
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 1

App Store Effects on
Software Engineering Practices

Afnan A. Al-Subaihin, Federica Sarro, Sue Black, Licia Capra, Mark Harman

Abstract—In this paper, we study the app store as a phenomenon from the developers’ perspective to investigate the extent to which
app stores affect software engineering tasks. Through developer interviews and questionnaires, we uncover findings that highlight and
quantify the effects of three high-level app store themes: bridging the gap between developers and users, increasing market
transparency and affecting mobile release management. Our findings have implications for testing, requirements engineering and
mining software repositories research fields. These findings can help guide future research in supporting mobile app developers
through a deeper understanding of the app store-developer interaction.

Index Terms—Empirical Software Engineering, Mobile App Development, App Store Analysis

F

1 INTRODUCTION

THERE has been much recent progress in Software En-
gineering for App Stores using techniques that have

drawn on many areas of software engineering research
including, for example, software testing, software repository
mining and software requirements elicitation [1].

In this study, we interview and survey app developers,
regarding their interactions with app stores. Our aim is
to better understand developers’ practices when making
apps. This understanding will help us determine the extent
to which information from app stores affects developers’
decision making and observe how the app store ecosystem
influences engineering tasks during the app’s development
process. Moreover, our findings may guide future software
engineering research in app development, maintenance and
evolution.

Our study is the first to closely investigate how the app
store ecosystem affects mobile software engineering dur-
ing all life-cycle stages. Indeed, previous work has mainly
focused on mobile developers’ perspective regarding engi-
neering aspects and implementation challenges introduced
by the mobile platform [2] [3] [4] [5], briefly alluding to
a few app-store-specific findings. For example, Nayebi et
al. [5] found that developers are aware of how the app
appears to potential users in the app store based on certain
release strategies. Lim et al. [6] surveyed app store users
reporting the importance of packaging decisions for mobile
app success. A previous study by Rosen and Shihab [7]
about the questions asked by app developers on Stack
Overflow revealed that the most popular topic asked was
app distribution, i.e. the requirements imposed by the app
store owner for publishing apps.

• A. Al-Subaihin, F. Sarro, S. Black, L. Capra and M. Harman are
with the University College London, London, United Kingdom. E-mail:
{afnan.alsubaihin.14, f.sarro, s.black, l.capra, mark.harman}@ucl.ac.uk.
A. Al-Subaihin is also with College of Computer and Information Sci-
ences, King Saud University, Riyadh, Saudi Arabia. E-mail: aalsubai-
hin@ksu.edu.sa.
Mark Harman is also with Facebook, Inc.

Manuscript received February 1, 2018; revised XYZ 00, 20xx.

Fig. 1: The various stages of the study.

Our paper reports a survey of app developers’ soft-
ware engineering practices through an interview-and-
questionnaire approach, allowing us to highlight open is-
sues and challenges for the growing App Store Software En-
gineering community with a focus on relationships between
app stores and software engineering research in several
research areas including requirements, testing and software
repository mining.

Our methodology combines an empirical study tech-
nique with a thematic analysis approach [8] [9], which is
commonly used in behavioural sciences to analyse qualita-
tive data [10] [11]. The stages of our methodology are illus-
trated in Figure 1. After formulating the research questions,
data collection was conducted in two main stages. The first
stage was a series of interviews with mobile development
team managers and members. The interviews were then
analysed and coded using deductive thematic analysis [11]
and the results were used to design a questionnaire that was
subsequently disseminated (stage two) to a wider audience
in order to collect further quantitative data. Both the quali-
tative results of the interviews’ thematic analysis (i.e., theme
map) and the quantitative results of the questionnaire were
used to explore and deduce the findings reported herein.

The findings of our study make several contributions
that give evidence to support the perceived differences
between app store development and more traditional soft-
ware development. The principal findings about app stores

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 2

themselves are:

1) Closed loop: The gap between developers and their users
is closed by the facilities app stores provide. They denote
a channel of communication that directly connects users
to developers. For example, our study findings indicate
that 51% of respondents frequently perform perfective
maintenance based on user’s public feedback in the
app store. This may be introducing new communication
channels and approaches through which requirements
are gathered and acted upon.

2) Transparent market: The ability for developers to, not
only experiment with competitors’ products, but also to
be able to witness, in real time, the performance of these
products in the marketplace, constitutes a considerably
more transparent market for deployment of software
systems compared to more traditional software markets.
For example, our study reveals that 56% of respondents
frequently elicit requirements by browsing similar apps
in the app store. This is one of the motivations for
app store mining and analysis: to better understand the
marketplace, and emerging trends from competitors and
overall user and developer behaviour within app stores.

3) Tailored release strategy: The gap between releases is
shorter in app stores than for more traditional software
systems deployed such as shrink-wrapped software [12].
It is also governed and constrained by a third party: the
app store. Our results report that 54% of respondents
adopt a release strategy that is influenced by the app
store’s regulations. This has implications for innovation
and rapid response to technical and market develop-
ments.

One of the interesting properties of app stores is the way
in which these stores cut across different software engineer-
ing concerns, raising inter-related questions and research
problems for different software engineering activities [1].
More specifically, the findings of the survey have actionable
conclusions for researchers and practitioners from several
software engineering sub-fields, including:

1) Requirements engineering research: We report evidence
that suggests that developers are almost as concerned
about reported features (both wanted and unwanted) by
their users, as they are with, for example, bug reports.
This finding highlights the way in which app stores
provide a direct communication channel between devel-
opers and their users. It is also particularly interesting to
note that feedback is used by developers, to also identify
unwanted features, hinting at the growing prevalence
of the need to remove/modify features as well as the
continuous need to identify new features to add.

2) Mining software repositories: Our study reveals that
app store developers place importance on screenshots
(in order to gather features for their apps). Therefore,
although existing work on mining textual information
from feedback and reviews and ratings is valuable (and
also used by developers according to our survey), the
current lack of studies on the use of images as a source
of information needs to be addressed. Mining user inter-
faces is typically undertaken in communities such as the
Computer-Human Interaction (CHI) [13] and User Inter-
face Software and Technology (UIST) [14] communities,

which may also find novel research challenges in this
new area of application. We envisage that ‘user interface
mining’ may find new applications in app store mining
and analysis.

3) Other software engineering disciplines: We find a
strong belief among developers that app stores contain
information that help developers maximise the chance of
success for their products, thereby motivating and partly
validating app store analysis and mining as a research
area. However, the quality of code is not identified as be-
ing the strongest influencing success factor; other aspects
such as user experience, visibility, novelty and brand are
accorded notably higher importance by developers. This
indicates, for example, that work on code ‘smells’ in app
store code, while important, needs to be complemented
by, and combined with, work on user experience and
other human- and business-facing aspects.

4) Business Community: Our study has important findings
for those working at the interface between software
engineering and business considerations. That is, while
developers claim it is important to have someone in
their team concerned with marketing and business in-
telligence, they also report that this person tends to be
self-taught and relies on experience rather than formal
training.

Our study also has other findings for these sub-fields,
and several findings concerning app testing of relevance
to the wider software testing branch of research [15]. The
observation that a study on app store developers can have
actionable conclusions for so many different software engi-
neering communities, highlights the crosscutting nature of
this relatively recent phenomenon in software development
and deployment. Clearly, as app stores develop further,
there will be a need for further studies and surveys. The
authors hope that the findings from this survey will pro-
vide a useful reference point for such further studies and
analyses.

2 METHODOLOGY

To study developers’ practices when developing for mobile
app stores, we followed a mixed method drawing from
survey and case study empirical research methodologies
[16].

There are two reasons supporting this choice of method-
ology. Firstly, case study research is a way of analysing
contemporary phenomena that are difficult to separate from
their natural context [17], which is the case for app stores.
However, as this is a global phenomena affecting the major-
ity of the population (app developers), it is not strictly a case
study, so we also followed a survey technique to collect data
from a sample of the affected population using two data
collection methods (namely, interviews and questionnaires).

This particular research will aim to be both an ex-
ploratory qualitative empirical study as well as a descriptive
one [18] [17]. To ascertain and gauge the level to which app
store affects developers’ view and practices, we conduct
exploration activities first. Specifically, we take a compre-
hensive view of the aspects in which app stores may affect
developers’ activities. This study is designed following the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 3

case study research guidelines by Runeson et al. [17] and
survey research guideline by Kitchenham and Pfleeger [19].

We coupled our methodology with deductive thematic
analysis to analyse qualitative data [8] [9] [11].

Thematic analysis is a method of analysing textual con-
tent and deriving patterns of thematised meaning from it.
Similar to grounded theory [20], thematic analysis origi-
nated from the social sciences and has since been utilised
in computer science empirical research involving human
subjects. Wohlin and Aurum [21] report it as one of the
qualitative analysis methodologies in their decision mak-
ing structure for empirical software engineering research;
Cruzes and Dyba [22] formalize an extension of thematic
analysis to thematic synthesis in software engineering re-
search.

We have selected thematic analysis due to its flexibility,
ease of understanding and independence from theory. While
grounded theory allows for theory-agnostic analysis of data,
thematic analysis can be conducted within a theoretical
framework [11]. In this study, we operate under the software
engineering life cycle stages (as per the software engineer-
ing body of knowledge areas 1-5 [23]) as our theoretical
framework, hence we follow deductive thematic analysis [8]
[11] (as opposed to inductive analysis or grounded theory
[20]), using semantic themes as developers are expected to
have sufficient domain knowledge eliminating the need for
latent theme inference. Furthermore, our thematic analysis
method follows the essentialist/realist method and not a
constructionist one as we assume a simple relationship
between participants’ answers and meaning [8] [11]. In
conducting thematic analysis for this study, we follow the
guidelines provided by Braun and Clarke [11].

Data collection was conducted by surveying main stake-
holders of this research who are mobile app owners and
developers. Similar to the scientific method of gathering
information via surveys, gathering initial insights was done
using interviews. Then, based on the interviews’ initial
findings, we designed a questionnaire and disseminated it
in developers social circles. The questionnaire is important
in order to validate the findings with larger consensus.
Through analysing the interviews we identified areas of
interest on which the paper focuses and sheds more light.
Certain patterns of responses (whether with more consensus
or disagreement) that pertain to the research questions and
promise valuable and deeper understanding of the software
engineering practices were highlighted when writing the
survey questions. The survey was designed in order to
investigate in more detailed and systematic way all that
relates to the specified research questions.

3 STUDY DESIGN

The stages of our study are depicted in Figure 1. As both
empirical research and thematic analysis studies rely on
proper identification of research questions, the first stage
is setting the questions to be emphasized and answered.
Phase two is dedicated to the exploration and preliminary
gathering of information. This is done by interviewing app
developers and discussing their views and current practices.
During this phase the interview structure is designed with a
set of potential topics and questions to be explored in light of

the research questions; then the transcripts of the interviews
are analysed and coded using deductive thematic analysis
resulting in a theme map. The third phase consists of collect-
ing data by disseminating a questionnaire (designed in light
of both the research questions and the insights gathered
from the interviews and the theme map) to communities of
interest. In the following subsections we discuss in greater
details each of the phases depicted in Figure 1.

3.1 Research Questions

The research questions we aim to answer in this study cover
two main areas of interest: app store’s effects on software
engineering processes and possible success criteria and skill
sets that emerge due to app stores.

App stores are now major application deployment por-
tals that drive the user’s application discovery process. A
large scale study of mobile users’ tendencies by Lim et al.
[6] unveiled that the majority of users rely on the app store
to discover new apps: 73% of more than 10,000 respondents
visited an app store at least once a month; whereas only 9%
did not rely on an app store to download apps. Another
major aspect of the app store is users’ ability to rate the
quality of apps, post feedback, comments and reviews; thus
effectively opening a channel of communication between
developers and users. Therefore, we believe user feedback
in the app store may go beyond its recognised benefit in
general markets in establishing trust of the seller’s ability
to deliver on their product’s promise [24]. Furthermore,
app stores are designed to collate similar apps together.
Developers and managers are able to find apps in the
same application domain including their specifications and
performance in the app store environment.

This gives us ground to suspect that the app store’s
configuration may have an effect on the evolution of apps.
which motivates our first research question:
RQ1. How does the app store ecosystem affect the soft-
ware development life cycle processes? For this research
question, and to set the scope of this paper, we consider
the Software Engineering Body of Knowledge (SWEBOK)
[23] areas 1 through 5 as the software engineering life cycle
stages; namely software requirements, design, construction,
testing and maintenance. The Software Engineering (SE) re-
search community has indeed highlighted the opportunities
and challenges introduced by such an ecosystem [15] [25].
Software engineering researchers sought to leverage infor-
mation found in the app store to guide mobile developers
during requirements engineering [26] [27] [28] [29] [30] [31]
[32], testing [33] [34] [35] [36], maintenance [37] [38] [39]
[40] [41] [42] and release management [43] [44] [45] [46]
[47]. In posing this research question, we aim to observe
the current involvement of information extracted from the
app store in guiding the software engineers’ effort in each
of the aforementioned stages.

