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Abstract 9 

Dwellings in the UK account for about 25% of global energy demand, of which 60% is space heating 10 

making this a key area for efficiency improvement. Dwelling UK Energy Performance Certificates (EPC) 11 

are currently based on surveyed data, rather than energy use monitoring. The installation of smart 12 

meters provides an opportunity to develop an EPC based on in situ dwelling thermal performance. 13 

This paper presents ‘Deconstruct’ – a method of estimating the as-built Heat Power Loss Coefficient 14 

(HPLC) of occupied dwellings as a measure of thermal performance, using just smart-meter and 15 

meteorological data. Deconstruct is a steady-state grey box building model combined with a data 16 

processing pipeline and a model fitting method that limits the effects of confounding factors. Smart 17 

meter data from 780 UK dwellings from the UK Energy Demand Research Project (EDRP), was used to 18 

calculate a median HPLC of 0.28 kW/˚C (±15%). The stability of the estimate across multiple years of 19 

data with different weather and energy use was demonstrated. Deconstruct was found to be suitable 20 

for large scale inference of dwelling thermal properties using the UK’s new smart metering data 21 

infrastructure. 22 
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Nomenclature 27 

Symbol Description Unit 
𝑐௣ Specific heat capacity of air J/kg K 
𝜌௔௜௥ Density of air kg/m3 
𝐴௦௢௟ Effective solar aperture m2 
𝐹் Change of 𝑇௜௡ with change in 𝑇௘௫ - 
𝑄௩௘ Air change rate coefficient m3/s 
𝐻௧௥ Transmission heat transfer coefficient kW/˚C 
HPLC Heat Power Loss Coefficient kW/˚C 
HTC Heat Transfer Coefficient kW/˚C 
𝐼௦௢௟ Solar irradiance kW/m2 
𝑃஻ Measured base-load power demand kW 
𝑃ு Measured power use for heating kW 
𝑃ு,஽ Power demand for heating kW 
𝑃௘௟௘௖ Measured electrical energy demand kW 
𝑃௚௔௦ Measured gas energy demand kW 
𝑃௧௢௧ Total measured energy demand kW 
𝑇௘௫ External air temperature (2m from surface) ˚C 
𝑇௙௜௫  Reference external air temperature for Tin model ˚C 
𝑇௛ Base-load to heating regime change point ˚C 
𝑇௜௡ Dwelling mean internal temperature ˚C 
𝑇଴ 𝑇௜௡ at 𝑇௙௜௫  ˚C 
𝜂஻ Base-load utilisation factor - 
𝜂ுௌ Heating system efficiency - 
𝛷஻ Heat gain from base-load kW 
𝛷ை Metabolic heat gains from occupants kW 
𝛷ுௌ Heat flow rate from heating system kW 
𝛷௦௢௟ Whole dwelling heat flow rate from solar gains kW 
𝛷௧௢௧ Total heat flow rate kW 
𝛷௧௥ Total conductive heat transfer kW/˚C 
𝜎 Standard error - 
CVRMSE Coefficient of Variance of Root Mean Square Error % 

1 INTRODUCTION 28 

The domestic sector in the UK accounts for 25% of energy demand [1,2], while space heating accounts 29 

for almost 60% of this total [1], making it a key area for efficiency improvements. Meanwhile, trends 30 

in energy use reduction in homes do not appear on track to meet UK climate targets [3], while flagship 31 

policies for improving efficiency such as the Green Deal have not been successful [4]. 32 

Roels [5] and Yilmaz et al. [6] highlighted that there is a lack of established methods for estimating the 33 

as-built thermal performance of dwellings in the UK in a manner which can be cost-effectively scaled 34 

to large numbers of dwellings. The Energy Performance Certificate (EPC) [7] is currently the most 35 
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widespread assessment and delivers normalised energy demand estimates based on building 36 

characteristics derived from an on-site inspection. This approach has come under extensive criticism 37 

[2,8–16]. Most notably, the on-site inspection is costly (£60-120) [17], intrusive, and subjective, 38 

resulting in significant variation in delivered certificates depending on the inspector [18], limiting its 39 

application to situations where regulation has made it compulsory. It furthermore relies on 40 

assumptions for many key values, limiting its ability to deliver as-built thermal performance. The EPC 41 

is frequently incorrectly interpreted as reporting real as-built consumption, rather than a normalised 42 

value based on assumed construction. 43 

There are many challenges to obtaining reliable performance estimates for dwellings, and as a result 44 

there are widespread observations of a ‘performance gap’ between expected and measured total 45 

energy demand [19–21]. This has been taken by some as evidence for the rebound effect [22,23], but 46 

is likely better described as a ‘credibility gap’ [24,25] caused by limitations of the assessment methods. 47 

Alternative approaches to in-situ measurement of dwelling thermal performance have been presented 48 

in [26–32]. 49 

The installation of smart meters in UK dwellings that collect and transmit energy readings in real time 50 

enable new approaches to energy demand modelling thanks to the data they provide [33,34]. The aim 51 

of the research presented in this paper is to develop a method to characterise “as-built” thermal 52 

performance of individual UK dwellings with respect to heating, independently of occupant thermal 53 

behaviours, that can be performed rapidly and non-intrusively at scale, using smart meter data 54 

collected from large numbers of dwellings. 55 

To achieve this aim, the newly developed ‘Deconstruct’ method is presented, which is the name given 56 

to the combination of a grey-box physical model linking metered energy demand to the building 57 

thermal balance and internal temperature, and a data sampling method and model-fitting algorithm 58 

to infer thermal and temperature model parameters. Deconstruct can infer several physical variables 59 

separately from occupant-driven ones by using known building physics to describe the relation 60 

between weather conditions and power demand. This work focuses on the estimation of the whole 61 
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building Heating Power Loss Coefficient (HPLC), which combines the fabric Heat Transfer Coefficient 62 

