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It is becoming increasingly recognized that cerebrovascular disease is a contributing factor in the 

pathogenesis of Alzheimer’s disease (AD). A unique 4D-Flow magnetic resonance imaging (MRI) 

technique, phase contrast vastly undersampled isotropic projection imaging, (PC VIPR), enables 

examination of angiographic and quantitative metrics of blood flow in the arteries of the Circle of 

Willis within a single MRI acquisition. Thirty-eight participants with Mild Cognitive Impairment 

(MCI) underwent a comprehensive neuroimaging protocol (including 4D-Flow imaging) and a 

standard neuropsychological battery. A subset of participants (N=22) also underwent lumbar 

puncture and had cerebrospinal fluid (CSF) assayed for AD biomarkers. Cut-offs for biomarker 

positivity in CSF resulting from a Receiver Operating Characteristic (ROC) curve analysis of AD 

cases and controls from the larger Wisconsin Alzheimer’s Disease Research Center cohort were 

used to classify MCI participants as biomarker positive or negative on amyloid-β (Aβ42), total-tau 

and total-tau/Aβ42 ratio. Internal carotid artery (ICA) and middle cerebral artery (MCA) mean 

flow were associated with executive functioning performance, with lower mean flow 

corresponding to worse performance. MCI participants who were biomarker positive for Aβ42 had 

lower ICA mean flow than did those who were Aβ42 negative. In sum, mean ICA and MCA 

arterial flow was associated with cognitive performance in participants with MCI and lower flow 

in the ICA was associated with amyloid positivity. This provides further evidence for vascular 

health as a contributing factor in the etiopathogenesis of AD, and could represent a point to 

intervene in the disease process.
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1. Introduction

Mild Cognitive Impairment (MCI) is defined as cognitive decline below age, sex and 

education adjusted population norms on neuropsychological tests that does not disrupt 

independent functioning in daily life [1, 2]. As MCI can result in variable clinical outcomes 

including dementia due to Alzheimer’s disease (AD), it is important to identify markers that 

might predict these outcomes, such as deposition of extracellular aggregates of amyloid-β 
(Aβ) [3–5]. An amyloid positron emission tomography (PET) study using Pittsburgh 

Imaging Compound B (PiB) as a measure of amyloid deposition found that amongst 65 

individuals with MCI, 69% presented with high PiB binding (cortical standard uptake value 

ratio (SUVR) > 1.5); of these, 67% progressed to dementia due to AD over the following 1–

2 years [6]. Interestingly, only 5% of MCI patients with low amyloid burden progressed to 

dementia due to probable AD during the same study period [6]. However, as the presence or 

absence of amyloid binding does not perfectly predict conversion to AD, it is important to 

examine contributions of other health and pathological markers.

The role of vascular health in the pathogenesis of MCI and AD is increasingly being 

understood as an important contributing factor. The presence of periventricular white matter 

hyperintensities of presumed vascular origin among 698 participants that were either 

cognitively normal or diagnosed with MCI was associated with high amyloid in the brain (as 

measured by florbetapir-PET) and low cerebrospinal fluid (CSF) concentration of the 42 
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amino acid (aggregation-prone isoform of amyloid-β (Aβ42) that correlates inversely with 

plaque load in the brain). Interestingly, this relationship persisted when age, APOE 
genotype, and vascular risk factors were controlled for in their analyses [7]. Given that the 

link between periventricular white matter hyperintensities and amyloid accumulation 

persisted even when accounting for standard vascular risk factors [7], a possible explanation 

is that the mechanics and health of the intracranial vasculature play a role.

Our group has been focusing on intracranial arterial health in particular, using a 4D flow 

magnetic resonance imaging (MRI) technique that allows for imaging of large and medium 

sized cerebral vessels in the Circle of Willis with high spatiotemporal resolution in clinically 

feasible scan times [8–10]. We employ a specific technique termed phase contrast vastly 

undersampled isotropic projection imaging, or PC VIPR. Compared to conventional MRI 

methods for examining flow, such as traditional 3D phase contrast imaging, PC VIPR 

increases the product of volume coverage and spatial resolution by a factor of 30 without 

increasing scan times, as it does not require time consuming phase encoding [10]. 