The study by Lim et al. [6] also reported that the
market is dominated by a handful of app stores, chiefly
Google Play and the iOS App Store. This accounts for high
density of potential users, exposure and total downloads
for apps. Furthermore, the ecosystem offers low barrier to
entry giving rise to the number of offered apps making
it an increasingly competitive marketplace. We investigate

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 4

whether such high competitiveness and emphasis on user
acquisition and retention increases the types of considera-
tions that the development team takes. Hence, we ask this
research question:
RQ2. What new sets of best practices and skill sets emerge
due to app stores, if any? The low barrier to entry also
facilitated smaller teams of developers (2-5 developers) to
publish apps that are still deemed viable and competitive
[4] [48]. We investigate the types of activities that mobile
development teams carry out and the skills required that
are influenced by the app store ecosystem and are outside
of the recognised software engineering life cycle activities
considered in RQ1.

App stores do not only provide browsing and search
capabilities to users, but also employ quality measurements
to provide curated content and refined ‘lists’ to users. Lim
et al. highlighted that, in order to discover new apps, 37.6%
of respondents browse the app store randomly, 34.5% check
the top downloads charts and 25.8% look at featured apps.
This highlights the major role that app stores play in driving
success to mobile applications. To observe the involvement
of app stores in success and its measurement, we ask the
following research question:
RQ3. How is success perceived and measured by develop-
ers in the app store environment? Previous research seems
to regard app rating as a proxy for quality (and therefore
success), thus investigating the relationships between user
rating scores and apps’ user reviews content [49] [50], re-
lease plan [45] [51] [46], features [32], software metrics [52],
security [53], code churn [54], faultiness [55] [56], under-
lying hardware/architecture [57] [58] [59] and many other
software factors [60] [61]. By contrast, we shift the focus to
app developers and owners’ view on what defines ‘success’,
thereby uncovering other app-store-specific metrics which
developers monitor. Furthermore, we aim to uncover the
relationship between success and the developers’ perceived
quality of the app. This research question does not look into
the role of the market for success, but rather investigate
whether the market introduced new metrics through which
developers perceive the success and quality of their app.

3.2 Interviews
Interviews were conducted to initially explore developers’
interaction with app stores before and after release. The
interview protocol is described in the upcoming section
followed by a description of the participating sample and
data analysis method.

3.2.1 Protocol
The interviews were semi-structured and followed a funnel
model where questions are generic at the beginning and be-
come more specific as the interview progresses. The funnel
approach was selected to permit the conversation to flow
naturally instead of controlled question-answer cycles. This
allows the interviewees to be put at ease thus talking freely
about what they deem important and pertinent with regards
to the general topic. Then, taken from the current topic
of conversation, the interviewer refocuses the conversation
to a more precise subject of interest. This method suited
the exploratory and observational goals we required of the
interviewing process.

The interview questions were brainstormed and meant
to be near-exhaustive in nature. They, we believe, cover most
aspects of contact between developers and app stores. All
interviews were conducted by one of the authors except for
one which was attended by a second interviewer.

The interview plan contained 40 questions that the inter-
viewer, ideally, sought to cover. The set of drafted questions
are in Table 1. Since the interviews were semi-structured,
this plan served only as a reference for the interviewer and
was not enforced. The plan highlighted some of these ques-
tions as suggested conversation starters within broad topics.
Using this way of conducting the interview, interviews typ-
ically flowed smoothly and the developer answered most
questions without interrupting the flow of the conversation.

3.2.2 Participants
The selection of interview participants relied on purposive
sampling where participants had to be individuals involved
in the production of an app in the app store. In selecting
participants, we sought a broad set of sources for opinions
with regards to team roles including developers, managers
and app owners. Since this is an exploratory step, we are not
aiming to make any generalizable discoveries and, therefore,
relied on convenience recruitment1 of participants.

We have interviewed a total of 10 app development
team members. The interviewees were recruited through
UCL Advances2 and via social contacts. From there, a snow-
balling recruitment technique was carried out in which the
developer was asked to recommend other colleagues and
connections for the interview.

Table 2 reports the interviewed sample along with their
respective experience demographics. Among the 10 intervie-
wees, 7 had formal education in an engineering/computer
science related field. Fields that are outside of the faculty of
engineering were dubbed non-technical. The team sizes of
participants were between 1 and 17 developers. The inter-
viewed sample had between 4 and 27 years of experience
in software development. The number of apps they have
developed spans from one app to 20 apps. The degree of
exposure of the sample’s apps also ranges between apps
that have been downloaded 100 times to apps downloaded
800,000 times.

3.2.3 Data Analysis
After transcribing recorded interviews, data analysis was
carried out to identify emerging concepts from the corpus.
This was conducted using Thematic Analysis [11]. The-
matic analysis, as the name suggests, employs the concept
of themes when analysing textual data. Thematic analysis
requires reading the scripts intensively before coding the
responses in light of the research questions. The codes are
tags that interpret certain responses and help identify their

1. Convenience sampling is the most common sampling technique
especially in laboratory psychology research where participants are
mostly volunteers [62]. It is a non-probabilistic sampling method that is
used for preliminary exploration of a phenomenon since it is less costly
than probabilistic methods.

2. UCL Advances is a project by the UCL Economic Challenge Fund
that contains a large contact base of entrepreneurs and app owners
through its UCL testing app lab.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 5

TABLE 1: The set of interview questions.

First Background and demographics Fourth App Features
Mobile platforms / app stores What do you think are app features?
Other development experience (desktop, web, etc.) Do you think it is easy to find something to implement?
Years of Experience (Development and Mobile) How do you decide which features to include at the beginning?
Application Domain How do you decide which features to add/remove later on?
Independent or corporate? How do you gauge the success of a certain feature?
Number of developed apps (How many of these app were released
in an app store?)

How do you decide which app features to include in the app descrip-
tion?

Dedicated marketing team (or person?) Do you look into competitors features to identify technical trends?
Team Size Fifth User Feedback
Number of total downloads, ratings, feedback.. How do you know why users downloaded your app?
Revenue model (Android): How do you know why users uninstalled your app?
Second Generic Views How/why do you encourage users to rate/review/share your app?
How would you describe your experience in dealing with app stores? Do you actively respond to user reviews and Feedback? How? Why?
How are app stores different from any other deployment plat-
form/method?

How do you respond to user reviews and feedback? What are the
reasons as to why?

How does it make development easy how does it make it difficult? To what extent does user feedback affect next releases?
What are the important factors of success in app stores? Sixth Tools and Metrics
Third App Packaging How do you measure your success over competitors (metrics)?
What do you think the most important criteria when selecting screen-
shots/ description/ tag line?

Do you find analytical tools provided by the app store enough to
support your decisions (previously discussed)?

(Android) Do you think app permissions matter? Why? What extra tools do you use, if any?
What do you think causes users to download your app? (same: to
uninstall your app?)

What procedures do you take to advance your competitive advan-
tage?

How do you decide on a revenue model? ..and what metrics do you think useful to enhance the app?
Did you ever have to change your app’s price/revenue model?
Reasons behind the change?

Do you think you need analysis and statistics that encompass the
entirety of the app store?

How do you decide in which categories to release your apps? Do you
think it matters?

TABLE 2: Demographical data of the developers interviewed.

Participant Formal Education Years of Experience Team Size Team Role Number of Apps Success Metric
P1 Technical 4 1 All 6 -
P2 Non-Technical - 6 Owner/Manager 1 2,000 Ratings
P3 Non-Technical 2 6 Owner/Manager 1 100 - 500 Downloads
P4 Non-Technical 7 9 Owner/Manager 1 32 Ratings
P5 Technical 6 1 All 3 200 - 250 Downloads
P6 Technical 17 6 Owner/Manager 2 140 Ratings
P7 Technical 27 17 Developer 1 1,000 Ratings
P8 Technical 10 5 Owner/Manager/Marketing 20-30 800,000 Downloads
P9 Technical - 4 Owner/Tester 3 10,000 Downloads
P10 Technical - 3 Developer 3 15,000 Downloads

topic. The codes are then clustered to form a theme map that
serves as the visual representation of the main findings of
the interviews.

Transcript coding: In light of each research question, the
data is scanned in order to be assigned a code. Interview
codes represent a certain area and tags certain attitude, opin-
ion or knowledge expressed by the respondent regarding
that area. Due to the extensive length of the interviews,
the coding process helps tag only relevant responses with
regards to the research questions. The first author initially
tagged the interview transcripts, then compiled a list of all
the codes and example instances of each of the codes. The
list was then revised by two other authors to ensure their
representativeness with regards to the research questions
with consensus. After the revision, the first author revised
the tagged corpus, this has been done in two iterations. Due
to the nature of the codes, they were allowed to overlap and
merge/divide throughout the revision process.

Figure 2 shows the final list of codes for each research
question.
For the first research question, the codes are the typical
software development phases according to the Software
Engineering Body of Knowledge (SWEBOK) [23] as the
research question investigates practices related to the soft-

ware lifecycle processes. This practice of using the processes
as transcript codes is part of the deductive nature of the
thematic analysis methodology in which the codes follow a
certain pre-known taxonomy. It is also a practice done by
other similar software engineering qualitative research [4]
[63] [64].
The second research question centres around new emerging
skill sets and roles required of mobile app development
team members. The codes selected for RQ2 pertain to the
possible assigned tasks for team members and to what
degree do they deviate from those of a classical software
team roles. The second code (implicit know-how) highlights
exhibiting knowledge or certain app store-specific best prac-
tice that was not formally learned or part of the respondent’s
education. The final code (non-technical activity) is for
highlighting any skill that the respondent is exhibiting or
discussing that are not engineering-related.
The third and final research question pertains to perfor-
mance measurements that are particularly important for
mobile apps distributed through app stores. The first code
(determination of success goal) highlights the clarity and
determination of a success goal for the release of the app
and whether that goal is app-store-specific such as being
featured in the app store’s main page. Other codes tag the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 6

Fig. 2: Transcript raw data codes used to tag responses: These codes represent recurring topics and certain responses of
interest. This is the first stage of interview analysis. The codes and their content are then used to deduce themes in Figure 4

various app store analytics and set thresholds.
Deducing Themes: Codes are then collated into a group

of potential themes. A theme represents a unit of an emerg-
ing pattern of responses with regards to a certain topic
and/or research question. Themes do not certainly perform
a one-to-one mapping to research questions and they go
through rigorous revisions as the researcher goes through
the data in several passes. From analysis, thematic coding
results in a theme map. The theme map reflects the main
findings observed from coded responses and their rela-
tionships with one another. This process produces a rich,
detailed description of the data without hindrance by data
that are not relevant to the research questions. This has been
carried out by the first author and then revised by three
more authors in a collaborative session until a consensus
has been reached (over three iterations).

3.3 Questionnaire
Based on the emergent topics of interest extracted from
analysing the interviews (Figure 4), and in light of the
research questions, a questionnaire was used to ascertain
findings, explore new ideas and measure the prevalence
of some practices. The following subsections describe the
questionnaire, its design and the participating sample.

3.3.1 Design
In designing this survey, we followed the guidelines pro-
vided by Kitchenahm for personal opinion surveys [65]. The
initial design comprised of 118 statements and questions
that have been drafted in several collaborative sessions
among four of the paper’s authors. The survey is divided
into subsections representing themes of activities in addition
to the demographics section. The survey draft went through
several revisions where we have removed questions that we
deemed to be open to interpretation based on the respon-
dent’s experience and may be ambiguous or misunderstood.
An example of an unclear question was: ‘I prefer releasing
an alpha/beta version of my app on the actual app store
rather than one specific for testing.’ (developers may not un-
derstand what is meant by ‘one specific for testing’ and may
interpret it differently). Furthermore, we have prioritised

questions with higher relevance to the software engineering
community and so did not include ones such as: ‘When I
find an app that has a similar main functionality, I still can
have a competitive advantage.” After eliminating repetitive,
unclear and questions deemed irrelevant (22 in total), the
questionnaire ended up with 96 questions. The question-
naire is divided into these sections: Demographics, Software
lifecycle (Idea conception and requirements gathering, de-
sign, construction, testing and maintenance), Emerging new
skill sets and finally, Metrics. We have first conducted a pilot
study where we invited developers to fill the survey in read-
aloud sessions in which they read questions out loud as
well as externalized their thinking process. A total of six
developers reviewed the questionnaire questions and gave
feedback. First of which was their complaints regarding the
length of the questionnaire. Based on that, we removed a
few more questions that were lower in priority; in addition
to merging the last section of the questionnaire with previ-
ous sections. Additionally, we arranged the questions such
that demographics only appear at the end of the question-
naire except for two easy questions that serve as a warm-
up. Another valuable insight from how developers filled
the questionnaire was their consistently mistaking ‘design’
in a software engineering process sense with the process
of graphic design and building user interfaces. This and
other inconsistencies in the meaning of certain terms were
observed in the read-aloud sessions and were thus corrected
in the survey. Two questions were deemed totally unclear
and were therefore rephrased. The final questionnaire con-
tains 11 short sections and 79 statements grouped into 42
questions3. The questions’ answers are 5 Likert items on the
Likert scale that represent degrees of agreement, frequency,
interest or importance. The survey also includes multiple
choice and open ended questions. We have elected to make
all the questions optional in order to mitigate the challenge
of the length of the survey. This means that each question
has its own sample that can be a subset of the surveyed
sample. By making the questions optional, we ensure the

3. The final survey is available at http://afnan.ws/survey. A pdf
version of the survey can be downloaded from http://afnan.ws/
survey/survey.pdf

http://afnan.ws/survey
http://afnan.ws/survey/survey.pdf
http://afnan.ws/survey/survey.pdf

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 7

certainty of the response since no respondent has to reply in
order to progress further in the survey. Another approach
we used to mitigate the length of the questionnaire was
branching: Based on the respondent’s answers to certain
questions, the control flow will skip questions that are
irrelevant. For example, we ask the participant if they ever
released more than one version of their app, if the answer
is no, we skip questions relating to release management
and perfective maintenance and proceed to the subsequent
section.

