculations,	and	
by	means	of	fair	comparison	in	the	case	of	fluctuation	formula	results.	In	order	to	
compare	with	previous	work	(Stixrude	&	Karki,	2005;	De	Koker	&	Stixrude,	2009),	
during	 which	 6000	 K	 and	 8000	 K	 were	 the	 largest	 temperatures	 examined,	
respectively,	we	calculated	averages	values	for	the	heat	capacity	using	only	3000	
K,	 4000	 K	 and	 6000	 K	 isotherms	 up	 to	 lower	mantle	 pressures	 (V/Vx	 =	 0.5,	 or	
roughly	~125	GPa).		
	
In	 general,	 we	 see	 good	 agreement	 with	 the	 previous	 values	 of	 De	 Koker	 &	
Stixrude	(2006)	and	Stixrude	&	Karki	(2005),	as	well	as	good	agreement	between	
the	two	different	methods	used	to	calculate	the	heat	capacity.	However,	this	 is	
only	true	until	we	reach	the	highest	temperature	isotherms	at	10,000	K	and	20,000	



	 	
BARDON,	LEE	 62	

	

K.	Here,	we	begin	to	see	discrepancies	between	the	results	from	the	fluctuation	
formula	and	FinDiff	calculations.		
	
To	investigate	this	discrepancy	further,	we	first	plotted	the	mean	heat	capacities	
calculated	via	fluctuation	formula	and	FinDiff	methods,	in	the	higher	temperature	
regimes.	Fig.	24	below	shows	the	mean	values	obtained	using	data	from	the	6000	
K	and	10000	K	runs.	
	

 
Figure 24: Mean heat capacities obtained as the average values of the heat capacity between 6000 K and 
10,000 K results, using finite differences (black) and fluctuation methods (brown). Note that these plots (Fig. 
24 and 25) are for illustrative purposes only, and should not be considered as results, hence the lack of error 
bars. 

As we can see, when we use results from the 6000 K and 10,000 K runs, we retain 
good agreement between the heat capacity result obtained via each method. 
However, in Fig. 25 below, we begin to see a divergence.  
 

 
Figure 25: Mean heat capacities obtained as the average values of the heat capacity between 10,000 K and 
20,000 K results, using finite differences (black) and fluctuation methods (brown).	

	
As	can	be	noted,	we	begin	to	see	very	notable	divergence	in	the	results	from	using	
these	methods	in	the	higher	temperature	regime.	Given	that	both	methods	use	
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the	same	raw	data	from	the	simulations,	the	difference	in	heat	capacity	must	be	
down	to	the	methods	employed	in	obtaining	the	heat	capacity.	When	using	the	
fluctuation	 method,	 it	 is	 necessary	 to	 separately	 estimate	 and	 include	 the	
electronic	contribution	to	the	heat	capacity.		This	estimate	may	be	the	source	of	
this	discrepancy.	To	examine	the	possibility,	we	plotted	the	heat	capacity	obtained	
from	 fluctuation	 formula	calculations,	both	using	 the	 ionic	heat	capacity	alone,	
and	including	the	electronic	contribution	(Fig.	26	and	27).	
			

 
Figure 26: Heat capacity of MgSiO3 liquid obtained from the fluctuation formula, including electronic and 
kinetic contributions to the total. 	

 
Figure 27: Ionic heat capacity of MgSiO3 liquid, obtained from fluctuations in the internal energy, as calculated 
directly from VASP results.  

 
From Fig. 26 and 27, we see that the electronic contribution to the heat capacity 
remains low for the 3000 K, 4000 K and 6000 K results, across volumes. However, 
this is not the case for the 10,000 K and especially for the 20,000 K results, where 
the electronic contribution clearly becomes much more significant. Thus, in moving 
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forward with this work, we intend to investigate and clarify the suitability – for the 
higher temperature regimes - of the fitting function we currently use for estimating 
the electronic contribution to the heat capacity.  
	
	
5.2.3.	GRÜNEISEN	PARAMETER	
	
The	Grüneisen	parameter	has	traditionally	been	used	in	the	study	of	solids,	with	
respect	 to	 relating	 thermodynamic	 properties	 to	 lattice	 vibrational	 spectra.	
However,	 the	concept	has	 since	been	extended	 to	understanding	 the	structure	
and	 properties	 of	 liquids,	 include	 silicate	 melts	 (Arp	 et	 al.,	 1984).	 It	 has	 been	
consistently	 found	 that	 𝛾	 decreases	 upon	 compression	 in	 crystalline	 solids,	
including	mantle	materials	(Stixrude	&	Lithgow-Bertelloni,	2005),	yet,	according	to	
both	theory	and	experiment,	the	opposite	appears	to	be	true	for	silicate	liquids	
(Stixrude	 &	 Karki,	 2005;	 Mosenfelder	 et	 al.	 2007;	 De	 Koker	 &	 Stixrude,	 2008;	
Asimow,	2012).	This	behavior	has	been	understood	as	a	consequence	of	pressure-
induced	structural	changes	in	the	liquid	(Stixrude	&	Karki,	2005).		
	
One	of	the	initial	questions	that	we	sought	to	address	through	the	course	of	this	
work,	was	whether	𝛾	would	continue	to	increase	almost	linearly	into	the	higher	
pressure	and	temperature	regimes.	In	Fig.	28	below,	we	see	good	agreement	with	
the	work	 of	 previous	 authors	where	 conditions	 overlap.	We	 also	 see	 that	 this	
increase	in	the	Grüneisen	parameter	on	compression	appears	to	reach	a	maximum	
of	between	~1.0	and	~1.15,	before	again	decreasing	with	pressure.	The	source	of	
this	 behavior	 is	 yet	 to	 be	 determined,	 and	 some	 questions	 still	 remain	 over	
whether	the	material	is	indeed	liquid	or	vitrified	in	the	higher	pressure	volumes,	
especially	at	lower	temperatures.	This	will	be	investigated	in	the	following	section.	
	

 
Figure 28: Grüneisen parameter of MgSiO3 liquid, averaged across pressures ranging from ~2 GPa to ~2.9 
TPa, and across temperatures of between 3000 K and 20,000 K. The red circles are from the current work, and 
the purple diamonds are taken from De Koker & Stixrude, 2009. 	
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5.3.	MgSiO3	TRANSPORT	PROPERTIES		
	
Here,	 we	 investigate	 the	 transport	 properties	 of	 silicate	 liquids,	 and	 of	 their	
components,	 including	 both	 mean	 squared	 displacements,	 and	 self-diffusion	
coefficients.	Doing	so	allows	us	to	gain	a	greater	understanding	of	the	state	of	our	
system	across	the	temperature	and	pressure	regimes	of	interest,	when	combined	
with	results	from	our	various	other	analyses,	as	discussed	earlier	in	this	work	(e.g.	
RDF).	 We	 first	 demonstrate	 the	 MSD	 results	 for	 each	 volume	 across	 each	
temperature	 studied,	and	 follow	 this	with	a	more	 in-depth	analysis	of	 the	 self-
diffusion	coefficients.			
	
