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The neocortex is thought to employ a number of canonical computa-
tions, but little is known about whether these computations rely on
shared mechanisms across different neural populations. In recent
years, the mouse has emerged as a powerful model organism for the
dissection of the circuits and mechanisms underlying various aspects
of neural processing and therefore provides an important avenue for
research into putative canonical computations. One such computation
is contrast gain control, the systematic adjustment of neural gain in
accordance with the contrast of sensory input, which helps to con-
struct neural representations that are robust to the presence of back-
ground stimuli. Here, we characterized contrast gain control in the
mouse auditory cortex. We performed laminar extracellular record-
ings in the auditory cortex of the anesthetized mouse while varying
the contrast of the sensory input. We observed that an increase in
stimulus contrast resulted in a compensatory reduction in the gain of
neural responses, leading to representations in the mouse auditory
cortex that are largely contrast invariant. Contrast gain control was
present in all cortical layers but was found to be strongest in deep
layers, indicating that intracortical mechanisms may contribute to
these gain changes. These results lay a foundation for investigations
into the mechanisms underlying contrast adaptation in the mouse
auditory cortex.

NEW & NOTEWORTHY We investigated whether contrast gain
control, the systematic reduction in neural gain in response to an
increase in sensory contrast, exists in the mouse auditory cortex. We
performed extracellular recordings in the mouse auditory cortex while
presenting sensory stimuli with varying contrasts and found this form
of processing was widespread. This finding provides evidence that
contrast gain control may represent a canonical cortical computation
and lays a foundation for investigations into the underlying mecha-
nisms.

auditory cortex; contrast; gain control; mouse; spectrotemporal recep-
tive field

INTRODUCTION

Understanding the brain as an information processing sys-
tem requires an understanding of the computations performed
by different neural populations and their mechanistic under-
pinnings (Poggio 2012). It has been argued that certain com-

putations are “canonical” in the sense that they are employed
by different populations of neurons in different areas of the
brain and in different species (Carandini and Heeger 2012).
Contrast gain control (CGC), a compensatory reduction in the
gain of sensory evoked activity in response to increased stim-
ulus contrast, may represent such a computation. CGC has
been observed in individual neurons in different sensory sys-
tems and in a variety of species, including mice (Atallah et al.
2012), rats (Garcia-Lazaro et al. 2007), rabbits (Brown and
Masland 2001), guinea pig (Manookin and Demb 2006;
Zaghloul et al. 2005), cats (Heeger 1992; Shapley and Victor
1978), ferrets (Rabinowitz et al. 2011, 2012), monkeys (Be-
nardete et al. 1992; Carandini and Heeger 1994), and humans
(Busse et al. 2009), as well as in nonmammalian species such
as songbirds (Baccus 2006; Nagel and Doupe 2006), salaman-
ders (Baccus and Meister 2002; Kim and Rieke 2001; Smir-
nakis et al. 1997), and bullfrogs (Rieke et al. 1995). In the
mammalian cortex, it been observed in sensory areas, including
primary visual (V1) (Carandini et al. 1997; Carandini and
Heeger 1994; Heeger 1992; Heeger et al. 1996) and auditory
(A1) (Rabinowitz et al. 2011) and somatosensory cortex (S1)
(Garcia-Lazaro et al. 2007), as well as in higher visual cortical
areas MT (Heeger et al. 1996; Rust et al. 2005; Simoncelli and
Heeger 1998), V4 (Reynolds and Desimone 2003), and inferior
temporal cortex (IT) (Zoccolan et al. 2005). The relative
reward value of regions of visual space has also been found to
induce divisive gain control in visual neurons in parietal cortex
(Louie et al. 2011) as has visuospatial attention in a variety of
visual cortical areas (Reynolds and Heeger 2009). The wide-
spread nature of gain control supports the idea that it represents
a canonical neural computation (Carandini and Heeger 2012).

The canonical nature of a computation does not necessarily
imply that it is implemented by a common mechanism across
modalities or brain structures (Carandini and Heeger 2012).
Biophysical mechanisms for gain control have been identified
in multiple animal models and these have been found to differ
between mammalian and nonmammalian species (Olsen et al.
2010; Sadagopan and Ferster 2012). Within mammals, how-
ever, the cortex has long been thought to comprise canonical
circuits that have evolved to implement equivalent computa-
tions across a variety of modalities (Douglas and Martin 1991),
and so it is possible that, within the cortex, CGC may be
implemented by a common mechanism, or combination of
mechanisms, across sensory systems and species. In keeping
with this, it is the computational relationship between stimulus
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contrast and spiking response gain that represents the canonical
aspect of CGC, not the mechanism by which it is implemented.

To investigate the mechanisms underpinning computations
in the mammalian brain, investigators are increasingly turning
to the mouse as a model organism (Atallah et al. 2012; Olsen
et al. 2012; Wilson et al. 2012; Wu et al. 2011). This is largely
due to the abundance of genetic manipulations that are possible
in this species (Akerboom et al. 2013; Boyden et al. 2005;
Chow et al. 2010; Huang and Zeng 2013; Sternson and Roth
2014; Zhang et al. 2007) as well its suitability for other
circuit-level techniques, such as head-fixed whole cell record-
ing (Wu et al. 2011; Zhou et al. 2014), and two-photon imaging
(Akerboom et al. 2013; Fu et al. 2014; Vasquez-Lopez et al.
2017). Exploiting these techniques to investigate CGC in the
mouse auditory cortex should not only increase our under-
standing of the neural basis of this computation in the auditory
system but may also inform the debate regarding the canonical
nature of cortical circuitry (Douglas and Martin 1991). It is first
necessary, however, to demonstrate experimentally that the
mouse auditory cortex neurons actually exhibit CGC.

A valuable piece of information that can constrain circuit
hypotheses is how the strength of CGC varies across cortical
layers. If thalamocortical inputs drive CGC, gain changes
should be observed in layer 4, where thalamic inputs are
strongest. Gain changes may subsequently be inherited in other
cortical layers, resulting in homogenous gain control across the
depth of cortex. If layer-specific intracortical mechanisms
underlie CGC, however, variation in the strength of CGC
across different layers should be observed. Such an intracorti-
cal circuit for gain control has been identified in primary visual
cortex (V1), where thalamic input drives corticothalamic pro-
jecting layer 6 neurons, which in turn drive a translaminar
projecting parvalbumin (PV) interneuron subtype via facilitat-
ing synapses (Bortone et al. 2014; Olsen et al. 2012). Inhibition
via this route has been found to reduce gain across all other
cortical layers but not layer 6. If this circuit underlies CGC in
auditory cortex, CGC should be absent from layer 6. Knowl-
edge of the laminar distribution of CGC in the mouse visual
and auditory cortex would serve to distinguish the likelihood of
these different circuit hypotheses.