3.3.2 Participants
The survey was disseminated via posters and flyers around
UCL campus, email to interest groups as well as social
media. The flyers were also passed around 2 research confer-
ences. Cold calls were also posted to several mobile devel-
oper groups in the professional social network LinkedIn4.

The total number of respondents to our questionnaire is
186. However, since all questions are optional, each question
has its own sub-sample of respondents. Of the 186 respon-
dents, 103 have completed the questionnaire. The maximum
number of respondents for a question is 185 and minimum
is 107, average number of respondents over all questions
is 133 with a median of 119 (barring open-ended questions
and those in a branch). Of all those who entered the survey,
57% answered 100% of the questions.

The survey responses came from developers based in
36 different countries. The majority of the respondents are
aged between 25 and 34 (50%). We consider the responses
of any of the mobile application development team mem-
ber regardless of their role. The majority of the responses
originated from developers (57%), remaining roles include:
managers (14%), marketers (8%), and those who assumed
multiple team roles (18%). The years of experience in soft-
ware development ranged from less than a year to 20 years,
with an average of 7 years and a median of 5 years. The
respondents reported an average of 4.2 years of experience
in developing mobile apps specifically; with a median of 4
years, a maximum of 15 years and minimum of 1 year. The
majority (84% of a total of 101 respondents) reported having
a formal education in a technical/engineering field whereas
21% had a business-related formal education. The average
size of teams reported was 5 working full time with as low
as 1 and as high as 66 team members and a median of 2.
A total of 103 respondents informed us of the platforms
they develop for: 72% publish in iOS app store, 75% in
the Android app store (Google Play), 12% in Windows
Phone store and 11% published to other platforms: Amazon,
Blackberry and Samsung stores, Apple TV and others. The
respondents’ apps had varying degrees of exposure, the
largest had 10 million active users and the lowest had 14.
The sample had a median of 1,500 active users and a mean
of approximately 300,000 active users.

3.3.3 Data Analysis
In reporting the results of the questionnaire, we merge the
number of respondents of the two extreme Likert items to
simplify interpretation. For example, in the Likert agree-
ment scale we merge the number of those who agree and

4. LinkedIn: http://www.linkedin.com

12% 65%22%

100 50 0 50 100
Percentage

Strongly disagree Disagree Neutral Agree Strongly agree

Responses: 185

a) I survey the app store to validate the viability/feasibility of my app idea (main functionality)

18% 57%25%

100 50 0 50 100
Percentage

Very rarely Rarely Neutral Frequently Very frequently

Responses: 185

b) I explore other apps in the app store for GUI design ideas and trends.

18%

21%

37%

56%

41%

35%

26%

38%

29%

Similar apps on the app
store

Similar apps in general
(web/ desktop)

User surveys and focus
groups

100 50 0 50 100
Percentage

Very rarely Rarely Neutral Frequently Very frequently

Responses: 185

c) When I already settle on a main app idea, I gather what other features to
include in my app from these sources:

9%

10%

8%

10%

21%

45%

56%

81%

78%

76%

68%

61%

28%

24%

9%

12%

16%

22%

18%

27%

20%

Icon and name

Developer's Name

Screenshots

Description

User feedback and
reviews

Rating

Version number

100 50 0 50 100
Percentage

Not at all interested Not very interested Neutral Interested Very interested

Responses: 185

d) If I use the app store to gather features for my app by looking at similar apps, I
would pay attention to these elements:

Fig. 3: RQ1. Responses to questions regarding the initial
phases of development.

strongly agree to report the overall agreement rate and
also merge the number of those who disagree and strongly
disagree to report the overall disagreement rate. Moreover,
we report the weighted average response in order to dif-
ferentiate higher agreement/disagreement (or its equivalent
in other scales), especially when ranking popularity of an-
swers. The weighted average response of each statement
is the average of scores assigned where strong agreement
(or its equivalent) is scored 5, agreement is 4, neutral is 3,
disagreement is 2 and strong disagreement is 1.

In summary, the agreement percentage gives the ratio of
respondents who agree/strongly agree (or their equivalent)
with a statement; whereas the weighted average score gives
insight on how strongly respondents agree with this state-
ment.

The questionnaire’s quantitative findings are reported
augmented with relevant qualitative ones extracted from
interview transcripts to help aid the reader in understanding
some developers’ point-of-view regarding certain patterns
of responses or opposing opinions. The quotes were selected
by backtracking through pertinent themes and their codes.

4 FINDINGS

This section reports the findings of the empirical study.
The findings from the interview phase are presented in
Subsection 4.1 in the form of the resulting theme map,
which guided the design of the survey. Since the main goal
of conducting interviews was to guide the survey design
and due to the limits of the interviewed sample, we do not

http://www.linkedin.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 8

discuss the results of the interviewing process in isolation
but discuss them across Sections 4.2–4.4 in conjunction with
the quantitative results of the questionnaire5 to augment it
with qualitative insights.

4.1 Interview Analysis Results
Figure 4 shows the results of the theme map deduced from
the interview analysis. This theme map helped us construct
an insight into the state of interaction between developers
and app stores. Its main purpose was to pave the way
towards designing the questionnaire.

The first theme map component is Software Process.
In terms of the requirements gathering phase, the app
store has been proposed as a method of exploring an ap-
plication domain, validating ideas, checking ideas against
redundancy and exploring the possibility of reuse. User
expectations of features required of apps in a certain domain
seem to be particularly of interest.

In terms of design, designing user interfaces is impor-
tant as it will translate to a screenshot in the app’s page.
Screenshots are viewed as a big determinant of whether the
user decides to download an app. Throughout discussions
regarding designing user experiences, developers expressed
exasperation regarding following strict OS vendor and app
store owner’s guidelines especially since the changes are
often out of the team’s control and interfere with the team’s
plan.

At the construction phase, developers include specific
pieces of code that ask the user to rate the app and redirect
them to the app store for that purpose. App permissions are
a worrying factor during development as importing unnec-
essary APIs might bloat the permissions list thus making
an app less desirable. Furthermore, during the construction
phase, developers settle on tracking strategy in order to
implant tracking code within the app.

During alpha and beta testing developers sometimes
choose to distribute testing versions via the app store which
gives them more feedback and exposure. Developers ex-
pressed interest in gauging users’ interaction with the app
within the app store ecosystem as part of the beta testing
phase.

Maintenance has been found to be the most affected by
the app store ecosystem. Developers expressed interest in
users’ feedback and rating as a major driving factor for new
releases. Many of the interviewed developers mentioned
that the app store ecosystem has enforced a certain release
plan for their apps.

One aspect of interest was the practice of monitoring
similar competing apps, especially during gathering re-
quirements and perfective maintenance. Interviewed de-
velopers responses were divided regarding that particular
practice. Those who declared it dangerous quoted addiction
towards constant comparison and the eventual uselessness
of having an app that is a copy of another. Opposing those
views are developers who said that keeping an eye on
competitors is necessary in such a competitive environment
as the app store. However, they said that it is important to
monitor in order to differentiate the app from similar apps

5. The questionnaire responses can be viewed online at: https://
www.surveymonkey.com/results/SM-83LPDRNW8/

and gather certain features from similar apps for perfective
maintenance.

The second theme is related to the interviewees’ app
store know-how, aptitude, general best practices and other
activities outside of the well known software lifecycle prac-
tices. These are patterns of knowledge that are not evidence-
or theory-based. This knowledge appeared as intuitive and
not the result of formal training and in some cases heavily
relied on observation of other apps in the app store. When
a respondent shows propensity for evidence-based knowl-
edge of app store management it was either the effect of
formal training or the outsourcing of such tasks.

Finally, the last theme is app’s success and performance
monitoring in the app store environment. We have detected
variation in terms of perceived success of an app in the
app store. A large number of developers did not emphasize
the quality of code, documentation, or overall architectural
design for building a good software product. On the other
hand, app store analytics are an often mentioned topic in
our interviews. The respondents quoted many metrics they
deem important to monitor to gauge the success of the app
and its perceived quality by users. There were no global
threshold for any of the metrics but an upward trend is
certainly desirable.

4.2 RQ1: Lifecycle Processes
App stores, as they reach an almost-monopolization of
mobile app distribution with regards to a particular op-
erating system, are prone to introduce some changes to
how developers carry out software engineering tasks. For
example, we anticipate, due to the app store regulation, for
it to change the way developers plan releases. Additionally,
as app stores provide a rich environment in which users
leave feedback, including reporting bugs and requesting
features, for it to affect developers’ requirements elicitation
activities. The following sections go through our findings
affecting requirement elicitation, testing, maintenance and
release management.

4.2.1 Requirements Elicitation
To developers, not only can the app store serve as a dis-
tribution channel, it is also a large repository of apps. In
this repository, access to similar and competing apps have
never been easier. Not only can developers see how are
other apps presented, but users’ reaction to them. By sifting
through user comments, they can identify common bugs,
appreciated features, requests and usage scenarios of apps
in an application domain of interest.

We hypothesized that, naturally, developers follow and
observe similar and competing apps. However, during the
interview process, we observed polarised results regarding
this particular activity. Certain developers expressed neg-
ative connotations with such practices “You’ll never win if
you are stuck playing catch-up” one developer expressed. On
the other hand, others stated it as a necessity for survival.
Among those one who said: “I think it’s vital to know what
else is out there. You have to get a sense not just of what you are
competing with but how it is delivered. Looking at [competitors’]
reviews is something that we did to see if the features we included
were appreciated by people or whether they were just not men-
tioned or actually thought to be waste of time. So, the app store

https://www.surveymonkey.com/results/SM-83LPDRNW8/
https://www.surveymonkey.com/results/SM-83LPDRNW8/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 9

Fig. 4: Thematic analysis findings in the form of a theme map. The theme map summarizes the data patterns found in the
interview transcripts relating to the research questions.

provide a rich stream of information about what works and what
people think of the app itself.”

In the questionnaire, more than half respondents sur-
veyed the app store at the initial phases of develop-
ment for both validating the app’s idea (65% answered
agree/strongly agree) or for user interface inspiration (57%
answered frequently/very frequently). Of those gathering
requirements for their app, the most frequent source has
been other similar apps (56% answered frequently/very
frequently scoring a weighted mean of 3.55) followed by
similar desktop and web apps (41%, 3.30) and user surveys
and focus groups (35%, 2.92). Figure 3 shows a breakdown
of answers.

When asked about which elements of other similar apps
are investigated, the three most popular were: user feed-
back (81% answered interested/very interested scoring a
weighted mean of 4.19), rating (78%, 4.09), app’s screenshots
(76%, 4.05) and description (68%, 3.83). On the other hand,
over half of respondents did not find the developer’s iden-
tity of interest (56% not interested, 2.51) and 45% were not
interested in how many versions competing apps released
(2.69) (Figure 3-d).

Some developers clarified that this is not done just for
the purpose of comparison with other apps, but for under-
standing a specific market and the user’s expectations for
a particular application domain. One developer clarifies: “I
focus on understanding the experience of the users and customer
development more than comparing my idea to other apps. If I’m
browsing other apps I’m either looking for inspiration in design or
other ways to solve my problem.”; A survey respondent further
clarifies: “I found that app-users (especially social media) have

5%

5%

7%

8%

8%

88%

78%

78%

77%

53%

6%

16%

15%

15%

39%

Performance issues

Bugs

Feedback on missing
features

Feedback on unwanted
features

Generic reception by
users

100 50 0 50 100
Percentage

Not at all interested Not very interested Neutral Interested Very interested

Responses: 96

e) When releasing an Alpha or Beta version of my app in the app store, I am
interested in:

Fig. 5: RQ1. Responses to questions regarding the testing
phase.

been accustomed to a bunch of features that become de facto a
must for a new project.”