(HTC) with the space heating system efficiency 𝜂ுௌ  and enables the characterisation of heating 63 

performance of dwellings. 64 

The method aims to be scalable in that it may readily be applied to large numbers of dwellings without 65 

incurring significant manual effort, costs, or being computationally prohibitive. Minimising the need 66 

for manual intervention implies that the approach should be robust with respect to data quality and 67 

the effects of confounding factors, such as occupants. This motivates the use of a grey-box model 68 

avoiding the need for internal dwelling measurements beyond the smart meter. 69 

2 THEORY 70 

This section defines the Heating Power Loss Coefficient (HPLC) in terms of metered power demand 71 

using a steady-state grey-box model of the heating and base load demand and relates it to the Heat 72 

Transfer Coefficient (HTC), which can be measured by a co-heating test. The dwelling steady state net 73 

heat flow rate 𝛷௧௢௧ (kW) is defined using established formulations of dwelling heat transfer processes, 74 

calculating the thermal balance as the sum of contributions to heat flow in/out of the dwelling. A 75 

model of dwelling internal temperature is also defined. Linking functions are defined describing the 76 

dependence of metered energy demand 𝑃௧௢௧ (kW) on the thermal balance. 77 

2.1 Heat Transfer Coefficient 78 

The Heat Transfer Coefficient (HTC) (kW/˚C) of a dwelling is an indicator of overall steady-state 79 

dwelling fabric thermal performance. It has been defined in co-heating tests as the absolute change in 80 

quasi-steady-state dwelling heat flow with change in temperature difference between the internal and 81 

external environments, controlling for solar gains [32,35–37], as shown in eq. 1 where 𝛥𝑇 = 𝑇௘௫ −82 

𝑇௜௡. Co-heating tests produce an accurate measurement of whole-building performance by carefully 83 

monitoring the energy necessary to maintain an unoccupied building at a set internal temperature, 84 

controlling for solar gain, over a period of several days to several weeks [35]. 85 

𝐻𝑇𝐶 =
𝑑(𝛷௧௥ + 𝛷௩௘)

𝑑𝛥𝑇
= 𝐻௧௥ +

𝑑𝛷௩௘

𝑑𝛥𝑇
  (1) 86 
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The dwelling net heat flow 𝛷௧௢௧ is given by eq. 2 in terms of the fabric transmission losses, ventilation 87 

losses, solar gains, and base-load gains. 88 

𝛷௧௢௧ = 𝛷௧௥ + 𝛷௩௘ + 𝛷௦௢௟ + 𝛷஻ + 𝛷ை  (2) 89 

The fabric heat transfer 𝛷௧௥ is given by eq. 3 as a function of whole dwelling heat transfer coefficient 90 

𝐻௧௥  and the internal-external temperature difference following [35]. 𝐻௧௥  combines direct heat 91 

transfer from internal conditioned space across the fabric to the external environment, as well as heat 92 

flows to the ground, to unconditioned spaces, and to adjoining buildings, and assumes that there is a 93 

single thermal zone and that the effect of ground temperature difference is negligible. 94 

𝛷௧௥ = 𝐻௧௥(𝑇௘௫ − 𝑇௜௡)  (3) 95 

Linearisations of total solar gains 𝛷௦௢௟ as a function of irradiance 𝐼௦௢௟ (eq. 4) and ventilation heat loss 96 

𝛷௩௘  (eq. 5) are used, based on co-heating test methods [36,37]. In these equations, 𝐴௦௢௟  is the 97 

effective solar aperture (equivalent surface area of building which absorbs solar energy) and 𝑄௩௘ is the 98 

effective volumetric air flow rate constant for the dwelling. Values 𝑐௣ and 𝜌௔௜௥ are the specific heat 99 

capacity and density of air. 100 

𝛷௦௢௟ = 𝐴௦௢௟𝐼௦௢௟  (4) 101 

𝛷௩௘ = 𝑐௣𝜌௔௜௥𝑄௩௘(𝑇௘௫ − 𝑇௜௡)  (5) 102 

The thermal gains 𝛷஻  from energy used in lighting, appliances, plug loads, and water heating are 103 

captured in the base-load parameter 𝑃஻. We introduce a parameter 𝜂஻, where 0 ≤ 𝜂஻ ≤ 1, describing 104 

the fraction of base-load power that contributes to the net internal thermal gains (eq. 6). 105 

𝛷஻ = 𝜂஻𝑃஻  (6) 106 

Metabolic gains from occupants 𝛷ை can contribute moderately to dwelling energy balance, as these 107 

are of the order of 0.06kW per occupant [7] while metered baseload power is of the order of 0.5kW 108 

(see Section 5) and heating system power of the order of several kW. These are not considered in the 109 

definition of the HTC as co-heating tests are performed on unoccupied dwellings, but should be 110 
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included for the occupied dwelling heat balance. Occupant thermal gains are not considered to be 111 

seasonally dependant in building standards [7]. 112 

Heating power 𝑃ு,஽ equal to the net losses 𝛷௧௢௧ is needed when the net heat flow is negative (𝛷௧௢௧ <113 

0). The heating system power 𝑃ு required to meet the heating demand power 𝑃ு,஽ is a function of 114 

the mean heating system efficiency 𝜂ுௌ (eq. 7). 115 

𝑃ு =
𝑃ு,஽

𝜂ுௌ
  (7) 116 

The total dwelling metered power demand 𝑃௧௢௧  can therefore be modelled using the piecewise 117 

function eq. 8. Outside of the heating regime 𝑃௧௢௧ = 𝑃஻. 118 

𝑃௧௢௧ = ൜
1 𝜂ுௌ⁄ |𝛷௧௢௧| + 𝑃஻ if 𝛷௧௢௧ < 0
𝑃஻ otherwise

  (8) 119 

HTC can be expressed in terms of total metered power demand 𝑃௧௢௧ instead of heat flow 𝛷௧௢௧. Analysis 120 

conducted in [38] determined that base-load power demand is not temperature dependent implying 121 

that 𝑑𝛷஻ 𝑑𝛥𝑇⁄ = 0 , while occupant gains 𝛷ை  can also be assumed not to be correlated with 122 

temperature so  𝑑𝛷ை 𝑑𝛥𝑇⁄ = 0. Therefore, the change in power demand with change in temperature 123 

can be simplified and the definition of HTC (eq. 1) substituted to derive eq. 9. 124 