Here we characterized CGC in the mouse auditory cortex to
lay a foundation for circuit-level dissection of the mechanisms
involved in this computation. This line of investigation permits
direct comparison with findings in visual and other sensory
modalities, allowing the question of whether a canonical gain
control mechanism exists to be addressed experimentally. Fi-
nally, we examined the laminar organization of CGC to con-
strain possible circuit hypotheses regarding the mechanistic
basis of CGC in auditory cortex.

MATERIALS AND METHODS

Surgical methods. We performed extracellular recordings from 815
sites in the left auditory cortex of 24 C57BL/6 mice. The animals were
between 8 and 12 wk old at the time of recording. At this age, the
range of cortical neuron best frequencies has been found to almost
match that obtained for thalamocortical axon terminals in a C57BL/6
strain in which the Cdh23ahl allele that predisposes this strain to
age-related high-frequency hearing loss has been corrected (Panniello
et al. 2018; Vasquez-Lopez et al. 2017). It is therefore unlikely that
the contrast gain control observed in this study would have been
markedly affected by high-frequency hearing loss. All experiments

were approved by the local ethical review committee and carried out
under license from the UK Home Office in accordance with the
Animal (Scientific Procedures) Act (1986). Recordings were per-
formed while the animals were under ketamine-medetomidine anes-
thesia, using multichannel silicon probes (NeuroNexus, Ann Arbor,
MI), while we presented auditory stimuli to the contralateral ear.
Because the same animals were used for additional optogenetic
experiments not described here, we collected data from transgenic
mice expressing cre-recombinase under the PV promoter. One-third of
the mice used (n � 8) were crosses between homozygous PVcre (Jax
No. 008069) (Hippenmeyer et al. 2005) and homozygous Ai35D mice
(Jax No. 012735) (Madisen et al. 2012), which express ARCH and
GFP in a cre-dependent manner. The other two-thirds (n � 16) were
PVcre mice that expressed channelrhodopsin (ChR2) and enhanced
yellow fluorescent protein (EYFP) in PV interneurons. To achieve this
expression, we performed intracranial injections of an adenoassoci-
ated virus (AAV-EF1a-DIO-hChR2(H134R)-EYFP-WPRE-pA sero-
type 2) (UNC Vector Core, Chapel Hill, NC) in the auditory cortex of
these mice, several weeks bef ore recording experiments were per-
formed. These genetic manipulations were designed to make PV�
interneurons in these mice light sensitive, but no optical stimulation
was used in the experiments described here to characterize CGC in
mouse cortex. We have verified that very similar results are obtained
from the auditory cortex of wild-type C57BL/6 mice, and we note that
the nature of the contrast gain control observed here is very similar to
that previously reported for wild-type ferrets. The genetic background
is therefore unlikely to be a factor in the experiments described below
and is described here only for completeness.

The location of auditory cortex was identified using cranial land-
marks. Craniotomies extended from the lambdoid suture at the most
caudal extent to 1 mm rostral of the point at which the squamosal
suture crosses the temporal ridge. In the dorsal-ventral axis, the
craniotomy extended from 2 mm dorsal of the temporal line to the
squamosal suture at the most ventral extent. Local vasculature was
also used to localize the auditory cortex. Sites close to the largest
vessel in this area oriented along the dorsal-ventral axis were consis-
tently responsive to auditory stimuli. It was not possible to map-
specific auditory cortical fields in these experiments and so auditory
cortex recordings likely include responses from secondary as well as
primary cortical areas. Frequency tuning of auditory responses was
also used to confirm that recordings were localized to auditory cortex.

We recorded neural responses from all cortical layers simultane-
ously using single shank probes with 32 recording sites spaced 50 �m
apart and arranged in a linear configuration (1 � 32). Compared with
recordings made from ferret auditory cortex with these probes, spike
amplitudes recorded from the mouse auditory cortex were relatively
small, leading to fewer sites with robust responses than in the ferret.
Traditional threshold-crossing methods for multiunit (MU) activity
(MUA) extraction would have resulted in noisier estimates under
these conditions. We therefore used an analog measure of MUA
recorded on each channel instead. The analog MUA method used here
provides high signal/noise estimates of neural activity [see Fig. 1 of
Schnupp et al. (2015)]. It produces a measure of MUA measured in
microvolts instead of spikes per second. It is not possible to recover
reliable estimates of firing rates from threshold-crossing MUA meth-
ods, as such methods cannot distinguish large amplitude spikes from
a collision of two or more smaller spikes, leading to an unpredictable
and variable amount of “undercounting” of true spike events in
threshold-based methods. In addition, threshold methods are also
prone to overcounting when electrical noise generates false-positive
threshold crossings. Methods that simply consider each spike as a
wavelet and quantify stimulus-induced variation in signal energy in
the frequency bands occupied by these wavelets (set here as 300–
6,000 Hz) do not suffer from those sources of counting errors.”

This method has been used in several previous studies to extract
MUA (Choi et al. 2010; Chung et al. 1987; Kayser et al. 2007; King
and Carlile 1994; Schnupp et al. 2015; Schroeder et al. 1998). For
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each channel, we filtered the recorded voltage signal between 300 and
6,000 Hz. We then low-pass filtered the full-wave-rectified signal
below 6,000 Hz and downsampled it to a sample rate of 12,000 Hz.
We extracted local field potentials (LFPs) by low-pass filtering the
recorded signals �300 Hz using a digital eighth order Chebyshev
Type I filter.

Stimuli. We delivered dynamic random chord (DRC) stimuli to the
animal during recording sessions. DRCs consist of a series of chords
that themselves consist of a superposition of pure tones (Fig. 1, A and
B). The frequencies of these tones are fixed, as is the duration of each
chord. The intensity of each tone at any time point, however, is drawn
from a distribution of possible values (Fig. 1C). This leads to fluctu-
ations in intensity over both frequency (Fig. 1D) and time (Fig. 1E).
The range of possible intensities therefore determines both the tem-
poral and spectral contrast of the stimulus.