For requirement elicitation, app stores provide a large
stream of information and historical data to software engineers.
The majority of surveyed developers use it to explore apps
related to their application domain to gain an understanding
of the expected user experience and anticipate features.

4.2.2 Testing
App stores provide developers with a rich channel to con-
duct pre-release testing. Additionally, the rating and com-
ment/review sections can give developers much to process.
In this section we review developer responses regarding
intent when pre-releasing the app in the store.
When a sample of 171 developers were asked if they indeed
release alpha and/or beta versions to the app store, 59%
answered yes. Among those who answered yes, we further
investigated what they hope to uncover by pre-releasing the
app. The distribution of the answers is depicted in Figure 5.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 10

10%

11%

9%

8%

13%

24%

73%

70%

68%

66%

62%

46%

16%

19%

23%

26%

24%

31%Generic praise

Usage scenario

Features users like

Bug reports

Features users hate

Features users request

100 50 0 50 100
Percentage

Not important Slightly important Neutral Important Very important

Responses: 120

f) Rate how important are these types of app reviews for app maintenance and
enhancement:

Fig. 6: RQ1. Responses to questions regarding the usefulness
of user feedback.

Perhaps unsurprisingly, finding bugs garnered the high-
est interest. The finding with least interest was unwanted
features; however, a previous study [66] reports that 78% of
106 surveyed developers rated functionality deletion as im-
portant and/or more important than adding new features.
This may suggest that, while developers deem the removal
of functionalities important, they might not necessarily dis-
cover which features to remove during alpha/beta testing.

More interestingly, we observe that 78% of developers
who release alpha/beta versions of their apps in the app
store, are also interested in the generic reception of the app
and the type of ratings, reviews and social hype it would
garner (4.11 weighted average).

While the large amount of users that find and download
a pre-release of the app is a good thing, some developers
warned that over-exposure of the app might negatively
impact the app’s image if it has major issues. One developer
wrote: “We release the app in a staggered way so that a subset
tests it and if something goes wrong we can early roll back to a
stable version and fix any major bugs.”. A survey respondents
also concurs: “Premature social hype could doom the project.”

For testing, many of the developers use the app store to pub-
lish pre-releases. In addition to finding bugs and discovering
enhancements, 78% of those developers also stated that they
release the alpha/beta version to test the general reaction of
users in the form of ratings and social hype.

4.2.3 Maintenance
When the app is published in the app store, developers
come to maximum contact with users. The ratings, reviews
and recommendations start coming in. We investigate the
extent to which developers incorporate user input from the
app store into their maintenance strategy.

During the interview process, we have detected that
developers regard user reviews posted in app stores as
a bug reporting and feedback collection tool in addition
to a marketing tool. Several developers informed us that
having a healthy proportion of negative feedback is an
important nudge in the right direction “[Positive Feedback]
doesn’t really help me. It should contain some information to
help me improve the app, either something is wrong, something is
missing, something they want,” one developer expressed. Due
to the rapid iterations typical of mobile apps release plans,
one developer informs us that “those bad reviews is what makes
a really successful product.” To some developers, the app store
is just another bug reporting and user engagement channel,
albeit a prolific, public one: “We see what is being asked the

24%

25%

20%

33%

40%

47%

30%

36%

28%

26%

26%

23%

21%

14%

40%

47%

53%

41%

37%

32%

57%

Automatic in− app crash
reporting

User−initiated bug
reporting functionality

Private messages from
users

User public complaints
on social media

Reviews on the Google
Play app store

Reviews on the Apple app
store

Reviews on other app
stores

100 50 0 50 100
Percentage

Very rarely Rarely Neutral Frequently Very frequently

Responses: 124

g) How often do you receive bug reports from the following sources:

13%

16%

17%

15%

21%

51%

50%

48%

46%

42%

35%

34%

35%

39%

37%

Automatic in− app crash
reporting

User−initiated bug
reporting functionality

Reviews on the app store

User public complaints
on social media

Private messages from
users

100 50 0 50 100
Percentage

Very rarely Rarely Neutral Frequently Very frequently

Responses: 122

h) Of these sources, rate how often you actually fix these bugs based on their
source:

24% 25%50%

100 50 0 50 100
Percentage

Strongly disagree Disagree Neutral Agree Strongly agree

Responses: 119

i) I find it easy to extract bug reports from user reviews in the app store.

Fig. 7: RQ1. Responses to questions regarding the usefulness
of user feedback for corrective maintenance.

most, regardless of the channel, we get the feedback from the
different channels and aggregate them.”

Another developer highlights the importance of feed-
back coming through the app store rather than any other
channel: “Because whenever you’re frustrated you want to voice
your frustration immediately. And the only way to communicate
with the developer, people think, is the app store.”

Since user reviews in app stores contain large diversity of
information including complaints, praise, usage scenarios,
feedback on features and bug reports (a taxonomy devised
by Guzman et al. [67]), we asked developers about the
types of feedback that they deem particularly important
for app maintenance and enhancement. Developers rated
high all of the suggested types as seen in Figure 6. Scor-
ing highest (according to weighted mean) are bug reports
(70% agreed/strongly agreed scoring 4.01 weighted mean),
features users like (73%, 3.99) was next, followed by feature
requests (66%, 3.86), usage scenarios (68%, 3.81), features
they hate (62%, 3.74), and generic praise (46%, 3.35).
Corrective Maintenance: Developers were asked to rate the
frequency of receiving bug reports based on the channel.
Figure 7-g, depicts the results. In general, it shows an equal
distribution with no channel prevalent in frequency. The
highest in agreement, in terms of frequency is automatic in-
app crash reporting, followed by the app store user reviews.
User public complaints on social media was rated the least
frequent (47% of respondents rated rarely/very rarely, 2.5
weighted average) followed by private messages from users
(e.g. via email) which was rated rarely/very rarely by 40%
of respondents scoring a weighted mean of 2.74.

On the other hand, when developers were asked which
issues are frequently prioritised based on these sources,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 11

there is a trend towards favouring user reviews in the
app store (51% of respondents prioritise it frequently/very
frequently scoring a weighted mean of 3.61) tied with user’s
private messages (48%, 3.61) followed by automatic in-app
crash reporting (50%, 3.6). We noticed that although private
messages were less common, they were prioritised more
frequently. This has been expressed during the interviewing
process; especially vehemently by one developer: “There’s
something more direct about an email [opposed to user public
reviews]. A person has gone through the trouble of writing an
email. It’s more in-depth about it as well, I appreciate that.”

When it comes to prioritising user feedback coming from
the app store, 51% of respondents reported frequently/very
frequently fixing issues coming via that channel; whereas
only 13% rarely/very rarely did it, as depicted in Figure
7-h. In that regard, we were interested to gauge whether
developers found it challenging to extract actionable feed-
back from the app store. Figure 7-i shows that, 25% of
respondents agreed/strongly agreed that it’s an easy task,
while 24% professed to finding it hard.

By analysing interview content, we find three main
obstacles preventing developers from fully leveraging user
feedback in app stores, despite its perceived importance.
First is the frequency with which users post into the app
store can make it challenging to catch up with those com-
ments. Second, reviews can be largely repetitive and mixed
with noise obscuring finding a distinctive list of requested
fixes and enhancements. As one developer puts it: “The
problem is we get 4-5 reviews a day. And because they’re largely
similar and positive we don’t read them in any depth. It would be
really useful to have a way of aggregating the things that people
most often asked for and the things that they said annoyed them
the most. I certainly know what the highest things are as they get
repeated often. But within there are sort of ’second tier’ stuff that
I’m not clear about what we should prioritize. so we have to choose
and understand what makes users happy is the thing that would
be useful.” The third challenge is a general distrust over the
content found in app store reviews. A developer informs us
“I don’t rely on comments coming from app store] because the
comment system on the app store is completely broken. It’s full
of fake reviews, people leaving reviews because they are working
for the competition and people leaving bad reviews because they’re
angry they didn’t get the point of your app.”
Perfective Maintenance: In an app’s journey, developers seek
to grow the app by providing more value to users in the
form of functionality and performance enhancements. This
type of perfective maintenance is typically planned around
user engagement in test sessions and focus groups in ad-
dition to the application’s vision and roadmap. App stores
provide rich communication channels in which users are
able to submit their requests for new features and possible
enhancements. Developers believe that delivering on those
requests carry large marketing value for the app. Research
by Martin et al. [45] showed that 33% of releases from a
sample of 26,339 had an impact on user rating, and that
impact is likely to be positive in free apps (59%), most
importantly, they report that these significant releases are
bug fixes and new features. While a study by Palomba et al.
[68] showed that on average, developers include feedback
from 49% of informative reviews into the new release, they
also report that responding to user reviews has a positive

5%

15%

19%

36%

17%

30%

57%

51%

51%

37%

34%

32%

39%

34%

30%

28%

49%

38%

Initial app strategy and
vision

User surveys and focus
groups

Private messages from
users

Reviews of your app in
the app store

Similar apps in the app
store

Reviews of similar apps
in the app store

100 50 0 50 100
Percentage

Very rarely Rarely Neutral Frequently Very frequently

Responses: 88

j) When planning app enhancements, how often do you use these sources to
find new features to include?

Fig. 8: RQ1. Responses to questions regarding the usefulness
of user feedback for perfective maintenance.

effect on subsequent app rating (ρ = 0.59, p−value < 0.01).
This highlights the important role app stores play as a
communication channel and a source for planning app
evolution.

To gauge the role user feedback play in perfective main-
tenance, we asked developers to rate how frequently do they
use feedback from app stores as opposed to other sources.
Figure 8 shows the tendency of the results. The results reveal
that the most popular one (ranked by weighted mean) is
initial app strategy and vision (57% use it frequently/very
frequently scoring 3.79 weighted mean) while viewing the
features of similar apps in the app store comes in second
in frequency (51%, 3.53), next is user feedback of the app
itself (51%, 3.48); 34% of respondents agreed to viewing
private messages of users (3.21 weighted mean) whereas
32% frequently/very frequently looked at user surveys and
focus groups (3.04 weighted mean). On the other hand,
rated least frequent was user reviews of similar apps in the
app store (37%, 3.0 weighted mean).

This indeed agrees with our interview observations. As
one developer informed us regarding their practice when
trying to find new features to enhance the app: “[I keep] an
eye on competitors and eye on my customers and community.”

In maintenance, classical channels for user engagement and
bug detection endure. However, developers seldom ignore those
enhancement requests posted by users in the app store. For
perfective maintenance, developers employ user reviews of their
app and the features of similar apps for enhancements and
possible reuse.

4.2.4 Release Management
App stores are managed by large firms who are usually
the ones managing the platform and/or operating system.
These organizations tend to prioritise raising the quality
of apps marketed in their stores and thus enforce certain
criteria on apps prior to granting them access to the store.
This review procedure introduces delays that mobile de-
velopers usually plan around. Mobile developers expressed
exasperation at losing a certain degree of control when it
comes to release planning. “And what that means is, you
try to get rid of all the bugs before you launch. And this slows
things down”, a developer complains, “So you try to avoid this
horrible situation, which we’ve been in a few times, where you
release something and then it breaks and then you have 11 days of
letting your users down and getting negative reviews. You can’t
do anything about it because Apple takes a long time.”

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 12

7%

8%

17%

38%

69%

64%

53%

21%

24%

28%

30%

41%

Bug fixes

Performance improvement

Adding / removing
features

Packaging changes

100 50 0 50 100
Percentage

Very rarely Rarely Neutral Frequently Very frequently

Responses: 88

k) How frequently is a new release triggered by these events (i.e. main
cause of new release)

20% 54%26%

100 50 0 50 100
Percentage

Strongly disagree Disagree Neutral Agree Strongly agree

Responses: 87

l) I have changed how I plan releases because of the app store reviewing and approval period.

Fig. 9: RQ1. Responses to questions regarding the effect of
app store to release strategy.

This is also mirrored in the questionnaire results as
54% of respondents agreed that they changed the way they
plan releases because of the app store review and approval
period. And this indeed is a worrying concern when our
results reveal that the major reason motivating a new release
is a bug fix as apparent in Figure 9.

In release management, more than half of the developers
reveal that they indeed change how they plan releases based on
the app store’s approval period. In general, developers expressed
a need to conduct more rigorous testing as the gap between
submitting a bug fix and it being published increases.

4.3 RQ2: Emerging Skill-sets and Best Practices

We investigated if the app store ecosystem introduced new
types of activities carried out by the development team. We
conjecture that due to the way app stores lowered barriers
to entry, smaller development teams had to carry out non-
technical tasks and demonstrate app-store specific know-
how for their app to thrive.

