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ABSTRACT 23 

The origin of sedimentary dolomite is a subject of long-standing enigma that still 24 

awaits resolution. Previous studies have shown that room temperature synthesis of 25 

abiotic dolomite is rarely achieved and primary (proto-)dolomite precipitation is closely 26 

associated with microbial activities. In this study, we demonstrate through laboratory 27 

carbonation experiments that highly negative-charged clay minerals (as indicated by 28 

the values of zetal potential) such as illite and montmorillonitecan aid the precipitation 29 

of abiotic proto-dolomite under ambient conditions, whereas nearly-neutral charged 30 

kaolinite exerts negligible influence on such process. In comparison to montmorillonite, 31 

illite has higher surface-charge density, thus is more effective in catalyzing proto-32 

dolomite precipitation. Furthermore, the signal of proto-dolomite in carbonate 33 

neoformations is enhanced with increasing concentrations of illite or montmorillonite. 34 

On the basis of these results, we suggest that clay minerals catalyze dolomite formation 35 

perhaps via electrostatic binding of Mg2+ and Ca2+ ions and simultaneously desolvating 36 

these strongly hydrated cations, a crucial step for dolomite crystallization. The resulting 37 

proto-dolomites display the morphologies, textures, and structures similar to those of 38 

biogenic dolomite reported before, which are considered precursors of ordered 39 

sedimentary dolomite. Therefore, our results offer a possible route to authigenic 40 

dolomite found in sedimentary environments.   41 

 42 

 43 

  44 
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1. INTRODUCTION 45 

Dolomite [CaMg(CO3)2] is an important mineral component of sedimentary rocks 46 

(Warren, 2000). In pre-Holocene geological records, massive amount of dolomite 47 

formation could be commonly found in the carbonate paltforms (Given and Wilkinson, 48 

1987; Burns et al., 2000; Warren, 2000). Most ancient dolostone rocks which contain 49 

more than >75% dolomite by volume are even hundreds to thousands meter thick and 50 

cover areas of hundreds of kilometers wide (Warren, 2000; McKenzie and Vasconcelos, 51 

2009).  By contrast, the recent occurrences of dolomite are extremely rare in marine 52 

sediments, despite the fact that modern seawater is thermodynamically oversaturated 53 

with respect to this mineral (Burns et al., 2000). Such apparent discrepancy has 54 

stimulated intense studies and debates regarding the genesis of dolomite.  55 

Most geologists contend that the majority of ancient dolomites (massive dolostone 56 

in particular) formed as a diagenetic replacement of limestone (i.e, dolomitization: 57 

2CaCO3 + Mg2+ → CaMg(CO3)2 + Ca2+ or CaCO3 + Mg2+ + CO32- → CaMg(CO3)2) 58 

(e.g., Land, 1985; Given and Wilkinson, 1987; Budd, 1997; Machel, 2004). This 59 

hypothesis has been supported by the geological observations (e.g., poor preservation 60 

of fossils, coarse dolomite grains with dissolution pores and cavities) in dolostone and 61 

reinforced by the fact that laboratory synthesis of dolomite is difficultly achieved at 62 

Earth surface temperatures (<60 °C), whereas it is relatively uncomplicated and 63 

proceeds at a rapid rate under higher temperature diagenetic conditions (Land, 1980, 64 

1998; Morrow, 1982; Sibley et al., 1987; Arvidson and Mackenzie, 1999; Kaczmarek 65 

and Thornton, 2017). Furthermore, thermal dolomitization experiments have indicated 66 
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that metastable precursors exclusively occur at the expense of calcite (or aragonite) 67 

above 100 °C and finally convert to ordered-dolomite at temperature over 150 °C (e.g., 68 

Graf and Goldsmith, 1956; Baker and Kastner, 1981; Sibley et al., 1994; Kaczmarek 69 

and Sibley, 2011; Jonas et al., 2017). These metastable phases include proto-dolomite 70 

(sometimes referred to as “disordered-dolomite” or “very high-magnesium calcite, 71 

VHMC”) and calcian dolomite. Compared to their highly ordered counterpart (i.e., 72 

ordered-dolomite or stoichiometric dolomite), proto-dolomite displays none or very 73 

weak cation ordering and calcian dolomite exhibits partly ordered crystal structures, 74 

despite both of these Ca-Mg carbonates having compositions close to ordered-dolomite 75 

(Gregg et al., 2015).           76 

In spite of their paucity, the Holocene dolomites have been repeatedly observed in 77 

evaporitic environments worldwide (Wells, 1962; Middelburg et al., 1990; Vasconcelos 78 

and McKenzie, 1997; Wright, 1999; van Lith et al., 2002; Wright and Wacey, 2005; 79 

Bontognali et al., 2010, 2012; Deng et al., 2010; Meister et al., 2011; Brauchli et al., 80 

2016). Interestingly, these dolomites have been demonstrated to be low-temperature 81 

primary (or at least very early diagenetic) dolomite that directly precipitates from 82 

saturated solutions (Ca2+ + Mg2+ + 2CO32- → CaMg(CO3)2) (McKenzie and 83 

Vasconcelos, 2009; Petrash et al., 2017). In addition, Holocene dolomites typically 84 

precipitate as proto-dolomite and calcian dolomite in the upper sediments, while they 85 

occur as more stoichiometric dolomite rhombs in the deeper layers, suggesting the 86 

recrystallization of dolomite upon burial diagenesis (Gregg et al., 1992; Vasconcelos 87 

and McKenzie, 1997; Wright, 1999; Petrash et al., 2017). Several dolomite-forming 88 
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environments, such as sabkhas of United Arab Emirates (UAE) and Coorong Lagoon 89 

of the South Australia, have been proposed as analogs for the origin of ancient 90 

dolomites (McKenzie and Vasconcelos, 2009). Besides the favorable abiotic 91 

geochemical parameters (e.g., oversaturated state, high Mg/Ca ratio and salinity), there 92 

may be natural catalysts overcoming the kinetic barriers to low-temperature dolomite 93 

formation. In fact, sulfate-reducing bacteria (Vasconcelos et al., 1995; Vasconcelos and 94 

