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Abstract 

Previously described methods of analysis allow variants in a gene to be weighted more 

highly according to rarity and/or predicted function and then for the variant 

contributions to be summed into a gene-wise risk score which can be compared 

between cases and controls using a t test. However this does not allow incorporating 

covariates into the analysis. Schizophrenia is an example of an illness where there is 

evidence that different kinds of genetic variation can contribute to risk, including 

common variants contributing to a polygenic risk score (PRS), very rare copy number 

variants (CNVs) and sequence variants. A logistic regression approach has been 

implemented to compare the gene-wise risk scores between cases and controls while 

incorporating as covariates population principal components, the PRS and the 

presence of pathogenic CNVs and sequence variants. A likelihood ratio test is 

performed comparing the likelihoods of logistic regression models with and without 

this score. The method was applied to an ethnically heterogeneous exome-sequenced 

sample of 6000 controls and 5000 schizophrenia cases. In the raw analysis the test 

statistic is inflated but inclusion of principal components satisfactorily controls for this. 

In this dataset the inclusion of the PRS and effect from CNVs and sequence variants 

had only small effects. The set of genes which are FMRP targets showed some 

evidence for enrichment of rare, functional variants among cases (p=0.0005). This 

approach can be applied to any disease in which different kinds of genetic and non-

genetic risk factors make contributions to risk. 

 



  



Introduction 

Variants affecting risk of disease may be individually too rare to generate statistically 

significant results in case-control studies and so a burden test may be performed to 

assess whether there is an excess among cases of particular categories of variant 

within a gene or set of genes, the variants typically being included based on rarity and 

predicted function 1,2. Rather than exclude less rare variants, one may perform a 

weighted analysis in which common variants are included but are accorded less weight 

less than rare ones 3.  This approach assumes that the variants studied in general 

increase rather than decrease risk of disease and is contrasted to approaches such as 

c-alpha,  SKAT and SKAT-O which assume that variants may be either protective or 

deleterious 4–7. These and other approaches to rare variant analysis have been 

reviewed elsewhere 8. We have previously developed a method which provides 

weights for variants based both on rarity and predicted functional effect 9,10. The 

method performs a weighted burden analysis to test whether, in a particular gene or 

set of genes, variants which are rarer and/or predicted to have more severe functional 

effects occur more commonly in cases than controls. Each variant is assigned a weight 

based on its rarity and predicted function and then an overall gene-wise risk score is 

allocated to each subject consisting simply of the sum of the weights of the variants 

which are found in that subject. These scores for cases and controls are then 

compared by carrying out a t test. The t test is rapid to compute and statistically robust 

and the method performed acceptably when applied to real samples. However a t test 

does not incorporate information from covariates and there are two reasons why this 

is an important limitation. The first reason is that if the samples are ancestrally 



heterogeneous then artefactual results can be obtained and that using ancestry 

principal components as covariates might mitigate this problem. The second reason is 

that other measurable genetic and non-genetic factors might be known to contribute 

to risk of disease and that incorporating these as covariates might be expected to 

enhance the accuracy of the analysis. Three obvious kinds of genetic risk to consider 

are the polygenic risk score (PRS), the presence of known pathogenic copy number 

variants (CNVs) and the presence of known pathogenic sequence variants. To use 

schizophrenia as a concrete example, there is evidence that certain CNVs greatly 

increase risk but these are very rare, even among cases 11. Likewise very rare variants 

causing loss of function (LOF) of a small number of genes substantially increase risk  

12,13. Statistical evidence demonstrates that rare, damaging variants in additional genes 

also affect risk and that these genes are concentrated in particular gene sets although 

the individual genes contributing to this effect are yet to be identified 14,15. Finally, 

cases tend to have a higher PRS, reflecting the combined effect of many common 

variants, widely distributed and individually having very small effects on risk 16. When 

carrying out a case-control study of exome sequence data in order to detect 

associations with rare, damaging variants it might be reasonable to suppose that cases 

with pathogenic CNVs or sequence variants might be unlikely to possess additional 

rare risk factors. Likewise, a case with a very low PRS might be thought more likely to 

possess some additional risk factor than one whose PRS is very high. Thus it seems 

desirable to incorporate information about different kinds of risk factor jointly when 

possible. Accordingly software was developed that would compare the gene-wise risk 



scores using logistic regression analysis so that any desired covariates could be 

included. 