𝑑𝑃௧௢௧

𝑑𝛥𝑇
= |

𝑑(𝛷௧௥ + 𝛷௩௘)

𝑑𝛥𝑇
| = 1 𝜂ுௌ⁄ (𝐻௧௥ +

𝑑𝛷௩௘

𝑑𝛥𝑇
) = 1 𝜂ுௌ⁄ 𝐻𝑇𝐶  (9) 125 

As 𝛷௧௢௧ < 0, |𝛷௧௢௧| = −𝛷௧௢௧, total power is therefore given by eq. 10. 126 

𝑃௧௢௧ =
1

𝜂ுௌ
(𝐻𝑇𝐶(𝑇௜௡ − 𝑇௘௫) − 𝐴௦௢௟𝐼௦௢௟ − 𝜂஻𝑃஻ − 𝛷ை) + 𝑃஻  (10) 127 

2.2 Heating Power Loss Coefficient 128 

Inspection of eq. 10 indicates that it is not possible to separate HTC and 𝜂ுௌ  without additional 129 

information as these parameters are covariant with respect to ∆T. A Heating Power Loss Coefficient 130 

(HPLC) is therefore defined which incorporates thermal losses from the fabric and the heating system 131 

(eq. 11). 132 
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𝐻𝑃𝐿𝐶 = 𝐻𝑇𝐶 𝜂ுௌ⁄   (11) 133 

Substituting eq. 11 into eq. 10 gives the total power demand during the heating regime (eq. 12). 134 

𝑃௧௢௧ = 𝐻𝑃𝐿𝐶(𝑇௜௡ − 𝑇௘௫) −
1

𝜂ுௌ
𝐴௦௢௟𝐼௦௢௟ −

𝜂஻

𝜂ுௌ
𝑃஻ −

𝛷ை

𝜂ுௌ
+ 𝑃஻  (12) 135 

As eq. 12 depends on the internal temperature and this is not widely monitored, it was necessary to 136 

define a model of internal temperature, which is described in Section 2.3. Incorporating a linear 137 

internal temperature model (eq. 15) gives a linear expression for 𝑃௧௢௧  during the heating regime 138 

(eq. 13), taking into account the internal temperature coefficient 𝐹். 139 

𝑃௧௢௧ = − 𝐻𝑃𝐿𝐶((1 − 𝐹்)𝑇௘௫ − 𝑇଴ + 𝐹்𝑇௙௜௫)

− 𝐴௦௢௟ 𝜂ுௌ⁄ 𝐼௦௢௟ − 𝜂஻ 𝜂ுௌ⁄ 𝑃஻ −
𝛷ை

𝜂ுௌ
+ 𝑃஻

  (13) 140 

We can therefore calculate the HPLC, which characterises energy loss from the dwelling fabric and 141 

heating system, using the derivative of metered 𝑃௧௢௧ with respect to external temperature (eq. 14). 142 

This implies that it is possible to infer the HPLC using only remotely collected smart meter and climate 143 

data. A robust approach to performing this inference is described in Section 3. 144 

𝑑𝑃௧௢௧

𝑑𝑇௘௫
= −𝐻𝑃𝐿𝐶(1 − 𝐹்)  (14) 145 

2.3 Internal temperature model 146 

Internal temperatures were modelled in order to address the lack of measurements by using a linear 147 

dependence on external temperature. This is defined in eq. 15 where 𝐹்  is a factor describing the 148 

dimensionless change of 𝑇௜௡ (˚C) with 𝑇௘௫ (˚C) (i.e. ௗ்೔೙

ௗ ೐்ೣ
) and 𝑇଴ (˚C) is the mean internal temperature 149 

at external temperature 𝑇௙௜௫  = 5˚C, which is chosen in order to facilitate comparison with existing work 150 

in this field including [39], [40], and [41]. 151 

𝑇௜௡ = 𝐹்(𝑇௘௫ − 𝑇௙௜௫) + 𝑇଴  (15) 152 

Reference [42] presents evidence that a linear model is appropriate when heating schedules are 153 

constant, while [40] considers also quadratic terms. In [38], the linear model fit to measured 154 
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temperature data was compared to higher order (polynomial) formulations. It was found that the 155 

polynomial coefficients were not statistically significant and that the linear model was a reasonable 156 

approximation to measured temperature data. Reference [43] found through clustering of indoor 157 

temperature profiles that the majority of dwellings adopted one of four typical patterns, with 158 

relatively little difference between weekdays and weekends, supporting the simplifying assumption 159 

that heating schedules are roughly constant. 160 

Parameter 𝐹் is set in this work as an average value as a first order approximation, making it possible 161 

to infer HPLC in the absence of measured internal temperature data. 𝑇଴ is estimated on a per-site 162 

basis. 163 

3 METHOD 164 

Deconstruct enables the inference of 𝐻𝑃𝐿𝐶, 𝑃஻, 𝑇଴, and 𝐴௦௢௟; we focus in this paper on the 𝐻𝑃𝐿𝐶 as 165 

a measure of dwelling thermal performance with respect to heating. This parameter incorporates the 166 

transmission, ventilation, and heating system losses of the dwelling, thereby covering key physical 167 

determinants of dwelling heating demand i.e. HPLC is an indicator of how energy efficient a house is 168 

at providing space heating. In order to infer dwelling parameters from metered energy demand data, 169 

a ‘post-hoc control trial’ methodology was developed, which makes use of a structured sampling of 170 

accumulated smart meter data to produce robust parameter estimates. This approach takes 171 

advantage of the simplicity and low cost associated with accumulating smart meter data over a long 172 

period. During this collection period, natural variability in weather and power demand will result in a 173 

subset of days during which conditions are optimal for inferring dwelling parameters using the 174 

simplified thermal model. Suitable filters were defined to avoid over-fitting of data by limiting the 175 

assumptions made for filtering. 176 

One full year was used of daily average data including total metered energy, external temperature, 177 

and solar irradiance for a dwelling. Daily average data was deemed to be suitable for steady state 178 

approximation based on previous findings. [44] found that although work on co-heating in [36] found 179 

that 3-day averages were needed to achieve a steady thermal state in a co-heating test, when 180 
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considering metered data the additional variance under real-world use conditions resulted in there 181 

being effectively no change in results between 1-day and 3-day averages, while the reduction in 182 

dataset size caused the uncertainties in the inferred model coefficients to increase substantially. 183 