	
5.3.1.	MEAN	SQUARED	DISPLACEMENTS	
	
The	method	 for	calculating	MSD	results	 is	outlined	 in	section	4.3.6.	Results	are	
given	for	each	temperature	in	Fig.	29	below.	We	can	begin	to	diagnose	the	state	
of	 the	 system	 (liquid	 or	 glass)	 by	 observing	 the	 MSD	 plots	 for	 each	 volume;	
specifically,	the	closer	a	given	plot	line	is	to	the	horizontal,	the	less	diffusive	the	
atoms	in	the	system	are,	on	average.	Especially	in	the	lower	temperature	runs,	we	
can	see	that	numerous	low	volume	MSD	results	seem	to	cluster	together	close	to	
the	horizontal,	indicating	very	little	mean	diffusivity.		
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Figure 29: Mean Squared Displacements for atoms in MgSiO3 liquid at temperatures ranging from 3000 K to 
20,000 K. In each case, the line with the steepest gradient represents V/Vx = 1.0, while the line with the 
shallowest gradient represents V/Vx = 0.2.  	

	
	
5.3.2.	SELF-DIFFUSION	COEFFICIENTS	
	
Self-diffusion	 is	 a	measure	of	 the	 amount	of	 spontaneous	molecular	 or	 atomic	
mixing	 that	 takes	 places	 within	 a	 system,	 in	 the	 absence	 of	 an	 applied	
concentration	or	potential	gradient.	Gaining	some	understanding	of	the	diffusivity	
in	a	system	can	generate	insight	on	a	wide	range	of	phenomena,	from	bulk	mass	
transport,	to	proton	currents	and	magnetic	fields.	Here,	however,	we	begin	with	
utilizing	 the	 self-diffusion	 coefficients	 in	 the	 first	 instance	 to	 ascertain	 the	
functional	nature	of	diffusive	behavior	in	silicate	melts	at	extreme	conditions,	and	
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to	assist	in	diagnosing	whether	or	not	the	system	–	at	a	specific	temperature	and	
volume	–	is	likely	to	be	liquid,	or	vitrified	glass.	We	suggest	that,	should	the	atoms	
of	the	system	be	moving,	on	average,	less	than	the	distance	of	a	typical	Si-O	bond	
(~1.5	 x	 10-10	 m)	 in	 any	 direction,	 the	 system	 may	 reasonably	 be	 considered	
vitrified.		Also	note	that	we	have	selected	a	log-log	plot,	as	opposed	to	the	more	
common	 log-linear,	 to	 display	 this	 data.	While	 the	 latter	may	 be	 adequate	 for	
pressure	regimes	that	span	less	widely	than	in	the	current	study	(see	Fig.	9	and	
10),	 we	 find	 the	 log-log	 plot	 more	 helpful	 in	 visualizing	 system	 transport	
behaviours	 in	 the	current	work.	Fig.	30	shows	each	plot	style	side-by-side	 for	a	
clear	 comparison,	 and	 to	 more	 clearly	 demonstrate	 the	 reasoning	 behind	 our	
decision	to	use	log-log	plots	in	this	work.		
	

 
Figure 30: The mean diffusivity in MgSiO3 melt simulations, visualized on a log-linear plot (left) and a log-log 
plot (right). The blue dots are at 3000 K, green 4000 K, red 6000 K, brown 10,000 K, black 20,000 K. 

	
Of	particular	note	here	is	the	surprising	result	that	the	pressure	and	temperature	
dependence	of	the	diffusivity	across	this	regime	does	not	follow	an	Arrhenian	fit,	
as	previously	found	for	pressures	ranging	up	to,	and	somewhat	beyond,	that	of	
the	lower	mantle	(e.g.	De	Koker	et	al,	2008).	Observing	the	log-log	plot,	we	can	
also	see	that,	at	a	point	between	DN=10-9	m2/s	and	DN=10-10	m2/s,	the	data	points	
lose	 their	 predictable,	 well-behaved	 trajectory,	 further	 suggesting	 a	 change	 in	
system	state	(e.g.	vitrification).		
	
A	more	useful,	and	in-depth,	analysis	of	diffusivity	involves	examining	each	of	the	
component	atoms	of	a	system	individually.	This	is	especially	necessary	when	we	
compare	e.g.	MgSiO3	with	a	hydrogen-bearing	system	(such	as	hydrated	MgSiO3).	
In	the	latter	case,	the	large	disparity	in	atomic	weights	and	sizes	means	that	the	
hydrogen	 continues	 to	 diffuse	 aggressively	 long	 after	 the	 other	 system	
components	have	stopped.	This	can	skew	the	overall	diffusivity	rates,	and,	at	first	
glance,	 lead	 the	 observer	 to	 conclude	 that	 the	 hydrated	 system	 is	 significantly	
more	diffusive.	As	we	shall	see	in	a	later	set	of	results,	this	is	not	the	case.		Fig.	31	
and	 32	 show	 the	 diffusivity	 of	 each	 species,	 grouped	 first	 according	 to	
temperature,	and	then	by	species,	respectively.		
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Figure 31: Diffusivity of Mg, Si and O in MgSiO3 liquid, at temperatures ranging between 3000 K and 20,000 
K and pressures ranging from 2 GPa to ~2.9 TPa, organized by temperature.  
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Figure 32: Diffusivity of Mg, Si and O in MgSiO3 liquid, at temperatures ranging between 3000 K and 20,000 
K and pressures ranging from 2 GPa to ~2.9 TPa, organized by species. The blue dots are at 3000 K, green 
4000 K, red 6000 K, brown 10,000 K, black 20,000 K. Note that a formatting error removed the final ‘0’ on 
the x axis – this should read 10,000 GPa. 

 
Finally,	it	should	be	noted	that	the	20,000	K	results	always	show	a	smooth	curve	
in	log-log	space,	unlike	all	other	isotherms,	suggesting	that	MgSiO3	behaves	
entirely	as	a	liquid	across	every	examined	pressure,	without	disruption.	We	will	
return	to	this	finding	at	a	later	stage	of	the	thesis.		
	
	
5.4.	HYDRATED	MgSiO3	STRUCTURAL	PROPERTIES		
	
Pressure	is	known	to	influence	the	speciation	of	water	in	hydrous	silicate	melts,	
with	 the	 lower	 pressure	 regimes	 being	 dominated	 by	 hydroxyls	 and	 water	
molecules,	and	the	higher	pressure	(previously	explored	up	to	135	GPa)	regimes	
revealing	a	variety	of	species,	including	Si-O-H-O-Si	polyhedral	linkages	O-H-O-H-	
chains,	and	edge	decoration	of	SiO6	octahedra	with	O-H-O	molecules	(Mookherjee	
et	al.,	2008).	 In	our	snapshot	from	relatively	low	pressure	and	low	temperature	
conditions	(see	Fig.	12),	we	also	find	H2O	and	OH	units,	in	good	agreement	with	
the	previous	study.	
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5.5.	HYDRATED	MgSiO3	THERMODYNAMIC	PROPERTIES		
	
	
5.5.1.	EQUATION	OF	STATE	
	
As	 per	 the	 unhydrated	 simulations,	 we	 first	 model	 the	 EOS	 on	 the	 Birch-
Murgnahan	third	order	EOS.		
	

 
Figure 33: The BM-EOS for hydrous MgSiO3 liquid, at temperatures ranging from 3000 K to 20000 K, and at 
pressures ranging from ~2 GPa to ~2.9 TPa. Note that the uncertainties in pressure are smaller than the FPMD 
symbols. 