 

Methods 

The previously described SCOREASSOC program was modified to carry out logistic 

regression analysis 9,10. It accepts as input genotypes of variants within a gene for cases 

and controls, with each variant assigned a weight according to its annotation as 

obtained using VEP, PolyPhen and SIFT 17–19.  The functional weight is then multiplied 

by a weight for rarity, so that rarer variants are assigned higher weights. For each 

subject a gene-wise risk score is derived as the sum of the variant-wise weights, each 

multiplied by the number of alleles of the variant which the given subject possesses. If 

a subject is not genotyped for a variant then they are assigned the subject-wise 

average score for that variant. The program was modified to accept as additional input 

an arbitrary number of quantitative covariates for each subject, typically population 

principal components, PRS and an indicator variable denoting whether or not the 

subject possesses a known pathogenic CNV or sequence variant. The score and 

covariates are entered into a standard logistic regression model with case-control 

status as the outcome variable and after variable normalisation the likelihood of the 

model is maximised using the L-BFGS quasi-newton method, implemented using the 

dlib library 20. The contribution of different variables to risk is assessed using standard 

likelihood ratio tests by comparing twice the difference in maximised log likelihoods 

between models with and without the variables of interest. This likelihood ratio 



statistic is then taken as a chi-squared statistic with degrees of freedom equal to the 

difference between models in number of variables fitted. The coefficients for each 

variable can be varied to maximise the likelihood or can be fixed. For example, if it is 

known that a particular CNV is associated with a ten-fold increase in risk then the 

coefficient can be set to ln(10) to reflect this, rather than fitting it from the available 

dataset, which may contain fewer subjects than those used to produce the original risk 

estimate.  

Preliminary analyses indicated that simple logistic regression could produce extreme p 

values if a gene had only a single very rare variant found in only one or two cases. This 

seems to arise because subjects with unknown genotypes are then assigned the 

average score for this variant. This average score is very low but non-zero while 

subjects who are genotyped will have scores of zero. If more cases than controls have 

an unknown genotype then the maximisation routine would overfit the model and 

would assign a very high value to the score coefficient and would produce an 

apparently significant likelihood ratio statistic. To address this, the ridge penalty 

function, consisting of the sum of the squares of the regression coefficients, was 

subtracted from the log likelihood. This satisfactorily prevented the artefactual 

extreme p values without preventing the ability to fit the model to produce the 

expected large coefficients for covariates such as principal components and the PRS. 

The program outputs the coefficients for the fitted models along with their estimated 

standard errors and the results of the likelihood ratio test. When association with the 

gene-wise risk score alone is tested, i.e. when the two models differ only in whether or 



not the score is included, then the statistical significance is summarised as a signed log 

p value (SLP) which is the log base 10 of the p value given a positive sign if the score 

tends to be higher in cases and negative if it tends to be lower. For other analyses the 

minus log base 10 of the p value (MLP) is output. The support program for 

SCOREASSOC, called GENEVARASSOC, was also modified to facilitate incorporating the 

covariates and specifying the desired analyses. Both are implemented in C++ and can 

be downloaded along with documentation from the site listed below. 

Example application 

The approach was applied to whole exome sequence data from the Swedish 

schizophrenia study, consisting of 4968 cases and 6245 controls 14. The sequence data 

was downloaded as a VCF file from dbGAP (https://www.ncbi.nlm.nih.gov/gap). One 

aspect of special interest about this dataset is that although it was recruited in Sweden 

some subjects have a substantial Finnish component to their ancestry and that this 

applies more to cases than controls. It was analysed previously using SCOREASSOC to 

carry out a weighted burden test but to do this it was first necessary to remove the 

subjects with Finnish ancestry because otherwise some genes produced false positive 

results 15. To obtain the gene-wise risk scores the same methods were used as for this 

previous analysis. Variants were excluded if they did not have a PASS in the Variant Call 

Format (VCF) information field and individual genotype calls were excluded if they had 

a quality score less than 30. Sites were also excluded if there were more than 10% of 

genotypes missing or of low quality in either cases or controls or if the heterozygote 

count was smaller than both homozygote counts in both cohorts. Each variant was 

https://www.ncbi.nlm.nih.gov/gap


annotated using VEP, PolyPhen and SIFT 17–19. GENEVARASSOC was used to generate 

the input files for SCOREASSOC and the default weights provided with the software 

were used, for example consisting of 5 for a synonymous variant and 20 for a stop 

gained variant, except that 10 was added to the weight if the PolyPhen annotation was 

possibly or probably damaging and also if the SIFT annotation was deleterious. The full 

set of weights used is shown in Table 1. SCOREASSOC also weights rare variants more 

highly than common ones but because it is well-established that no common variants 

have a large effect on the risk of schizophrenia we excluded variants with MAF>0.01 in 

the cases and in the controls, so in practice weighting by rarity had negligible effect. 