All DRCs in this study consist of 25 pure tone components at any
one time, with frequencies log-spaced between 1 and 64 kHz, inclu-
sive. The frequency range of the stimulus covered six octaves, and
tone frequencies were spaced one-fourth octave apart. Chord duration
was fixed at 25 ms, and 5-ms linear ramps were included between
sequential chords to reduce “spectral splatter.”

To investigate CGC using these stimuli, the contrast of each DRC
had to be controlled. The standard deviation of the stimulus sound
level, and therefore the contrast, can simply be controlled by changing
the range of tone intensities that comprise the DRC (Fig. 1, B and C).
This method of controlling contrast changes both the variance in
intensity across frequency bands (spectral contrast) (Fig. 1D) and the
variance over time within frequency bands (temporal contrast) (Fig.
1E). We presented DRCs with one of two contrast levels.

In the low-contrast condition, the animal was presented with DRCs
where the sound levels (SPL) of the tones were drawn from a uniform

distribution with a mean of 80-dB SPL and a range of 20 dB (�LL �
~6.2 dB and c � �PP/�PP � 0.68). In the high-contrast condition, the
tones had the same mean but the range was doubled to 40-dB SPL
(�LL � ~11.97 dB and c � �PP/�PP � 1.2).

For these ranges, there is approximately a doubling in contrast from
the low-contrast to high-contrast stimulus. Tone levels were generated
using a variety of random seeds to generate different DRCs. Each
DRC sequence consisted of 1,600 25-ms chords and lasted 40 s in
total.

Stimulus presentation. We presented stimuli using an Ultrasonic
Dynamic Speaker (Avisoft Bioacoustics, Glienicke, Germany), mod-
ified for monaural in-ear delivery. The speaker was driven using a
TDT RX6 multifunction processor at a sample rate of ~200 kHz. We
calibrated stimuli across the frequency range of 1–64 kHz, using a
Brüel & Kjær (Naerum, Denmark) Type 4138 1/8th-in. pressure-field
microphone to assess the response of the speaker across this range.
We then created an inverse filter based on this response, which was
used to produce a flat frequency response in this frequency range,
within � 3 dB. We controlled stimulus presentation and data acqui-
sition using in-house software (Benware; https://github.com/benia-
mino38/benware). Subsequent analysis was carried out in MATLAB
(The MathWorks, Natick, MA).

Linear models. DRCs have been used extensively to assess the
spectrotemporal selectivity of auditory neurons (Ahrens et al. 2008;
Bitterman et al. 2008; Christianson et al. 2008; deCharms et al. 1998;
Linden et al. 2003; Rutkowski et al. 2002; Sahani and Linden 2003;
Schnupp et al. 2001). Neurons in the auditory system typically
respond to frequencies within a restricted range, as well as to temporal
modulations, captured by the envelope of the sound. Spectrotemporal
receptive fields (STRFs) are models of neuronal responses that are
capable of capturing both of these features (Bizley et al. 2005;

Fig. 1. A: spectrogram of a high-contrast dynamic random chord (DRC) stimulus. DRCs are comprised of pure tones of specific frequencies that vary in their
level over time, indicated by color on this plot. Levels for each tone at each time point are drawn randomly from a uniform distribution. For this high-contrast
DRC, the range of possible intensities is �20 dB. B: spectrogram of a low-contrast DRC. The range of possible intensities for this low-contrast DRC is � 10
dB. C: distributions used to generate DRCs in A and B. The mean level for both distributions are the same, but the widths of the distributions, and therefore,
the SDs are different. The increased width of the red distribution results in the generation of a higher contrast DRC (A) than that generated by the blue distribution
(B). D: cross section though the DRC across frequencies for a given time point. At each time point, the width of the tone-level distribution also controls the
variation in level across frequency. E: cross section though the DRC within a single frequency band. For a given frequency, the intensity fluctuates randomly
over time. These fluctuations are larger for high-contrast DRCs generated using a tone-level distribution with a larger width (red). This increase in level variance
results in an increase in the temporal contrast of the stimulus. This method of DRC generation leads to stimuli with matched spectral and temporal contrast.
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Kowalski et al. 1995; Shamma et al. 1993). Fluctuations in stimulus
energy within frequency bands over time can be represented as the
spectrogram of an auditory stimulus, X(f,t). The STRF k is a linear
filter that defines frequencies that drive or suppress neuronal re-
sponses over time, yt. The STRF captures spectral preferences of the
neuron by assigning different weights to different frequency bins. At
any given time in the stimulus, t, the STRF also weights the stimulus
history, h, over a set number of time steps. We used sixteen 25-ms
time steps here corresponding to 400 ms of stimulus history. The
addition of this history dimension results in the stimulus being
represented as a three-dimensional tensor, Xtfh. The STRF kfh cap-
tures features in the two dimensional frequency-history space that
drive responses over time. Linear filtering of the stimulus Xtfh, by the
STRF kfh, yields the predicted firing rate ŷt. The hat operator denotes
an estimate of the parameter in question.

ŷt � k0 � �
f ,h

Xtfh . kfh (1)

STRF estimation. We excluded responses during the first second of
auditory stimulation from the model fitting (to allow time for neurons
to adapt to the initial contrast of the stimulus). We fitted linear STRFs
and output nonlinearities to the remaining data by using gradient
descent to minimize a sum-of-squares error term, E, that captures the
degree to which the predicted MUA produced by the model ŷt differs
from the actual MUA yt

E � �
t

(yt � ŷt)2 (2)

We reduced the number of free parameters, and therefore the risk
of overfitting, of the model by assuming that the tuning of the units is
separable in both space and time (Ahrens et al. 2008). This involves
fitting a frequency kernel, kf, and a history kernel, kh, and computing
the outer product of these two kernels, kfh:

kfh � kf � kh (3)

One limitation with this approach is that separable STRFs cannot
model sensitivity to stimulus features that covary in frequency and
time. This is compensated for, however, by the reduction in overfitting
observed when using these models: separable STRFs tend to perform
as well as or better than inseparable STRFs in predicting responses to
unseen stimuli (Ahrens et al. 2008; Linden et al. 2003; Rabinowitz et
al. 2011; Simon et al. 2007; Willmore et al. 2016). This advantage is
especially pronounced when limited data are available on which to
train the models due to the drastically smaller number of coefficients
to be fitted for separable STRFs.