During our interviews, developers highlighted that it is
paramount to the success of an app the way it is presented
in the app store. In app stores, the competition is very high
as a great deal of apps compete for the user’s attention. To
developers, quality of the product does not only come down
to good software, other factors regarding presentation in the
app store environment come into play. “I can be very cynical
and say that it’s the only thing that matters. From experience I
say that great communication and normal app works better than
great app with bad communication. And for communication I
mean everything: packaging, marketing, PR, etc. So it’s crucial.”
a developer informs us.

We have observed throughout the interviewing process
that respondents exhibited confidence in their best prac-
tices knowledge: Application strategy, implementation, and
mostly, app store culture and know-how. For example, one
developer elaborated on best ways to post a screenshot in
the app store “Do not put a boring screenshot that’s not wrapped
in a phone: wrap it in a phone and put some text above it.” when
asked how did they know this technique is effective, they
said it was by looking at other apps. Another developers
informs us: “It’s just trial and error, looking at what other people

3% 77%20%

100 50 0 50 100
Percentage

Strongly disagree Disagree Neutral Agree Strongly agree

Responses: 110

o) It is important to have someone in the team responsible for marketing and business
intelligence.

7%

8%

14%

26%

25%

64%

63%

52%

47%

47%

29%

28%

34%

27%

28%.. have no other roles

..has formal training in
marketing and/ or BI.

..is self− taught and
relies on experience.

..imitates the
strategies of successful

apps.

..mainly relies on
intuition.

100 50 0 50 100
Percentage

Strongly disagree Disagree Neutral Agree Strongly agree

Responses: 110

p) Think of the person in the team who is responsible for any of app marketing
tasks, this person..

Fig. 10: RQ2. Responses to questions regarding the type of
activities and skills required in a development team.

are doing, what I like and what works.” Something that prevails
many of their practices.

This is reflected in the questionnaire responses as the
majority of surveyed developers acknowledged that it is
important to have a team member who is responsible for
carrying out marketing and business intelligence tasks (77%
agreement, 4.13). However, 63% report that their market-
ing team member is self-taught and relies on experience
(3.75 weighted average). Of those surveyed, 64% agree that
whomever is carrying out these tasks imitates the strategies
of successful apps (3.80) whereas 25% report that the team
member responsible for marketing decisions is not dedi-
cated to that role (3.31). Figure 10 depicts a breakdown of
the answers.

We observed a number of developers who needed to address
many non-technical issues. The new skill sets required by
engineers developing for app stores include facilitating app
discovery for users in addition to understanding the compet-
itive environment and user expectation when selecting core
functionality and supporting features, custom release strategy
for mobile app stores, and several practices leading to a better
brand for the app.

4.4 RQ3: New Success Criteria and Performance Mea-
sures

As the app is released into perfective and corrective main-
tenance cycles, developers have access to immediate feed-
back regarding the quality and performance of the app.
This feedback takes many forms. In addition to user rating
and reviews, developers have access to a large number of
metrics including app downloads (rank), user retention rate,
revenue and number of reviews. We investigated the extent
to which developers monitor these metrics and the role they
play in decision making.

To gain a better idea of perception of success, we asked
respondents to write what they define as success in the
app store. Several developers restricted their definition of
success to the app correctly delivering its functionality.
“When the user is able to do the core features of the application

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 13

22% 34%44%

100 50 0 50 100
Percentage

Strongly disagree Disagree Neutral Agree Strongly agree

Responses: 109

m) I find it clear how to reach success in the app store.

5%

8%

11%

15%

25%

19%

83%

82%

72%

58%

49%

46%

13%

9%

17%

27%

27%

34%

App's Novelty

The quality of the UX

The quality of the code

Having a good brand

App visibility

Luck.

100 50 0 50 100
Percentage

Not important Slightly important Neutral Important Very important

Responses: 110
n) Rate how important are these factors to build a successful app:

Fig. 11: RQ3. Responses to questions regarding the knowl-
edge of success factors in the app store.

quickly and without much trouble,” a developer wrote. Other
developers answered similarly: “[When app solves a real
problem.” and “Providing a real great solution to an existing
problem.” However, and more interestingly, the majority of
their answers quoted a measurable, app store metric. Of
our sample, 52 informed us of the metrics they observe
to evaluate the success of the app. The most popular was
the number of downloads/installs (37%), followed by rating
(28%), active users/retention rate (27%), revenue (15%),
then application’s ranking and number of installs (tied at
3.8%). Few respondents (6%) mentioned application’s valid-
ity/verification (i.e. the app delivering the needed function-
ality without faults).

Through interviewing developers, we detected a certain
uncertainty and lack of control towards reaching success
in the app store. This is confirmed by the questionnaire
responses. Respondents, when asked if the path to achieving
that success is clear and easy to follow, showed reluctance
with only 34% of respondents agree that, indeed, they find
it clear (3.14 weighted mean) as seen in Figure 11-m. We
further explored their opinion regarding the most important
factors to build a successful app and were surprised to see
that the lowest rated was the quality of code and documen-
tation while the one rated highest in importance was the
quality of the user experience (UX) as shown in Figure 11-n.

Surveyed developers reported a unique perception of quality
measurement giving low ranking to code quality and docu-
mentation in determining an application’s success. Developers
tend to quote more app-store-specific quality measurements
than classical software engineering ones with number of down-
loads surpassing user’s rating.

5 DISCUSSION

The results presented reveal implications that can inform
relevant research spanning several scientific sub-fields.
Through our findings, we summarise implications under
three top-level categories: developer-user interaction, mar-
ket transparency and application release cycles.

5.1 Developer-User Interaction
App stores, in their current format, have further bridged the
gap between potential users and developers. We detect that
developers view the app store as a channel of communica-
tion. Though not the only one, this channel has two distinct
properties: It increases the prolificacy of users and can affect
the success of the app. Pagano and Maalej [69] found that
free apps received an average of 36.87 daily reviews in 2013;
and more recently, Mcilroy et al. [70] analysed the reviews
of 12,000 apps in the app store and reported that free apps
receive 7 reviews per day on average; in addition, McIlroy
et al. [71] and Palomba et al. [68] report that responding
to user reviews has a positive effect on subsequent app
rating (ρ = 0.59, p− value < 0.01); whereas Lee and Raghu
[72] found that continuous updates increase the applications
success. Developers seem to be aware of this to some extent.
This is reflected by our survey respondents professing in-
terest in gauging public reception and social hype of the
app in alpha or beta testing stages (78% agreement); this is
particularly important in light of the finding by Ruiz et al.
[73] that mobile app stores ratings fail to adapt to the actual
current satisfaction levels and are resilient once they reach a
certain number of user base.

While automatic in-app crash reporting is the most pro-
lific channel of reporting bugs, the one mostly prioritised by
our respondents is user reviews in app stores. Additionally,
51% of respondents frequently use user reviews for app
features enhancement. Our results reveal that, while devel-
opers and researchers point to the benefits of using reviews
for app evolution, 24% reported experiencing difficulty in
extracting bug reports from user reviews. Reasons hindering
proper utilisation of user reviews include its noise and
volume.

Requirements engineering research have directed their
attention to solving the problem of analysing user reviews
for the benefit of app evolution. Research has been car-
ried out to classify user reviews according to their type
and actionability to the developer [38] [39] [43] [44] [67]
[74] [75], review summarisation [40] [76] [77] as well as
feature-specific analysis [30] [32] [78] [79]. Further research
employed user reviews and the app’s extracted features to
localise change requests within code and to couple natural
language with source code patterns [41] [80]. A systematic
review of the literature relating to opinion mining from user
comments in the app store is provided by Genc-Nayebi
and Abran [81]. However, research remains scarce on the
problem of detecting fraudulent reviews. Such reviews, not
only increase the amount of noise when extracting useful
information from user reviews, they also introduce errors
regarding app ratings and subsequently in any analyses that
incorporate the app’s rating score (e.g. [50] [53]). While the
field of “opinion spam” detection advances in other areas of
research, its transference to app store analysis is necessary.
Xie and Zhu [82] and Li et al. [83] reveal the existence of a
fake rating black market and provide in-depth analysis of
their characteristics and its effect on the app store.

5.2 Market Transparency
One of the major contributions of a centralized mobile
application marketplace is the significant increase in trans-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 14

parency and availability of information for content cre-
ators. The applications’ price, features, reviews, ranking and
release strategy are publicly available. Our results reveal
that over half respondents monitor similar and competing
apps at the stage of requirement elicitation (56% frequently
view similar apps). Requirements engineering research can
help further investigate the effect of this practice and facili-
tate it further.

In performing perfective maintenance, frequently inves-
tigating features of similar apps is as common as con-
sidering the feedback of the developer’s own app (51%
frequently/very frequently for both). This insight can help
guide further software repository mining work that collates
information from various applications that share functional-
ities or are in the same application domain. This insight also
attests to the viability of app store performance predictions
based on the past evolution of other similar applications.

To this end, Vu et al. [84] provided a keyword-based
approach to mining reviews of apps and Shah et al. [85]
detected similar apps based on feature overlap and merge
reviews of those app for feature-specific sentiment anal-
ysis. Sarro et al. [32] showed that similarity of app fea-
tures/descriptions can successfully lead to accurate predic-
tion of app success (i.e. rating). We believe this vein of
research can be further extended to incorporate automatic
detection of similar useful apps while using the evolution
of these apps (and their reviews) to recommend possible
feature inclusion and other strategic decisions for develop-
ers.

However, we draw the attention of the community to
possible pitfalls when analysing reviews and ratings of mo-
bile apps as a ‘rating call-to-action’ gains popularity among
developers. A rating call-to-action operates within the app
to request users to rate the app and subsequently directs
them to the app store. Of our respondents, 38% embedded
a rating call-to-action into their apps. The majority of those
(56%) admitted to ensuring a call-to-action is activated when
the user appears sufficiently engaged and having a positive
experience with 35% ensuring the app first prompts the user
for their rating, then only directing them to the app store
when their rating is high enough. This may carry certain
implications towards the bias of app rating and reviews.
In their empirical study, Pagano and Maalej [69] analyse
1,126,453 reviews from 1,100 applications from the Apple
app store, half of which were free, and reported that the
overall average rating of all reviews is 4.13 with 61.96% of
reviews having a 5 star rating, while such a high average
rating value is not observed analysing the content of app
stores in 2011 when such call-to-action may not have been
as popular [26].

Among similar applications’ attributes that are made
available for developers to observe, user feedback garner the
most attention (81% are interested/very interested scoring
4.19 weighted mean) closely followed by ratings (78%, 4.09)
and screenshots (76% , 4.05). This promises significant con-
tribution to developers were researchers to employ image
processing to mine applications users interfaces to extract
actionable information as is done with applying natural
language processing over applications descriptions [30] [29],
UI text [86] and user feedback [1].

5.3 Release Planning and Quality

Our questionnaire reveals that the app store regulations and
approval periods affected 54% of respondents’ release strat-
egy. The research by Nayebi et al. [5] reveals that a majority
of their sample (36 developers) adopt a time-based strategy
(80%) with 45% releasing weekly or bi-weekly. Furthermore,
they find that 36% of respondents will change their release
plan to accommodate user feedback and that 61% agree
that a time-based release strategy affects the application’s
success in terms of feedback and user rating.

Several studies reported that frequent releases cause an
increase in user engagement (i.e. reviews and ratings) [69]
[70] and that certain types of releases have significant impact
on user ratings [45] [51]. This supports the idea that release
strategies in app stores may not only be influenced by
vendors’ guidelines but also by users’ public reaction in
the form of downloads, reviews and ratings. Adams and
McIntosh [87] emphasize the need for software engineering
research to further investigate the implications of the indus-
try’s recent trends in adopting certain release engineering
practices including rapid delivery and mobile app release
cycles.

These release practices enable mobile development to
adopt rapid adaptation and fast route to market that closely
resembles that of web application development. This adap-
tation model may inform further research in the software
engineering community to extract and transfer experiences
and techniques from similar platforms such as web de-
velopment. One example is the ease of adoption of A/B
testing which thus far has been predominantly applied in
web based applications. Of our respondents, 39% already
perform A/B testing.

In addition to change in release practices, the perceived
quality criteria of mobile apps seem to shift. Surveyed devel-
opers deemed user experience design of higher importance
than code quality. This is in line with the findings of Nayebi
et al. [46] in which they surveyed 22 mobile developers
and found that ‘customers expectations’ and ‘market and
competitors’ were deemed more important in mobile devel-
opment compared to other platforms, whereas ‘quality’ was
rated higher with more consensus for other platforms than
mobile apps. This is confirmed by the study of Minelli and
Lanza [88] where they report that open source Android apps
showed high complexity with smaller sizes, large reliance
on third party libraries and overall neglect of development
guidelines.

6 THREATS TO VALIDITY

During the design of this study, potential threats to its
validity have been addressed in an effort to minimise their
risk.

