
Responsible AI for Conservation 

Oliver R. Wearn1*, Robin Freeman1 & David M.P. Jacoby1* 

1Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY, U.K. 

*correspondence: david.jacoby@ioz.ac.uk; oliver.wearn@ioz.ac.uk 

DMPJ – ORCID ID: 0000-0003-2729-3811 

ORW – ORCID ID: 0000-0001-8258-3534 

 

Standfirst: AI promises to be an invaluable tool for nature conservation, but its 

misuse could have severe real-world consequences for people and wildlife. 

Conservationists discuss how improved metrics and ethical oversight can 

mitigate these risks.  

Machine learning (ML) is revolutionizing efforts to conserve nature. ML 

algorithms are being applied to predict the extinction risk of thousands of 

species1, assess the global footprint of fisheries2, and identify animals and 

humans in wildlife sensor data recorded in the field3. These efforts have 

recently been given a huge boost with support from the commercial sector. 

New initiatives, such as Microsoft’s ‘AI for Earth’4 and Google’s ‘AI for Social 

Good’, are bringing new resources and new ML tools to bear on some of the 

biggest challenges in conservation. In parallel to this, the open data revolution 

means that global-scale, conservation-relevant datasets can be fed directly to 

ML algorithms from open data respositories, such as Google Earth Engine for 

satellite data5 or MoveBank for animal tracking data6. Added to these will be 
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‘Wildlife Insights’, a Google-supported platform for hosting and analysing 

wildlife sensor data which launches this year. With new tools and a proliferation 

of data comes a bounty of new opportunities, but also new responsibilities. 

Potential for AI misuse and misinterpretation 

The opaque nature of some ML algorithms means that the potential for 

unintended consequences may be high and this could have real-world 

consequences for people and wildlife. Understanding, even in an intuitive 

sense, how neural networks process a given input can currently be very 

challenging. This has several ramifications which are not yet fully appreciated in 

the conservation field. Firstly, it can be difficult to identify the implicit 

assumptions of an algorithm (for example, how much of the contextual 

background information it is using when identifying species in images), and 

therefore the potential risks of using it for this purpose. Secondly, it might be 

unclear when an algorithm is being asked to make predictions beyond the scope 

of the training data. Indeed making sure algorithms ‘fail gracefully’ is a major 

research problem7. Thirdly, an algorithm might not be easily interrogated as to 

why it made a particular decision. Whilst these considerations are well-

appreciated within the wider AI community, they have been largely absent from 

recent discussions around the potential benefits of the technology to 

conservation. 



The use of ML to solve conservation problems without consideration of 

these factors might have severe negative outcomes. A bias against under-

represented classes in a dataset could, for example, mean that a rare species is 

missed during an Environmental Impact Assessment, leading to the eventual 

loss of its habitat due to development. Equally, the use of training data with 

poor coverage of the domain in which predictions are to be made could result 

in a species being wrongly assessed as extinct on the IUCN Red List, meaning 

that conservation resources are diverted elsewhere (the ‘Romeo Error’8). A 

misclassification error could also wrongly flag local community members as 

poachers, raising potentially severe legal and safety concerns. Under any of 

these circumstances the lack of interpretability and accountability we have for 

an algorithm’s decision would be laid bare9. As such, perverse outcomes of 

applying ML in conservation have the potential to waste scare resources, 

increase the costs of conservation to local communities, and erode trust in 

science-led approaches to environmental problems.  

Better metrics needed 

That is not to say that these outcomes are unavoidable. One area of 

research that conservation might benefit from is the development – by ML 

researchers and conservationists working together – of better metrics for 

assessing the usefulness of any given algorithm for actually doing conservation. 