We fitted each kernel in turn by least-squares linear regression
while the other kernel was fixed, and the process was repeated to

convergence. Following fitting, we measured the best frequency (BF),
spectral bandwidth and integration time of each STRF. The BF was
defined as the frequency bin in the frequency kernel with the largest
coefficient. The spectral bandwidth was measured as the width of the
tuning curve around this peak response in the frequency kernel at half
of its amplitude. For units that showed multiple peaks, the bandwidth
was measured for the peak associated with the largest response. The
temporal integration time was measured as the width of the tuning
curve surrounding the peak coefficient observed in the first 100 ms of
the history kernel. The measurement was taken at 50% of the ampli-
tude of the peak coefficient.

Nonlinearities. The linear STRF is capable of capturing important
aspects of neuronal responses to auditory stimuli. However, the
relationship between the spectrogram of a sound and neuronal re-
sponses is not truly linear, and it is therefore often advantageous to
incorporate a nonlinearity into models to improve their accuracy.
Here, we added a nonlinear output stage to the model, following the
linear STRF. Instead of using the STRF to predict firing rates directly,
the output of the STRF zt (Fig. 2) can be passed through a static
sigmoidal output nonlinearity F, with parameters a, b, c, and d to be
fit to the data (Fig. 2C):

F�zt� � a �
b

1 � e��zt�c�d (4)

This nonlinearity then maps STRF output, zt, onto predicted firing
rate, ŷt:

ŷt � F�zt� (5)

The shape of this nonlinearity results in rectification of the signal,
preventing predictions of negative firing rates, and captures two major
neuronal nonlinearities: response threshold and saturation. Adding
this nonlinearity has been shown to improve predictions of neural
responses in auditory cortex (Rabinowitz et al. 2011).

Current source density analysis. We delivered bursts of broadband
noise at 80-dB SPL lasting 50 ms in duration to the animal to assess
whether neurons responded to auditory stimuli. In recordings made
with linear probes, we used evoked local LFP responses to these noise
bursts to identify cortical layers. The probe spanned all cortical layers
and was inserted orthogonally to the cortical surface. We performed
current source density (CSD) analysis on LFP responses to noise
bursts to identify the pattern of current density flowing to and from the
extracellular space, across depth and time. Current sinks are associ-
ated with synaptic activity, as this results in a net flow of current in to
neurons and away from the extracellular medium, while current
sources reflect the flow of current in to the extracellular medium
(Nicholson and Freeman 1975; Pitts 1952). The pattern of current

Fig. 2. Model of neural responses. A: the aim of this model is to predict neuronal responses from the spectrogram of the DRC. B: the spectrogram is filtered
through the Spectrotemporal receptive field (STRF) to calculate a predicted “neural activation function,” zt, which is linear with respect to the spectrogram. C:
this linear activation is then passed through a sigmoidal output nonlinearity that maps STRF output zt onto the firing rate of the unit yt.
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sinks and sources can be used to identify the location of electrode
recording channels in different cortical layers.

Here, we used the inverse or iCSD method (Pettersen et al. 2006)
to estimate the CSD for each channel, Ĉz. The aim of CSD analysis is
to estimate the CSD from recorded potentials, �. The iCSD method
solves this by first doing the inverse of this, calculating potentials for
a known distribution of current sources. This method provides a
matrix of the electrostatic forward solutions, P, that can be inverted to
calculate current sources from recorded potentials:

Ĉ � P�1� (6)

Several variants of the iCSD method exist; here we use the
�-source method. This method assumes that current sources originate
from within infinitesimally thin disks around each electrode contact. If
each disk is assumed to have an infinite radius, this method is
equivalent to the standard method. Assuming a more plausible radius
for each disk improves CSD calculations using this method. This
radius corresponds to the area of cortex that is assumed to contribute
to stimulus-evoked changes in current and voltage. Here we assumed
a diameter of 250 �m. While assuming different values for this
parameter can change CSD estimates, this has been found to not
negatively impact on the use of CSDs for layer estimation (Szymanski
et al. 2009).

The conductivity of the extracellular matrix must be factored into
CSD calculations. Known anisotropic variation in extracellular con-
ductivity can also be incorporated into this calculation, but we
assumed a homogeneous, isotropic conductivity of 0.3 S/m. Changing
the value of assumed extracellular conductivity does not alter the
spatial or temporal pattern of CSDs used here for laminar identifica-
tion, as it scales the CSD across all channels equally.

The most prominent feature of both the LFP and CSD is the
reversal that occurs at the border of layers 1 and 2 (Fig. 3, A and B)
(Christianson et al. 2011). This feature was used to align recordings so
as to achieve consistent cortical depth measurements across animals.
Layers were assigned based on experimentally obtained measure-
ments of cortical thickness. While this will vary somewhat between

animals, this variation has been found to be small relative to the
spacing of our electrode sites (Anderson et al. 2009; Ji et al. 2016).
Layers 2 and 3 were combined into a single layer 2/3, as is commonly
done. Recordings between 0 and 225 �m below this border were
classified as layer 2/3, between 225 and 425 �m as layer 4, between
425 and 675 �m as layer 5 and below 675 �m as layer 6. Layer
assignments using this method were validated using CSD features,
such as a prominent early sink corresponding to thalamic input in
layer 6 and at the border of layers 2/3 and 4 (Fig. 3, B and C).

MU selection criteria. We only submitted to further analysis
recordings from penetrations in which MUA was responsive to noise
burst stimuli, indicating that neurons in that area were acoustically
driven. Furthermore, we required multiunits (MUs) to have STRFs
that had at least some success at predicting neural responses to novel
DRC stimuli. To quantify model performance, data from a single
condition were divided into fitting and test sets. We fitted models to
90% of the data and then used the model to predict responses to the
remaining 10% of the data. Performance was quantified as the corre-
lation between predicted and actual responses in the test set. MU
STRFs were deemed predictive if the correlation coefficient (CC)
between the predicted and actual response on the test set was �0.04.
This CC criterion was selected based on a statistical analysis in which
we computed a null distribution of CCs from shuffled data (data not
shown). We then chose a threshold criterion value that lay outside of
this distribution of CCs that could be expected to occur by chance.
MU STRFs that did not meet this criterion were excluded from
subsequent analysis. We assessed cross-condition performance by
training the model on the data from one condition and then using the
model to predict responses to the stimulus from the other condition.
We quantified performance using the correlation between the pre-
dicted and observed responses to the test stimuli.