	
5.6.	HYDRATED	MgSiO3	TRANSPORT	PROPERTIES		
	
	
5.6.1.	MEAN	SQUARED	DISPLACEMENT	
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Figure 34: Mean Squared Displacements for atoms in hydrated MgSiO3 liquid at temperatures ranging from 
3000 K to 20,000 K. In each case, the line with the steepest gradient represents V/Vx = 1.0, while the line with 
the shallowest gradient represents V/Vx = 0.2.  The blue lines are at 3000 K, green 4000 K, red 6000 K, brown 
10,000 K, black 20,000 K. 

	
Note	that,	as	discussed	earlier,	the	MSD’s	are	calculated	as	an	average	across	all	
atoms	 in	 the	 system.	 The	 presence	 of	 hydrogen	 explains	 the	 comparatively	
steeper	gradients	of	the	hydrated	system,	despite	the	higher	pressure	on	a	per-
volume	basis	(due	to	the	inclusion	of	more	atoms	in	the	system).		
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5.6.2.	SELF	DIFFUSION	COEFFICIENTS		
	
	

 
Figure 35: A log-log plot of the self-diffusion coefficient averaged across all atoms in the hydrated MgSiO3 
system, and across all temperatures. The area underneath the red line may be semi or fully vitrified, with a 
diffusion rate that averages roughly a typical Si-O bond length, or less.    	

	
Again,	 given	 that	 these	 results	 are	 averaged	 across	 all	 atoms,	 the	 presence	 of	
hydrogen	is	considerably	raising	the	apparent	diffusivity	of	the	system	as	a	whole.	
Thus,	we	need	to	examine	the	diffusivity	of	the	component	atoms	before	we	can	
gain	a	clear	picture	of	mass	diffusion	in	the	system.		
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Figure 36: Diffusivity of Mg, Si, O and H in hydrated MgSiO3 liquid, at temperatures ranging between 3000 K 
and 20,000 K and pressures ranging from 2 GPa to ~2.9 TPa, organized by temperature.  

	

We	can	immediately	see	that	hydrogen	diffusivity	is	almost	an	order	of	magnitude	
greater	than	that	of	the	other	atomic	species	in	the	system,	across	all	volumes	and	
temperatures	studied,	and	that	the	gap	between	hydrogen	diffusivity	and	that	of	
the	other	species	increases	with	pressure.		
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Figure 37: Diffusivity of Mg, Si, and O in hydrated MgSiO3 liquid, at temperatures ranging between 3000 K 
and 20,000 K and pressures ranging from 2 GPa to ~2.9 TPa, organised by species. Please note that a small 
formatting error has obscured the x-axis of the top plots – the range should be read as 10,000 GPa at its 
uppermost boundary. 	

 
Figure 38: Diffusivity of hydrogen in hydrated MgSiO3 liquid, shown in both log-log (left) and log-linear (right) 
format. Please note that a formatting error has obscured the x-axis of the top plot – the range should be read 
as 10,000 GPa at its uppermost boundary. The blue dots are at 3000 K, green 4000 K, red 6000 K, brown 
10,000 K, black 20,000 K. Note that the uppermost value of the x axis on the left plot should read 10,000 GPa 
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6.	DISCUSSION,	LIMITATIONS,	FUTURE	WORK	
	
In	this	section,	we	will	critically	analyse	the	current	body	of	work,	paying	particular	
attention	to	the	robustness	–	and	the	limitations	–	of	the	given	results,	and	their	
relevance	to	the	Earth	&	Planetary	Sciences.	We	will	also	make	suggestions	as	to	
how	the	material	in	this	thesis	could	be	improved	upon,	in	addition	to	highlighting	
some	possible	future	avenues	of	research	that	could	yield	interesting	outcomes.			
	
The	major	structural	change	in	MgSiO3	liquid	takes	a	remarkably	simple	form.		The	
Si-O	coordination	number	increases	linearly	with	compression	over	a	factor	of	five	
in	volume.	An	exception	here	is	the	20,000	K	data,	although	this	behaviour	may	be	
better	explained	by	errors	in	post-processing,	rather	than	fundamental	differences	
in	material	properties	at	10,000	K	vs	20,000	K.	The	linear	increase	in	coordination	
number	with	volume	had	previously	been	demonstrated	over	a	factor	of	two	in	
compression,	corresponding	to	the	pressure	range	of	Earth’s	mantle	(Stixrude	&	
Karki,	 2005).	 	 We	 extend	 these	 findings	 to	 much	 higher	 pressures	 here,	
comparable	to	those	of	super-Earth	mantles.		The	maximum	coordination	number	
we	find	is	eight.			
	
At	compressions	greater	than	a	factor	of	two	compression	becomes	much	more	
homogeneous	as	the	liquid	adopts	a	more	close-packed	arrangement	of	ions.		The	
Si-O	bond	length	initially	increases	on	compression,	but	beyond	V/Vx=0.5,	it	begins	
to	decrease.	
	
Although	our	results	for	the	heat	capacity	still	contain	some	uncertainty,	it	appears	
that	 the	 heat	 capacity	 decreases	 on	 compression.	 The	 heat	 capacity	 always	
exceeds	 the	Dulong-Petit	 value	 characteristic	 of	 high	 temperature	 crystals,	 but	
closely	approaches	this	value	at	the	highest	compressions.		The	large	heat	capacity	
of	 silicate	 liquids	 has	 previously	 been	 attributed	 to	 the	 additional	 structural	
degrees	of	freedom	that	they	possess,	and	which	are	absent	in	a	crystal	(Stixrude	
&	Karki,	2005).		At	high	pressure,	as	the	demands	of	close-packing	become	more	
restrictive,	this	structural	freedom	is	diminished,	accounting	for	the	decrease	in	
heat	capacity	with	compression.			
	
We	find	that	the	Grüneisen	parameter	increases	on	compression	for	V/Vx	>	0.5,	
and	then	saturates	and	adopts	a	nearly	constant	value	at	higher	compression.		This	
result	may	be	significant	for	magma	oceans	in	super-Earths.		Whereas	the	initial	
increase	in	Grüneisen	parameter	is	important	for	understanding	the	steepness	of	
the	 adiabatic	 temperature	 gradient	 in	 Earth’s	magma	ocean,	 and	 the	 resultant	
initial	 crystallization	 from	 the	mid-mantle	 and	 development	 of	 a	 basal	magma	
ocean	 (Stixrude	 et	 al.,	 2009),	 super-Earth	 magma	 oceans	 may	 instead	 begin	
crystallizing	from	the	bottom,	and	may	not	form	basal	magma	oceans.	
	
The	activation	volume	governing	self-diffusion	decreases	markedly	with	increasing	
pressure.	 From	 one	 perspective,	 our	 self-diffusion	 coefficients	 may	 reveal	 the	
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limitations	of	the	Arrhenius	form,	when	applied	to	the	very	wide	pressure-range	
explored	herein.	For	example,	extrapolation	from	the	Arrhenius	fits	performed	on	
lower-pressure	FPMD	results,	to	the	conditions	of	super-Earth	mantles,	leads	us	
to	the	inevitable	conclusion	that	the	self-diffusion	coefficients	reported	here	are	
much	greater	than	expected.	It	logically	follows	that	chemical	exchange	between	
magma	oceans,	the	crystals	freezing	out	of	them	and	proto-cores	in	super-Earths	
are	thus	not	so	limited	as	might	have	been	thought	previously.		
	