Furthermore, the technique facilitates measurements of flow, pulsatility, and vessel area that 

can be determined retrospectively. Using this technique, we have previously shown 

decreased mean blood flow and increased pulsatility (a metric of vessel stiffness) in the 

intracranial arteries, from cognitively healthy middle-aged individuals, to cognitively healthy 

older adults and lastly to clinically diagnosed MCI and AD patients [11]. Rivera-Rivera and 

colleagues extended this to examine the properties of the venous system, particularly flow 

and pulsatility, in the superior sagittal sinus, straight sinus, and transverse sinus. In 

participants with AD, transit time of peak flow from the arterial system (middle cerebral 

artery) to the venous system (superior sagittal sinus) was significantly shorter than that in 

age-matched controls, which may be a contributing factor in the impaired clearance of toxic 

metabolites [12]. Furthermore, decreased blood flow in the internal carotid artery (ICA) was 

associated with reduced levels of Aβ42 in the CSF in a mixed sample of cognitively healthy 

and impaired adults [13]; reduced Aβ42 in the CSF is a pathological biomarker profile 

associated with amyloidosis [14] and AD [15]. Decreased blood flow and increased 

pulsatility were also associated with a greater degree of brain atrophy in this same sample 

[13].

In addition to research using the 4D-Flow technique, other recent work has also suggested 

that vessel health may be related to the brain’s capacity to clear metabolites from the 

interstitial space. Toxic metabolites may travel directly from the interstitium to the CSF, or 

from the interstitial space into the perivascular space [16]. Aβ is believed to enter the 

basement membranes of capillaries and arteries that surround smooth muscle cells, move 

along these capillaries and arteries until it reaches the leptomeningeal arteries, and from 

there, is subsequently drained into cervical lymph nodes for clearance [16, 17]. Arterial 

pulsation specifically has been shown to promote exchange of perivascular CSF with 

interstitial fluid [18]. Furthermore, cerebral amyloid angiopathy, whereby amyloid deposits 

along blood vessel walls, is proposed to be a reflection of impaired Aβ clearance [19, 20].

We previously examined 4D flow metrics of blood vessel health in individuals throughout 

the entire AD spectrum; we chose to focus the current study on MCI because it is a stage 

with highly disparate outcomes, ranging from reversion to normal cognition to development 
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of clinical dementia syndromes. Given that many of our most significant results have been 

found when examining the ICA and MCA in our previous studies, we chose to focus on 

these intracranial arteries for the present analyses. We identified participants from the 

Wisconsin Alzheimer’s Disease Research Center (WADRC) with a research diagnosis of 

MCI and 4D flow imaging, with a subset also having CSF biomarker data. We hypothesized 

that amongst MCI patients, those with greater blood flow would have more preserved 

cognitive faculties, as measured via performance on neuropsychological tests. Furthermore, 

we hypothesized that blood flow to the brain would be diminished in individuals with MCI 

with positive biomarkers of CSF Aβ or tau compared to MCI participants who were 

biomarker negative.

2. Methods

2.1. Study Population

Participants were selected from a large cohort, the WADRC, consisting of approximately 

700 individuals spanning the AD spectrum: middle-aged participants both with and without 

a family history of AD, cognitively healthy older control participants, and subjects with 

clinically diagnosed MCI and AD [11, 13]. Participants with MCI are recruited primarily 

from local clinics (or control subjects in longitudinal studies that have shown cognitive 

decline) and diagnosis is confirmed by clinical consensus conference based on established 

clinical criteria [1, 21]. Participants in this study were diagnosed with MCI due to probable 

or possible AD. In addition to having an MCI diagnosis, inclusion criteria included having 

undergone a PC VIPR scan that allowed for measurement of both the left and right internal 

carotid arteries (measured in the distal petrous segment), resulting in a sample of 38 

participants for the present study. All but two (5.3%) of the participants entered the study 

with an MCI diagnosis from a local clinic, with the other two subjects receiving a diagnosis 

of MCI after neuropsychological testing done as part of the WADRC clinical core study. 