To obtain population principal components, the genotypes were thinned to include 

only variants present on the Illumina Infinium OmniExpress-24 v1.2 BeadChip 

(http://emea.support.illumina.com/downloads/infinium-omniexpress-24-v1-2-

product-files.html) and then version 1.90beta of plink (https://www.cog-

genomics.org/plink2) was run with the options --pca header tabs --make-rel 21–23. In 

order to obtain a PRS for schizophrenia, the file called scz2.prs.txt.gz, containing ORs 

and p values for 102,636 SNPs, was downloaded from the Psychiatric Genetics 

Consortium (PGC) website (www.med.unc.edu/pgc/results-and-downloads). This 

training set was produced as part of the previously reported PGC2 schizophrenia 

GWAS 16. SNPs with p value < 0.05 were selected and their log(OR) summed over 

sample genotypes using the --score function of plink 1.09beta in order to produce a 

PRS for each subject 21–23. 

http://emea.support.illumina.com/downloads/infinium-omniexpress-24-v1-2-product-files.html
http://emea.support.illumina.com/downloads/infinium-omniexpress-24-v1-2-product-files.html
https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2


Attempts were made to use allele depth information in the VCF file to call all the CNVs 

with odds ratio (OR) reported to be greater than 9 as listed in Table 1 of a recent study 

of over 40,000 subjects 11. A deletion was called if there was a relatively low read 

depth over the region (compared to the expected depth across subjects for each 

variant and across variants for each subject) and if there were very few heterozygote 

calls. A duplication was called if there was a relatively high number of reads and if the 

heterozygote calls tended to occur with allele ratios of 2:1 or 1:2 instead of 1:1. To 

accomplish this, a two-stage process was used, consisting of an automated short-listing 

of subjects followed by visual inspection of detailed results for these short-listed 

subjects. To carry out the short-listing process, for each variant a likelihood for the 

observed allele depths was calculated according to the copy number being 0 

(deletion), 1 or 2 (duplication) and from this a log likelihood ratio statistic (LRS) 

favouring either deletion or duplication was derived. Then for each subject a t test was 

used to compare the LRS of variants within the CNV region to those outside it and 

another t test was used to compare the overall depth of variants inside and outside the 

CNV region. The short-listed subjects consisted of the 30 subjects having test results 

most strongly suggesting a deletion or duplication, along with 30  subjects having the 

lowest or highest average difference in depths, producing a possible maximum of 120 

subjects. For these subjects, graphs were produced showing the LRS and moving 

average LRS along with the allele ratios and moving average depths. CNV calls were 

made blind to phenotype based on visual inspection of these graphs and a judgement 

as to whether the overall pattern seemed consistent with the presence of a deletion or 

duplication. It can be difficult to detect CNVs from exome-sequence VCF files because 



some regions will not be covered at all and because depth information is only provided 

for positions where a variant allele is observed. There was insufficient information to 

call the CNV at 9:831690-959090 and no subjects were called with a CNV at 

3:197230000-198840000, although the latter is very rare and it may be that it was not 

present. The number of calls that were made in cases and controls is shown in Table 2. 

Although there is a marked excess of CNV calls among cases at 16:29560000-30110000 

and 22:17400000-19750000, this is not the case for the other locations and it assumed 

that many of these calls may be erroneous. The intent of the current study is simply to 

demonstrate the feasibility of the analytic approach, so errors in the CNV calls are not 

regarded as especially problematic. However because of the unreliability of the calls it 

was decided not impose a fixed effect for the CNVs but to fit the effect size as 

observed in this dataset. For brevity, these CNVs having large effects of risk, along with 

LOF sequence variants having large effects on risk, will be referred to as pathogenic. 

Based on previous findings, it was decide to regard LOF sequence variants in SETD1A, 

RBM12 or  NRXN1 as pathogenic 11–13,24,25. No subjects had a LOF variant in NRXN1 or 

RBM12. However two cases had LOF variants in SETD1A, with one having a stop gained 

variant and the other a splice acceptor variant. 

Likelihood ratio tests were carried out to assess the association of the principal 

components with caseness and then, using the principal components as covariates, to 

assess the association of the PRS and of the pathogenic CNVs and sequence variants. 

For each gene, the following analyses were carried out to test the association of the 

gene-wise risk score with caseness: 



A t test comparing scores in cases and controls. 

Logistic regression analysis of the scores with no covariates. 

Analysis of the scores including principal components as covariates. 

Analysis of the scores including principal components and PRS as covariates. 

Analysis of the scores including principal components and pathogenic variants as 

covariates. 

Analysis of the scores including principal components, PRS and pathogenic variants as 

covariates. 

In order to test whether particular sets of genes demonstrated association with 

caseness, the gene-wise scores for all the genes in a set were summed to produce a 

set-wise risk score using the PATHWAYASSOC program 10. Then the same analyses as 

listed above were carried out using the set-wise risk scores. Two lists of gene sets were 

used. The first list consisted of the 31 gene sets which had been previously tested for 

an enrichment for damaging or disrupting ultrarare variants (dURVs) in cases in this 

dataset 14. The second list consisted of the 1454 "all GO gene sets, gene symbols" 

pathways downloaded from the Molecular Signatures Database at 

http://www.broadinstitute.org/gsea/msigdb/collections.jsp (Subramanian, Tamayo et 

al. 2005) 26.  