6.1 Construct Validity

Construct validity in qualitative studies mainly pertains to
a unified understanding between what the researcher has in
mind and what the respondent eventually understands [17].
Prior to building the questionnaire, the interviewing process
with several app developers served to orient the researcher
towards the culture and type of knowledge to which the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 15

mobile app community adheres. Several books were sug-
gested by the developers that the researcher has read to
familiarise themselves with the terminology and the process
(a good example is The Lean Startup by Eric Ries [89]).
Due to the nature of the interviews, misunderstandings
were detected and cleared up. The questionnaire was built
upon the insight provided by the interviewing process in
addition to transcript analyses. The read-aloud pilot study
of the questionnaire ensured the detection and elimination
of incompatible terminology and other misunderstandings.

6.2 Internal Validity

Internal validity is at risk when causal factors are exam-
ined and reported. As this study is mainly data-driven
with first and second degree collection methods (interviews
and questionnaire), we present the results as observed. In
interpreting the data, we make clear our conjectures are
aligned with those recorded during the interviews. Causal
analysis is limited as to this type of study. Another aspect
that is a threat to internal validity is proper analysis by the
researchers of the interview transcripts. While one author
has done the thematic analysis, it has been revised and vali-
dated by three other authors in more than one collaborative
session till consensus was reached. We limit the threat by
augmenting our findings with questionnaire responses.

6.3 External Validity

Although the initial information gathering technique only
aims to interview a low number of developers, the inter-
viewing process terminated when responses to all questions
were pre-observed in previous interviews. The developers
selected for interviews, though with varying backgrounds
and sizes of teams, represent a limited sample. However,
it is common for interviews to limit the sample as they
only serve as an exploration device rather than seeking
generalizable answers. Afterwards, all possible findings are
augmented by disseminating a questionnaire to developers
in order to measure the extent to which developers adhere
with the findings. Through the questionnaire, we were able
to reach an even more diverse set of mobile developers over-
seas. Having both methods of collecting data, we employ
triangulation that can help us in affirming the validity of
the results.

The questionnaire garnered 186 responses, this number,
thought fairly large and in line with several similar research
as shown in Section 7, cannot be claimed to be representative
of all types of development teams, applications domains or
characteristics other than the ones reported in our sample.

7 RELATED WORK

Smartphone adoption grew rapidly in the past years. As
mobile operating systems and underlying hardware form-
factor differ from their desktop counterparts, it naturally
follows that mobile applications are also distinctive [90].
In investigating mobile app development from a software
engineering perspective, research generally took one of two
themes: (1) works investigating how mobile app develop-
ment differs from classical software development and (2)

uncovering software engineering challenges rising from
the mobile development paradigm.

In investigating the distinction between mobile applica-
tion and classical software development, Wasserman sum-
marises the differences in 8 areas including the hybrid
nature of applications, platform fragmentation and new user
interface requirements. Minelli and Lanza [88] show that
open source F-Droid mobile applications are distinct from
classical software system in terms of size, ease of compre-
hension and degree of reliance on external libraries. This
is confirmed by Syer et al. [12] as they report that mobile
apps tend to have less lines of code, smaller development
teams, and rely more heavily on the underlying platform.
Additionally, they find that, regardless of the size of the
project, mobile developers tend to fix bugs faster than desk-
top/server software teams. Other aspects in which mobile
application software engineering have been found to differ
from classical one is in testing: [48] [91], release management
[5] and size/effort estimation [92] [93] [94] [95] [96] [97].

Looking into the challenges that are introduced by mo-
bile software development, Joorabchi et al. [3] followed a
grounded theory approach in interviewing 12 app devel-
opers followed by a survey of 188 respondents. Among
the challenges they find is platform fragmentation, lack of
testing tools, closed source underlying platforms, data man-
agement intensity, frequent changes of underlying platform
and third party libraries, hybrid nature of mobile apps,
limited hardware capabilities, difficulty of code re-use from
other platforms and strict HCI guidelines. These findings
were confirmed by survey study conducted by Flora et al.
[98] in addition to suggesting new challenges: The high
quality expectations of users augmented with big compe-
tition and the insufficiency and uncertainty of requirements
gathering for such markets. These last two challenges were
also observed by Lim et al. [6]. They identify the need for
newly emerging packaging requirements with price sensi-
tivity and managing a large space of potential features even
when domain-specific. Rosen and Shihab [7], by employing
topic modelling over StackOverflow data, report a set of 32
main topics concerning distribution, third party APIs, data
management, sensors, tools and user interfaces.

The qualitative study by Francese et al. [4] gathered
information by interviewing 4 technology managers in ad-
dition to surveying 82 mobile app professionals. They report
that their surveyed developers perceive mobile platform
fragmentation and inadequate testing support as the two
main difficulties. They also report that mobile developers
concede that developing software for mobile devices is
different than that of other type of software development.

In testing, Kochhar et al. [48] investigated the adequacy
of mobile app testing practices. They report that 86% of
open source Android applications do not contain test cases,
and those that do have poor line coverage (median 9.33%).
To that end, they survey 127 Microsoft developers and
found that the majority (114 out of 127) use manual testing
rather than automated testing tools. They compile a list
of challenges that prevents developers from adopting said
tools, including time constraints, poor documentation and
emphasis on development. These limitations are confirmed
in a study by Linares-Vàsquez et al. [91] comprising 102
respondents of open-source mobile developers.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 16

In maintenance, Linares-Vàsquez et al. [99] investigated
how mobile app developers detect and fix performance
issues. They collected the responses of 485 open-source
Android developers and analysed their Github repositories.
They found that, in order to detect performance bottlenecks,
developers are aided by user reviews and mostly rely on
manual execution. Salza et al. [100] found that developers
do not promptly update third-party APIs (especially non
GUI-related ones) and that 89% of apps with up-to-date
APIs are highly rated.

Nayebi et al. [5] shed light on possible changes in release
practices of mobile applications due to the OS vendor’s
quality assurance process. Surveying 674 mobile app users
and 36 developers, they find that about half of the surveyed
developers follow a rational release strategy. Those who do,
are more likely to be experienced developers with higher
success. More interestingly, it seems that how the app is
perceived by users when considering downloading it affects
how developers make release strategy decisions. About 44%
of the surveyed developers believe that their release strategy
affect the perception of users regarding that app. On the
other hand, they find that end users do indeed prefer apps
that are more recently updated. They also report that the
second most common release strategy in the app store is a
marketing-based strategy. Further in support of this finding,
we measure and report respondents’ perceived importance
of having someone on the team solely dedicated to the task
of app ‘marketing’ (77% agreement); we additionally report
the strategies used by team members to make marketing
decisions. The previous paper presents interesting findings
and an in-depth view of the release strategies of mobile app
developers; in our study, we shift the focus to address the
role of the app store itself with a wider basis of scientific
evidence (186 respondents).

Nayebi et al. subsequently investigated open-source app
versions that are not shipped into the app store [46], intro-
ducing the concept of release ‘marketability’. To this end,
they surveyed 22 developers, the majority of which (95%)
state that market acceptability of a mobile app release is
more important than that of traditional software. Our study
further investigates the effects of app-store-specific criteria
to the success of the app as a whole (not just a specific
release [46]) finding that while the quality of the user
experience is the most agreed upon, it is closely followed
by the application’s visibility in the app store.

Villarroel et al. [43] and Scalabrino et al. [44] conducted
a semi-structured interview with 3 project managers of
software companies developing mobile apps in order to
evaluate the usefulness of their tool (which extracts and
clusters user reviews from the app store into bug report
or new feature request). The tool was first demonstrated to
the managers, then they were asked about the usefulness
of reviews (do you analyse user reviews when planning a
new release?), to which they answer yes. Our study confirms
this prior finding with a wider basis of scientific evidence
(186 respondents), it also extends it by reporting the fre-
quency with which developers receive bug reports from
user feedback in app stores and how this affects its priority
(compared to other channels). Our paper additionally inves-
tigates further stages at which developers refer to the app
store (idea conception/validation, requirement elicitation,

GUI design inspiration and feedback of competing/similar
apps).

While these studies partially address the changes in-
troduced by app stores, research studies fully addressing
the potential effects of the mobile application distribution
model are few and far-apart. Holzer et al. [2] identify
the app store as a two-sided market. A Two-sided market
[101] is a market model consisting of two groups of clients
participating in one platform where the increase of one side
attracts the increase of the other and thus the market is in
growth loop; where in the case of mobile app stores, one
client group is users and the other is developers. Holzer et
al. further discuss the various trends such a market may in-
troduce and their implication on developers. The centralised
sales portal model, for example, carries the implication that
developers have immediate access to the entire consumer
base and lowers distribution costs; but on the other hand,
imposes limits on the freedom of the developers. Our paper
addresses this gap by taking software development life cycle
phases as the point of analysis when surveying industry
practitioners to uncover the involvement of app store in
developers’ practices. We believe conducting this type of
research is important as more platform-mediated applica-
tion markets rise in popularity (e.g. wearable apps, voice
assistant skills) introducing the need to investigate whether
and how deployment portals for platform-specific software
affect software development practices.

8 CONCLUSIONS

This study investigated aspects of app store develop-
ers’ software engineering activities revealing overarching
themes of importance to app store software development.
The three main themes that emerged were market trans-
parency, user-developer gap reduction, and release cycles.

App stores exemplify market transparency in which app
description, features, price, rating and user feedback are
public. Our survey found that developers do, indeed, refer
to similar apps when designing their own. Our results reveal
that developers are interested in monitoring similar apps
for maintenance and evolution. We also found that other
apps’ user feedback, rating and screenshots and are the
three most important aspects of information gleaned from
the open market by developers. Our results highlight the
way in which app stores have become a communication
channel between users and developers. Our findings con-
firm that developers seldom neglect user feedback posted
on app stores; user feedback was the third strongly agreed-
on source of app improvement after the initial strategy of
the app and monitoring similar apps on the app store. Our
survey respondents also rated user reviews as the second
most prolific channel of bug reporting after automatic in-
app crash reports but regardless was scored highest in pri-
oritisation. User feedback, in addition to being informative
to developers, also determines the overall rating of the
app. Previous research on this subject showed that release
frequency correlates with increased user feedback [69] [70].
More than half of our respondents reported changing their
release plan in accordance with perceived constraints im-
posed by the app store ecosystem. These findings have ac-
tionable conclusions for software engineering practitioners

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 17

and researchers, including requirements engineering, test-
ing and mining software repositories research communities,
and also business communities.

REFERENCES

[1] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A Survey of
App Store Analysis for Software Engineering,” IEEE Transactions
on Software Engineering, pp. 1–1, 2016.

[2] A. Holzer and J. Ondrus, “Mobile application market: A
developers perspective,” Telematics and Informatics, vol. 28,
no. 1, pp. 22–31, Feb. 2011. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0736585310000377

[3] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real Challenges
in Mobile App Development,” in 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement.
IEEE, Oct. 2013, pp. 15–24.

[4] R. Francese, C. Gravino, M. Risi, G. Scanniello, and G. Tortora,
“Mobile app development and management: results from a qual-
itative investigation,” Proceedings of the 4th International Conference
on Mobile Software Engineering and Systems, pp. 133–143, 2017.

[5] M. Nayebi, B. Adams, and G. Ruhe, “Release Practices for Mobile
Apps – What do Users and Developers Think?” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE, Mar 2016, pp. 552–562.

[6] S. L. Lim, P. J. Bentley, N. Kanakam, F. Ishikawa, and S. Honiden,
“Investigating Country Differences in Mobile App User Behavior
and Challenges for Software Engineering,” IEEE Transactions on
Software Engineering, vol. 41, no. 1, pp. 40–64, Jan 2015.

[7] C. Rosen and E. Shihab, “What are mobile developers asking
about? A large scale study using stack overflow,” Empirical Soft-
ware Engineering, vol. 21, no. 3, pp. 1192–1223, Jun 2016.

[8] R. E. Boyatzis, Transforming qualitative information : thematic analy-
sis and code development. Sage Publications, 1998.

[9] K. Roulston, “Data analysis and ’theorizing as ideology’,” Quali-
tative Research, vol. 1, no. 3, pp. 279–302, Dec 2001.

[10] B. E. Whitley, M. E. Kite, and H. L. Adams, Principles of research
in behavioral science, 3rd ed. Routledge, 2012.

[11] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative research in psychology, vol. 3, no. 2, pp. 77–101, 2006.

[12] M. D. Syer, M. Nagappan, A. E. Hassan, and B. Adams, “Revis-
iting prior empirical findings for mobile apps: an empirical case
study on the 15 most popular open-source Android apps,” pp.
283–297, 2013.

[13] A. Miniukovich and A. De Angeli, “Computation of Interface
Aesthetics,” in Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems - CHI ’15. New York, New
York, USA: ACM Press, 2015, pp. 1163–1172.