One subject entered the study with a presumed diagnosis of dementia due to AD and was 

changed to MCI at consensus conference, whereas the other subject entered as cognitively 

healthy and changed to a diagnosis of MCI at consensus conference. A subset of N=22 

participants underwent a lumbar puncture (LP), which is an optional study procedure. All 

procedures were approved by the University of Wisconsin School of Medicine and Public 

Health Institutional Review Board, in accordance with the Helsinki Declaration of 1975.

2.2. MR Imaging Protocol

Subjects were scanned using an 8-channel head coil (Excite HD Brain Coil, GE Healthcare) 

on a clinical 3T MRI system (MR750, GE Healthcare, Waukesha, WI). The PC VIPR 

method was used to acquire four dimensional flow data [10]. Scan parameters for the PC 

VIPR acquisition were as detailed: venc = 80 cm/s, imaging volume = (22 cm)3, acquired 

isotropic spatial resolution = (0.7 mm)3, TR/TE=7.4/2.7ms, flip angle α=10°, bandwidth = 

83.3KHz, 14,000 projection angles, scan time ~ 7 min, retrospective cardiac gating 

reconstructed into 20 cardiac phases with temporal interpolation [22].
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2.3. Flow Analysis

Velocity vector fields were extracted from the PC VIPR data sets and used for hemodynamic 

evaluation. Matlab (The Mathworks, Natick, MA) was used for segmentation of the arterial 

tree from PC angiograms generated from the 4D-Flow MRI data. Interactive flow 

visualization and selection of planes for quantitative analysis were conducted in EnSight 

(CEI, Apex, NC); flow analysis planes were manually placed orthogonal to the vessel 

orientation in the distal petrous ICA and the middle of the M1 segment of the MCA. Using a 

customized Matlab tool, 2D-cine image series with through-plane velocities were generated 

from 4D-Flow MRI data at the selected planes of interest [23]. Measurements were taken 

from both the left and right ICA and the left and right MCA, and these values were averaged 

to obtain mean ICA and MCA flow metrics, respectively [13, 24]. In three participants the 

MCA was not able to be segmented successfully, so those participants were excluded from 

the MCA analyses only.

2.4. Neuropsychological Testing

Longitudinal cognitive data is collected annually for cognitively healthy older adult (>65y), 

MCI and dementia participants in the WADRC Clinical Core cohort. At each visit, 

participants complete a comprehensive neuropsychological test battery examining a number 

of different cognitive domains; in the study herein, we examined tests of episodic memory 

(Rey Auditory Verbal Learning Test (RAVLT) total trials 1–5 and delayed recall, and 

Wechsler Memory Scale – Revised - Logical Memory Immediate and Delayed recall) and 

executive function (Trail Making Test B (TMT-B), Wechsler Adult Intelligence Scale-

Revised Digit Symbol (WAIS-DS) and animal naming (category fluency)). 

Neuropsychological data from the study visit closest to the MRI was included in analyses 

(mean interval 53.68 days; SD: 41.83). In order to reduce the number of comparisons and 

the likelihood of Type 1 error, we created composite Z scores for executive function (TMT-

B, WAIS-DS and Animal Naming; TMT-B was first reverse-scored so that higher scores 

indicated better performance) and memory (RAVLT and logical memory immediate and 

delay). One subject did not complete the RAVLT or logical memory measures at the 

neuropsychological visit closest to the MRI scan date, so was excluded from the memory 

composite analyses only.

2.5. CSF Collection and Analysis

LP for CSF collection was conducted in the morning following at least a 12 hour fast. The 

LP procedure was performed as follows: a Sprotte spinal needle was inserted into the L3-L4 

or L4-L5 vertebral interspace, with slow suction used to withdraw CSF. Within 30 minutes 

of collection, centrifugation of the CSF to remove red blood cells or other debris was 

performed. The CSF was then aliquoted into 0.5ml polypropylene tubes and stored at −80˚C 

[25] until being sent in bulk for analysis at the Clinical Neurochemistry Lab at the 