Total power was calculated as the sum of metered electricity  𝑃௘௟௘௖ and gas  𝑃௚௔௦, thus accounting for 184 

all heat sources including secondary heating (which applies to many dwellings [45]), in which case the 185 

HPLC will encompass the combined losses from the various heating systems. Dwellings were required 186 

to have no more than 50% missing daily values. Significant un-metered heating energy (e.g. wood, coal 187 

or oil burning) could not be accounted for but is not common in the UK where homes have both gas 188 

and electricity.  189 

Parameters 𝐹் and 𝜂஻ must be set independently before it is possible to infer 𝐻𝑃𝐿𝐶. In the absence 190 

of internal temperature monitoring, 𝐹் may be set to a common value for all dwellings under analysis 191 

(for example a nationally representative value). An approach to determining a value for 𝐹்  is 192 

presented in Section 3.3.1. 193 

The values of 𝜂஻ and heating system efficiency 𝜂ுௌ do not affect the inference of HPLC. As 𝜂஻𝑃஻ is 194 

assumed to be constant it will not affect the change in energy demand with temperature, while 𝜂ுௌ is 195 

integrated in the definition of HPLC and therefore there is no need to make an assumption for its value 196 

when estimating HPLC. For the purposes of the parameter inference, the base-load gain parameter 𝜂஻ 197 

was set to 1 as a simplifying assumption made on the basis that most energy transferred into a dwelling 198 

will eventually be dissipated as heat. Further study could be made to establish a more realistic value 199 

for this parameter, this would not affect the inferred HPLC results. 200 

The base-load 𝑃஻  is estimated from a dwelling data sample selected using the filters described in 201 

Section 3.2, which are designed to select non-heating days. 202 

The 𝐻𝑃𝐿𝐶 is inferred following the approach in Section 3.3.2 using as input a low solar gain subsample 203 

of the data selected using the filtering approach described in Section 3.3 and the base-load power 𝑃஻. 204 

𝑇଴ and 𝐴௦௢௟ may be inferred as shown in Table 1, but this is not discussed in the scope of this paper. A 205 
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summary of the model inputs and outputs and the source of each parameter (input data or model 206 

inference) can be found in Table 1, while a summary of the steps is shown in Figure 1. 207 

Table 1: Summary of model parameters and source of parameter value. 208 
Symbol Description Source Unit 
𝐴௦௢௟ Effective solar aperture Estimated from low temperature 

sample 
m2 

𝐼௦௢௟ Solar irradiance Gridded weather data, using site 
location 

kW/m2 

𝐻𝑃𝐿𝐶 Fabric and heating system loss rate Estimated from low solar gain sample kW/˚C 
𝑃஻ Base-load power appliances, lighting 

hot water, and plug loads 
Estimated from high solar gain sample kW 

𝑃௧௢௧ Total measured dwelling power 
demand 

Sum of electricity and gas smart meter 
power 𝑃௘௟௘௖ and 𝑃௚௔௦ 

kW 

𝑇௘௫ Ambient external air temperature Gridded weather data, using site 
location 

˚C 

𝑇௙௜௫  External reference temperature Set to 5˚C ˚C 
𝑇଴ Internal temperature when the 

external temperature equals 𝑇௙௜௫  
Estimated from low solar gain sample ˚C 

𝐹் Slope of internal against external 
temperature 

Set using national data or 𝑇௜௡ data - 

𝜂஻ Fraction of base-load contribution to 
dwelling thermal balance 

Set to 1 for simplifying assumption - 

𝜂ுௌ Heating system efficiency Set from dwelling metadata, ignored if 
only HPLC is needed 

- 

 209 
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 210 
Figure 1: Overview of Deconstruct method inputs and steps for parameter estimates. Arrows denote 211 
the dependence of output data or coefficients on inputs. For example, the calculation of 𝑨𝒔𝒐𝒍 212 
requires the low temperature sample and the values for coefficients 𝑯𝑷𝑳𝑪 and 𝑻𝟎. 213 

3.1 Data filters 214 

This section describes the data filters, required to prepare the input data and derive the sub-samples 215 

described shown in Figure 1 and Table 1. 216 

3.1.1 Error filter 217 

Rows where gas, electric, or total power were zero or missing were removed. 218 

3.1.2 Outlier removal 219 

Existing literature determined that the modified Z-score approach is suitable for outlier identification 220 

and removal in energy data [46–48]. This calculates an outlier metric based on dataset medians instead 221 

of means, making the filter more robust to highly skewed distributions. It is important that the outlier 222 

filter is applied only after filtering for errors because these values can affect the median calculation 223 

and result in incorrect identification of outliers. 224 
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3.1.3 Absence filter 225 

To remove days where the building appeared to be unoccupied, it was assumed that heating demand 226 

should increase monotonically as external temperature decreased for a dwelling with a normally 227 

operating heating system. A filter was applied which selected a power cut-off value defined as follows. 228 

The power demand 𝑃்௠௔௫ for the highest temperature data point in the sample was used as a lower 229 

cut-off threshold for the power value, removing all points where 𝑃௧௢௧ < 𝑃்௠௔௫  (Figure 2). As the 230 

occupancy state is effectively inferred from the energy demand, dwellings which are occupied but not 231 

heated will appear identical to unoccupied dwellings. 232 

 233 
Figure 2: Illustration of absence threshold filter applied to a low-solar gain sample with errors and 234 
outliers removed. a) shows the input sample with the power demand 𝑷𝑻𝒎𝒂𝒙  for the highest 235 
temperature data point in the sample highlighted (red circle and annotation). b) demonstrates the 236 
effect of the absence filter by showing the resulting output sample and the removed data points. 237 