Currently, much of the focus is on standard predictive accuracy metrics. Whilst 

useful for assessing performance in a controlled ‘laboratory’ setting (using a 

single or very limited number of datasets, sometimes with pre-treatment of the 

data such as cropping), accuracy metrics may prove inadequate once the 

algorithms are released to make automated decisions in the wild. Here, 

extraneous factors may play a much more important role in the output than 

anticipated. For example, there has been a recent proliferation of studies 

presenting deep neural network approaches to classifying imagery taken by 

autonomous cameras (camera traps) deployed in the field10,11, with reported 

accuracies as high as 98%. Perhaps not helped by media reports, these studies 

can sometimes be seen as a ‘silver bullet’ to solve some of the major 

bottlenecks in wildlife monitoring today. However, simple accuracy metrics are 

unlikely to provide a good indicator of success when an algorithm is transferred 

to new datasets, for example for a new point in time, a new study site, or on 

different species. If the model requires re-training, conservationists are unlikely 

to have the same abundance of training data as the original study. Perhaps 

more importantly, accuracy metrics may tell us little about how accurately we 

will in practice be able to monitor the populations of a suite of species. 



Conservation has been here before 

 As well as better metrics, we need better ethical oversight of the 

use of AI in conservation. We have been here before: a promising new tool is 

developed, followed by a period of mass uptake amongst conservationists. We 

then enter a period of critical appraisal, eventually resulting in the well-

considered and effective use of the approach. A good example of this is 

Population Viability Analysis (PVA), a widely-used tool to predict the risk of a 

species going extinct in the future. PVA first emerged in the 1980s and then saw 

a surge in use during the 1990s, especially after software became available 

offering a ‘canned’ approach. Towards the end of that decade, various 

researchers began to critique the use of PVAs in conservation, expressing the 

view that it could act as a ‘loaded gun’ in the wrong hands, rather than an aid to 

conservation12. Best-practice guidelines were eventually promoted13,14, nearly 

two decades after the tool first emerged.  

 The AI community as a whole is already grappling with the concepts of 

‘fair AI’ and goal alignment – central tenets of the Beneficial AI movement – and 

there is much that conservationists could learn from15,16. There is also an 

emerging consensus within the broader AI community on what responsible and 

ethical guidelines for AI development look like (e.g. the Asilomar AI Principles or 

the Biosphere Code Manifesto). Such guidelines for conservation could be 



designed to steer algorithm development in the right direction for humanity 

and wildlife in ways that are collaborative, maximally beneficial, liberating and 

yet robust to misuse and corruption (for example by those involved in the illegal 

wildlife trade). As conservationists, we are already familiar with ethical 

oversight of our practices, in particular with respect to the care and husbandry 

of animals in research (for example, animals kept in captivity for the purposes of 

ex-situ conservation, or animals captured and released for the purposes of 

research). Robust ethical review processes already exist in many research 

departments and ethics statements on the use of animals are often provided, or 

required, in published research. A pragmatic approach may therefore be to 

encourage the inclusion of a ‘Responsible AI’ statement, which outlines the 

ethical review process, provides responsible guidance on the limits to an 

algorithm, and gives a description of the training data involved. This would not 

only promote greater transparency but would also ensure that researchers are 

able to demonstrate that they have considered both the generalities and the 

limitations of their method. 

Given the potentially severe social and environmental costs of AI misuse 

and misinterpretation in conservation, we ask whether we might avoid the 

pitfalls of the past by building, from the outset, the technical and ethical 

capacity to harness these new tools responsibly. With this in mind, we have 



outlined two potential goals for the conservation and AI communities to tackle 

in the immediate term: the development of metrics to better allow 

conservationists to assess the usefulness of an algorithm, and the formulation 

of ethical guidelines for the responsible use of AI in conservation. Importantly, 

these metrics and guidelines will need to exist in the application domain, not 

just within the machine intelligence field. Critical to this will be the input of the 

AI community. Now is the time to bring together conservationists, AI experts 

and industry, to ensure maximum benefit with minimum harm comes from the 

application of AI to protect the Earth’s most threatened species and habitats. 
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Machine learning algorithms on the front line of conservation. ML methods are 

applied to identify wildlife or people using sensors deployed in the field. An 

image of a Critically Endangered Bornean orangutan (Pongo pygmaeus), A, 

captured using a camera trap, B. A threatened bat species (Natalus primus) 

detected on a sonogram from in situ acoustic monitoring, C.   