Results were managed and graphs produced using R 27. 

 



Results 

Carrying out the logistic regression analyses is notably slower than performing a t test 

and to carry out all the analyses takes a few minutes for each gene, so that analyses of 

all 22021 genes took a couple of days to complete on a computer cluster. 

The likelihood ratio test comparing models with or without the first 20 population 

principal components showed that ancestry was strongly associated with caseness 

(X2=374, 20 df, MLP>35). Using these principal components as covariates, both the PRS 

(X2=156, 1 df, MLP=35) and the presence of a pathogenic CNV or sequence variant 

(X2=39.6, 8df, MLP=5.4), were also associated with caseness. 

Figure 1 shows the QQ plots obtained for the different gene-wise analyses. The simple 

t test comparing gene-wise risk scores has a clear excess of positive SLPs above the 

chance expectation. The most extreme of these is for COMT, SLP=7.4. As discussed 

previously, this gene-wise result is largely driven by SNP rs6267 which is heterozygous 

in 51/6242 controls and 94/4962 cases (OR=2.3, p=8*10-7) and this reflects the fact 

that variant is much commoner in Finns than in non-Finnish Europeans 15. One gene, 

CDCA8, has an extremely negative result and this reflects the fact that more controls 

than cases have a number of very rare variants with high functional weights. The 

results for the logistic regression analysis of the gene-wise risk scores alone, shown in 

Figure 1b, are very similar to those obtained from the t test. However when the 

population principal components are included, as shown in Figure 1c, the results 

conform almost exactly to what would be expected by chance. The SLP for CDCA8 

remains somewhat low at -5.6 but this does not exceed the threshold for significance 



using a Bonferroni correction for the number of genes tested. Including the PRS, CNVs 

and SETD1A variants as covariates, as shown in Figures 1d, 1e and 1f, does not have a 

large impact on the overall distribution of the SLPs.  

Examining the SLPs for individual genes showed that, as can be seen from the QQ 

plots, including the population principal components as covariates could have a large 

impact. The largest effect was seen with COMT, where the SLP was reduced by 4.7, 

and there were an additional 6 genes for which the absolute value of the SLP reduced 

by more than 3 and in all there were 59 genes where the magnitude of the SLP 

reduced by 2 or more. For all but 2 of these the SLP was positive. There were other 

genes where the magnitude of the SLP was increased, though to a lesser extent. For 

only one gene, CRISP3, did this change exceed 2 and there were 24 others for which 

the change was 1 or greater. All these genes had a negative SLP. Thus, when including 

the principal components had a large effect, the effect was generally to make positive 

SLPs smaller and negative SLPs larger. Although there were large effects for some 

genes, overall the effects were fairly small and evenly balanced, so that across all 

genes the mean SLP was reduced by 0.088 and the mean of the absolute value of the 

SLP was reduced by 0.059. 

Including the PRS as a covariate had only small effects on the results. The largest 

change in SLP was only 0.6. Considering those genes which had the largest change in 

the absolute value of the SLP, there was a fairly equal distribution between those with 

positive and negative SLPs. The average effects across all genes were almost perfectly 



balanced, with the mean SLP changing by only -0.00078 and the mean absolute value 

of the SLP changing by 0.00016. 

Including the pathogenic variants as covariates also had only small effects. For two 

genes the negative SLPs decreased by 0.95 and 0.87 but in no other gene did the SLP 

change by more than 0.51. In spite of the small magnitude of the changes, there was a 

very striking imbalance in the way they were distributed. Out of the 200 genes with 

the largest increase in the absolute value of the SLP 197 had a negative SLP while out 

of the 200 genes with largest decrease in the absolute value of the SLP 199 had a 

positive SLP. Thus, in the analyses for which including the pathogenic variants had the 

largest effect, doing so tended to reduce positive SLPs and increase negative SLPs. This 

imbalance was only notable for the analyses with the largest effects and overall the 

average effect was small so that including the pathogenic CNVs changed the mean SLP 

by 0.00018 and the mean absolute value of the SLP by 0.0013.  

As in previous studies of this dataset, none of the individual gene-wise tests is 

statistically significant at the genome-wide level. Table 3 shows genes with SLP of 3 or 

higher from the analysis including all covariates.  