3.2 Base-load power sample 238 

Base-load power is defined as the mean power outside of the heating regime, where power is 239 

independent of weather conditions and normally distributed about the mean [38]. The sample 240 

requires high solar gains and a minimum temperature cut-off such that heating is not expected to 241 

operate during the selected days. The filters applied are: 242 

1. Missing values and error removal filter (Section 3.1.1) 243 
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2. High temperature filter, 𝑇௘௫ > 18˚𝐶. This value was chosen such as to be higher than the heating 244 

base temperature of the majority of buildings [49], while retaining sufficient data in the summer 245 

months. 246 

3. High solar gains filter, 𝐼௦௢௟ > 0.1𝑘𝑊/𝑚ଶ. This threshold was set empirically to eliminate unusual 247 

conditions (high temperature with extremely low solar gains). 248 

4. Modified z-score outlier removal filter (Section 3.1.2) 249 

Base-load power 𝑃஻ is the mean of the resulting sample. 250 

3.3 Low solar gain sample 251 

A data sample selection with low solar gain is suitable for estimating HPLC and internal temperature 252 

model parameters. Limiting solar gains greatly simplifies the model since solar gains introduce 253 

complex time-of-day, time-of-year, and building geometry factors into the energy model. Using the 254 

low solar gain condition, eq. 13 may be simplified to eq. 16: 255 

𝑃௧௢௧ = −𝐻𝑃𝐿𝐶(1 − 𝐹்)𝑇௘௫ + 𝐻𝑃𝐿𝐶 𝑇଴ − 𝐻𝑃𝐿𝐶 𝐹்𝑇௙௜௫ + 𝑃஻(1 − 𝜂஻ 𝜂ுௌ⁄ ) − 𝛷଴ 𝜂ுௌ⁄   (16) 256 

To obtain a low solar gain sample the following filter strategy was applied: 257 

1. Error filter. This filter removes points with missing data, see Section 3.1.1. 258 

2. Low solar irradiance filter. This filter selects days where the mean solar irradiance is below a 259 

given cut-off value of 0.05kW/m2. Solar gains can contribute significantly to a dwelling’s energy 260 

balance and bias the result. This filter is based on work by [36,50,51] and is particularly effective 261 

in the UK because the weather is often cloudy. 262 

3. Outlier removal filter, according to Section 3.1.2. 263 

4. Temperature backstop filter to eliminate days where 𝑇௘௫ is greater than a cut-off temperature. 264 

The upper temperature cut-off is set to 15˚C following work by [40,52–54] which showed a 265 

statistically better fit to consumption data below 15°C. 266 

5. Absence filter, see Section 3.1.3. 267 
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The application of these filters is illustrated using a single site in Figure 3, demonstrating that the solar 268 

gains filter has the largest effect. It is critical that the outlier filter be applied only after the desired 269 

subset of data has been selected through the low solar gain filter in order to ensure that the outlier 270 

filter does not mark points in the heating regime as outliers relative to the median power demand. 271 

 272 
Figure 3: Illustration of the effects of adding each filter in turn to the data from an example dwelling. 273 
a) Data with no filtering. b) Sample after application of the low solar gain filter and outlier removal. 274 
c) Filter for external temperatures above a 15˚C cut-off. d) Filter for unoccupied days. 275 

3.3.1 𝐹் estimate 276 

For dwellings without 𝑇௜௡ measurements, factor 𝐹் is set using the nationally representative Energy 277 

Follow Up Survey (EFUS) dataset (described in the Section 4.2), calculated using the linear regression 278 

of internal against external temperature for a low solar gain sample as described in Section 3.3. 279 

3.3.2 HPLC estimate 280 

The HPLC is estimated using the gradient of the power demand in the lower solar gain sample (eq. 16) 281 

with respect to external temperature (eq. 14). 282 

4 DATASETS 283 

The Deconstruct method requires daily total energy readings, linked to temperature and solar 284 

irradiance. Energy data was drawn from the Energy Demand Research Project (EDRP) smart meter 285 

readings, provided by EDF Energy (EDRP-EDF). This was associated with weather data from the UK 286 
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MetOffice, as weather monitoring was not performed concurrently with energy metering. Dwelling 287 

internal temperature monitoring was obtained from the nationally representative Energy Follow-Up 288 

Survey (EFUS) and linked to weather data. Energy data from EFUS was not used as it does not contain 289 

daily gas meter data. 290 

4.1 EDRP-EDF data 291 

The Energy Demand Research Project (EDRP) was a major project from 2007 to 2010 implemented by 292 

4 major energy suppliers to test smart metering infrastructure and measure customer response to 293 

energy feedback [55]. The UCL Energy Institute partnered with EDF UK to obtain dwelling energy meter 294 

and metadata for 1,879 dwellings in London and Southeast England from these trails, 780 of which 295 

included both electricity and gas readings necessary for the Deconstruct method. The dwelling 296 

metadata included a partial postcode, which was used to geo-reference the dwelling and allowing it 297 

to be associated with weather data (see supplementary material). 298 

4.2 EFUS data 299 

This research used monitored temperature data from a sample of 823 dwellings from the 2011 EFUS 300 

to estimate values for 𝐹். Temperatures were monitored at 20-minute intervals in three zones within 301 

the dwelling (living room, hallway, and main bedrooms) for approximately one year [56]. 302 

Temperatures were resampled to daily averages, removing points where indoor temperatures were 303 

below 0˚C or above 40˚C, and a dwelling mean temperature was calculated. The Government Office 304 

Region (GOR) geographical identifier was used to link dwelling monitoring data with external 305 

temperature and solar irradiance from the MetOffice. Weightings for each site were provided to 306 

enable nationally representative distributions to be generated. 307 

4.3 Weather data 308 

Temperature and solar irradiance data were obtained from the UK MetOffice Numerical Weather 309 

Prediction (NWP) model gridded dataset with spatial resolution ~0.036˚ covering the British Isles [57]. 310 

The Metoffice described NWP data as being more accurate at high resolutions than interpolated 311 

weather station data, as it incorporated far more data sources (e.g. satellite data). 312 
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5 RESULTS 313 

The EFUS dataset was used to determine a value for 𝐹் for the UK. HPLC estimates were then made 314 

for the dwellings in the EDRP-EDF dataset using this value. HPLC uncertainties were estimated using a 315 