McKenzie, 1997; Wright, 1999; Wright and Wacey, 2005; Deng et al., 2010; Bontognali 95 

et al., 2012; Krause et al., 2012), methanogenic archaea (Roberts et al., 2004; Kenward 96 

et al., 2009), fermenting bacteria (Zhang et al., 2015) and various aerobic halophiles 97 

(Rivadeneyra et al., 2000, 2006; Sánchez-Román et al., 2008, 2009, 2011a, 2011b; 98 

Deng et al., 2010; Balci and Demirel, 2016; Disi et al., 2017; Qiu et al., 2017) have 99 

been identified as effective catalysts that promote dolomite nucleation and growth. 100 

Proposed catalytic functions for microorganisms in dolomite formation include 101 

increasing dolomite saturation state and, providing cell walls and organic secretions 102 

(e.g., exopolymeric substances) serving as template for dolomite crystallization 103 

(McKenzie and Vasconcelos, 2009; Zhang et al., 2012a, 2015; Kenward et al., 2013; 104 

Roberts et al., 2013; Bontognali et al., 2014a; Qiu et al., 2017). Noticeably, an argument 105 

is recently proposed by Gregg and co-workers who reevaluated the published XRD data 106 

of biogenic dolomites and found that these precipitates are proto-dolomite (or VHMC) 107 

rather than presumably reported ordered-dolomite (Gregg et al., 2015). Nevertheless, 108 

as stated earlier, proto-dolomite is considered an important precursor for ordered-109 

dolomite in sediments and sedimentary rocks. As such, a two-stage process, which 110 
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begins with proto-dolomite precipitation by means of nature catalysts (e.g., microbes) 111 

and is followed by diagenesis-controlled recrystallization of proto-dolomite towards 112 

ordered-dolomite, could account for the occurrence of Holocene dolomites and was 113 

probably involved in the formation of ancient dolomites.   114 

In contrast to the growing body of research on microbe-catalyzed dolomite 115 

formation, the role of naturally-occurring abiotic mineral catalysts has been largely 116 

overlooked. Clay minerals are ubiquitous on the Earth’s surface and they are the 117 

important mineral constituents of aquatic sediments (Chamley, 1989). Although there 118 

are a few studies concerning the effect of clay minerals on abiotic dolomite formation, 119 

the interpretations are largely contradictory. Specifically, based on petrographic and 120 

mineralogic investigations, some suggest a close relationship between the clay minerals 121 

and abiotic dolomite formation in several depositional settings, such as dolostones 122 

(Kahle, 1965; Botha and Huges, 1992; Wanas and Sallam, 2016), cave speleothems 123 

(Pérez et al., 2015) and soils (Capo et al., 2000; Casado et al., 2014; Cuadros et al., 124 

2016; Díaz-hernández et al., 2018). In these studies, clay minerals were proposed to be 125 

a source of magnesium for dolomite formation and/or function as nucleation centers for 126 

dolomite crystals (e.g., Kahle, 1965; Wanas and Sallam, 2016). However, no 127 

relationship between these two types of mineral has been detected in other sedimentary 128 

environments (Hatfield and Rohrbacker, 1966; Lumsden, 1974). Therefore, laboratory 129 

experiments are required to explicitly probe whether clay minerals can facilitate abiotic 130 

(proto-)dolomite precipitation. This interaction could arise from negative charges on 131 

the surface of clay minerals, which is analogous to that of microbes, and thus serve as 132 
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a template for (proto-)dolomite nucleation.  133 

To test the aforementioned hypothesis, we performed a series of lab-bench 134 

carbonation experiments using different clay minerals at room temperature. Our results 135 

show that negatively-charged clay minerals can accelerate the abiotic precipitation of 136 

proto-dolomite under ambient conditions and this catalytic effect might depend on their 137 

charge densities. 138 

 139 

2. MATERIALS AND METHODS 140 

2.1. Clay mineral preparation and analyses 141 

Illite (IMt-1), montmorillonite (SWy-2) and kaolinite (KGa-1b) were selected for 142 

the experiments. The criteria for the mineral selection are based on their ubiquitous 143 

occurrence in sediments and the various magnitude of charge density on their layer 144 

surface. Both illite and montmorillonite belong to the 2:1 layer-type clay mineral that 145 

consists of an octahedral sheet sandwiched between two tetrahedral sheets, whereas 146 

kaolinite possesses a 1:1 dioctahedral structure (Chamley, 1989). Specifically for most 147 

2:1 layered clay minerals (e.g., illite and montmorillonite used in this study), their 148 

tetrahedrally-coordinated Si(IV) and octahedral Al(III) are partially replaced by lower 149 

valency cations, resulting in a net negative surface charge. By contrast, kaolinite is 150 

much less substituted by foreign cations, thus displaying negligible surface charge 151 

(Chamley, 1989).  152 

All clay minerals used were purchased from the Source Clays Repository of the 153 

Clay Minerals Society (West Lafayette, Indiana, USA). Preparation of each clay sample 154 
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consisted in manual milling in a mortar followed by sieve through a 200-mesh stainless 155 

steel sieve (0.074 mm). The fraction with size less than 200-mesh was then washed 156 

three times with doubly distilled water (ddH2O), collected, and then air-dried for all 157 

experiments. The detailed information regarding the physical and chemical properties 158 

is summarized in Table 1.  159 

The surface electronic property of clay minerals was characterized by zeta 160 

potential (ξ) measurements. Briefly, the samples were suspended in ddH2O (pH=7.0) at 161 

a concentration of 2 g/L. Upon homogeneous dispersion, clay suspensions were 162 

transferred into an electrophoretic cell, and the ξ value of clay minerals was measured 163 

using a Zeta potential analyzer (ZetaSizer Nano ZS, Malvern Instruments, UK). It is 164 

well known that the negative electric charge of clay minerals is mainly attributed to 165 

their edge-surface hydroxyl groups (Chamley, 1989). As such, thermogravimetric 166 

analysis (TGA) was performed to determine the amount of surface-bound hydroxyl in 167 

used clay minerals. TGA analyses were made on a TGA system (Netzsch STA449F3, 168 