Sahlgrenska Academy of the University of Gothenburg, Sweden. The CSF samples were 

assayed for total-tau and amyloid beta 1–42 (Aβ42) using commercially available enzyme-

linked immunosorbent assay (ELISA) methods (INNOTEST assays, Fujiurebio, Ghent 

Belgium) as described previously [26–28]. Board-certified laboratory technicians blinded to 

clinical diagnosis performed all analyses on one occasion per batch sent, with two batches 
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sent. 17 of the participants had CSF analyzed in batch 1, and 5 in batch 2; a statistician (DN) 

created a conversion factor to account for inter-batch variability (Norton et al., in 

preparation). All samples were analyzed according to protocols approved by the Swedish 

Board of Accreditation and Conformity Assessment (SWEDAC) using either of two batches 

of reagents (intra-assay coefficient of variation <10%).

2.6. Statistical Analysis

Multiple linear regression analyses were conducted in SPSS Version 22. Models included 

either bilateral mean blood flow in the ICA or MCA or the difference in flow between the 

left and right ICA or left and right MCA (components used to generate the mean flow 

variable) as the predictor variable, memory or executive function composite scores as the 

outcome variable, with age at MRI scan, sex, years of education, and interval between MRI 

scan and cognitive test date as covariates. The absolute value of the difference between left 

and right flow was examined to test whether it was an overall impairment in blood flow to 

the brain, or a more localized/lateral arterial issue affecting cognitive performance.

Receiver operating characteristic (ROC) curves were used to develop cut-offs of biomarker 

positivity in a separate sample of 38 participants with dementia due to AD and 40 

cognitively healthy adults described in more detail elsewhere (Clark et al., unpublished 

data). For total tau and total-tau/Aβ42, values at and above the value that maximizes 

Youden’s J (Youden’s J = sensitivity + specificity - 1) were defined as biomarker positive. 

Given the inverse relationship between Aβ42 in CSF and Aβ oligomers and plaques in the 

brain, values at or below the cut-off for Aβ42 were defined as biomarker positive. The 

cutoffs used were as follows: Aβ42 (6.156 natural log scale, 471.54 ng/L), total tau (461.26 

ng/L) and total-tau to Aβ42 ratio (total-tau/Aβ42) (0.62).

To compare demographic and clinical features between biomarker positive and negative 

groups, nonparametric tests were used due to small group sizes. Mann Whitney U Tests and 

Fisher’s Exact Tests were used for continuous data and categorical data, respectively. Of 

particular interest to the study were the Mann Whitney U tests performed to examine if ICA 

and MCA flow differed based on positivity or negativity for the following biomarkers: Aβ42, 

total-tau or total-tau/Aβ42 ratio. Post hoc multiple linear regression models for significant 

biomarker positivity results were run adding standard covariates from the literature; age, sex, 

and APOE ε4 carrier status (with biomarker positivity status as the predictor of interest and 

flow as the outcome). The reason for running both Mann Whitney U tests followed by linear 

regression models with covariates was to balance possible over-modeling in this small 

sample size with the desire to include covariates that are standard in the literature; if the 

general conclusions hold up in both models (one more basic that is more appropriate for the 

small sample size, while another that incorporates standard covariates), then this provides 

further confidence in our findings. Although biomarker cut-offs can simplify interpretation 

and improve clinical applicability, they ignore the potentially important underlying 

continuous distribution of the biomarker, especially for individuals whose biomarker levels 

are very close to the cut-off. Therefore, for associations where the Mann Whitney U test was 

significant, we also performed post-hoc multiple linear regression models with continuous 

CSF biomarker data (in place of the binary factor of biomarker positivity or negativity), with 
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the same covariates as the model above, to determine whether biomarkers on a continuous 

scale predicted blood flow. Furthermore, multiple linear regression models were checked to 

prevent against significant violations of the normality (via Kolmogorov-Smirnov tests) or 

homoscedasticity assumptions. Statistical significance was set at p <.05, and trends were 

reported when p < .1.

3. Results

Demographic and clinical information for the N=38 participants with MCI is detailed in 

Table 1.