Monte-Carlo simulation approach. 316 

5.1 Internal temperature model 317 

A representative value of 𝐹் for England was estimated using English Follow Up Survey (EFUS) data. 318 

The irradiance data associated with EFUS dwellings was used to produce site data subsets under low 319 

solar gain conditions matching those used for estimating HPLC. 𝐹் was estimated for each EFUS site 320 

as the slope of a linear regression of the internal temperature against external temperature. Values of 321 

𝐹்  with standard error greater than 30% were filtered on the basis that the model was not 322 

meaningfully calibrated in those cases; the resulting distribution is shown in Figure 4. EFUS provided 323 

per-site weightings which can be used to calculate nationally representative statistics using the 324 

buildings sampled. A nationally representative value 𝐹் = 0.17 was calculated as the weighted mean 325 

of the retained results. 326 

 327 
Figure 4: Distribution of 𝑭𝑻 for EFUS dwellings weighted by EHS-provided sample weights to obtain 328 
nationally representative distribution, filtered to remove cases where standard error was >30%. 329 

5.2 HPLC estimates 330 

Of 780 dwellings in the EDRP-EDF dataset having both gas and electricity data, 654 met the data 331 

quantity and quality requirements (the significant reduction in number due to poor data quality is a 332 

common problem with energy data not collected under controlled conditions). The 654 dwellings had 333 

a total of 361,761 days of data, an average of 654 days of data per site. Of these, dwellings 541 334 
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achieved acceptable model calibration according to recommendations from ASHRAE for steady state 335 

model calibration [58], i.e. the model Coefficient of Variance of Root Mean Square Error (CVRMSE) 336 

was under 30%. The excluded sites can be considered to be inadequately modelled using this method. 337 

This implies that a fraction of the building stock cannot be assessed using Deconstruct, nevertheless it 338 

is possible to reliably determine which dwellings this method cannot be applied to.  339 

The resulting distribution of HPLC values across all sites is shown in Figure 5 with descriptive statistics 340 

in Table 2, a median HPLC of 0.28±0.04 kW/˚C (see uncertainty calculation in Section 5.2.1) was found. 341 

The EDRP-EDF HPLC results may be compared with the dwelling heat loss values calculated by the 342 

Cambridge Housing Model (CHM), which based on an extensive building survey and a modified SAP 343 

calculation [59]. The CHM reports the HTC (“Dwelling Heat Loss”) and the heating system efficiency. 344 

This HTC was based on the combined heat transfer properties of the building elements (walls, 345 

windows, roof, etc) inventoried by the building survey, as well as the assumed ventilation losses, while 346 

the heating system efficiency was derived from the SAP tables for the building heating system. The 347 

HPLC values for the CHM buildings equipped with gas or electric heating were calculated according to 348 

eq. 11, summary statistics are presented in Table 2 and Figure 5. There is a good match between the 349 

HPLC distribution and the nationally representative CHM values with a 6% deviation in the mean. The 350 

CHM distribution includes a higher diversity of buildings, which may be reflected in the slightly higher 351 

proportion of larger CHM HPLC values.   352 

 353 
Figure 5: Distribution of HPLC estimates for 541 EDRP-EDF dwellings where collected data quality 354 
was sufficient to produce an HPLC estimate compared to HLPC values calculated bottom-up from 355 
the Cambridge Housing Model (CHM) 356 
 357 
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Table 2: Descriptive statistics of the HPLC estimates for the EDRP-EDF data (inferred using 358 
Deconstruct) and the CHM data (calculated bottom-up). 359 

 25% 
percentile 

50% 
percentile 

75% 
percentile 

Mean 

EDRP-EDF HPLC (kW/˚C) 0.21 0.28 0.39 0.31 
CHM HPLC (kW/˚C) 0.20 0.29 0.41 0.33 

 360 

Figure 6 shows the power and HPLC grouped by dwelling type for the EDRP-EDF and CHM. The pattern 361 

of relative magnitudes of power and HPLC across dwellings types is similar, as the heat loss is a major 362 

driver of total power demand. Flats and terraced houses tend to be more efficient than detached 363 

houses due to differences in ratio of exposed surface area to dwelling volume and their smaller size as 364 

HPLC is not normalised by floor area.  365 

Overall, the good agreement between inferred and bottom-up HPLC values indicates that Deconstruct 366 

produces a reasonable estimate of the HPLC. Further work is needed to investigate the differences 367 

between the two estimates. As the EDRP-EDF sample is not nationally representative unlike the CHM, 368 

part of the deviations stem from the greater diversity of dwellings in the CHM, while part will be 369 

related to the difference between assumed and real building characteristics.  370 

 371 
Figure 6: Comparison of mean yearly power demand and HPLC for EDRP-EDF (inferred using 372 
Deconstruct), as well as the power and HPLC from CHM (bottom-up calculation), as a function of 373 
dwelling type. 374 
 375 
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𝑇଴ was estimated in addition to HPLC, however the uncertainties in this parameter were large - on 376 

average 2˚C relative to typical mean internal temperatures in ranges of 15-25˚C. Furthermore, it was 377 

found that 𝑇଴ was particularly sensitive to the assumption made for the base load gains 𝜂஻. The mean 378 

difference in 𝑇଴ estimate between setting 𝜂஻ = 0 and 𝜂஻ = 1 was 3˚C but could be as large as 10˚C. 379 

This result indicated that further development is needed in order to produce reliable 𝑇଴ estimates. 380 

5.2.1 Uncertainty 381 

Two approaches were used to estimated HPLC uncertainty. A Monte Carlo (MC) approach described 382 

by the Joint Commission for Guides in Metrology (JCGM) [61] was used to propagate uncertainty using 383 

known input uncertainty distributions to numerically estimate the output uncertainty distribution. The 384 

input distributions are described in Table 3, the uncertainty in electricity metering is assumed to be 385 

negligible. This was compared to the commonly used approximation of parameter standard deviation 386 

𝜎 estimated from the least squares optimiser covariance matrix, which is purely a measure of the 387 

numerical stability of the result rather than a reflecting the propagation of input uncertainties. 388 