Germany). These analyses were performed on pre-weighted samples of about 20 mg 169 

heated in a corundum crucible from 30 to 1000 °C at a heating rate of 5 °C min-1 under 170 

N2 atmosphere.  171 

2.2. Abiotic syntheses of carbonate minerals and chemical analyses 172 

A precipitate solution with a Mg/Ca molar ratio of 8 was prepared for carbonation 173 

experiments. This Mg/Ca value is higher than that of present sweater (~5.2), but lies 174 

within the range of values measured in dolomite-forming environments (Deng et al., 175 

2010). The precipitation system consisted of 10 mM CaCl2, 80 mM MgCl2·6H2O, 20 176 
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mM Na2CO3, and different concentrations of clay minerals (0, 1, 2, 4 and 6 g/L; 177 

corresponding to different amounts of surface charge available for interacting with Ca2+ 178 

and Mg2+ ions). 179 

In brief, aqueous solutions of CaCl2/MgCl2·6H2O and of Na2CO3 were first 180 

prepared as stock solutions. Different amounts of clay minerals were added into 181 

aforementioned Ca2+/Mg2+ solution. After being stirred at room temperature overnight, 182 

the pH of mixture was adjusted to 7.0 by using 0.1 M NaOH. Then the solution of 183 

Na2CO3 was added dropwise into the clay suspension, leading to form gel-like 184 

precipitate. After about 30 min, the gel was placed in an incubator at 30 °C and all 185 

synthetic experiments reported are performed in duplicate.  186 

Solution pH, aqueous Ca2+ and Mg2+ as well as dissolved inorganic carbon (DIC) 187 

were measured immediately after solutions were mixed (i.e., in the initial carbonation 188 

stage) and after 30-day ageing. The pH was determined using a Denver UB-7 meter 189 

(Denver, USA) with an uncertainty of �0.01 pH units. The concentrations of Ca2+ and 190 

Mg2+ were analyzed by inductively coupled plasma-optical emission spectrometry 191 

(ICP-OES, Thermofisher ICAP6300, USA). Determination of DIC was performed by 192 

using Shimadzu SCN analyzer (TOC-V, Shimadzu, Japan). The concentrations of 193 

CO32- were further calculated from measured pH and DIC. On the basis of above 194 

analyses, the saturation indices (SI) with respect to common carbonates (calcite, 195 

aragonite, monohydrocalcite and proto-dolomite) could be calculated using PHREEQC 196 

(version 2; Parkhurst and Appelo, 1999).    197 

2.3. Preparation of mineral standards 198 
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Hydromagnesite can easily be misidentified as dolomite (Zhang et al., 2012a), 199 

because the (310) peak of hydromagnesite appears at 30.818° (2θ, Cu Kα), very close 200 

to the strongest (104) reflection of (proto-)dolomite. To avoid this possible 201 

misidentification, a hydromagnesite, together with hydrothermally-synthesized proto- 202 

and ordered-dolomites, was prepared as a reliable standard for inferring the 203 

mineralogical composition of carbonate neoformations. Hydromagnesite, originally 204 

collected from hypersaline lakes on the Tibetan Plateau, was acquired from Xibeili 205 

mineral company (Jiangsu, China). Proto- and ordered-dolomite standards were 206 

prepared at 80 °C and 200 °C, respectively, based on the method of Rodriguez-Blanco 207 

et al. (2015). 208 

2.4. Crystal characterization 209 

After one month, the resulting precipitates were obtained by centrifugation, and 210 

subsequently rinsed three times with ddH2O, and then air-dried. Multiple methods were 211 

used for mineral analysis, including X-ray diffraction (XRD), Raman spectroscopy, and 212 

scanning and transmission electron microscopy (SEM and TEM).    213 

The samples were analyzed with a Bruker D8 Advance XRD using Cu Kα 214 

radiation. The operation voltage and current maintained at 40 kV and 40 mA, 215 

respectively. The samples were scanned from 3 to 65° 2θ stepping at 0.02° with a count 216 

time of 1 s per step. The MgCO3 molar fraction in the crystal lattice of Ca-Mg 217 

carbonates was calculated from d-spacing of (104) peak using the empirical curve 218 

developed by Bischoff et al. (1983). Solids produced in the reactor with 6 g/L illite IMt-219 

1, along with pristine IMt-1 and aforementioned mineral standards, were analyzed by 220 
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Raman spectroscopy. The Raman spectra were acquired using a Renishaw RM-1000 221 

laser Raman microscope system in the range between 100 and 1200 cm-1 at an interval 222 

of 1 cm-1. A 514.5 nm Ar+ laser was used as the excitation source. Spectral peak 223 

positions were calibrated using the 520.5 cm-1 line of silicon as a standard. The dried 224 

solid samples were Pt-coated prior to observation using a Hitachi SU8010 SEM. In 225 

addition, a Horiba EX-350 energy-dispersive X-ray spectrometer (EDS) was employed 226 

in the SEM to determine the elemental composition of the solid experimental products. 227 

The SEM was operated at an accelerating voltage of 5-15 kV. TEM observations and 228 