The results of the gene set analyses applied to the sets used in the previous analyses of 

this dataset are shown in Table 4. It can be seen that many sets have a high SLP before 

including the PCs as covariates, demonstrating that one may be at risk of obtaining 

false positive results if this is not done.. When all the covariates are included the 

highest SLP achieved is for the set consisting of FMRP targets, with SLP=3.3, equivalent 

to p=0.0005.  



Figure 2 shows a QQ plot of the SLPs obtained for the GO gene sets against the 

expectation if the sets were independent. and it can be seen that they conform fairly 

closely to this distribution although with some excess of positive SLPs. In fact, the sets 

are not independent and genes overlap between sets so one could argue that the SLPs 

are somewhat higher than would be expected by chance but there is certainly no 

strong evidence to implicate specific sets. Table 4 shows those sets achieving an SLP of 

2 or more in the full analysis including all covariates. 

 

Discussion 

This study demonstrates that it possible to use a logistic regression approach to carry 

out a weighted burden analysis, including all variants in a gene weighted according to 

function and rarity, while including other important covariates. The example analysis 

produces results which are broadly similar to previous analyses of this dataset, 

although with less strong support for the previously implicated gene sets.  

An important finding is that including the population principal components is able to 

completely control for the effect of having an excess of cases with a strong Finnish 

ancestry component. This means that the complete dataset can be analysed if desired. 

Of course, there might be arguments against doing this. If different causal variants are 

present in different populations then analysing an admixed population might reduce 

power but in general it seems advantageous to be able to incorporate ancestry as a 

covariate. From a theoretical point of view we might expect that incorporating known 

risk factors as covariates could increase the power to detect new associations. In 



practice, including the PRS and pathogenic CNVs and sequence variants has only a 

small effect on the results obtained in the present example. 

Although the main emphasis of the study is simply to demonstrate the feasibility of the 

approach, it is possible to speculate on why it failed to provide any new, interesting 

results. One problem may well be that the default scheme for weighting variants 

according to predicted functional effects is sub-optimal. Many criticisms of it could be 

made, for example that LOF variants and 5'UTR variants should be given higher 

weights. For the future, it would be worthwhile to make attempts to produce a 

weighting scheme which was informed by the increasing empirical knowledge 

becoming available about the kinds of genetic variation most likely to have major 

effects on phenotype. Another approach would be to attempt to fit the weights 

directly and this could easily be done within the context of logistic regression analysis if 

it were thought that the dataset was informative enough. A similar approach has been 

applied in the context of generating an exome-wide genetic risk score 28.  

Incorporating pathogenic variants had little effect on the results obtained and one 

reason for this is that only 1% of subjects were identified as possessing such a variant. 

It would be reasonable to hope that as further studies discover additional variants to 

be pathogenic so the proportion of subjects possessing one them will increase and 

they will have a larger impact on the results of multivariate analyses. However another 

factor to consider is that there were almost certainly errors in the CNV calls and that 

had the calls been accurate then they might have had more influence on the results. 

This is simply a feature of using a downloaded VCF file to provide an example dataset. 



In a real-world association study using whole exome sequence data one would have 

the raw reads available and could make more reliable calls from those, and of course 

one might also carry out comparative genomic hybridisation analysis to obtain 

accurate calls. 

Although the method described here does not seem to have marked benefits for this 

dataset, it does offer an approach that will be useful to apply as additional risk factors, 

both genetic and non-genetic, are characterised and need to be incorporated into 

analyses. An obvious example would be for a disease such as ischaemic heart disease 

(IHD), where rare and common genetic variants along with environmental risk factors 

all make substantial contributions 29. The application of logistic regression has been 

described as a way to incorporate information from covariates into association studies 

seeking to identify variants and genes associated with disease. However the same 

framework could then readily be translated into a way to characterise risk of disease 

for an individual. One could fit a model incorporating relevant risk factors using a study 

population and then take the fitted coefficients for that model and apply them to a 

genotyped individual subject to obtain an estimate of their level of risk. It has already 

been proposed that the PRS IHD  for could have clinical utility in deciding whether to 

prescribe statins for a patient 30. Using a model such as the one proposed would allow 

an overall risk score to be produced from a single combined analysis including factors 

such as age, gender, smoking status, ancestry, IHD PRS and rare coding variants. One 

can envisage in future that one might even be able to partition overall risk in clinically 

significant ways, for example with a contribution related to dyslipidemia, a 

contribution related to clotting and a contribution related to hypertension. This could 



allow the subclassification of patients to support personalised approaches to 

treatment interventions.  

 

Software availability 

The code and documentation for SCOREASSOC, PATHWAYASSOC and GENEVARASSOC 

is available from https://github.com/davenomiddlenamecurtis/scoreassoc and 

https://github.com/davenomiddlenamecurtis/geneVarAssoc. 
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Table 1 

The table shows the weight which was allocated to each type of variant 

according to its annotation by VEP 17. 10 was added to this weight if the variant 

was annotated by Polyphen as possibly or probably damaging and 10 was 

added if SIFT annotated it as deleterious 18,19. 