This	conclusion	is	certainly	valid,	but	it	is	only	unexpected	if	we	assume	that	the	
activation	energy	for	self-diffusion	is	linear	in	pressure.	The	earlier	results	of	e.g.	
De	Koker	et	al.	(2008)	do	indeed	demonstrate	this	result.	However,	these	earlier	
simulations	reached	much	lower	maximum	pressures	(~200	GPa),	and	covered	a	
much	smaller	range,	within	which	an	Arrhenius	fit	was	appropriate,	as	it	accurately	
described	 the	 trends	 in	 the	 data.	 My	 initial	 finding	 that	 an	 Arrhenius	 fit	 is	
inappropriate	over	the	pressure	range	explored	in	this	work,	does	not	necessarily	
demonstrate	 the	 limitations	 of	 the	 Arrhenius	 form	 for	 describing	 diffusivity	 in	
ultra-high	pressure	 regimes,	but	 instead	 illustrates	 the	pressure-dependence	of	
the	activation	energy	is	not	linear	at	the	conditions	explored	herein.	The	activation	
energy	 for	 a	 diffusing	 atom	 describes	 the	 difference	 between	 its	 energy	 at	 a	
starting	 position,	 and	 the	 energy	 barrier	 preventing	 further	 diffusion,	 both	 of	
which	depend	on	quantum	mechanical	interactions	with	neighbouring	atoms.	We	
must	therefore	not	expect	the	activation	energy	to	be	linear	over	pressure	ranges	
as	 wide	 as	 those	 explored	 in	 the	 current	 work,	 where	 we	 have	 highly	 diffuse	
systems	on	one	end,	all	the	way	to	a	range	of	ultra-compressed	volumes,	where	
atoms	are	packed	extremely	closely	together.	When	dealing	with	such	extremes,	
it	is	reasonable	to	assume	that	activation	energies	progress	non-linearly.		
	
In	addition	to	the	above,	and	in	further	considering	the	fundamental	limitations	of	
the	 current	work,	 there	 are	 a	 number	 of	 key	 issues	 that	 should	 be	 addressed	
before	 any	 subsequent	 work	 is	 undertaken.	 One	 such	 issue	 involves	 how	 we	
identify	vitrification	in	the	system,	and	how	that	might	affect	the	treatment	of	the	
data,	and	interpretation	of	the	results.	In	this	work,	my	method	for	ascertaining	
whether	 a	 given	 pressure-temperature	 regime	 led	 to	 vitrification,	 involved	 a	
mainly-qualitative	method	of	examining	the	gradient	of	the	MSD	(averaged	across	
species	–	another	issue	that	we	will	address	below),	the	mean	diffusivity	values,	
and	the	behaviour	of	the	diffusivity	data	when	visualised	in	a	plot.	Specifically,	if	
the	MSD	 gradient	 was	 very	 low,	 if	 atoms	 were	moving,	 on	 average,	 less	 than	
roughly	an	atom’s-length	across	the	equilibrated	portion	of	the	simulation,	and	if	
the	diffusivity	data	points	began	to	 fluctuate	unpredictably,	 I	assumed	that	 the	
system	was	a	partial-melt,	or	an	amorphous	glass.	In	either	case,	the	system	will	
have	undergone	a	phase	change	from	a	liquid,	to	something	else.		
	
This	is	a	crude,	though	nonetheless	useful,	method	for	estimating	the	basic	state	
of	the	system.	However,	the	more	pressing	issue	is	that	this	knowledge	was	not	
used	 to	 inform	 the	 treatment	 of	 my	 data	 in	 performing	 calculations,	 or	 in	
interpreting	 my	 results.	 For	 instance,	 in	 calculating	 my	 heat	 capacities,	 I	 take	
values	 obtained	 at	 given	 volumes,	 and	 then	 average	 them	 across	 a	 range	 of	
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different	temperatures.	This	was	done,	in	the	first	instance,	to	compare	to	related	
earlier	work	(e.g.	Karki	et	al.	(2006)).	However,	it	must	be	kept	in	mind	that	this	
earlier	work	 spanned	a	much	 lower	pressure	and	 temperature	 range	 than	 that	
explored	in	the	current	work,	and	applying	the	same	averaging	method	here	may	
produce	erroneous	results	due	to	the	possibility	of	liquid-glass	transitions,	and	the	
inclusion	of	data	generated	from	vitrified	systems.	A	more	useful	and	reliable	set	
of	results	for	the	thermodynamic	properties	of	silicate	liquids	might	be	extracted	
from	 the	 data	 by	 not	 taking	 averaged	 values	 over	 such	 wide	 ranges,	 and	 by	
ensuring	we	do	not	include	data	generated	from	vitrified	systems.			
	
On	the	topic	of	averaged	values,	there’s	a	further	point	to	be	made	regarding	the	
MSD	results	–	and	some	of	the	self-diffusion	results	-	given	in	this	thesis,	in	terms	
of	my	calculations	of	system-averaged	results.	For	example,	we	use	the	system-
averaged	MSD	primarily	as	a	basic	diagnostic	tool	for	helping	judge	whether	the	
system	is	solid	or	 liquid.	As	discussed	previously,	 the	 limitations	of	this	method	
(taking	the	average	MSD	of	all	atoms	in	the	system)	becomes	apparent	when	the	
mass	disparity	between	atoms	in	the	system	is	relatively	large,	as	is	the	case	in	the	
simulations	 that	 include	 hydrogen.	 As	 such,	 these	 averaged	 MSD	 results	 are	
arguably	meaningless,	outside	of	being	a	simple	diagnostic	tool,	and	a	more	useful	
set	of	results	to	include	in	this	written	work,	would	have	been	the	MSD’s	for	each	
of	 the	 constituent	 atoms	 in	 the	 system.	 This	 would	 have	 provided	 a	 set	 of	
quantitative	results	that	could	then	have	been	compared	to	similar	theoretical	and	
experimental	work	completed	by	other	researchers.		
	
Finally,	 it	 is	 always	 desirable	 to	 ensure	 that	 the	 results	 generated	 through	 the	
course	of	a	given	investigation,	are	applied	to	understanding	the	original	questions	
and	context	of	the	research.	In	this	case,	the	original	goal	of	my	research	was	to	
use	 FPMD	 simulations	 to	 greater	 understand	 the	 nature	 of	 silicate	 liquids	 at	
temperature-pressure	 conditions	 relevant	 to	 giant	 impacts	 and	 super-Earth	
interiors.	Regarding	the	 latter,	 it	would	have	been	highly	 instructive	to	plot	our	
various	results	atop	relevant	geotherms,	and	thus	to	eliminate	data	points	that	do	
not	 further	 our	 understanding	 of	 the	 central	 questions	 of	 the	 research.	 For	
example,	 it	 is	 highly	 unlikely	 that	 data	 generated	 for	 silicate	 materials	 at	 a	
temperature	of	20,000	K	and	a	pressure	of	2	GPa	would	bear	any	kind	of	relevance	
to	understanding	super-Earth	interiors,	as	these	conditions	would	not	exist	there.	
Unfortunately,	time	restrictions	prevented	me	from	performing	these	analyses.	
	