EDS analyses were performed with an FEI Talos F200X TEM with an accelerating 229 

voltage of 200 kV. Samples for TEM analyses were first dispersed in ethanol and then 230 

pipetted onto 300 mesh copper TEM grids with a nitrocellulose membrane and carbon 231 

coating.   232 

 233 

3. RESULTS 234 

3.1. Characterization of clay samples 235 

XRD results of pristine clay samples in the size range of less than 200 mesh reveal 236 

that both illite IMt-1 and montmorillonite SWy-2 also contain trace amounts of quartz, 237 

while kaolinite KGa-1b is highly pure (Table 1). The zeta potential of the clay minerals 238 

varies significantly. Specifically, the ξ value is -41.99 mV for illite, -34.51 mV for 239 

montmorillonite, and -3.93 mV for kaolinite, which indicates that illite and 240 

montmorillonite have much higher layer-charge density than kaolinite. These results 241 

are consistent with the conventional view that illite and montmorillonite are 2:1 layer 242 
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clay minerals that carry a net negative electric charge that results from extensive 243 

isomorphous substitution of cations in their lattice structures, but 1:1 layer type 244 

kaolinite is nearly-neutral charged (Chamley, 1989). TGA results can also be used to 245 

compare the amount of surface hydroxyl between illite and montmorillonite. Two 246 

significant weight loss steps are observed in these clays: a dehydration first stage 247 

followed by a dehydroxylation second stage (Fig. S1). Results show that weight losses 248 

from dehydroxylation are 6.1% and 3.6% for illite and montmorillonite respectively, 249 

which confirms that illite has significantly more hydroxyl than montmorillonite (Fig. 250 

S1). 251 

3.2. Changes of aqueous chemistry as a result of carbonation 252 

As shown in Table 2, the ionic compositions of the reactors with 6 g/L clay 253 

minerals are selected as representatives to investigate the geochemical changes upon 254 

carbonation. In general, the pH of each solution decreases by ca. 0.7 pH units at the end 255 

of experiments, which is ascribed to the decline in CO32- concentrations. As a result of 256 

carbonate precipitation, Ca2+ ions for each reactor are largely depleted. Even though 257 

the precipitation solutions are oversaturated with respect to Mg-bearing carbonates (e.g., 258 

proto-dolomite), a significant decrease of Mg2+ is only observed in the systems with 259 

illite or montmorillonite, indicating that various carbonates occur in the clay-amended 260 

reactors.  261 

3.3. Characterization of neoformed Ca-Mg carbonates 262 

3.3.1. XRD results 263 
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As representatives, the XRD patterns of the particles grown in the presence of 6 264 

g/L clay minerals are presented in Figs. 1 and 2. Without clay minerals, only aragonite 265 

is obtained (Figs. 1A). When clay minerals are introduced into the reactors, the solid 266 

products change greatly. Specifically, in the illite-amended system, dolomite-like 267 

material is the only carbonate phase detected (Fig. 1). In comparison, the characteristic 268 

peaks [(011), (100) and (-110)] of hydromagnesite are absent from our experiments 269 

(Fig. 1), which suggests that this carbonate phase is dolomite rather than 270 

hydromagnesite. The (104) reflection position of our produced dolomite is around 271 

30.735° 2θ (d104=0.2907 nm). This value reveals that its MgCO3 content is ~46.2 mol% 272 

(Bischoff et al., 1983), much close to the stoichiometric composition. To assess the 273 

degree of cation ordering of low-temperature dolomite, the XRD patterns of illite-274 

assisted dolomite, proto- and ordered-dolomite standards are further compared. It can 275 

be seen that the XRD pattern of illite-assisted carbonate precipitate is quite similar to 276 

that of proto-dolomite, as evidenced by the lack of superstructure ordering peaks [e.g., 277 

(101), (015) and (021)] and broad nature of the reflections (Fig. 1). It has been suggested 278 

that poor cation ordering and structural water could account for these characteristic 279 

appearances of the XRD pattern of proto-dolomite (Kelleher and Redfern, 2002). Not 280 

limited to the system with illite, proto-dolomite, accompanying with trace aragonite, is 281 

also observed in the montmorillonite-amended reactor (Fig. 2). However, its reflection 282 

intensity is significantly lower. By contrast, instead of proto-dolomite, only weak XRD 283 

signals characteristic of monohydrocalcite are detected in carbonate products from 284 

kaolinite-assisted experiments (Fig. 2). The XRD results show that low-temperature 285 
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formation of proto-dolomite can be catalyzed by clay minerals and thus suggest that 286 

this process may be mediated by negatively charged surfaces; that is, illite with highest 287 

charge density represents the most positive effective on proto-dolomite precipitation, 288 

and lower-charged montmorillonite contributes less to this reaction, while nearly-289 

neutral charged kaolinite has a negligible impact. 290 

In order to elucidate the relationship between the charge of clay minerals and the 291 

formation of proto-dolomite, the effect of clay concentration (i.e., charge magnitude in 292 

reactors) on proto-dolomite precipitation is also evaluated (Figs. S2 and S3). As 293 

expected, the peak intensity of the (104) plane of proto-dolomite also progressively 294 

increases with increasing concentrations of illite (Fig. S2) or montmorillonite (Fig. S3). 295 

In addition, aragonite and monohydrocalcite can also be precipitated in 296 

montmorillonite-amended experiments (Fig. S3) and when low concentration of illite 297 

is used (Fig. S2).     298 

3.3.2. Raman data 299 

As an independent characterization of the crystal structure of the experimentally-300 

produced phase, the Raman spectra of carbonate precipitate with 6 g/L illite are directly 301 

compared to those of illite, and standards of proto-dolomite, ordered-dolomite, and 302 

hydromagnesite. Typically for dolomite, there four distinct vibrational modes can be 303 

observed in the range of 100-1200 cm-1 (Fig. 3). In general, compared to ordered-304 

dolomite, proto-dolomite exhibits a broader peak width and band positions slightly 305 

shifted to lower wavenumbers, from 1097 to 1095 cm-1. Unlike dolomite, 306 

hydromagnesite only displays two characteristic modes (Fig. 3). After carbonation, 307 
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there is one distinct band and three small humps emerged in illite samples (Fig. 3). In 308 

comparison to the standards, the position of these new peaks is similar to that of proto-309 

dolomite, which independently confirms the existence of proto-dolomite in illite-310 

amended carbonation experiments. 311 

3.3.3. SEM observations 312 

SEM images show that proto-dolomite crystals are exclusively distributed on the 313 

edge of platy illite particles, which suggests that the edges rather than basal surfaces 314 

are more effective catalytic sites for proto-dolomite crystallization (Fig. 4). These 315 

proto-dolomite crystals are 1-3 μm in size, and are either randomly dispersed on small 316 

illite particles (Fig. 4A) or in the form of aggregates covering the large illite crystals 317 