RESULTS

Stimulus contrast has a suppressive effect on STRF tuning.
First, we assessed the effect of stimulus contrast on the tuning

Fig. 3. A: mean local field potential (LFP) responses to noise burst stimuli across 20 multielectrode channels on the linear probe, inserted orthogonally to the
cortical surface. Channel 20 is deepest in the brain. All channels are separated by 50 �m. Since LFP signals are weakly localized in space, it is difficult to identify
cortical layers from the LFP response. B: mean current source density responses to noise burst stimuli. The prominent reversal in polarity from channel 3 to
channel 4 indicates the border of layer 1 and 2/3. All other layer boundaries (indicated by white broken lines) were assigned based on distance from this reference
point. Distances between layer boundaries were obtained from published measurements of layer thickness (Anderson et al. 2009; Ji et al. 2016). White numbers
indicate assignment of cortical layers. The early activity at the border of layer 2/3 and 4, as well as at the border of layer 5 and 6, corresponds to the known
anatomy of thalamic input to the mouse auditory cortex. C: mean spiking responses to noise across all channels further validates layer assignment. Strong
feedforward activity driven by thalamic input can be seen in layer 6 and lower layer 2/3. Spiking responses stop above layer 2/3, in keeping with the very sparse
number of cell bodies found in layer 1. Warmer colors indicate increased activity (depolarization of LFP in A, current sinks in B, and an increase in firing rate
in C) while colder colors indicate reduced activity (hyperpolarization of LFP in A and current sources in B; negative firing rates are not possible in C).
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of auditory cortex neurons. In principle, changes in stimulus
contrast might affect both neuronal tuning (which we measure
here as the relative values of different coefficients in the STRF)
and gain (the absolute values of the STRF coefficients). If
contrast systematically alters tuning, then this would need to be
taken into account when assessing gain changes. On the other
hand, if contrast does not systematically affect tuning, then the
relative values of the STRF coefficients should be largely
constant across contrast conditions.

We estimated STRFs for all MUs that we recorded in the
mouse auditory cortex and included only those which had a
predictive STRF (160/815). We estimated a separate STRF for
each contrast condition, yielding separate high- and low-con-
trast STRFs (Fig. 4, A–C). This made it possible to assess
whether changes in stimulus contrast have systematic effects
on tuning.

The most striking change that occurred between STRFs from
each condition was consistent with a gain change rather than a
tuning change: a suppressive effect on responses during high-
contrast stimulation. Of the MUs studied, 159 of the 160

showed a reduction in the largest STRF coefficient under high-
compared with low-contrast stimulation (medians: low con-
trast: 0.6 �V/dB and high contrast: 0.29 �V/dB; sign-rank test,
P � 0.001; Fig. 4D). The BF of the STRFs, defined as the
frequency associated with the peak coefficient in the frequency
kernel, did not change systematically with stimulus contrast
(medians: low contrast: 9.5 kHz and high contrast: 9.5 kHz,
sign-rank test, P � 0.967; Fig. 4E). Spectral bandwidth showed
a small but significant increase during high-contrast stimula-
tion (medians: low contrast: 1.45 oct and high contrast: 1.82
oct; sign-rank test, P � 0.001) (Fig. 4F), while no systematic
changes in the temporal integration time of STRFs were found
(medians: low contrast; 8.11 ms and high contrast; 5.01 ms;
sign-rank test, P � 0.054; Fig. 4G).

The effects of contrast on STRF tuning were far less con-
sistent than the suppressive effect on the largest STRF coeffi-
cient. Individual MUs exhibited changes in individual STRF
parameters between conditions. This is likely to result in
part from errors in estimating STRF coefficients. This prob-
lem is exacerbated in the present analysis because two

Fig. 4. A: example spectrotemporal receptive fields (STRFs) estimated under low-contrast stimulation for 4 multiunits (MUs). Red areas of the STRF indicate
spectrotemporal features of the stimulus that increase the amplitude of the MUA while blue areas indicate features that suppress multiunit activity (MUA). Time
0 to 25 ms in the STRF corresponds to the first time bin in the history dimension. B: STRFs estimated under high-contrast stimulation for the same MUs revealing
a strong suppression of the STRF coefficients. Color scaling is the same as in A. C: high-contrast STRFs, as shown in B, but with independent color scaling,
revealing that spectrotemporal selectivity is broadly similar between contrast conditions (comparing low-contrast STRFs in A with high-contrast STRFs in C.
D: by far the clearest effect of altering contrast is a reduction in stimulus sensitivity under high-contrast stimulation, as indicated by a reduction in the largest
STRF coefficient (sign-rank test, P � 0.001). E: scatter plot showing the effect of contrast on best frequency (BF). The BF of each MU did not vary systematically
with stimulus contrast (sign-rank test, P � 0.967). F: the bandwidth (BW) of tuning broadens slightly as stimulus contrast increases (sign-rank test, P � 0.001).
G: temporal integration time showed no systematic changes between contrast conditions (sign-rank test, P � 0.054). For each parameter, outliers were identified
as values that fell outside 1.96 SD of the distribution of these values. They are shown here in each plot using different markers and colors as indicated in the
inset. The outlier parameters generally did not come from the same population of MUs, as indicated by the lack of overlap in outliers identified from the different
parameters. Outliers were not excluded from statistical tests. Ratios in the corner of each plot indicate the number of MUs above the identity line, y � x, over
the total number of MUs (n � 160).

1877CONTRAST GAIN CONTROL IN MOUSE AUDITORY CORTEX

J Neurophysiol • doi:10.1152/jn.00847.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (128.041.035.055) on January 2, 2019.



STRFs were estimated for each MU, each using only half
the data. A minority of MUs showed large changes in
individual STRF parameters. It is possible that the MUs
showing the greatest changes in BF, spectral bandwidth, and
integration time across contrast conditions may simply not
be well approximated by STRF models and, as a result, gave
highly variable estimates of STRF parameter values. To
assess whether such outliers come from a single subpopu-
lation of MUs with poor STRFs, we identified outliers for
each of these parameters independently and examined the
overlap with these outliers. If the outliers for each parameter
come from a single population, the MUs defined as outliers
based on the different parameters should be largely over-
lapping. Outliers were defined as MUs that showed param-
eter changes between contrast conditions that fell outside
1.96 SD from the mean of the distribution of changes, as
these values would have a �5% probability of occurring in
such a distribution (i.e., P � 0.05). BF outliers are indicated
by the inverted red triangle symbol, spectral bandwidth
outliers are indicated by the green circle, and integration
time outliers are indicated by the blue plus symbol, while
largest max coefficient outliers are indicated by the purple
cross (Fig. 4, D–G). Only 3 out of 50 outlier MUs were
identified as outliers based on changes in more than one param-
eter, suggesting that these 50 outlier responses do not come from
a single population that is uniformly poorly captured by
STRFs.