Table 3: Description of parameter uncertainties used as inputs for the Monte Carlo uncertainty 389 
estimate. 390 

Parameter Description Source 
Gas Calorific value 0.3% Metering standards [62] 
Gas meter 
temperature 

Empirical distribution, 
approximately 3% median error 

EFUS internal and external 
temperatures 

Gas meter 
pressure 

Empirical step distribution, -3% to 
1% error depending on altitude 

OFGEM report [63] 

Gas volume 
measurement 

3% median error MC simulation using gas temperature 
and pressure error distribution 

Gas power Empirical distribution with 3% 
median error 

Combination of gas volume error and 
gas CV 

Total power 3% median error Combination of gas and electric power 
error 

External 
temperature 

Standard deviation 1˚C Distribution of difference between 
NWP and MIDAS temperature 
readings 

 391 

For the MC model, 1,000 iterations were performed using the following steps: 392 

1. For each run, a value of 𝐹் was selected from the EFUS distribution. 393 
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2. For each run, a percent deviation value for the meter and the altitude was randomly generated 394 

from the corresponding Cumulative Distribution Function (CDF). 395 

3. For each run, for each time-step of the power time series, a meter gas temperature percent 396 

deviation was generated. The gas percent volume deviation was calculated. Total power 397 

deviation was calculated from the percentage (assuming the electricity uncertainty to be zero) 398 

and added to the total power time series. 399 

4. For each time-step in the external temperature time series, a temperature absolute value 400 

deviation was chosen and added to the time series. 401 

5. For each run, HPLC was estimated using the modified time series. 402 

The distribution of uncertainties calculated by each method is shown in Figure 7. The mean standard 403 

error for HPLC from the MC approach is 0.04kW/˚C (15%) and the MC percentage uncertainties are 404 

larger than the regression percent standard error but are narrowly distributed, indicating a more 405 

robust uncertainty estimate. We conclude that the JCGM-recommended MC method should be 406 

preferred to provide more realistic uncertainty estimates, which reflect the distributions of the 407 

underlying data. 408 

 409 
Figure 7: Distributions of absolute (left) and percent (right) uncertainty in HPLC across 780 EDRP-410 
EDF dwellings, using uncertainty derived from covariance and using MC propagation of input 411 
uncertainty distributions. 412 
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5.3 Inter-year prediction 413 

To test the predictive power of the model, inter-year comparisons of HPLC and power demand 414 

estimates were made. The EDRP-EDF dataset has two years of data covering the 2008-2009 and 2009-415 

2010 winters. HPLC estimates were made for the consecutive years and the predicted and measured 416 

energy demand in the second year using model fit from the first year were compared. Year 1 was 2008-417 

08-1 to 2009-08-01 and year 2 was 2009-08-1 to 2010-08-01. Only 170 out of 780 dwellings met data 418 

quality standards for both years (no more than 50% missing data points), while 123 dwellings produced 419 

HPLC estimates with CVRMSE < 30%. 420 

The HPLC estimates for year 2 against that for year 1 are plotted in Figure 8. The mean difference 421 

between the HPLC for the two years was 0% with a standard deviation of 23%, with the regression 422 

slope (indicated on the figure) equal to 1. This indicates a good cross-year agreement and supports 423 

the notion that HPLC can be a reliable weather-independent and occupant-independent dwelling 424 

metric over time. Energy demand in the heating regime (low solar gain period) in year 2 was compared 425 

to the value predicted using inferred model parameters in year 1. Figure 9 plots the distribution of 426 

results and demonstrates a good agreement between them. A -6% median bias in predicted demand 427 

was found with an inter-quartile range of 15%. This indicates that the HPLC can be used to consistently 428 

calculate heating demand. 429 

 430 
Figure 8: Comparison of HPLC estimates from year 2 against year 1, with regression line in red. 431 
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 432 
Figure 9: Predicted and measured mean power demand in year 2 for the low solar gain sample. 433 

6 DISCUSSION 434 

Deconstruct was successful in estimating HPLC for 70% of dwellings with an uncertainty of around 435 

15%, with the value being stable across several years indicating that it is robust to inter-year weather 436 

differences and is likely to be independent of occupant effects. This study required dwellings to have 437 

at daily average data spanning least one year, with no more than 50% of missing data and no less than 438 

5 data points existing in each sub-sample, together with location. The data collection length is 439 

relatively long, however this allows for a simple and robust approach that is a good fit for smart meter 440 

data, where there is little control over input data quality or data collection conditions. Accumulating 441 

this data is simple if there is a national smart metering infrastructure. In the UK, smart meters already 442 

store by default data for 13 months in their internal memory [64]. Deconstruct presents an 443 

opportunity to derive considerable value from this data for both utilities and customers, and may also 444 

be an important argument to help obtain the required consent from customers to make use of this 445 

data. Alternatively, shorter sampling periods could be achieved through a more pro-active data 446 

collection strategy, for example by sampling specific periods during winter and summer or controlling 447 

the heating system in a structured way (for example using a smart heating system to perform a 448 

controlled test when occupants are absent). 449 
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The thermal model of the dwelling is by necessity very simple, using a single thermal zone. The HPLC 450 

was found to depend on the internal temperature model approximation for 𝐹், but was robust to 451 

changes in 𝜂஻, 𝑃஻ and 𝑇଴. Thermal bridging or transfer to the ground was not considered, because 452 

suitable data is not expected to be collected for most dwellings. Deconstruct only provides estimates 453 

of lumped dwelling parameters, which alone are insufficient to predict the effect of specific retrofits 454 

(e.g. installing double-glazed windows). However, Deconstruct could be used to detect if retrofits had 455 

resulted in the expected change in HPLC. 456 

The HPLC combines the heating system and fabric efficiency. Although these values combined are 457 

important for evaluating the overall energetic performance of a building, not being able to separate 458 

the heating system efficiency introduces some limitations. Notably, in the case of heating by heat 459 

pumps, the inferred HPLC will reflect mainly the high efficiency of the heating system and will not give 460 

a good indication of the heat flow through fabric. Nevertheless, it will correctly evaluate heat-pump 461 

equipped dwellings as being highly energy efficient overall. Since heat pump efficiency can be 462 

dependent on external temperature the HPLC Deconstruct model would need to be adapted to 463 

account for this.  464 

Although solar gains are described in the model theory, solar aperture parameters were not 465 

considered in this paper. Solar gains would introduce more complex geometric considerations to the 466 

model and it would be useful to determine to what extent they may improve the performance of the 467 