3.1. ICA and MCA Mean Flow and Cognition

Higher flow in the ICA measured using PC VIPR was found to be associated with a higher 

executive composite Z score, with an unstandardized B estimate of .466 (SE: .109), (t[DF32] 

= 4.283, p < .001) (Figure 1A). This relationship persisted when removing the two possible 

outliers with the lowest adjusted executive functioning performance and the two possible 

outliers with the highest mean flow values; the participants removed in this sensitivity 

analysis, however, were all within three standard deviations of the mean value. Compared to 

the base model with just covariates (age, sex, years of education and interval between MRI 

and cognitive testing) for which R2 = .150, the R2 change when ICA mean flow was added 

to the model was 0.310. In contrast, ICA flow was not predictive of memory performance 

(unstandardized B = .203 (SE: .131); p = .130) and the difference between right and left ICA 

flow was neither predictive of executive function (unstandardized B = .290 (SE: .255);. p = .

263) nor memory (unstandardized B = .087 (SE: .256); p = .738).

A similar pattern of results was seen for the subjects in regards to MCA flow. Higher flow 

was associated with greater executive function, with an unstandardized B estimate of .927 

(SE: .223), (t[DF29] = 4.147, p < .001) (Figure 1B). The base model with only covariates 

had an R2 of 0.201, and adding MCA flow into the model resulted in an R2 change of 0.298. 

As above, there were no significant relationships between MCA flow and memory 

performance (unstandardized B = .153 (SE: .296); p =.610) and the difference between right 

and left MCA flow was neither predictive of executive function (unstandardized B = .234 

(SE: .519); p = .655) or memory (unstandardized B = .791 (SE: .533); p = .149).

3.3. Biomarker Positivity and Mean Flow

Half (N=11 out of 22, 50%) of MCI participants with assayed CSF were Aβ42 positive, 

59.1% (N=13 out of 22) were total-tau positive and 63.6% (N=14 out of 22) were total-tau/

Aβ42 positive. In regards to demographic and clinical characteristics, participants who were 

total-tau positive had lower MMSE scores (p =.011), and had a trend towards a lower 

prevalence of diabetes (p=.055) compared to the tau negative group; there was a trend 

towards increasing prevalence of ε4 carriage in the amyloid positive group (p = .08) 

compared to the amyloid negative group. In the total-tau/Aβ42 positive group, there was a 

trend towards increased age (p=.082) and decreased MMSE scores (p=.059). All other 

demographic and clinical variables did not differ between groups, including executive and 

memory composite scores. Compared to Aβ42 negative participants, MCI participants with 
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Aβ42 positivity had lower mean flow in the ICA (U = 28, p = .034; mean rank Aβ42-negative 

14.45, mean rank Aβ42-positive 8.55) (Figure 2). This difference persisted while controlling 

for standard covariates (in a multiple linear regression model) of age, sex and APOE ε4, 

with an unstandardized B estimate of −1.111 (SE: .424) (t[DF17] = −2.619, p = .018) for 

amyloid biomarker positivity status on ICA mean flow. In a model examining Aβ42 levels as 

a continuous variable, lower levels of Aβ42 were associated with lower ICA flow at a trend 

level, with an unstandardized B of 1.029 (SE: .516) (t[DF17] = 1.994, p = .062). In contrast, 

MCA mean flow was not associated with amyloid biomarker positivity on the Mann 

Whitney test (p = .314). Flow in the ICA and MCA both did not differ based on total-tau or 

total-tau/Aβ42 biomarker positivity.

4. Discussion

In this study examining intracranial arterial health metrics of the ICA and MCA in 

participants with MCI, we found that lower flow correlated with worse performance on 

neuropsychological tests of executive function, and that participants with lower mean flow in 

the ICA were more likely to be amyloid positive. No relationships were observed in this 

sample between flow and performance on a composite memory metric, nor with tau or tau/

Aβ42 ratio positivity. Lastly, laterality of blood flow did not predict any of the outcomes 

examined.