VEP annotation Weight 

intergenic_variant 1 

feature_truncation 3 

regulatory_region_variant 3 

feature_elongation 3 

regulatory_region_amplification 3 

regulatory_region_ablation 3 

TF_binding_site_variant 3 

TFBS_amplification 3 

TFBS_ablation 3 

downstream_gene_variant 3 

upstream_gene_variant 3 

non_coding_transcript_variant 3 

NMD_transcript_variant 3 

intron_variant 3 

non_coding_transcript_exon_variant 3 

3_prime_UTR_variant 5 



5_prime_UTR_variant 5 

mature_miRNA_variant 5 

coding_sequence_variant 5 

synonymous_variant 5 

stop_retained_variant 5 

incomplete_terminal_codon_variant 5 

splice_region_variant 5 

protein_altering_variant 10 

missense_variant 10 

inframe_deletion 15 

inframe_insertion 15 

transcript_amplification 15 

start_lost 15 

stop_lost 15 

frameshift_variant 20 

stop_gained 20 

splice_donor_variant 20 

splice_acceptor_variant 20 

transcript_ablation 20 

  



Table 2  

Counts of CNV calls in cases and controls for those CNVs with OR>9 in Table 1 from a 

recent study of CNVs in schizophrenia 11. Attempts were made to call the CNVs from 

the VCF file, which only contains depth information about locations within exons 

where there is allelic variation. There was insufficient information to call the CNV at 

9:831690-959090 and it is expected that some of the other calls are erroneous. 

Position Pathogenic CNV  Controls, N=6245 Cases, N=4968 

2:50000992-51113178 del 6 8 

3:197230000-

198840000 

del 0 0 

7:72380000-73780000 dup 0 3 

9:831690-959090 del/dup - - 

8:100094670-

100958984 

del 9 9 

15:28920000-

30270000 

del 21 18 

16:28730000-

28960000 

del 1 4 

16:29560000-

30110000 

dup 2 14 

22:17400000-

19750000 

del 0 9 



Any pathogenic CNV  38 65 

 

  



Table 3 

Table showing gene-wise risk score SLPs for genes achieving SLP greater or equal to 3 

in the analysis including all covariates. (PCs = population principal components, PRS = 

schizophrenia polygenic risk score, CNV + LOF = pathogenic copy number variant or 

loss of function variant.) 

Gene symbol Gene name Analysis method 

  t test Logistic regression using listed covariates 

   None PCs PCs, 

PRS 

PCs, 

CNV + 

LOF 

PCs, 

PRS, 

CNV + 

LOF 

LY9 T-lymphocyte surface 

antigen Ly-9 

4.7 4.6 3.4 3.7 3.5 3.8 

SNORA62 Small Nucleolar RNA, 

H/ACA Box 62 

3.4 4.2 4.2 4.2 3.8 3.8 

ADAMTSL1 ADAMTS-like protein 

1 

4.4 4.4 3.6 3.7 3.7 3.7 

RNU5D-1 RNA, U5D Small 

Nuclear 1 

4.4 4.4 3.5 3.5 3.5 3.5 

PITPNA Phosphatidylinositol 

transfer protein alpha 

isoform 

3.0 3.1 3.5 3.4 3.5 3.4 



LOC1001330

91 

Uncharacterized 

LOC100133091 

3.2 3.3 3.2 3.3 3.3 3.3 

POMZP3 POM121 and ZP3 

fusion protein 

3.2 3.3 3.2 3.3 3.3 3.3 

LOC1019276

40 

Uncharacterized 

LOC101927640 

2.5 2.5 3.3 3.3 3.3 3.3 

ALG6 Dolichyl 

pyrophosphate 

Man9GlcNAc2 alpha-

1,3-

glucosyltransferase 

3.4 3.6 3.5 3.2 3.5 3.2 

KLHL11 Kelch-like protein 11 4.4 4.3 3.1 3.2 3.1 3.2 

PLIN3 Perilipin-3 4.8 4.7 3.5 3.4 3.3 3.2 

HNRNPA1L2 Heterogeneous 

nuclear 

ribonucleoprotein A1-

like 2 

5.1 5.1 3.2 3.1 3.1 3.1 

OR9Q2 Olfactory receptor 

9Q2 

2.9 2.9 2.9 2.9 3.0 3.0 

 

  



Table 4 

Table showing results for the gene sets used in previous analyses 14,15. 