[14] T.-H. Chang, T. Yeh, and R. Miller, “Associating the visual rep-
resentation of user interfaces with their internal structures and
metadata,” in Proceedings of the 24th annual ACM symposium on
User interface software and technology - UIST ’11. New York, New
York, USA: ACM Press, 2011, p. 245.

[15] M. Harman, A. Al-Subaihin, Y. Jia, W. Martin, F. Sarro, and
Y. Zhang, “Mobile app and app store analysis, testing and op-
timisation,” in Proceedings of the International Conference on Mobile
Software Engineering and Systems, ser. MOBILESoft ’16. New
York, NY, USA: ACM, 2016, pp. 243–244.

[16] I. Benbasat, D. K. Goldstein, and M. Mead, “The Case Research
Strategy in Studies of Information Systems,” MIS Quarterly,
vol. 11, no. 3, p. 369, Sep 1987.

[17] P. Runeson and M. Höst, “Guidelines for conducting and re-
porting case study research in software engineering,” Empirical
Software Engineering, vol. 14, no. 2, pp. 131–164, Dec. 2008.

[18] C. Robson and K. McCartan, Real world research : a resource for
users of social research methods in applied settings, 4th ed. John
Wiley & Sons, 2015.

[19] B. Kitchenham and S. Pfleeger, “Principles of survey research part
2,” ACM SIGSOFT Software Engineering Notes, vol. 27, no. 1, pp.
18–20, Jan 2002.

[20] B. Glaser and A. L. Strauss, Discovery of Grounded Theory Strategies
for Qualitative Research. Taylor and Francis, 1967.

[21] C. Wohlin and A. Aurum, “Towards a decision-making
structure for selecting a research design in empirical software
engineering,” Empirical Software Engineering, vol. 20, no. 6, pp.
1427–1455, dec 2015. [Online]. Available: http://link.springer.
com/10.1007/s10664-014-9319-7

[22] D. S. Cruzes and T. Dyba, “Recommended Steps for Thematic
Synthesis in Software Engineering,” in 2011 International
Symposium on Empirical Software Engineering and Measurement.
IEEE, sep 2011, pp. 275–284. [Online]. Available: http:
//ieeexplore.ieee.org/document/6092576/

[23] A. Abran, P. Bourque, R. Dupuis, and J. W. Moore, Eds., Guide
to the Software Engineering Body of Knowledge - SWEBOK. Piscat-
away, NJ, USA: IEEE Press, 2001.

[24] I. Bohnet, H. Harmgart, S. H. (Ucl), and J.-R. Tyran,
“Learning Trust,” Journal of the European Economic Association,
vol. 3, no. 2-3, pp. 322–329, may 2005. [Online]. Available:
https://academic.oup.com/jeea/jeea/article/2281111/Learning

[25] A. A. Al-Subaihin, A. Finkelstein, M. Harman, Y. Jia, W. Martin,
F. Sarro, and Y. Zhang, “App store mining and analysis,” in Pro-
ceedings of the 3rd International Workshop on Software Development
Lifecycle for Mobile, DeMobile 2015, 2015, pp. 1–2.

[26] A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro, and
Y. Zhang, “Investigating the relationship between price, rating,
and popularity in the blackberry world app store,” Information
and Software Technology, vol. 87, no. Supplement C, pp. 119 –
139, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S095058491730215X

[27] ——, “App store analysis: Mining app stores for relationships
between customer, business and technical characteristics,” UCL -
Research Note RN/14/10, September 2014.

[28] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis:
MSR for app stores,” pp. 108–111, Jun. 2012.

[29] A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, M. Harman,
Y. Jia, and Y. Zhang, “Clustering mobile apps based on mined
textual features,” in Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’16. New York, NY, USA: ACM, 2016, pp. 38:1–38:10.

[30] F. Sarro, A. Al-Subaihin, M. Harman, Y. Jia, W. Martin, and
Y. Zhang, “Feature Lifecycles as They Spread, Migrate, Remain
and Die in App Stores,” in 2015 23rd IEEE International Re-
quirments Engineering Conference. IEEE, Aug. 2015.

[31] Y. Liu, L. Liu, H. Liu, X. Wang, and H. Yang, “Mining
domain knowledge from app descriptions,” Journal of Systems
and Software, vol. 133, pp. 126–144, nov 2017. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0164121217301784

[32] F. Sarro, M. Harman, Y. Jia, and Y. Zhang, “Customer rating reac-
tions can be predicted purely using app features,” in Proceedings
of the 26th IEEE International Requirements Engineering Conference,
ser. RE’18. IEEE, 2018, p. to appear.

[33] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
“Understanding Android Fragmentation with Topic Analysis of
Vendor-Specific Bugs,” in 2012 19th Working Conference on Reverse
Engineering. IEEE, Oct 2012, pp. 83–92.

[34] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan, “Prioritiz-
ing the devices to test your app on: A case study of android game
apps,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: ACM, 2014, pp. 610–620.

[35] G. Grano, A. Ciurumelea, S. Panichella, F. Palomba, and H. C.
Gall, “Exploring the integration of user feedback in automated
testing of Android applications,” in 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, mar 2018, pp. 72–83. [Online]. Available:
http://ieeexplore.ieee.org/document/8330198/

[36] F. Sarro, “Predictive analytics for software testing,” in
Proceedings of the 11th International Workshop on Search-
Based Software Testing - SBST ’18. New York, New York,
USA: ACM Press, 2018, pp. 1–1. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=3194718.3194730

[37] C. McMillan, M. Linares-Vasquez, D. Poshyvanyk, and
M. Grechanik, “Categorizing software applications for mainte-
nance,” in 2011 27th IEEE International Conference on Software
Maintenance (ICSM). IEEE, Sep 2011, pp. 343–352.

[38] C. Iacob and R. Harrison, “Retrieving and analyzing mobile
apps feature requests from online reviews,” in 2013 10th Working
Conference on Mining Software Repositories (MSR). IEEE, May
2013, pp. 41–44.

[39] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “AR-miner:
mining informative reviews for developers from mobile app
marketplace,” in Proceedings of the 36th International Conference on

http://www.sciencedirect.com/science/article/pii/S0736585310000377
http://www.sciencedirect.com/science/article/pii/S0736585310000377
http://link.springer.com/10.1007/s10664-014-9319-7
http://link.springer.com/10.1007/s10664-014-9319-7
http://ieeexplore.ieee.org/document/6092576/
http://ieeexplore.ieee.org/document/6092576/
https://academic.oup.com/jeea/jeea/article/2281111/Learning
http://www.sciencedirect.com/science/article/pii/S095058491730215X
http://www.sciencedirect.com/science/article/pii/S095058491730215X
https://www.sciencedirect.com/science/article/pii/S0164121217301784
https://www.sciencedirect.com/science/article/pii/S0164121217301784
http://ieeexplore.ieee.org/document/8330198/
http://dl.acm.org/citation.cfm?doid=3194718.3194730
http://dl.acm.org/citation.cfm?doid=3194718.3194730

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 18

Software Engineering (ICSE). New York, New York, USA: ACM
Press, May 2014, pp. 767–778.

[40] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change
in my app? summarizing app reviews for recommending soft-
ware changes,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering -
FSE 2016. New York, New York, USA: ACM Press, 2016, pp.
499–510.

[41] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Fer-
rucci, and A. De Lucia, “Recommending and Localizing Change
Requests for Mobile Apps Based on User Reviews,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, May 2017, pp. 106–117.

[42] N. Jha and A. Mahmoud, “Using frame semantics for
classifying and summarizing application store reviews,”
Empirical Software Engineering, pp. 1–34, mar 2018. [Online].
Available: http://link.springer.com/10.1007/s10664-018-9605-x

[43] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta,
“Release planning of mobile apps based on user reviews,” in Pro-
ceedings of the 38th International Conference on Software Engineering
- ICSE ’16. New York, New York, USA: ACM Press, 2016, pp.
14–24.

[44] S. Scalabrino, G. Bavota, B. Russo, R. Oliveto, and M. Di
Penta, “Listening to the Crowd for the Release Planning of
Mobile Apps,” IEEE Transactions on Software Engineering, pp. 1–1,
2017. [Online]. Available: http://ieeexplore.ieee.org/document/
8057860/

[45] W. Martin, F. Sarro, and M. Harman, “Causal impact analysis
for app releases in google play,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering - FSE 2016. New York, New York, USA: ACM Press,
2016, pp. 435–446.

[46] M. Nayebi, H. Farahi, and G. Ruhe, “Which Version Should
Be Released to App Store?” in 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, nov 2017, pp. 324–333. [Online]. Available:
http://ieeexplore.ieee.org/document/8170119/

[47] S. Shen, X. Lu, and Z. Hu, “Towards Release Strategy
Optimization for Apps in Google Play,” 2017. [Online].
Available: https://arxiv.org/pdf/1707.06022.pdf

[48] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and
D. Lo, “Understanding the Test Automation Culture of App
Developers,” in 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST). IEEE, apr 2015, pp.
1–10. [Online]. Available: http://ieeexplore.ieee.org/document/
7102609/

[49] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan,
“What Do Mobile App Users Complain About?” IEEE Software,
vol. 32, no. 3, pp. 70–77, may 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/6762802/

[50] H. Khalid, M. Nagappan, and A. Hassan, “Examining the Re-
lationship between FindBugs Warnings and End User Ratings:
A Case Study On 10,000 Android Apps,” IEEE Software, vol. PP,
no. 99, pp. 1–1, 2015.

[51] W. Martin, F. Sarro, and M. Harman, “Causal Impact Analysis
Applied to App Releases in Google Play and Windows Phone
Store,” University College London, Research Note, RN/15/07,
Tech. Rep., 2015.

[52] E. Shaw, A. Shaw, and D. Umphress, “Mining Android
Apps to Predict Market Ratings,” in Proceedings of the 6th
International Conference on Mobile Computing, Applications and
Services. ICST, 2014. [Online]. Available: http://eudl.eu/doi/
10.4108/icst.mobicase.2014.257773

[53] D. E. Krutz, N. Munaiah, A. Meneely, and S. A. Malachowsky,
“Examining the relationship between security metrics and user
ratings of mobile apps: a case study,” in Proceedings of the Inter-
national Workshop on App Market Analytics - WAMA 2016. New
York, New York, USA: ACM Press, 2016, pp. 8–14.

[54] L. Guerrouj, S. Azad, and P. C. Rigby, “The influence of
App churn on App success and StackOverflow discussions,”
in 2015 IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER). IEEE, mar 2015, pp. 321–
330. [Online]. Available: http://ieeexplore.ieee.org/document/
7081842/

[55] G. Bavota, M. Linares-Vasquez, C. E. Bernal-Cardenas, M. D.
Penta, R. Oliveto, and D. Poshyvanyk, “The Impact of

API Change- and Fault-Proneness on the User Ratings of
Android Apps,” IEEE Transactions on Software Engineering,
vol. 41, no. 4, pp. 384–407, apr 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/6945855/

[56] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “Api change and fault proneness:
A threat to the success of android apps,” in Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2013. New York, NY, USA: ACM, 2013, pp. 477–487.

[57] H. Hu, C.-P. Bezemer, and A. E. Hassan, “Studying the
consistency of star ratings and the complaints in 1 & 2-star
user reviews for top free cross-platform Android and iOS apps,”
Empirical Software Engineering, pp. 1–34, mar 2018. [Online].
Available: http://link.springer.com/10.1007/s10664-018-9604-y

[58] H. Hu, S. Wang, C.-P. Bezemer, and A. E. Hassan,
“Studying the consistency of star ratings and reviews of
popular free hybrid Android and iOS apps,” Empirical
Software Engineering, pp. 1–26, apr 2018. [Online]. Available:
http://link.springer.com/10.1007/s10664-018-9617-6

[59] E. Noei, M. D. Syer, Y. Zou, A. E. Hassan, and I. Keivanloo,
“A study of the relation of mobile device attributes with the
user-perceived quality of Android apps,” Empirical Software
Engineering, vol. 22, no. 6, pp. 3088–3116, dec 2017. [Online].
Available: http://link.springer.com/10.1007/s10664-017-9507-3

[60] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan, “What
are the characteristics of high-rated apps? A case study
on free Android Applications,” in 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME).
IEEE, sep 2015, pp. 301–310. [Online]. Available: http:
//ieeexplore.ieee.org/document/7332476/

[61] I. J. Mojica Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst,
and A. E. Hassan, “Impact of ad libraries on ratings of android
mobile apps,” IEEE Software, vol. 31, no. 6, pp. 86–92, 2014.

[62] F. J. Gravetter and L.-A. B. Forzano, Research methods for the
behavioral sciences. Wadsworth Cengage Learning, 2012.