(Figs. 4B and C). High-magnification images of proto-dolomite crystals reveal a 318 

cauliflower-like (Fig. 4D) or dumbbell-shaped (Fig. 4E) structures. Nanoscale-319 

resolution images show that the proto-dolomite has a granular texture comprised of 320 

many spherical crystallites around 10-20 nm in size (Fig. 4F). Elemental mapping by 321 

EDS reveals striking differences between illite and neoformed proto-dolomite (Figs. 322 

4G-J). The proto-dolomite particles have high level of homogenously distributed Ca 323 

and Mg, but a trace amount of Si, while the signals of Ca and Mg are nearly invisible 324 

on the surface of Si-rich illite crystals (Figs. 4H-J). The chemical compositions of illite 325 

and proto-dolomite are further obtained by EDS spot scan, as shown in Figs. 4K-L. In 326 

comparison to illite, proto-dolomite particle is rich in C, O, Mg and Ca, and displays 327 

similar Mg and Ca contents (Mg-Kα and Ca-Kα). Proto-dolomite in the reactor with 328 

montmorillonite exhibits only spheroidal morphology (Figs. 5A and B), and is 329 
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surrounded by flaky-shaped montmorillonite (see Fig. 5B). The MgCO3 content of 330 

these spheroids reaches approximately 47 mol% as determined by EDS (Fig. 5C). High 331 

magnification images show that dolomite spheroids are also composed of numerous 332 

nanoparticles (Fig. 5D), similar to those obtained in illite systems. Furthermore, SEM-333 

EDS results indicate that dendritic-shaped aragonite is also produced in the presence of 334 

montmorillonite (Fig. S4). 335 

3.3.4. TEM observations 336 

The occurrence of proto-dolomite is also validated by TEM investigation. The 337 

TEM photographs of a representative sample from the 6 g/L illite system are presented 338 

in Fig. 6. In agreement with the SEM results, micron-sized proto-dolomites are 339 

primarily located on the illite external surfaces and have a spheroidal or fan 340 

(cauliflower)-like shape (Fig. 6A). The MgCO3 content in the proto-dolomite is 341 

calculated to be ca. 46 mol% from the TEM-EDS data, again consistent with 342 

aforementioned SEM-EDS measurements. High-resolution TEM (HRTEM) images 343 

further confirm that the proto-dolomite crystals are made of numerous, randomly 344 

distributed, 10-30 nm sized nanoscopic crystals (Figs. 6B and C). The selected-area 345 

electron diffraction (SAED) pattern of these nanoparticles shows diffraction rings 346 

matching (hkl) indices of (012), (104), (006) and (113) of dolomite (Fig. 6C). However, 347 

the super-lattice reflections [e.g., (015), (101) and (021)] indicating the cation ordering 348 

are not found, which again independently confirms that proto-dolomite is synthesized 349 

in these experiments and agrees with our XRD and Raman spectra. The crystal lattice 350 

fringes also demonstrate the presence of proto-dolomite with a 2.906 Å d-spacing that 351 
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corresponds to the (104) plane of proto-dolomite and by its two sets of {104} face with 352 

angle of 75° (Fig. 6D).         353 

 354 

4. DISCUSSION 355 

4.1. The possible role of clay minerals in proto-dolomite crystallization 356 

According to previous reports, the intrinsic difficulty to precipitate both proto- and 357 

ordered-dolomite is attributed to the Mg-hydration effect (e.g., Lippmann, 1982; de 358 

Leeuw and Parker, 2001; Romanek et al., 2009). In general and similarly to Ca2+ ions, 359 

Mg2+ ions are bound to water molecules, thus forming metal-H2O association in 360 

aqueous solutions (Lippmann, 1973, 1982; Romanek et al., 2009; Hamm et al., 2010). 361 

Previous experimental and computational studies have demonstrated that the water 362 

coordination number for Mg2+ (6.0) is smaller than that for Ca2+ (6.0-9.2, with the mean 363 

number of 7.3) (Jalilehvand et al., 2001; Jiao et al., 2006; Hamm et al., 2010). However, 364 

as compared to Ca2+, much more energy is required to shed the water molecules around 365 

Mg2+ (1926 kJ/mole for Mg2+ vs. 1579 kJ/mole for Ca2+), arising from the strong outer 366 

solvation shell of Mg2+ (Lippmann, 1973; Hamm et al., 2010). As a consequence, the 367 

persistent hydration shell of Mg2+ can poison the growth of Ca-Mg carbonates such that 368 

the formation of Mg-free aragonite is favored when Mg:Ca molar ratio exceeds 4:1 369 

(Falini et al., 1996; Lenders et al., 2012; Zhang et al., 2012b; Shen et al., 2014, 2015). 370 

As such, the predominance of aragonite over calcite and Ca-Mg carbonates takes place 371 

in modern seawater which has an average Mg/Ca molar ratio of ~5.2, and it is also 372 

observed in our clay-free systems with a Mg/Ca molar ratio of 8 (Fig. 1A).          373 
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However, it is generally considered that this Mg2+-H2O association can be 374 

destabilized by changing some physicochemical parameters. For instance, increase in 375 

salinity might reduce water activity and subsequently decrease the hydration energy of 376 