Improvements	 could	 also	 be	 made	 on	 the	 results	 that	 have	 already	 been	
generated.	For	example,	while	the	third-order	Birch-Murnaghan	equation	of	state	
has	been	demonstrated	to	accurately	represent	the	equation	of	state	of	silicate	
liquids	across	the	pressure	and	temperature	range	of	Earth’s	mantle	(Stixrude	&	
Karki,	2005;	De	Koker	&	Stixrude,	2009),	this	order	of	finite	strain	expansion	may	
not	be	 sufficient	 for	 the	conditions	explored	 in	 this	work,	which	may	 require	a	
fourth,	 or	 higher,	 order	 expansion.	 Some	bias	may	 therefore	exist	 in	 the	 given	
values	of	V0,	K0	and	K0’.	
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Given	 that	 we	 have	 already	 found	 good	 agreement	 between	 our	 MgSiO3	
calculations	 and	 earlier	 work,	 with	 respect	 to	 heat	 capacity	 and	 Grüneisen	
parameter,	we	thus	are	able	to	process	these	results	in	alternative	manners,	as	is	
necessity	in	the	case	of	hydrated	MgSiO3.	As	an	example,	we	can	calculate	the	heat	
capacities	and	Grüneisen	parameters	on	a	per-atom	basis	for	all	simulations,	and	
visualize	results	as	a	function	of	pressure	rather	than	volume.	This	will	allow	for	a	
more	‘fair’	comparison	of	these	properties	across	materials.		
	
The	raw	data	from	simulations	can	be	used	to	conduct	a	study	of	speciation	in	the	
particular	 case	 of	 hydrated	 MgSiO3,	 to	 expand	 on	 the	 work	 completed	 by	
Mookherjee	et	al.,	2008.	Of	particular	interest	could	be	the	exploration	of	proton	
conductivity	and	its	relationship	with	electrical	conductivity	in	hydrated	silicates;	
which	of	these	dominates	in	extreme	conditions,	and	are	there	any	implications	
for	electromagnetic	field	generation?	What	can	we	learn	from	studies	of	density,	
viscosity,	and	partial	molar	volume?	Does	the	prediction	of	unlimited	solubility	of	
water	 across	 mantle	 conditions	 hold	 for	 the	 pressure-temperature	 regime	 of	
super-Earth	 mantles	 (Mookherjee	 et	 al.,	 2008)?	 This	 could	 have	 important	
implications	for	the	ability	of	early-stage,	molten	super-Earths	to	act	as	a	reservoir	
for	the	storage	and	delivery	of	water	to	its	surface	as	it	evolves,	and	thus,	for	the	
likelihood	of	finding	life	outside	our	solar	system.	
	
The	 importance	 of	 carbon	 in	 Earth’s	mantle	 is	 arguably	much	 greater	 than	 its	
rather	modest	abundance	(Hayden	&	Watson,	2008).	The	methods	we	have	used	
could	be	extended	to	the	MgSiO3-CO2	system.		Can	we	learn	something	about	the	
solubility	and	density	of	CO2	in	silicate	melts,	and,	if	so,	what	relevance	might	this	
information	have?	Recent	seismic	research	has	uncovered	pervasive	upper-mantle	
melting	of	carbonates	under	the	Western	USA	(Hier-Majumder	&	Tauzin,	2017),	
and	it	is	thought	that	the	core	and	mantle	contain	vastly	more	carbon	than	all	of	
the	 near-surface	 reservoirs	 combined	 (Shcheka	 et	 al.,	 2006).	 With	 careful	
processing,	 the	 data	 should	 provide	 some	 insight	 into	 the	 structural,	
thermodynamic,	and,	 importantly,	 the	transport	properties	of	carbon	 in	silicate	
melts.	
	
This	thesis	represents	a	reasonable	first	step	toward	a	complete	set	of	results	for	
all	 materials	 studied,	 including	 MgSiO3,	 and	 hydrated	 MgSiO3,	 across	 a	 wide	
temperature	and	pressure	regime.	Indeed,	throughout	the	course	of	this	work,	I	
have	identified	some	of	the	limitations	of	previously-used	analytical	methods	in	
addressing	 these	 extremes	 of	 temperature	 and	 pressure,	 and,	 in	 doing	 so,	my	
hope	is	that	I	will	have	helped	guide	future	research	in	the	field,	and	aided	in	the	
generation	of	more	reliable	results.	The	results	given	here,	and	that	of	any	future	
related	 work,	 may	 have	 important	 implications	 for	 our	 understanding	 of	 the	
behavior	of	silicate	liquids	in	super-Earth	magma	oceans,	and	as	the	result	of	high	
velocity	 impacts.	 The	work	being	produced	via	 FPMD	simulations	will	motivate	
experimental	 studies	 of	 the	 structure	 and	 physical	 properties	 of	 amorphous	
silicates	 over	 a	 wider	 pressure-temperature	 regime	 than	 has	 hitherto	 been	
explored.	
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7.	CONCLUSION		
	
We	 use	 first-principles	 molecular	 dynamics	 to	 examine	 the	 structural,	
thermodynamic	 and	 transport	 properties	 of	 silicate	 liquids	 in	 the	 extreme	
conditions	 associated	 with	 super-Earth	 mantles	 and	 giant	 impacts.	 	 For	 the	
purposes	of	this	study,	temperatures	range	between	3000	K	and	20,000	K,	with	
pressures	of	up	to	~4	TPa.	We	focus	primarily	on	MgSiO3	liquid,	with	some	initial	
results	reported	for	the	hydrated	form,	with	approximately	10	wt%	water.	
	
We	find	that	mean	Si-O	coordination	in	MgSiO3	increases	linearly	with	pressure,	
from	between	4	and	4.5	at	conditions	in	the	upper	mantle	of	Earth	(~2	GPa),	to	
between	6	and	6.5	in	Earth’s	lower	mantle	(~130	GPa),	and	finally	to	between	8	
and	8.5	in	the	conditions	associated	with	super-Earth	mantles	and	giant	impacts	
(~2.5	to	3	TPa).			
	
Average	heat	capacity,	in	the	case	of	MgSiO3	decreases	on	compression	from	~4.6	
N	k	at	the	reference	volume	of	V/Vx=1	to	~3.35	N	k	at	the	highest	compression	
level	of	V/Vx=0.2.	The	latter	value	reports	only	the	results	obtained	using	the	‘finite	
differences’	method	of	analysis	rather	than	those	obtained	using	the	fluctuation	
method,	which	was	discovered	to	be	unreliable	for	higher	temperature	runs	using	
the	techniques	applied	here.	This	issue	has	since	been	investigated	and	corrected	
(see	Supporting	Information	in	Scipioni	et	al.	2017).		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 	
BARDON,	LEE	 81	

	

REFERENCES		
	
Adjaoud, O., Steinle-Neumann, G., Jahn, S., 2011. Transport properties of 

Mg2SiO4 liquid at high pressure: Physical state of a magma ocean. Earth 
Plan. Sci. Lett. 312, 463 – 470. doi:10.1016/j.epsl.2011.10.025  

Ai, Y., and Lange, R.A., 2008. New acoustic velocity measurements on CaO-MgO- 
Al2O3-SiO2 liquids: Reevaluation of the volume and compressibility of 
CaMgSi2O6-CaAl2Si2O8 liquids to 25 GPa. JGR Solid Earth, 113, B4203. 

Alle, M.P., Tildsley, D.J., 1987. Computer Simulations of Liquids. Oxford, 
Clarendon Press, UK. 

Arp, V., Persichetti, J.M., Chen, G., 1984. The Grüneisen Parameter in Fluids. J. 
Fluids Eng. 106, 193–200. doi:10.1115/1.3243100 

Asimow, P.D., 2012. Shock compression of preheated silicate liquids: Apparent 
universality of increasing Grüneisen parameter upon compression. Shock 
Compress. Condense. Matter. 2011 (Pt 1 & 2), 1426.  