Prior studies have demonstrated associations between reduced cerebral perfusion measured 

via arterial spin labeling (ASL) and cognitive decline in MCI. For example, a study of 48 

older adults with MCI (mean age 76.3y at baseline) found that decreased cerebral perfusion 

predicted cognitive decline over an average of 2.7 years on the Clinical Dementia Rating 

(CDR) Scale Sum of Boxes, Stroop Switching, and California Verbal Learning Test [29]. 

Although cross-sectional, our results also support that reduced cerebral blood flow even 

within the larger arterial vessels (e.g., ICA and MCA mean flow) is associated with lower 

cognitive performance. Evidence suggests vascular disease often negatively impacts 

cognitive performance specifically in the executive functioning domain [30, 31]. In a study 

of 130 individuals with hypertension, increased small vessel disease was associated with 

poorer executive functioning performance, but not with memory performance [32], a similar 

pattern to what we observed in our study. Additionally, in a separate sample (n=94) of 

cognitively healthy older adults, subcortical ischemic vascular disease significantly predicted 

worse performance on executive functioning metrics, but not memory measures [33].

Reduced cortical perfusion has also been associated with elevated amyloid burden in 

addition to cognitive impairment. Analysis of 182 participants (cognitively normal, early and 

late MCI, and AD) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) found 

that an increased amount of amyloid (as measured via florbetapir-PET) was associated with 

reduced perfusion in the entorhinal, inferior temporal, inferior parietal, and precuneus 

cortices [34]. Furthermore, a study of 27 cognitively normal older adults and 16 adults with 

amnestic MCI found a trend towards lower cerebral blood flow in adults with positive 

neuroimaging markers for amyloid compared to adults negative for amyloid markers [35]. 

What differentiates the present research from prior studies is that we are examining 

macroscopic blood flow in large intracranial arteries, as opposed to local cerebral tissue 

Berman et al. Page 8

J Alzheimers Dis. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



perfusion measured via ASL. Although our prior studies suggest a positive correlation 

between measurements of blood flow in the large arteries and cortical perfusion [36], there is 

utility in using both methods in the study of the etiopathogenesis of AD as they assess 

different aspects of cerebrovascular health.

Our finding that lower mean ICA and MCA blood flow are associated with greater cognitive 

impairment and that lower flow in the ICA is associated with amyloid positivity provides 

further evidence for a relationship between vascular health and AD pathogenesis. A recent 

review stressed the importance of research on vascular health in cognitively impaired 

populations and proposed that vascular metrics may help to explain heterogeneous 

biomarker profiles [37]. While effects on amyloid clearance may be one mechanism, 

vascular dysfunction may also affect cognitive decline through a non-clearance dependent 

mechanism. For instance, differences in vascular health could partially explain the oft-cited 

observation that cognitively healthy individuals can be amyloid positive yet not display 

clinical symptoms of dementia due to AD [38–40]. Perhaps a more optimal vascular health 

status protects these individuals with AD pathology from manifesting the disease clinically, 

though this is speculative and requires further research. Interestingly, in our study, MCI 

participants who were biomarker positive for amyloid had lower ICA blood flow than did 

those who were amyloid negative, further suggesting a link between vascular pathology and 

amyloid pathology. Perhaps the reason only amyloid, rather than tau, showed a relationship 

with ICA flow is that amyloid is particularly toxic to the vasculature [17] or because Aβ 
abnormalities are more pronounced in CSF earlier in the AD trajectory while tau 

abnormalities accumulate in the CSF as the disease progresses [41]. A possible explanation 

for why ICA flow was significantly associated with amyloid positivity and MCA flow was 

not is that given the small sample size, there is a larger probability for type II error, but this 

merits further study in a larger group of participants with MCI.