Mg (van Lith et al., 2002). Furthermore, dehydration of Mg2+ and subsequent Mg 377 

incorporation into growing Ca-Mg carbonates can also take place in the presence of 378 

microorganisms, microbial exudates or other organo-molecules, leading to 379 

crystallization of magnesian calcite (e.g., Falini et al., 1996; De Yoreo and Dove, 2004; 380 

Rivadeneyra et al., 2004; Stephenson et al., 2008; González-Muñoz et al., 2010; 381 

Lenders et al., 2012; Han et al., 2013) and even (proto-)dolomite (e.g., Vasconcelos et 382 

al., 1995; Roberts et al., 2004, 2013; Sánchez-Román et al., 2008; Bontognali et al., 383 

2012, 2014a; Zhang et al., 2012a, 2015). Moreover, carboxyl moiety (R-COO-) 384 

associated with microbes and organo-molecules have been identified as the crucial 385 

functional group facilitating the loading of Ca2+ and Mg2+ during Ca-Mg carbonate 386 

growth (Kenward et al., 2013; Qiu et al., 2017).   387 

There are at least two distinct hypotheses proposed to explain the positive role of 388 

microbes and organo-molecules in dewatering of Mg2+-H2O complexes: (1) a metal-389 

chelation model (Mirsal and Zankl, 1985; Romanek et al., 2009; Wang et al., 2009; 390 

Kenward et al., 2013; Roberts et al., 2013) and (2) an adsorption-displacement 391 

mechanism (Zhang et al., 2015). In the first model, it has suggested that electronegative 392 

carboxyl functional groups can bind and partially dewater Mg2+-H2O complexes, 393 

generating Mg2+-carboxyl group complexes. In doing so, Mg2+-carboxyl complex 394 

requires much lower energy for carbonation than Mg2+-H2O complex (Kenward et al., 395 
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2013; Roberts et al., 2013). In the adsorption-displacement mechanism, microbial 396 

exopolymers are preferentially adsorbed onto the growing Ca-Mg carbonate surface 397 

replacing the surface water molecules, which would otherwise be associated with Mg2+, 398 

thereby benefiting the diffusion of Mg2+ into crystal structure (Zhang et al., 2015).  399 

Our experiments demonstrate that clay minerals can also facilitate and expedite 400 

proto-dolomite precipitation. Several lines of evidence suggest that clay mineral-401 

mediated proto-dolomite formation might proceed through a metal-chelation 402 

mechanism. First as solid phases, clay minerals apparently cannot work in the same 403 

way as soluble microbial secretions (e.g., extracellular exopolymers, carboxylic acids 404 

and others), which could be easily adsorbed to growing carbonate as mentioned above. 405 

Second, it appears that only clay minerals with negative charges such as illite and 406 

montmorillonite promote proto-dolomite formation, which suggests that these clay 407 

minerals perhaps serve a function similar to that of negatively-charged microbial cells 408 

via binding Mg and Ca ions, thus facilitating the dehydration of Mg and Ca. Third, in 409 

comparison to montmorillonite, illite has a greater surface charge density (as evidenced 410 

by ξ values), and therefore is shown to be more efficient at enhancing dolomite 411 

precipitation, further indicating that the magnitude of charge density plays a 412 

fundamental role in dolomite formation. Such hypothesis is reinforced by the 413 

observations that the proto-dolomite signal in XRD is enhanced with increasing 414 

concentrations of illite or montmorillonite (corresponding to elevated charge density in 415 

precipitation reactor). A similar finding has been reported by Kenward and co-workers 416 

who demonstrated that the formation of (proto-)dolomite can be achieved in the 417 
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presence of microorganisms with high charge density (Kenward et al., 2013).          418 

Fourth, clay minerals are negatively charged primarily due to a large number of edge-419 

bound hydroxyl groups. If clay minerals catalyze proto-dolomite crystallization via 420 

their surface binding, proto-dolomite should be preferably formed on the edge surface 421 

of clay particles. Since montmorillonite is irregular in shape, it is difficult to distinguish 422 

between its edge surface and basal surface under SEM. However, this is not a problem 423 

for illite. Our SEM results reveal that newly-formed proto-dolomite indeed precipitates 424 

on the edges of illite (Figs. 4A-C). 425 

Therefore, we speculate that Ca and Mg ions are favorably adsorbed by 426 

electrostatic force onto clay surfaces, forming metal-hydroxyl complex and shedding 427 

partial water molecules simultaneously (Fig. 7). In a similar manner to metal-carboxyl, 428 

metal-hydroxyl might lower the energy required for carbonation, leaving illite or 429 

montmorillonite as a nucleation center for proto-dolomite crystallization, resulting in 430 

the formation of a thin dolomite layer (Fig. 7). Once this dolomite layer is created, it is 431 

generally thought that the homoepitactic growth of these pre-existing particles will 432 

continue when a supersaturated condition is maintained (Roberts et al., 2013).       433 

4.2. Morphological features of low-temperature (proto-)dolomite 434 

It has been repeatedly reported that dumbbell, cauliflower and spherical 435 

morphologies of non-stoichiometric dolomite form in microbial laboratory experiments 436 

(e.g., Warthmann et al., 2000; van Lith et al., 2003; Bontognali et al., 2008; Sánchez-437 

Román et al., 2008; Qiu et al., 2017). These biogenic dolomites vary in size from 438 

several micrometers to a few hundred nanometers and normally consist of numerous 439 
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nanoglobules (Bontognali et al., 2008; Sánchez-Román et al., 2008). Such 440 

morphological and textural features are different from dolomite rhombs synthesized at 441 

high temperatures, and therefore have been proposed as potential biosignatures to trace 442 

microbial activities in the geological record (Warthmann et al., 2000; Sánchez-Román 443 

et al., 2008). However, the morphology and size of proto-dolomite precipitated with the 444 

aid of clay minerals are similar to those of microbially-mediated ones. These 445 

observations suggest that morphology criteria alone may not unambiguously unravel 446 

the biogenic origin of dolomite crystals in sedimentary samples, especially those 447 

intergrown with clay minerals. Instead of constituting evidence for its origin, such 448 

dumbbell-like or spherical dolomite might be an inherent feature of non-stoichiometric 449 

proto-dolomite. Indeed, the same observations were also found in abiotic synthesis of 450 

proto-dolomite at 60 °C (e.g., Malone et al., 1996; Rodriguez-Blanco et al., 2015). 451 