Barboni, M., Boehnke, P., Keller, B., Kohl, I.E., Schoene, B., Young, E.D.,  
McKeegan, K.D., 2017. Early formation of the Moon 4.51 billion years ago. 
Sci. Adv. 3, e1602365. doi:10.1126/sciadv.1602365 

Born, R., Oppenheimer, R., 1927. Ann. Phys. (N.Y.) 389, 457 
Brandon, A., 2007. Planetary science: A younger Moon. Nature 450, 1169–1170. 

doi:10.1038/4501169a 
Buehler, M.J., 2011. Continuum and Particle methods: Property Calculation II  

[Powerpoint Presentation], Introduction to Modelling and Simulation, MIT. 
Available at: https://ocw.mit.edu/courses/materials-science-and-
engineering/3-021j-introduction-to-modeling-and-simulation-spring-
2012/part-i-lectures-readings/MIT3_021JS12_P1_L4.pdf  

Burkhardt, C., 2014. Isotopic Composition of the Moon and the Lunar Isotopic 
Crisis, in: Cudnik, B. (Ed.), Encyclopedia of Lunar Science. Springer 
International Publishing, pp. 1–13. doi:10.1007/978-3-319-05546-6_20-1 

Canup, R.M., Asphaug, E., 2001. Origin of the Moon in a Giant Impact near the 
End of the Earth's Formation. Nature 412, 708-712. 

Canup, R.M., 2004. Simulations of a late lunar-forming impact. Icarus 168, 433– 
 456. doi:10.1016/j.icarus.2003.09.028 
Canup, R.M., 2012. Forming a Moon with an Earth-Like Composition via a Giant 

Impact. Science 338, 6110, 1052-1055  doi:1126/science.1226073 
Car, R., Parrinello, M., 1985. Unified Approach for Molecular Dynamics and 

Density-Functional Theory. Phys. Rev. Lett. 55, 2471–2474. 
doi:10.1103/PhysRevLett.55.2471 

Ceperley, D.M., Alder, B.J., 1980. Ground State of the Electron Gas by a Stochastic 
Method. Phys. Rev. Lett. 45, 566–569. doi:10.1103/PhysRevLett.45.566 

Chandler, D., 1987. Introduction to Modern Statistical Mechanics. Oxford 
University Press. 

Chen, G.Q., Ahrens, T.J., Stolper, E.M., 2002. Shock-wave  equation of state of 
molten and solid fayalite. Phys. of Earth Plan. Int. 134, 1-2, 35-52. 

Ciesla, F.J., Davison, T.M., Collins, G.S., O’Brien, D.P., 2013. Thermal 
consequences of impacts in the early solar system. Meteorit. Planet. Sci. 48, 
2559–2576. doi:10.1111/maps.12236 

Courtial, P., Ohtani, E., Dingwell, D.B., 1997. High-temperature densities of some 
mantle melts. Geo. et Cosmo. Acta 61, 15, 3111-3119. 



	 	
BARDON,	LEE	 82	

	

Crawford, D.A., Schultz, P.H., 1993. The production and evolution of impact- 
 generated magnetic fields. Int. Jour. of Impact Eng. 14, 1-4, 205-216. 
Ćuk, M., Stewart, S.T., 2012. Making the Moon from a Fast Spinning Earth:     A 

Giant Impact Followed by Resonant Despinning. Science 338, 6110, 1047-  
1052. 

Ćuk, M., Hamilton, D.P., Lock, S.J., Stewart, S.T., 2016. Tidal evolution of the 
Moon from a high-obliquity, high-angular-momentum Earth. Nature 539, 
402–406. doi:10.1038/nature19846 

Davies, G.F., 1982. Ultimate strength of solids and formation of planetary cores.  
 Geophys. Res. Lett. 9, 11, 1267-1270. 
De Koker, N.P., and Stixrude, L., 2009. Self-consistent thermodynamic description 

of silicate liquids, with application to shock melting of MgO periclase and 
MgSiO3 perovskite. Geophys. J. Int. 178, 162-179. 

De Koker, N.P., Stixrude, L., Karki, B.B., 2008. Thermodynamics, structure,  
 dynamics, and freezing of Mg2SiO4 liquid at high pressure. Geo. et  
 Cosmo. Acta 72, 1427-1441. 
Demichelis, R., Civalleri, B., Ferrabone, M., Dovesi, R., 2010. On the performance  

of eleven DFT functionals in the description of the vibrational properties of 
aluminosilicates. Int. J. Quantum Chem. 110, 406–415. 
doi:10.1002/qua.22301 

De Pater, I., Lissauer, J.J., 2015. Planetary Sciences. Cambridge University Press. 
Elkins-Tanton, L.T., 2012. Magma Oceas in the Inner Solar System. Ann. Rev. 

Earth & Plan. Sci. 40, 113-139 
Elardo, S.M., Draper, D.S., Shearer, C.K., 2011. Lunar Magma Ocean 

crystallization revisted: Bulk composition, early cumulate mineralogy, and 
the source regions of the highlands Mg-suite. Geo. et. Cosmo. Acta 75, 11, 
3024-3045 

Feynman, R.P., 1939. Forces in Molecules. Phys. Rev. 56,4, 340.  
Fock, V., 1930b. Naherungsmethode zur Losung des quantenmechanischen  
 Mehrkorperproblems. Zeitschrift für Physik, 61, 126-148 
Gerstenkorn, H., 1969. The Earliest Past of the Eath-Moon System. Icarus 11,  189- 
 207. 
Ghosh, D.B., Karki, B.B., 2017. Transport properties of carbonated silicate melt at  
 high pressure. Sci. Adv. 3, 12, e1701840, doi: 10.1126/sciadv.1701840 
Giustino, F., 2014. Materials modelling using density functional theory : properties 

and predictions | UTS Library. Oxford University Press. 
Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005., Origin of the  
 Cataclysmic Late Heavy Bombardment Peroid of the Terrestrial Planets. 

Nature 435, 466-469.  
Grossfield, A., Zuckerman, D.M., 2009. Quantifying uncertainty and sampling 

quality in biomolecular simulations. Annu. Rep. Comput. Chem. 5, 23–48. 
doi:10.1016/S1574-1400(09)00502-7 

Hayden, L.A., Watson, E.B., 2008. Grain boundary mobility of carbon in Earth's 
mantle: a possible carbon flux from the core. Proc. Nat. Acad. Sci. USA. 
105, 8537-8541. 

Harrison, N.M., 2003. An introduction to density functional theory. ResearchGate. 
Hartmann, W.K., 2014. The giant impact hypothesis: past, present (and future?). 

Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 372, 20130249.  
doi:10.1098/rsta.2013.0249 



	 	
BARDON,	LEE	 83	

	

Hartmann, W.K., Davis, D.R., 1975. Satellite-sized planetesimals and lunar origin. 
Icarus 24, 504–515. doi:10.1016/0019-1035(75)90070-6 

Hartmann, W.K., 1997, A Brief History of the Moon. The Planetary Report. 17, 4- 
11. 

Hier-Majumder, S., Tauzin, B., 2017. Pervasive upper mantle melting beneath the 
Western US. Earth Planet. Sci. Lett. 463, 25–35. 
doi:10.1016/j.epsl.2016.12.041 

Hoover, W.G., 1985. Canonical dynamics: Equilibrium phase-space distributions. 
Phys. Rev. A 31, 1695–1697. doi:10.1103/PhysRevA.31.1695 

Hohenburg, P., Kohn, W., 1964. Inhomogenous Electron Gas. Phys. Rev. 136, 
B864.  