We next examined whether a single STRF can be used to
model responses to both high- and low-contrast stimuli without
bias toward either condition. We investigated this by fitting a
single STRF to 80% of both high- and low-contrast data and
then using this STRF to predict the remaining 10% from each
contrast condition separately. These STRFs predicted low- and
high-contrast responses equally well (medians: high-contrast
predicted: 0.09 and low-contrast predicted: 0.08; sign-rank test,
P � 0.139; Fig. 5).

Overall, these results suggest that, although the estimated
tuning parameters of individual MUs can change somewhat
between contrast conditions, these changes can largely be
explained by difficulties in estimating STRFs using only half of
the available data. Since these changes were not systematic
across the population of MUs, and STRFs were not signifi-
cantly biased toward either contrast condition, it is reasonable

to use a single STRF (plus a gain change) to describe neural
responses across contrast conditions.

We next measured the effect of stimulus contrast on
neuronal gain and thresholds by incorporating data from
both the high- and the low-contrast conditions into a single
model. This model consisted of a single linear STRF, fitted
to the data from both conditions (see Fig. 7). We then fitted
a sigmoidal output nonlinearity (Eq. 4) that could vary in
two parameters between contrast conditions, relating the
output of the STRF to the real neuronal responses. Each
sigmoid had four parameters that define 1) the y-axis offset,
2) y-axis range, 3) x-axis offset, and 4) the slope of the
curve. The y-axis offset (1) represents “baseline activity”
and reflects the additive effects of a constant electrical noise
floor plus spontaneous, nonstimulus driven neural activity in
the 300- to 6,000-Hz frequency band. Across the population,
a very small but statistically significant increase in baseline
activity was observed under high-contrast stimulation (me-

Fig. 5. When a single spectrotemporal receptive field (STRF) fitted to both
high- and low-contrast response data was used to predict responses, no
significant difference was observed between high- and low-contrast conditions
(CC) (sign-rank test, P � 0.139). This indicates that, despite small changes in
tuning, a single STRF can be used to model contrast-dependent gain changes
for these multiunits (n � 160).

Fig. 6. Changes in baseline activity between contrast con-
ditions. A: histogram of baseline activity values across all
multiunits (MUs) during low-contrast stimulation. MUA,
multiunit activity. B: histogram of baseline activity values
across all MUs during high-contrast stimulation. C: histo-
gram of the %change in baseline activity under high-
compared with low-contrast stimulation. Positive values
indicate an increase in baseline activity during high-con-
trast stimulation. The solid line indicates 0% change.
Across the population, MUs showed a small but significant
increase in median baseline activity during high-contrast
stimulation (sign-rank test, P � 0.001); n � 160).
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dian increase: 1.29%; sign-rank test, P � 0.001; Fig. 6C).
The y-axis range (2) parameterizes the maximal range of
firing of the MU. The x-axis offset (3) reflects the threshold
while the slope of the curve (4) reflects the gain.

While parameters 3 and 4 were allowed to vary between
conditions to quantify the effects of changes in stimulus con-
trast, parameters 1 and 2 were held constant. Although we
observed differences in baseline activity as a function of
stimulus contrast, these differences were negligibly small
(�2%) and were therefore ignored. As was also the case in
previous studies (Rabinowitz et al. 2011), neural responses
were often not driven to saturation by the stimuli used (com-
pare Fig. 7), making parameter 2 poorly constrained by the
data. However, to achieve our objective of measuring changes
in neural gain, only the slope parameter 4 needs to be mea-
sured accurately and that parameter is well constrained by the
data. Consequently, whenever the responses fail to saturate
over the range of observations in the data set, the saturation
parameter 2 simply becomes a free parameter of no impor-
tance. Thus, in line with much previous work, we fitted all data
with sigmoidal output nonlinearities as just described, and we
held parameters 2 and 3 constant between contrast conditions
and used contrast-related changes in parameter 4 to quantify
changes in neural gain.

There was a small but significant increase in neuronal
response thresholds during high-contrast stimulation (Fig. 8;
median threshold change: 0.6%; sign-rank test, P � 0.001).
Neuronal output gain exhibited sizable and statistically signif-
icant changes as a function of contrast conditions (Fig. 9). For

the overwhelming majority of MUs, the gain decreased when
contrast increased, indicating that gain changes tended to
compensate for changes in stimulus contrast. Across the pop-
ulation, the median gain change was 	55.2% (sign-rank test,
P � �0.001; Fig. 9C), indicating that, in many units, gain
changes completely compensated for the twofold increase in
stimulus contrast. After outliers that were �3 SD away from
the mean were removed, contrast-dependent changes in gain
were not significantly correlated with changes in threshold
(R � 	0.08, P � 0.35).

Gain control is strongest in deep cortical layers. Previous
investigations of CGC in the auditory cortex did not investigate
possible systematic differences according to the cortical layers
in which the recordings were made (Rabinowitz et al. 2011).
As described previously, we used linear probes that allowed us
to identify cortical layers using CSD analysis (Fig. 3). A
reversal in the CSD profile is observed at the border of layer 1
and 2/3, and this feature was used to align recordings from
different penetrations. After alignment of our recordings, MUs
were assigned to cortical layers based on their cortical depth
from the layer 1–2/3 border (Fig. 10A), using experimentally
obtained measurements of layer thickness (Anderson et al.
2009; Ji et al. 2016). Layer estimates were inspected visually
for features such as an early current sink in layer 6 and were
compared with the depth distribution of spiking responses to
confirm layer estimates. Linear probes were used in 19 of the
24 experiments, making it possible to estimate cortical depth
for 139 of 160 MUs.