Furthermore, Rodriguez-Blanco et al. (2015) demonstrated that amorphous Mg-Ca 452 

carbonate nanospheres first precipitated and then tended to be coalesced into micro-453 

sized proto-dolomite spheroids, implying that proto-dolomite grows via oriented 454 

attachment of primary nanoparticles (De Yoreo et al., 2015) and thus exhibits a 455 

nanogranular texture.                  456 

4.3. Geological implications 457 

Clay minerals are the most abundant minerals on the Earth’s surface (Chamley, 458 

1989; Vorhies and Gaines, 2009), and they can be either formed authigenicly or 459 

transported into marine waters or lakes by river, air or volcanic eruptions (Chamley, 460 

1989). As such, clay minerals should be commonly found in modern dolomite-forming 461 
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environments. Indeed, it has been repeatedly reported that clay minerals commonly 462 

occur in sediments of coastal sabkhas and inland saline lakes in which primary dolomite 463 

deposits have emerged, such as the coastal sabkha in Abu Dhabi (UAE) (Sadooni et al., 464 

2010) and highly alkaline playa lakes such as Deep Springs Lake in USA (Meister et 465 

al., 2011). Surveys of dolomite authigenesis in these settings also revealed that crystals 466 

of dolomite often grow in pore spaces around detrital clay particles (e.g., Sadooni et al., 467 

2010). It is notable that in microbial mats of coastal sabkhas (UAE and Qatar), dolomite 468 

crystals were also found associated with authigenic clay minerals (Bontognali et al., 469 

2010; Brauchli et al., 2016). These observations suggest that clay minerals might play 470 

a positive role in dolomite crystallization.   471 

Our experiments show evidence that illite, montmorillionite and probable other 472 

negatively-charged clay minerals in an oversaturated solution could severe as 473 

nucleation centers for dolomite. Compared to modern seawater with ca. 0.27 mM CO32-, 474 

higher concentrations of CO32- ions (20 mM) used in our precipitation experiments, 475 

which correspond to higher saturation state for dolomite. Nevertheless, these 476 

parameters are still within the range of values estimated in some environments showing 477 

ongoing dolomite authigeneisis and perhaps in ancient sea. For instance, the 478 

concentration of CO32- of hypersaline dolomitic lakes in the Coorong region (Australia) 479 

fluctuates from 0.48 to 24.25 mM, depending on the stage of evaporation (Wright and 480 

Wacey, 2005). Moreover, apart from Carboniferous to Permian, it has been suggested 481 

that the saturation state of dolomite in ancient seas throughout the Phanerozoic was 482 

high compared to the present-day (Riding and Liang, 2005). Under aforementioned 483 
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highly oversaturated conditions, swelling clay minerals (e.g., montmorillionite) that can 484 

stay buoyant for longer than non-swelling clays (e.g., illite) can function as a template 485 

for the direct precipitation of proto-dolomite from solutions. Once deposited into 486 

sediments, negatively-charged clays including swelling and non-swelling phases still 487 

have such potential to facilitate dolomite formation. Specifically, it has been well 488 

documented that organic matter in marine sediments is tightly associated with clay 489 

minerals (Kennedy et al., 2002) and potentially promote the formation of authigenic 490 

clays (Bontognali et al., 2014b). Under decomposition of organic matter, NH3 and CO2 491 

gas would be produced, which diffuse into porewaters and then significantly increase 492 

solution pH, carbonate alkalinity and saturation state with respect to dolomite. Clay 493 

minerals, together with other negatively-charged compounds (e.g., microorganisms and 494 

carboxyl-rich organic matters), could contribute to the crystallization of dolomite. Once 495 

these newly-formed dolomites are formed, they might be nuclei for later, more 496 

pervasive dolomite formation (Burns et al., 2000; Mazzullo, 2000). Such model might 497 

account for the occurrence of dolomite beds associated with organic carbon-rich deep-498 

sea clayey sediments (Meister et al., 2007, 2008).      499 

Upon burial diagenesis, proto-dolomite tends to transform into more 500 

stoichiometric dolomite through a dissolution-reprecipitation process (Malone et al., 501 

1996; Warren, 2000; Vasconcelos and McKenzie, 1997; Rodriguez-Blanco et al., 2015). 502 

Therefore, the clay mineral-catalyzed dolomite precipitation model offers one 503 

possibility for interpreting the dolomite formation in certain geological environments, 504 
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in which a close relationship between clays and dolomite is observed (e.g., Wanas and 505 

Sallam, 2016). 506 

 507 

5. CONCLUSIONS 508 

We demonstrate that high negatively-charged clay minerals such as illite and 509 

montmorillonite are capable of mediating the formation of proto-dolomite through a 510 

metal-chelation mechanism. Cauliflower-like and dumbbell-shaped dolomite crystals 511 

are mainly distributed on the edge surface of illite particles, while spheroidal dolomites 512 

are observed in montmorillonite-amended systems. The proto-dolomite neoformations 513 

display granular textures that consist of nanoscopic particles, morphologically similar 514 

to those formed by biotic process. This new data provides laboratory evidence for the 515 

catalytic role of clay minerals in dolomite formation and suggests that morphology 516 

alone cannot be used as a criterion determining the origin for dolomite in the rock 517 

records. 518 
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Table 1 817 

Types of clay minerals used in this study, their surface area, chemical composition and mineralogy. 818 

a Dogan et al. (2007).  b http://www.clays.org/Sourceclays.html.  c Dogan et al. (2006). 819 