Hugoniot, P.H., 1887. Mémoire sur la propagation du mouvement dans les corps et 
ples spécialement dans les gaz parfaits. 1 Partie, J. Ecole Polytech. (Paris), 
57,  3-97. 

Hugoniot, P.H., 1889. Mémoire sur la propagation du mouvement dans les corps et 
plus spécialement dans les gaz parfaits, 2 Partie, J. Ecole Polytech. (Paris), 
58,1-125. 

Jeanloz, R.,Roufosse, M., 1982. Anharmonic properties: Ionic model of the effects 
of compression and coordination change. JGR Solid Earth 87, B13, 10763-
10772. 

Jing, Z., and Karato, S., 2011. A new approach to the equation of state of silicate 
melts: An application of the theory of hard sphere mixtures. Geo. et Cosmo. 
Acta 75, 6780-6802.  

Jones, R.O., Gunnarsson, O., 1989. The density functional formalism, its 
applications and prospects. Rev. Mod. Phys. 61, 689–746. 
doi:10.1103/RevModPhys.61.689 

Karki, B.B., Bhattarai, D., Stixrude, L., 2006. First-principles calculations of the 
structural, dynamical, and electronic properties of liquid MgO. Phys. Rev. 
B 73, 174208. doi:10.1103/PhysRevB.73.174208 

Karki, B.B., Bhattarai, D., Stixrude, L., 2007. First-principles simulations of liquid 
silica: structural and dynamical behaviour at high pressure. Phys. Rev. B 76, 
10. 

Karki, B.B., Stixrude, L., Wentzcovitch, R.M., 2001. High-pressure elastic 
properties of major materials of Earth’s mantle from first principles. Rev. 
Geophys. 39, 507–534. doi:10.1029/2000RG000088 

Karki, B.B., Stixrude, L.P., 2010. Viscosity of MgSiO3 Liquid at Earth’s 
Mantle Conditions: Implications for an Early Magma Ocean. Science 328, 
740-742. doi: 10.1126/science.1188327 

Kohn, W., Sham, L.J., 1965. Self-Consistent Equations Including Exchange and 
Correlation Effects. Phys. Rev. 140, A1133–A1138. 
doi:10.1103/PhysRev.140.A1133 

Kresse, G., Hafner, J., 1993. Ab Initio Molecular Dynamics for Liquid metals. Phys. 
Rev. B. 47. 558.  

Kresse, G., Furthmiller, J., 1996. Efficient Iterative Schemes for ab Initio Total- 
Energy Calculations Using a Plane-Wave Basis Set. Phy. Rev. B 54, 11169-
11186.  

Lacks, D.J., Rear, D.B., Orman, V., 2007. molecular dynamics investigation of 



	 	
BARDON,	LEE	 84	

	

viscosity, chemical diffusivities and partial molar volumes of liquids along 
the MgO-SiO2 joins as functions of pressure. Geo. et Cosmo. Acta 71, 1312-
1323 

Lange, R.A., Carmichael, I.S.E., 1987. Densities of Na2O-K2O-CaO-MgO-FeO- 
Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial 
molar properties. Geo. et Cosmo. Acta 51, 2931–2946. doi:10.1016/0016-
7037(87)90368-1 

Levy, M., 1979. Universal variational functionals of electron densities, first-order 
density matrices, and natural spin-orbitals and solution of the v- 
representability problem. Proc. Natl. Acad. Sci. U. S. A. 76, 6062–6065. 

Lieb, E.H., 1983. Density functionals for coulomb systems. Int. J. Quantum Chem. 
24, 243–277. doi:10.1002/qua.560240302 

Low, F.J., Young, E., Beintema, D.A., Gautier, T.N., Beichman, C.A., Aumann, 
H.H., Gillett, F.C., Neugebauer, G., Boggess, N., Emerson, J.P., 1984. 
Infrared cirrus - New components of the extended infrared emission. 
Astrophys. J. 278, L19–L22. doi:10.1086/184213 

Melosh, H.J., 1989. Impact Cratering. Oxford University Press, NY. 
McQuarrie, D.A., 2000. Statistical Mechanics. University Science Books. 
Mermin, N.D., 1965. Thermal Properties of the Inhomogeneous Electron Gas. Phys. 

Rev. 137, A1441–A1443. doi:10.1103/PhysRev.137.A1441 
Millot, M., Dubrovinskaia, N., Černok, A., Blaha, S., Dubrovinsky, L., Braun, 

D.G., Celliers, P.M., Collins, G.W., Eggert, J.H., Jeanloz, R., 2015. Shock 
Compression of Stishovite and melting of Silica at Panetary Interior 
Conditions. Science 347, 6220, 418-420. 

Mitler, H.E., 1975. Formation of an Iron-Poor Moon by Partial Capture, or: Yet 
Another Exotic Theory of Lunar Origin. Icarus 24, 256-268 

Mookherjee, M., Stixrude, L., Karki, B., 2008. Hydrous silicate melt at high 
pressure. Nature 452, 983–986. doi:10.1038/nature06918 

Morishima, R., Watanabe, S., 2004. Co-accretion of the Earth-Moon system after 
the Giant Impact: Reduction of the Total Angular Momentum  by Lunar 
Impact Ejecta. Icarus 168(1), 60-79 

Mosenfelder, J.L., Asimow, P.D., Ahrens, T.J., 2007. Thermodynamic properties 
of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 
GPa on forsterite and wadsleyite. Journ. Geophys. Res. 112, B6, 
doi.org/10.1029/2006JB004364 

Murakami, M., Sinogeikin, S.V., Bass, J.D., Sata, N., Ohishi, Y., Hirose, K., 2007. 
Sound velocity of MgSiO3 post-perovskite phase: A constraint on the D" 
discontinuity. Earth and Plan. Sci. Lett. 259, 1-2, 18-23. 

Nevins, D., Spera, F.J., Ghiorso, M.S., 2009. Shear viscosity and diffusion in liquid 
MgSiO3: Transport properties and implications for terrestrial planet magma 
oceans. Am. Mineral. 94, 975–980. doi:10.2138/am.2009.3092 

Nosé, S., 1984. A unified formulation of the constant temperature molecular 
dynamics methods. J. Chem. Phys. 81, 511–519. doi:10.1063/1.447334 

Öpik, E.J., 1972, Comments on Lunar Origin. Irish Astron. J. 10, 190 
Pahlevan , K., Morbidelli, A., 2015. Collisionless Encounters and the Origin 
of Lunar Inclination. Nature 527, 7579, 492-494. 

Oran, R., Shprits, Y., Weiss, B.P., 2016. Can Impact-Amplified Magnetic Fields be 
Responsible for Magnetization on the Moon? Proc. Lunar Planet. Sci. Conf. 
47th, 3057.  



	 	
BARDON,	LEE	 85	

	

Perdew, J.P., Burke, K., Ernzerhof, M., 1996. Generalized Gradient Approximation 
Made Simple. Phys. Rev. Lett. 77, 3865–3868. 
doi:10.1103/PhysRevLett.77.3865 

Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., 
Constantin, L.A., Zhou, X., Burke, K., 2008. Restoring the Density- 
Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 
100, 136406. doi:10.1103/PhysRevLett.100.136406 

Quintana, E.V., Barclay, T., Borucki, W., Rowe, J.F., Chambers, J.E., 2016. The 
Frequency of Giant impacts on Earth-like Worlds. Astrophys. J. 821, 126. 