Fig. 7. To quantify gain changes, a single spectrotemporal receptive field (STRF) was fitted to the data from each contrast condition for each multiunit (MU).
An output nonlinearity that varied between contrast conditions was fitted to the output of this STRF. A: sigmoidal output nonlinearity fitted under low-contrast
stimulation. The dots are binned responses to low-contrast stimulation. MUA, multiunit activity. B: nonlinearity fitted under high-contrast stimulation for the same
MUs. The dots are binned responses to high-contrast stimulation. C: overlay of nonlinearities for both conditions. D–F: same as in A–C but for a second MU.
The main effect of increasing contrast is to reduce the slope of this nonlinearity, capturing a change in the gain of the MUA.
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To test whether the strength of gain control was significantly
different between layers, a two-factor ANOVA was performed
with strength of gain control as the response variable, layer
(2/3, 4, 5, and 6; df � 3) as one factor, and penetration as the
other (df � 16). Five outlier MUs, defined as showing gain
changes �3 SD from the mean, were observed in layers 2/3
and 4 and were excluded from the analysis. The majority of
these outliers had poor STRF fits, which may account for their
outlier status. The layer means were layer 2/3: 	41.6%, n �
21; layer 4: 	54.2%, n � 39; layer 5: 	60.6%, n � 50; and
layer 6: 	65.1%, n � 24. Both factors (layer and penetrations)
were found to be significant (P � 0.001 in both cases).
Pairwise significance tests between the layer means (Tukey-
Kramer corrected for multiple comparisons) found that there
were significant differences (at P � 0.01) in the strength of
gain control between layers 2/3 and 5 (P � 0.009) and between
layers 2/3 and 6 (P � 0.008). Similarly there were significant
differences in the strength of gain control between layers 4 and
5 (P � 0.007) and between layers 4 and 6 (P � 0.0096). Other
differences were not significant (P � �0.05).

DISCUSSION

Here we characterized CGC in the mouse to test whether it
resembles that seen in other species, as would be expected if
this was a “canonical” computation, and to lay a foundation for
investigations into the mechanisms underpinning it. Mice were
anesthetized for these experiments as this permitted more

precise control over stimulus presentation and previous work in
the ferret reported no systematic difference between contrast
gain control in anesthetized and awake preparations (Rabinow-
itz et al. 2011). Previous work in the mouse auditory cortex has
also shown that stimulus-driven response properties are robust
across anesthetic states (Guo et al. 2012). Whether anesthetics
have laminar-specific effects in the rodent sensory cortex is not
known, although the anesthetized preparation has previously
been used to examine the laminar variation of response prop-
erties in auditory cortex (Sakata and Harris 2009; Szymanski et
al. 2011).

We first investigated the effects of stimulus contrast on the
spectrotemporal tuning of MU responses in the mouse auditory
cortex. If cortical responses show a pure gain change in
response to a change in stimulus contrast, tuning properties
should remain the same. In the ferret, 89% of MUs maintained
their best frequency within 1/6 of an octave when contrast was
changed by a factor of 3 (Rabinowitz et al. 2011). In the
mouse, however, only 64% of MUs with predictive STRFs
maintained their best frequency, within 1/2 an octave when
contrast was changed by a factor of 2, indicating that a greater
proportion of units showed changes in BF with stimulus
contrast. As in the ferret, however, there was no systematic
effect of stimulus contrast on BF (Rabinowitz et al. 2011).

In the ferret, a threefold increase in contrast was found to
result in slightly narrower bandwidth of tuning under high-
contrast stimulation (Rabinowitz et al. 2011). We found that, in

Fig. 8. Changes in the output nonlinearity threshold pa-
rameter (c) between contrast conditions. A: histogram of
threshold values across all multiunits (MUs) during low-
contrast stimulation. MUA, multiunit activity. B: histo-
gram of threshold values across all MUs during high-
contrast stimulation. C: histogram of the %change in
threshold under high- compared with low-contrast stimu-
lation. Negative values indicate a reduction in threshold.
The solid line indicates 0% change. MUs showed a small
but significant increase in threshold during high-contrast
stimulation (sign-rank test, P � 0.001; n � 160).

Fig. 9. Changes in the output nonlinearity gain parameter
(1/d) between contrast conditions. A: histogram of gain
values across all multiunits (MUs) during low-contrast
stimulation. MUA, multiunit activity. B: histogram of gain
values across all MUs during high-contrast stimulation. C:
histogram of the %change in gain under high- compared
with low-contrast stimulation. Negative values indicate a
reduction in gain, a leftward shift along the x-axis. The
solid line indicates 0% change. The vast majority of MUs
showed a compensatory reduction in gain during high-
contrast stimulation, resulting in a significant decrease in
gain across the population (sign-rank test, P � 0.001) (n �
160).
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the mouse, the opposite pattern occurs. For an approximately
twofold increase in contrast, there is a small but significant
tendency for STRFs to increase their bandwidth as contrast
increases. The general structure of STRFs is conserved be-
tween mouse and the ferret, as well as across anesthetic states
(Rabinowitz et al. 2011), although interspecies differences in
receptive field structure could in theory account for these
differences. Spectral bandwidths in the ferret ranged from
~0.25 octaves to ~1.25 octaves, while in the mouse bandwidths
ranged from ~0.1 to ~1 octave. However, differences in meth-
odology make precise comparisons in tuning parameters across
species difficult to make. DRCs used here consisted of 25 pure
tone components covering 6 octaves (1–64 kHz) spaced 1/4
octave apart. In the ferret, DRCs comprised 34 pure tones and
covered 5.5 octaves (500 Hz to 22.6 kHz) spaced 1/4 octave
apart (Rabinowitz et al. 2011). This could result in differences
in measures such as tuning bandwidth between these experi-
ments. As in the ferret (Rabinowitz et al. 2011), no systematic
changes in the temporal tuning of STRFs were observed and
the most striking change that occurred between STRFs from
each condition was a suppressive effect on the STRF coeffi-
cients under high-contrast stimulation. Every MU recorded
apart from one showed a reduction in the largest STRF coef-
ficient under high-contrast compared with low-contrast stimu-
lation. This suggests that the effects on bandwidth may be
functionally less important compared with a possible gain
change in response to the change in contrast. We cannot rule
out the possibility, however, that there are tuning shifts in
individual units, or that there may be subtle population-wide
effects that our analysis cannot detect.