 

Gene set Set symbol 

(Number of 

genes in set) 

Analysis method 

  t 

test 

Logistic regression using listed 

covariates 

   None PCs PCs, 

PRS 

PCs, 

CNV 

+ 

LOF 

PCs, 

PRS, 

CNV 

+ 

LOF 

OMIM intellectual disability 31 alid 

(107) 

1.8 1.8 0.5 0.3 0.5 0.3 

Expression specific  to brain 32 brain 

(2660) 

3.7 3.7 0.3 0.2 0.3 0.2 

Bound by CELF4 33 celf4 

(2675) 

5.6 5.7 1.2 1.1 1.2 1.1 

Missense‑constrained 34 constrained 

(1005) 

7.1 7.2 2.9 2.8 2.9 2.8 

Involved in developmental dd 5.3 5.2 1.7 1.8 1.6 1.8 



disorder 35 (93) 

De novo variants in autism 36 denovo.aut 

(2927) 

6.6 6.6 0.7 0.6 0.7 0.6 

De novo variants in coronary 

heart disease 36 

denovo.chd 

(249) 

2.7 2.7 0.8 0.8 0.8 0.8 

De novo variants in epilepsy 36 denovo.epi 

(322) 

1.3 1.3 0.1 0.1 0.1 0.1 

De novo duplications in ASD 37 denovo.gain.a

sd 

(1365) 

2.4 2.4 0.2 0.1 0.2 0.1 

De novo duplications in bipolar 

disorder 37 

denovo.gain.b

d 

(180) 

0.9 0.9 0.8 0.8 0.8 0.8 

De novo duplications in 

schizophrenia 37 

denovo.gain.sc

z 

(200) 

0.1 0.1 -0.4 -0.4 -0.4 -0.4 

De novo variants in intellectual 

disability 36 

denovo.id 

(251) 

3.6 3.6 1.2 1.2 1.1 1.1 

De novo deletions in ASD 37 denovo.loss.as

d 

(1179) 

3.8 3.8 0.0 0.0 0.0 0.0 

De novo deletions in bipolar 

disorder 37 

denovo.loss.bd 

(130) 

0.8 0.8 -0.1 -0.1 0.0 -0.1 

De novo deletions in denovo.loss.sc 1.8 1.8 0.4 0.5 0.4 0.6 



schizophrenia 37 z 

(246) 

De novo variants in 

schizophrenia  36 

denovo.scz 

(770) 

3.5 3.4 0.2 0.2 0.2 0.2 

Bound by FMRP 38 fmrp 

(1244) 

10.2 10.5 3.5 3.3 3.5 3.3 

Implicated by GWAS 16 gwas 

(91) 

2.4 2.4 0.9 0.8 0.8 0.7 

Targets of microRNA‑137 39 mir137 

(3260) 

8.1 8.5 1.5 1.4 1.4 1.3 

Expression specific to neurons 

40 

neurons 

(4747) 

8.1 8.4 2.4 2.2 2.3 2.1 

NMDAR and ARC complexes 

37 

nmdarc 

(80) 

0.3 0.3 -0.3 -0.3 -0.3 -0.3 

Loss‑of‑function intolerant 41 pLI09 

(3488) 

8.3 8.8 2.9 2.6 3.0 2.7 

PSD‑95 42 psd95 

(120) 

0.7 0.7 0.3 0.3 0.3 0.3 

Bound by RBFOX 1 or 3 43 rbfox13 

(3445) 

5.4 5.5 1.8 1.7 1.9 1.8 

Bound by RBFOX 2 43 rbfox2 

(3068) 

5.3 5.4 1.2 1.0 1.1 1.0 

Synaptic 44 synaptome 

(1887) 

5.6 5.7 1.5 1.3 1.4 1.2 



Escape X‑inactivation 45 x.escape 

(213) 

6.0 6.1 1.5 1.5 1.6 1.5 

X‑linked intellectual disability, 

Genetic Services Laboratories 

of the University of Chicago 46–

49 

xlid.chicago 

(77) 

1.7 1.7 0.6 0.5 0.6 0.5 

X‑linked intellectual disability, 

Greenwood Genetic Centre 48 

xlid.gcc 

(114) 

1.6 1.6 1.1 1.1 1.1 1.0 

X‑linked intellectual disability, 

OMIM 31 

xlid.omim 

(57) 

1.2 1.2 0.8 0.7 0.7 0.7 

X‑linked intellectual disability 

(combined) 

xlid 

(122) 

0.2 0.2 -0.2 -0.2 -0.2 -0.2 

 

  



Table 5 

Table showing GO gene sets achieving SLP greater or equal to 2. 