Rankine, W.J.M., 1870a. On the thermodynamic theory of waves of finite 
longitudional disturbance, (Read 16th Dec 1869). Phil. Trans. Roy. Soc. 
London 160, 277-286. 

Rankine, W.J.M., 1870b. On the thermodynamic theory of waves of finite  
longitudional disturbance, Phil. Trans. Roy. Soc. London 160, 287-288. 

Refson, K., 2001. Moldy User's Manual. Department of Earth Sciences, University 
of Oxford, UK.  

Rigden, S.M., Ahrens, T.J., Stolper, E.M., 1988. Shock compression of molten 
silicate: Results for a model basaltic composition. JGR Solid Earth 93, B1,  
367-382.  

Robertson, E., 2007. The Interior of the Earth. Geological Survey of the USA. 
Available at: https://pubs.usgs.gov/gip/interior/ (accessed 1.20.17). 

Rosenfeld, Y., Tarazona, P., 1998. Density functional theory and the asymptotic 
high density expansion of the free energy of classical solids and fluids. Mol. 
Phys. 95, 141–150. doi:10.1080/00268979809483145 

Rufu, R., Aharonson, O., Perets, H.B., 2017. A multiple-impact origin for the 
Moon. Nat. Geosci. 10, 89–94. doi:10.1038/ngeo2866 

Sakamaki, T., Suzuki, A., Ohtani, E., 2006. Stability of hydrous melt at the base of 
Earth's upper mantle. Nature 439, 192-194.  

Schrödinger, E., 1926. An Undulatory Theory of the Mechanics of Atoms and 
Molecules. Phys. Rev. 6, 1049-1070 

Scipioni, R., Stixrude, L., Desjarlais, M.P., 2017. Electrical conductivity of SiO2 
at extreme conditions & planetary dynamos. PNAS 114 (34), 9009-9013. 

Shcheka, S.S., Wiedenbeck, M., Frost, D.J., Keppler, H., 2006. Carbon solubility 
in mantle minerals. Earth Planet. Sci. Lett. 245, 730–742. 
doi:10.1016/j.epsl.2006.03.036 

Spaulding, D.K., McWilliams, R.S., Jeanloz, R., Eggert, J.H., Celliers, P.M., Hicks, 
D.G., Collins, G.W., Smith, R.F., 2012. Evidence for a Phase Transition in 
Silicate Melt at Extreme Pressure and Temperature Conditions. Phys. Rev. 
Lett. 108, 65701. doi:10.1103/PhysRevLett.108.065701 

Spera, F., Ghiorso, M.S., Nevins, D., 2011. Structure, themodynamic and transport 
properties of liquid MgSiO3. Geo. et Cosmo. Acta 75, 1272-1296. 

Stixrude, L., De Koker, N., Sun, N., Mookherjee, M., Karki, B.B., 2009. 
Thermodynamics of silicate liquids in the deep Earth. Earth Planet. Sci. 
Lett. 278, 226–232. doi:10.1016/j.epsl.2008.12.006 

Stixrude, L., Karki, B., 2005. Structure and Freezing of MgSiO3 Liquid in Earth’s 
Lower Mantle. Science 310, 297–299. doi:10.1126/science.1116952 

Stixrude, L., Lithgow-Bertelloni, C., 2005. Thermodynamics of mantle minerals – 
I. Physical properties. Geophys. J. Int. 162, 610–632. doi:10.1111/j.1365- 
246X.2005.02642.x 



	 	
BARDON,	LEE	 86	

	

Stixrude, L., 2014. Melting in Super-Earths. Phil. Trans. R. Soc. A. 372. 20130076 
Sugiura., N., Strangway, D.W., 1980. Comparison of magnetic paleointensity 

methods using a lunar sample. Proc. Lunar Planet. Sci. Conf. 11th, 1801- 
1813.    

Sun, N., Stixrude, L., De Koker, N., Karki, B.B., 2011. First principles molecular 
dynamics simulations of diopside (CaMgSi2O6) liquid to high pressure. 
Geo. et Cosmo. Acta 75, 3792–3802. doi:10.1016/j.gca.2011.04.004 

Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R., 1982. A computer 
simulation method for the calculation of equilibrium constants for the 
formation of physical clusters of molecules: Application to small water 
clusters. J. Chem. Phys. 76, 637–649. doi:10.1063/1.442716 

Tarduno, J.A., Cotrell, R.D., Davis, W.J., Nimmo, F., Bono, R.K., 2015. Science. 
349, 6247,  521-524. 

Tonks, B., Melosh, H.J., 1993. Magma Ocean Formation due to Giant Impacts. 
Journ. Geophys. Res. Plan. 98, E3, 5319-5333. 

Touma, J., Wisedom, J., 1998. Resonances in the Early Evolution of the Earth- 
Moon System. Astro. J. 115, 1653-1163. 

Van de Walle, A., Ceder, G., 1999. Correcting overbinding in local-density- 
 approximation calculations. Phys. Rev. B 59, 14992–15001. 

doi:10.1103/PhysRevB.59.14992 
Vočadlo, L., Alfè, D., Gillan, M.J., Price, G.D., 2003. The properties of iron under 

core conditions from first principles calculations. Phys. Earth Plan. Int. 140, 
101-125. 

Vorberger, J., Tamblyn, I., Militzer, B., Bonev, S.A., 2007. Hydrogen-helium 
mixtures in the interiors of giant planets. Phys. Rev. B 75, 24206. 
doi:10.1103/PhysRevB.75.024206 

Ward, W.R., Canup, R., 2000. Origin of the Moon's Orbital Inclination from 
Resonant Disk Interactions. Nature 403(6771), 741-743.  

Wasserman, E., Stixrude., L., Cohen, R.E., 1996. Thermal properties of iron at high 
pressures and temperatures. Phys. Rev. B 53, 8296-8303. 

Weidenschilling, S.J., Greenberg, R., Chapman, C.R., Davis, D.R., Hartmann, 
W.K., 1986. Origin of the moon from a circumterrestrial disk. Presented at 
the Origin of the Moon, Kona, HI. pp. 731–762. 

Wiechert, U., Halliday A.N., Lee, D., Snyder., G., Taylor, L., Rumble, D., 2001. 
Oxygen Isotopes and the Moon-Forming Giant Impact. Science 294, 5541, 
345-348 

Wood, J.A., 1972. Thermal History and Early Magnetism in the Moon, Icarus16, 
2, 229-240. 

Williams, Q., Garnero, E.J., 1996. Seismic evidence for partial melt at the base of 
Earth's mantle. Science 273, 5281, 1528-1530. 

Young, E.D., Kohl, I.E., Warren, P.H., Rubie, D.C., Jacobson, S.A., Morbidelli., 
A., 2016. Oxygen Isotope Evidence for Vigorous Mixing during the Moon- 
forming Giant Impact. Science 351, 6272, 493-496. 

Ziegler, L.B., Stegman, D.R., 2013. Implications of a long-lived basal magma ocean 
in generating Earth’s ancient magnetic field. Geochem. Geophys. 
Geosys. 14, 4735–4742. doi:10.1002/2013GC005001 

 
 