These results indicate that, as in the ferret, neuronal re-
sponses in the mouse auditory cortex undergo a reduction in
gain in response to an increase in stimulus contrast. We
quantified any contrast-dependent changes in gain by fitting a
single STRF for each MU with an output nonlinearity that
could vary between contrast conditions. This allowed us to
estimate the effect of contrast on gain and response thresholds
for each MU. To justify the use of a single STRF across both
contrast conditions, we show that the combined STRFs we
estimate provide a fair description of neural responses in each
of the two conditions separately (Fig. 4). This was necessary to
rule out the possibility that the STRFs were biased in such a

way that they mainly reflected the responses in the high-
contrast condition, and provided only a poor fit to the low-
contrast data. We found that 92.5% of MUs in the mouse
auditory cortex showed a reduction in gain in response to
high-contrast compared with low-contrast stimulation. In the
ferret, a contrast-dependent increase in threshold that corre-
lated with the strength of gain control was also observed
(Rabinowitz et al. 2011). A small but significant increase in
threshold was also observed here. The median decrease in gain
across the population was 55.2% in response to an approximate
doubling of stimulus contrast, indicating that in the mouse
auditory cortex contrast gain control may be completely com-
pensatory. This was not found to be the case in ferret auditory
cortex, where a threefold increase in contrast was found to
produce a 50% reduction in gain, instead of the 66% reduction
that would be entirely compensatory (Rabinowitz et al. 2011).
These findings indicate that unlike ferret auditory cortex, CGC
in the mouse auditory cortex may approximate complete nor-
malization, as is thought to be the case in V1 (Heeger 1992).

Contrast does not have a single universally accepted defini-
tion but typically refers to the range of values that a relevant
stimulus parameter takes. Here we use the variance of the
sound-level distribution operationally to quantify contrast.
While changes in gain compensate for changes in the variance
of the sound-level distribution, our data cannot address what
effects changes in other properties of the input distribution,
such as the kurtosis or skewness, may have on neural re-
sponses. That is, neurons may be sensitive to other statistical
moments of the input distribution. Changes in mean sound
level are known to result in compensatory adjustments in the
offset of the dynamic range of neurons in the auditory nerve
(Wen et al. 2009) and inferior colliculus (Dean et al. 2005). For
this reason we kept the mean sound-level constant to examine
the effect of stimulus contrast. However, higher-order mo-
ments of the input distribution may also produce compensatory
adjustments in neural responses throughout the auditory sys-
tem. We did not examine whether spectral and temporal
contrast have independent effects on neural responses, al-
though stimuli that vary in either spectral (Barbour and Wang
2003) or temporal contrast (Schreiner and Urbas 1986) have
been developed, which could be used to probe these compo-
nents independently.

Fig. 10. A: strength of gain change for each multi-
unit (MU) plotted as a function of cortical depth
from the layer 1–2/3 border. Putative layer bound-
aries are indicated by lines and data points are
color-coded by penetration. B: box plots of gain
control within each cortical layer. The median gain
change was significantly greater (P � 0.05) in layers
5 and 6 compared with layer 2/3 and layer 4, as
indicated by the asterisk. Outliers were excluded
from the analysis and are indicated here by open
circles.
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The finding that CGC is prevalent in the mouse auditory
cortex allows for investigations into the cellular mechanisms
underlying this computation. Great progress has been made in
understanding the mechanisms underlying CGC in themouse
visual cortex using optogenetics, where PV-expressing in-
terneurons have been implicated (Atallah et al. 2012; Wilson et
al. 2012). A similar line of investigation in the mouse auditory
cortex will not only increase our understanding of information
processing mechanisms in the auditory system but will also
allow for direct comparisons with findings in visual and other
sensory modalities, enabling the question of whether a canon-
ical gain control mechanism exists to be addressed experimen-
tally. For example, differences in PV interneuron tuning have
been observed between visual (Kuhlman et al. 2011; Zariwala
et al. 2011) and auditory cortexes (Moore and Wehr 2013), but
the manner in which these differences relate to the computa-
tions being performed by the cortical populations remains
unknown. The findings presented here indicate that, while
CGC is present in the mouse auditory cortex, interesting
differences between species and modalities may exist. This
may be seen as evidence for a “serial homology” hypothesis of
functional cortical organization (Harris and Shepherd 2015), in
which different cortical areas employ modified versions of
common computations and mechanisms that are tailored to the
system in question.

As a first step toward understanding the circuit basis of CGC
in the mouse auditory cortex, we tested predictions made from
different circuit hypotheses regarding the laminar organization
of CGC. We found that the strength of CGC exhibits modest,
but significant, laminar variation in the mouse auditory cortex,
with CGC being strongest in layers 5 and 6. It is not known
whether similar laminar variation in contrast gain control is
found in other sensory cortical areas. In V1, thalamic input has
been shown to drive corticothalamic projecting layer 6 neu-
rons, which in turn drive a translaminar projecting PV in-
terneuron subtype via facilitating synapses (Bortone et al.
2014; Olsen et al. 2012). Inhibition via this route has been
found to reduce gain across all other cortical layers in V1, but
not in layer 6. The presence of strong CGC in layer 6 of the
auditory cortex indicates that it may not be implemented
through translaminar projecting layer 6 PV interneurons (Bor-
tone et al. 2014; Olsen et al. 2012), as this mechanism would
require layer 6 responses to be invariant to stimulus contrast.
Layer 6 corticothalamic projecting neurons may contribute to
CGC, however, via interactions with the thalamus. Activation
of corticothalamic projecting neurons found in layer 6 of
auditory cortex has been found to produce changes in gain in
both the MGB and auditory cortex (Guo et al. 2017). The
increased strength of contrast gain control in deep cortical
layers may therefore reflect the involvement of these neurons
in a corticothalamic circuit for gain control. Simultaneous
recordings in these two structures combined with the measure-
ments of the temporal evolution of gain control would be
necessary to investigate this possibility.

The presence of strong CGC in layer 4 is consistent with
gain control being primarily implemented in, or inherited by,
this layer as it is thought to represent the earliest stage of
cortical processing (Douglas and Martin 1991). However, the
strength of CGC showed variation across the layers of the
auditory cortex. This indicates that intracortical mechanisms in
auditory cortex may also contribute to CGC following the

initial processing of sensory information in layer 4. Thalamic
inputs to auditory cortex have been found to specifically
innervate PV interneurons in all cortical layers (Ji et al. 2016),
raising the alternative possibility that feedforward inhibition
across the cortical column may be the primary basis for CGC,
rather than it being simply inherited from layer 4. Circuit-level
experiments, made possible by the work presented here, will be
necessary to test these models experimentally.
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