 820 

 821 

 822 

Minerals 
BET surface 

area (m2/g) 
Chemical formula Mineralogy 

Illite (IMt-1) 20.5a (Mg0.09Ca0.06K1.37)(Al2.69Fe0.82Mg0.43Ti0.06)(Si6.77Al1.23)O20(OH)4 b Illite, trace quartz 

Montmorillonite 

(SWy-2) 
22.7c (Ca0.12Na0.32K0.05)(Al3.01Fe0.41Mn0.01Mg0.54Ti0.02)(Si7.98Al0.02)O20(OH)4 b Montmorillonite, trace quartz,  

Kaolinite (KGa-

1b) 
13.1c (Mg0.02Ca0.01Na0.01K0.01)(Al3.86Fe0.02Ti0.11)(Si3.83Al0.17)O10(OH)8 b Kaolinite 
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Table 2 823 

Geochemical changes in the carbonation reactors with and without clay mineral (6 g/L). 824 

825 

Experimental set 
Initial 

pH 

Initial Ca2+ 

(mM) 

Initial Mg2+ 

 
(mM) 

Initial SI for carbonate phases  
Final 

pH  

Final Ca2+ 

(mM)  

Final Mg2+ 

(mM) calcite aragonite monohydrocalcite proto-dolomite 

Without clay 

mineral 
9.74 9.91 81.03 4.77 4.65 3.44 10.02 9.01 0.92 80.89 

With illite  9.78 9.95 80.47 4.78 4.66 3.45 10.03 9.09 1.05 72.32 

With 

montmorillonite  
9.79 10.07 80.26 4.79 4.67 3.46 10.03 9.11 0.98 76.67 

With kaolinite  9.71 10.02 80.14 4.78 4.67 3.45 10.03 9.03 0.84 79.56 



41 
 

Figure caption: 826 

Figure 1. XRD patterns of minerals obtained before and after carbonation experiments: 827 

(A) mineral products without clay additives; (B) pristine illite IMt-1; (C) solid products 828 

with IMt-1 as the additive; (D) standards of proto-dolomite, ordered-dolomite and 829 

hydromagnesite (A, aragonite; I, illite; Q, quartz; D, dolomite).  830 

 831 

Figure 2. XRD patterns for the solid samples collected before and after carbonation 832 

experiments: (A) original montmorillonite SWy-2; (B) neoformed crystals with SWy-833 

2; (C) pristine kaolinite KGa-1b; (D) solid phases with KGa-1b (M, montmorillonite; 834 

Q, quartz; D, dolomite; A, aragonite; K, kaolinite; MC, monohydrocalcite).  835 

 836 

Figure 3. Raman spectra for the solids from the carbonation reactor with 6 g/L IMt-1, 837 

pristine IMt-1, and standards of proto-dolomite, ordered-dolomite and hydromagnesite. 838 

The arrows and dash lines highlight the characteristic bands of proto-dolomite 839 

occurring in carbonation sample with IMt-1 as the additive. 840 

 841 

Figure 4. SEM images of proto-dolomite synthesized in the solutions with illite. (A-C) 842 

micron-sized dolomites (arrow) on the edge surface of illite; (D-E) the newly-formed 843 

proto-dolomites appear as cauliflower and dumbbell grains, respectively; (F) a 844 

magnified view that shows the details of neoformed proto-dolomite; (G-J) elemental 845 

maps of the association between proto-dolomite and illite showing the distribution of 846 
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Ca, Mg and Si; (K-L) typical EDS compositions of illite and protodolomite shown in 847 

panel G (the Pt peaks correspond to sample coating). 848 

 849 

Figure 5. SEM images of proto-dolomite synthesized in the reactors with 850 

montmorillonite. (A) montmorillonite samples after carbonation; (B) enlarged views 851 

show spheroidal proto-dolomites surrounded by flaky montmorillonite; (C) EDS 852 

spectra showing the elemental compositions of montmorillonite and proto-dolomite 853 

neoformation (the Pt signal is attributed to sample coating); (D) a high magnified image 854 

of proto-dolomite spheroid (the insert) displaying a granular-textured surface. 855 

 856 

Figure 6. (A) TEM micrograph and EDS compositions showing the spatial association 857 

between proto-dolomite and illite particles; (B-C) high-magnification images of the 858 

inset views of dumbbell or cauliflower-like crystals indicating that nanocrystallites are 859 

at random orientations. The inset SAED pattern with indexation as dolomite does not 860 

show the super-lattice reflections; (D) HRTEM image showing the occurrence of 861 

0.2906 nm lattice fringes, corresponding to d-spacing of (104).  862 

 863 

Figure 7. Schematic diagram illustrating the catalytic role of negatively-charged clay 864 

minerals in proto-dolomite formation: (A) diagrammatic crystal structure of 2:1 layer 865 

clay minerals (e.g., illite and montmorillonite tested in this study); (B) the adsorption 866 

and dewatering of Mg and Ca ions by surface-bound hydroxyl groups; (C) the formation 867 

of Mg(Ca)-hydroxyl complexes favoring the carbonation reaction. 868 
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Figure S1. TGA analyses of pristine illite and montmorillonite samples. 894 
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Figure S2. XRD patterns for the solid samples collected from the carbonation 910 

experiments using different concentrations of illite (I, illite; Q, quartz; D, dolomite; MC, 911 

monohydrocalcite; A, aragonite; H, hydromagnesite). 912 
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 921 

 922 

 923 
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Figure S3. XRD patterns for the solid samples collected from the carbonation 924 

experiments using different concentrations of montmorillonite (M, montmorillonite; Q, 925 

quartz; D, dolomite; MC, monohydrocalcite; A, aragonite). 926 
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Figure S4.  Result of the SEM-EDS analysis of newly-formed aragonite observed in 945 

the systems with montmorillonite. The Pt peak showing in EDS came from sampling 946 

coating. 947 
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