Gene set Analysis method 

 t 

test 

Logistic regression using listed 

covariates 

  None PCs PCs, 

PRS 

PCs, 

CNV 

+ 

LOF 

PCs, 

PRS, 

CNV 

+ 

LOF 

REGULATION OF CYTOKINE 

BIOSYNTHETIC PROCESS 

3.7 3.7 3.4 3.6 3.3 3.5 

NEGATIVE REGULATION OF 

CYTOKINE BIOSYNTHETIC 

PROCESS 

3.6 3.6 3.1 3.4 3.2 3.5 

CYTOKINE METABOLIC PROCESS 3.6 3.5 3.2 3.4 3.2 3.4 

REGULATION OF 

PHOSPHORYLATION 

4.5 4.5 3.7 3.4 3.7 3.4 

NEGATIVE REGULATION OF 

TRANSLATION 

2.8 2.8 3.1 3.3 3.1 3.3 

CYTOKINE BIOSYNTHETIC 

PROCESS 

3.4 3.4 3.2 3.3 3.1 3.3 



REGULATION OF PROTEIN AMINO 

ACID PHOSPHORYLATION 

4.5 4.5 3.4 3.2 3.5 3.2 

PROTEIN 

HOMOOLIGOMERIZATION 3.5 3.5 2.8 3.0 2.8 3.0 

CELL ACTIVATION 2.8 2.8 2.7 2.9 2.7 2.9 

NEGATIVE REGULATION OF 

PHOSPHATE METABOLIC 

PROCESS 3.3 3.3 2.7 2.8 2.7 2.8 

INTRACELLULAR SIGNALING 

CASCADE 6.4 6.4 2.7 2.8 2.7 2.7 

REGULATION OF PEPTIDYL 

TYROSINE PHOSPHORYLATION 3.5 3.4 2.8 2.6 2.9 2.7 

GLUCOSE METABOLIC PROCESS 3.9 3.9 2.6 2.6 2.6 2.6 

NEGATIVE REGULATION OF 

PHOSPHORYLATION 2.9 2.9 2.4 2.5 2.5 2.5 

STRUCTURE SPECIFIC DNA 

BINDING 

3.2 3.2 2.8 2.6 2.7 2.5 

NEGATIVE REGULATION OF 

CELLULAR PROTEIN METABOLIC 

PROCESS 

2.9 2.9 2.3 2.5 2.3 2.5 

RHO GUANYL NUCLEOTIDE 

EXCHANGE FACTOR ACTIVITY 

3.9 3.9 2.5 2.4 2.5 2.5 



NEGATIVE REGULATION OF 

PROTEIN METABOLIC PROCESS 

3.0 3.0 2.3 2.4 2.3 2.4 

DOUBLE STRANDED DNA 

BINDING 

2.2 2.2 2.5 2.5 2.4 2.4 

REGULATION OF CELLULAR 

PROTEIN METABOLIC PROCESS 

2.9 2.9 2.5 2.4 2.4 2.4 

POSITIVE REGULATION OF 

CELLULAR PROCESS 

4.8 4.8 2.2 2.3 2.1 2.3 

MAGNESIUM ION BINDING 3.0 3.0 2.3 2.3 2.3 2.3 

CHROMOSOME ORGANIZATION 

AND BIOGENESIS 5.3 5.3 2.5 2.4 2.3 2.2 

GLUTAMATE RECEPTOR ACTIVITY 2.3 2.3 2.4 2.4 2.3 2.2 

POSITIVE REGULATION OF CELL 

PROLIFERATION 3.0 3.0 1.8 2.1 1.9 2.2 

ION BINDING 5.3 5.3 1.9 2.1 2.0 2.2 

ACTIN POLYMERIZATION AND OR 

DEPOLYMERIZATION 2.6 2.6 2.1 2.0 2.2 2.1 

LEUKOCYTE ACTIVATION 1.7 1.7 1.9 2.1 1.9 2.1 

REGULATION OF CELLULAR 

METABOLIC PROCESS 

5.3 5.3 2.2 2.0 2.2 2.0 

REGULATION OF LYMPHOCYTE 

ACTIVATION 

1.5 1.5 2.0 2.0 2.0 2.0 



REGULATION OF METABOLIC 

PROCESS 

5.3 5.3 2.1 2.0 2.1 2.0 

 

 

  



Figure 1 

QQ plots of SLPs obtained for 22021 genes using different methods of analysis. 1A 

Results from t tests comparing gene-wise risk scores between cases and controls.  

Results for Figures 1B to 1F use logistic regression analysis of gene-wise risk scores 

with caseness as outcome. Analyses include the following covariates. 1B No covariates. 

1C 20 population principal components. 1D 20 population principal components and 

PRS. 1E 20 population principal components and pathogenic CNV or sequence variants. 

1E 20 population principal components, PRS and pathogenic CNV or sequence variants. 
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Figure 2 

QQ plot for set-wise SLPs obtained when including all covariates for GO gene sets 

against the expected SLP if all sets were non-overlapping and independent. 

 

 