Our study has limitations that should be mentioned. Data was not collected for potentially 

confounding factors that may affect cerebral hemodynamics, such as sleep apnea, ejection 

fraction or RR interval. The sample size of participants with MCI who have PC VIPR data is 

small, and this is reduced further when examining 4D blood flow in concert with CSF 

biomarkers; future studies plan to conduct analyses in larger sample sizes to confirm the 

present results. Due to this small sample size, there is a higher likelihood of type II error, 

which may explain why no relationships were seen with blood flow and memory 

performance nor with amyloid positivity and MCA mean flow. Furthermore, although CSF 

biomarker values are not dichotomous by nature, we chose to examine cut-offs for 

biomarker positivity because we wanted to stratify the patients using a more clinically 

interpretable variable; however, we also examined significant results post-hoc as continuous 

variables and observed a trend level relationship for amyloid. Although a linear trend of time 

was accounted for in some statistical models, having a more condensed time frame of the 

MRI, LP and neuropsychological visits could lend greater strength to the conclusions, 

however, despite the elapses in time, we were able to detect relationships in this small 

sample. In regards to cognition, analyses presented herein are cross-sectional in nature, and 

efforts are underway to examine the role of 4D blood flow metrics on longitudinal cognitive 

performance and conversion from MCI to AD. Furthermore, we plan to incorporate 

pulsatility index, a surrogate metric of vessel stiffness, into future analyses, as an additional 
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metric of vessel health and also examine the relationship between arterial health metrics and 

performance on visuospatial cognitive tests. Overall, this study examines blood flow in the 

ICA and MCA using a unique methodology, four-dimensional flow MRI, and relates it to 

established biomarker and cognitive phenotypes associated with AD pathology. The results 

provide additional evidence of the interrelationship between vascular factors and AD that 

could have important implications for research and clinical care of patients with MCI.
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Figure 1. Greater mean flow in the ICA and MCA correlates with better executive functioning 
performance
(A) ICA mean flow in participants with MCI is on the x-axis, and executive function 

composite score adjusted for covariates (age, gender, interval between MRI and 

neuropsychological testing, and years of education) is on the y-axis. A higher composite Z-

score indicates better performance (N=38, p<.001); (B) MCA mean flow in participants with 

MCI is on the x-axis and executive function composite score adjusted for covariates (age, 

gender, interval between MRI and neuropsychological testing, and years of education) is on 

the y-axis (N=35, p<.001).
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Figure 2. Amyloid positivity is associated with reduced blood flow in the ICA
MCI participants who were amyloid positive (Aβ42 ≤ 471.54 ng/L) had reduced mean blood 

flow measured in the distal petrous portion of the ICA. Biomarker positivity is plotted on the 

x-axis and unadjusted ICA mean flow data is on the y-axis (N=22, p = 0.034).
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Table 1

Demographic and Clinical Characteristics of Participants with MCI

Characteristic

N 38

Age (mean; SD) 73.25; 8.42

Sex (N; % Female) 16, 42.1%

Education (years; mean; SD) 15.66; 2.65

Parental history of dementia (N; % positive) 18; 47.4%

APOE ε4 positive (N; %) 20; 52.6%

Mini-Mental State Exam (mean; SD) 26.18; 2.46

CDR Global (median; range) 0.5; 0–1

CDR Sum of Boxes (mean; SD) 1.855; 1.25

Mean flow in the ICA, ml/sec (mean; SD) 3.70; 0.90

Mean flow in the MCA, ml/sec (mean; SD) 1.97; .46

Flow difference (abs value) between left and right ICA, ml/sec (mean; SD) 0.64; 0.49

Flow difference (abs value) between left and right MCA, ml/sec (mean; SD) 0.27; 0.25

Diagnosed with Diabetes (N; %) 6; 15.8%

Systolic Blood Pressure, mmHg (mean; SD) 132.53; 18.53

Diastolic Blood Pressure, mmHg (mean; SD) 73.61; 8.91

Total Cholesterol (mean; SD) 192.32; 49.97

HDL Cholesterol (mean; SD) 58.92; 17.52

Taking BP lowering medication (N; %) 23; 60.5%

Interval between MRI and neuropsychological testing, days (mean; SD; range) 53.68; 41.83; −74 to 143 days

Interval between MRI and LP, days (mean; SD; range) −32.77; 124.87; −574 to 0 days

MCI Subtype N=27 single domain amnestic MCI
N=10 multi-domain amnestic MCI (n=6 memory + executive 
function; n=1 memory+ executive function + visuospatial; 
n=1 memory + executive function + language; n=2 memory + 
language)
N=1 non-amnestic MCI (executive function)
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