Deconstruct method in terms of parameter inference and power prediction accuracy. The use of a low 468 

solar gain sample alleviated the need to account for solar gains, which was identified as a significant 469 

challenge in previous work [32,36]. The resulting HPLC estimates were furthermore judged to be good 470 

measures of thermal performance. The effective solar aperture would be an interesting aspect to 471 

develop in future research. 472 

The simple temperature model makes a number of fairly strong assumptions. Notably, it assumes that 473 

the underlying daily temperature/heating pattern does not change significantly over the days selected 474 

for the regression sample. There could be significant changes to the heating schedule related to 475 
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changes in occupancy. No attempt was made to construct an occupancy model. In theory, it should be 476 

possible to develop a method of predicting occupancy level based on energy consumption data, for 477 

example by looking for traces of appliance usage in electricity data. However, without a good labelled 478 

dataset this is difficult to do with any rigour. It was found that the simple occupancy heuristic was 479 

effective and that energy demand follows a reliable pattern across days without attempting to take 480 

detailed occupancy profiles into account. The generally good performance of the physical model 481 

suggested that occupant behaviour effects may not be significant for HPLC calculations, however in 482 

this case an in-depth study of occupant behaviours was not performed. A possible approach for 483 

investigating this would be to calculate HPLCs for dwellings with different occupants (for example 484 

different tenants in rented accommodation). 485 

One impact of not modelling occupancy is that metabolic gains are not accounted for and are assumed 486 

to be stable and non-correlated with weather. Smart thermostats could provide valuable additional 487 

information in this regard, as they are usually designed to adapt heating patterns to occupancy and 488 

do so by using a range of methods to predict occupancy, such as drawing on data from smartphone 489 

apps. 490 

Wind speed might be expected to have an impact on energy demand but was not included in the 491 

thermal model as preliminary analysis demonstrated that there was no significant dependence of 492 

power demand on absolute wind speed. Similarly, precipitation was not found to be correlated with 493 

power demand once temperature and solar gains were taken into account. 494 

Secondary heating systems are used in 48% of UK dwellings [45], these are predominantly gas or 495 

electric. Since the energy use of these heating systems is metered there is no need for special 496 

consideration for the dwelling energy balance. This highlights the importance of using total metered 497 

energy demand to capture all heat sources. Approximately 10% of dwellings use solid fuel or ‘other’ 498 

supplementary non-metered heating systems. It is not possible to model the contribution of non-499 

metered energy to the thermal balance. 500 
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7 CONCLUSION 501 

Using the Deconstruct method it was possible to infer dwelling Heat Loss Coefficients (HPLC) with a 502 

median value of 0.28kW/˚C and uncertainty of 15%, using daily average smart meter data for one year 503 

and dwelling location. A good agreement was found between the inferred HPLCs and the coefficients 504 

provided by the CHM which were calculated bottom-up from building surveys. This demonstrates the 505 

ability to non-intrusively estimate an indicator of thermal performance of a dwelling. The method was 506 

demonstrated to work on a relatively large datasets (over 700 buildings). This was possible thanks to 507 

the post-hoc control trial approach, which used the simplicity of accumulating smart meter data over 508 

long periods to extract sub-samples optimal for estimating the HPLC. These results suggest that HPLCs 509 

calculated using Deconstruct could form part of an ‘empirical EPC’, which could assess the as-built 510 

performance of dwellings. 511 

A UK nationally representative mean value of internal-external dwelling temperature slope parameter 512 

 𝐹் = 0.17 was found using EFUS data. This value contributes to the calculation of the HPLC, and was 513 

found to be a reasonable approximation for most dwellings, enabling estimates of HPLC without the 514 

need for internal temperature monitoring. The EDRP-EDF dataset used in this research and therefore 515 

the derived HPLC values were not nationally representative. In the future a nationally representative 516 

sample such as EFUS could include smart-metered data and hence determine a nationally 517 

representative estimate of as-built dwelling thermal efficiency. The Smart Meter Research Portal 518 

(SMRP) is being developed to provide this type of data, which combined with Deconstruct will provide 519 

valuable insights into building thermal performance for the research community [65]. 520 

The UK government plans to enable access for companies and research to dwelling smart meter data 521 

through the Data Communications Company (DCC), where occupants have provide opt-in consent, 522 

facilitating easy access to large volumes of dwelling energy data in terms of number of dwellings and 523 

length of period for which data is collected. The Deconstruct method is ideally placed to take 524 

advantage of this data source to provide thermal performance estimates for dwellings and provide 525 

additional value from meter data for utilities and occupants. Using such data sources would allow HPLC 526 

estimates for connected dwellings to be updated each year. This could be relevant to support energy 527 
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policy making at the national or regional level by helping track the effect of policies over time. 528 

Measuring the impact of dwelling retrofits could be particularly useful for consumers, who could 529 

thereby obtain evidence of the effectiveness of their energy retrofit investments and could enable 530 

performance-based retrofit contracting. 531 

The Deconstruct method demonstrates cost-effective performance analysis on a large scale. This 532 

approach is flexible and open to the incorporation of new data streams generated by the ever-533 

increasing diversity of smart devices, appliances, and sensors. As such, it should offer a sound base on 534 

which to build further research and analyse new datasets. The ability to measure dwelling thermal 535 

performance on a large scale in a cost-effective manner could offer up-to-date information for 536 

occupants to assist retrofit decisions, as well as help track the impact of policies across the building 537 

stock. These factors would help reveal the inherent value-for-money of energy efficiency investments 538 

- undoubtedly the simplest and most cost effective approach to reducing greenhouse gas emissions 539 

and supporting a sustainable energy system, and also one with the most untapped potential. 540 
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