[63] E. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys,
ankle sprains, and keepers of quality: how is video
game development different from software development?”
in Proceedings of the 36th International Conference on Software
Engineering - ICSE 2014. New York, New York, USA: ACM
Press, 2014, pp. 1–11. [Online]. Available: http://dl.acm.org/
citation.cfm?doid=2568225.2568226

[64] I. Manotas, C. Bird, L. Pollock, and J. Clause, “An empirical study
of practitioners’ perspectives on green software engineering,”
University of Delaware, Tech. Rep. 2014/003, 2014.

[65] B. A. Kitchenham and S. L. Pfleeger, “Personal Opinion Surveys,”
in Guide to Advanced Empirical Software Engineering. London:
Springer London, 2008, pp. 63–92.

[66] M. Nayebi, K. Kuznetsov, P. Chen, A. Zeller,
and G. Ruhe, “Anatomy of Functionality Deletion,”
in Proceedings of the Conference on Mining Software
Repositories (MSR’18), Gothenburg, Sweden, 2018. [Online].
Available: https://www.ucalgary.ca/mnayebi/files/mnayebi/
anatomy-of-functionality-deletions.pdf

[67] E. Guzman, M. El-Haliby, and B. Bruegge, “Ensemble Methods
for App Review Classification: An Approach for Software Evo-
lution (N),” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, Nov 2015, pp. 771–
776.

[68] F. Palomba, M. Linares-Vasquez, G. Bavota, R. Oliveto, M. Di
Penta, D. Poshyvanyk, and A. De Lucia, “User reviews matter!
Tracking crowdsourced reviews to support evolution of suc-
cessful apps,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, Sep 2015, pp. 291–
300.

[69] D. Pagano and W. Maalej, “User feedback in the appstore: An
empirical study,” in 2013 21st IEEE International Requirements
Engineering Conference (RE). IEEE, Jul. 2013, pp. 125–134.

[70] S. Mcilroy, W. Shang, N. Ali, and A. E. Hassan, “User reviews of
top mobile apps in Apple and Google app stores,” Communica-
tions of the ACM, vol. 60, no. 11, pp. 62–67, Oct 2017.

[71] S. McIlroy, W. Shang, N. Ali, and A. Hassan, “Is It Worth
Responding to Reviews? A Case Study of the Top Free Apps
in the Google Play Store,” IEEE Software, vol. PP, no. 99,
pp. 1–1, 2015. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=7325189

http://link.springer.com/10.1007/s10664-018-9605-x
http://ieeexplore.ieee.org/document/8057860/
http://ieeexplore.ieee.org/document/8057860/
http://ieeexplore.ieee.org/document/8170119/
https://arxiv.org/pdf/1707.06022.pdf
http://ieeexplore.ieee.org/document/7102609/
http://ieeexplore.ieee.org/document/7102609/
http://ieeexplore.ieee.org/document/6762802/
http://eudl.eu/doi/10.4108/icst.mobicase.2014.257773
http://eudl.eu/doi/10.4108/icst.mobicase.2014.257773
http://ieeexplore.ieee.org/document/7081842/
http://ieeexplore.ieee.org/document/7081842/
http://ieeexplore.ieee.org/document/6945855/
http://link.springer.com/10.1007/s10664-018-9604-y
http://link.springer.com/10.1007/s10664-018-9617-6
http://link.springer.com/10.1007/s10664-017-9507-3
http://ieeexplore.ieee.org/document/7332476/
http://ieeexplore.ieee.org/document/7332476/
http://dl.acm.org/citation.cfm?doid=2568225.2568226
http://dl.acm.org/citation.cfm?doid=2568225.2568226
https://www.ucalgary.ca/mnayebi/files/mnayebi/anatomy-of-functionality-deletions.pdf
https://www.ucalgary.ca/mnayebi/files/mnayebi/anatomy-of-functionality-deletions.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7325189
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7325189

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 50, NO. 8, SEPTEMBER 2018 19

[72] G. Lee and T. S. Raghu, “Determinants of Mobile Apps’ Success:
Evidence from the App Store Market,” pp. 133–170, dec 2014.
[Online]. Available: http://www.tandfonline.com/doi/abs/10.
2753/MIS0742-1222310206

[73] I. J. Mojica Ruiz, M. Nagappan, B. Adams, T. Berger,
S. Dienst, and A. E. Hassan, “Examining the Rating
System Used in Mobile-App Stores,” IEEE Software, vol. 33,
no. 6, pp. 86–92, nov 2016. [Online]. Available: http:
//ieeexplore.ieee.org/document/7045413/

[74] W. Maalej and H. Nabil, “Bug report, feature request, or simply
praise? On automatically classifying app reviews,” in 2015 IEEE
23rd International Requirements Engineering Conference (RE), 2015.

[75] M. Lu and P. Liang, “Automatic Classification of Non-Functional
Requirements from Augmented App User Reviews,” in Proceed-
ings of the 21st conference on Evaluation and Assessment in Software
Engineering, EASE’17, Karlskrona, Sweden., 2017.

[76] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why
People Hate Your App Making Sense of User Feedback in a
Mobile App Store,” in Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining -
KDD ’13. New York, New York, USA: ACM Press, 2013, p. 1276.

[77] E. Guzman, O. Aly, and B. Bruegge, “Retrieving Diverse Opin-
ions from App Reviews,” in 2015 ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM).
IEEE, Oct 2015, pp. 1–10.

[78] E. Guzman and W. Maalej, “How Do Users Like This Feature?
A Fine Grained Sentiment Analysis of App Reviews,” in 2014
IEEE 22nd International Requirements Engineering Conference (RE).
IEEE, Aug. 2014, pp. 153–162.

[79] T. Johann, C. Stanik, A. M. A. B., and W. Maalej, “SAFE: A Simple
Approach for Feature Extraction from App Descriptions and App
Reviews,” in 2017 IEEE 25th International Requirements Engineering
Conference (RE). IEEE, Sep 2017, pp. 21–30.

[80] G. Grano, A. Di Sorbo, F. Mercaldo, C. A. Visaggio, G. Canfora,
and S. Panichella, “Android apps and user feedback: a dataset
for software evolution and quality improvement,” in Proceedings
of the 2nd ACM SIGSOFT International Workshop on App Market
Analytics - WAMA 2017. New York, New York, USA: ACM Press,
2017, pp. 8–11.

[81] N. Genc-Nayebi and A. Abran, “A systematic literature review:
Opinion mining studies from mobile app store user reviews,”
Journal of Systems and Software, vol. 125, pp. 207–219, Mar 2017.

[82] Z. Xie and S. Zhu, “AppWatcher : unveiling the underground
market of trading mobile app reviews,” in Proceedings of the
8th ACM Conference on Security & Privacy in Wireless and Mobile
Networks - WiSec ’15. New York, New York, USA: ACM Press,
2015, pp. 1–11.

[83] S. Li, J. Caverlee, W. Niu, and P. Kaghazgaran, “Crowdsourced
App Review Manipulation,” in Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information
Retrieval - SIGIR ’17. New York, New York, USA: ACM Press,
2017, pp. 1137–1140.

[84] P. M. Vu, T. T. Nguyen, H. V. Pham, and T. T. Nguyen, “Min-
ing User Opinions in Mobile App Reviews: A Keyword-Based
Approach (T),” in 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, Nov 2015, pp.
749–759.

[85] F. A. Shah, Y. Sabanin, and D. Pfahl, “Feature-based evaluation
of competing apps,” in Proceedings of the International Workshop on
App Market Analytics - WAMA 2016. New York, New York, USA:
ACM Press, 2016, pp. 15–21.

[86] X. Chen, Q. Zou, B. Fan, Z. Zheng, and X. Luo, “Recommending
software features for mobile applications based on user
interface comparison,” Requirements Engineering, pp. 1–15,
jul 2018. [Online]. Available: http://link.springer.com/10.1007/
s00766-018-0303-4

[87] B. Adams and S. McIntosh, “Modern Release Engineering in a
Nutshell – Why Researchers Should Care,” in 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER). IEEE, Mar 2016, pp. 78–90.

[88] R. Minelli and M. Lanza, “Software Analytics for Mobile
Applications–Insights & Lessons Learned,” in 2013 17th European
Conference on Software Maintenance and Reengineering. IEEE, Mar
2013, pp. 144–153.

[89] E. Ries, The lean startup : how today’s entrepreneurs use continuous
innovation to create radically successful businesses. Crown Publish-
ing Group, 2011.

[90] A. I. Wasserman, “Software engineering issues for mobile appli-
cation development,” in Proceedings of the FSE/SDP workshop on
Future of software engineering research - FoSER ’10. New York,
New York, USA: ACM Press, Nov 2010, p. 397.

[91] M. Linares-Vasquez, C. Bernal-Cardenas, K. Moran, and
D. Poshyvanyk, “How do Developers Test Android Applica-
tions?” in 2017 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, sep 2017, pp. 613–622. [On-
line]. Available: http://ieeexplore.ieee.org/document/8094467/

[92] G. Sethumadhavan, “Sizing Android mobile applications,” in 6th
IFPUG International Software Measurement and Analysis Conference
(ISMA), 2011.

[93] T. Preuss, “Mobile Applications, Functional Analysis, and the
Customer Experience,” in The IFPUG Guide to IT and Software
Measurement, IFPUG, Ed. Auerbach Publications, 2012, pp. 408–
433.

[94] H. van Heeringen and E. Van Gorp, “Measure the Functional
Size of a Mobile App: Using the COSMIC Functional Size Mea-
surement Method,” in Software Measurement and the International
Conference on Software Process and Product Measurement (IWSM-
MENSURA), 2014 Joint Conference of the International Workshop on.
IEEE, 2014, pp. 11–16.

[95] F. Ferrucci, C. Gravino, P. Salza, and F. Sarro, “Investigating
functional and code size measures for mobile applications: A
replicated study,” in Product-Focused Software Process Improvement
- 16th International Conference, PROFES 2015, Bolzano, Italy, Decem-
ber 2-4, 2015, Proceedings, 2015, pp. 271–287.

[96] ——, “Investigating functional and code size measures for mobile
applications,” in 41st Euromicro Conference on Software Engineering
and Advanced Applications, EUROMICRO-SEAA 2015, Madeira,
Portugal, August 26-28, 2015, 2015, pp. 365–368.

[97] G. Catolino, P. Salza, C. Gravino, and F. Ferrucci, “A set of metrics
for the effort estimation of mobile apps,” Proceedings of the 4th
International Conference on Mobile Software Engineering and Systems,
pp. 194–198, 2017.

[98] H. K. Flora, X. Wang, and S. V.Chande, “An Investigation into
Mobile Application Development Processes: Challenges and Best
Practices,” International Journal of Modern Education and Computer
Science, vol. 6, no. 6, pp. 1–9, Jun 2014.

[99] M. Linares-Vasquez, C. Vendome, Q. Luo, and D. Poshyvanyk,
“How developers detect and fix performance bottlenecks in
Android apps,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, sep 2015, pp. 352–
361. [Online]. Available: http://ieeexplore.ieee.org/document/
7332486/

[100] P. Salza, F. Palomba, D. Di Nucci, C. D’Uva, A. De Lucia,
and F. Ferrucci, “Do Developers Update Third-Party Libraries
in Mobile Apps?” in 26th International Conference on Program
Comprehension (ICPC 2018). ACM, 2018. [Online]. Available:
https://doi.org/10.475/123{ }4

[101] M. Armstrong, “Competition in two-sided markets,” The RAND
Journal of Economics, vol. 37, no. 3, pp. 668–691, sep 2006.
[Online]. Available: http://doi.wiley.com/10.1111/j.1756-2171.
2006.tb00037.x

http://www.tandfonline.com/doi/abs/10.2753/MIS0742-1222310206
http://www.tandfonline.com/doi/abs/10.2753/MIS0742-1222310206
http://ieeexplore.ieee.org/document/7045413/
http://ieeexplore.ieee.org/document/7045413/
http://link.springer.com/10.1007/s00766-018-0303-4
http://link.springer.com/10.1007/s00766-018-0303-4
http://ieeexplore.ieee.org/document/8094467/
http://ieeexplore.ieee.org/document/7332486/
http://ieeexplore.ieee.org/document/7332486/
https://doi.org/10.475/123{_}4
http://doi.wiley.com/10.1111/j.1756-2171.2006.tb00037.x
http://doi.wiley.com/10.1111/j.1756-2171.2006.tb00037.x

	Introduction
	Methodology
	Study Design
	Research Questions
	Interviews
	Protocol
	Participants
	Data Analysis

	Questionnaire
	Design
	Participants
	Data Analysis

	Findings
	Interview Analysis Results
	RQ1: Lifecycle Processes
	Requirements Elicitation
	Testing
	Maintenance
	Release Management

	RQ2: Emerging Skill-sets and Best Practices
	RQ3: New Success Criteria and Performance Measures

	Discussion
	Developer-User Interaction
	Market Transparency
	Release Planning and Quality

	Threats to validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Conclusions
	References

