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Abstract 

Background: Multiple sclerosis (MS) is characterized by a diffuse inflammatory response mediated by 

microglia and astrocytes. Brain translocator protein (TSPO) positron-emission tomography (PET) and 

[myo-inositol] magnetic resonance spectroscopy (MRS) imaging was used together to assess this. 

 

Objective: To explore the in vivo relationships between MRS and PET [11C]PBR28 in MS with a range 

of brain inflammatory burdens. 

 

Methods: A total of 23 patients were studied. TSPO PET imaging with [11C]PBR28, single voxel MRS 

and conventional MRI sequences were undertaken. Disability was assessed by Expanded Disability Status 

Scale (EDSS) and Multiple Sclerosis Functional Composite (MSFC). 

 

Results: [11C]PBR28 uptake and [myo-inositol] were not associated. When the whole cohort was 

stratified by higher [11C]PBR28 inflammatory burden, [myo-inositol]  was positively correlated to 

[11C]PBR28 uptake (Spearman’s ρ=0.547, p=0.007). Moderate correlations were found between 

[11C]PBR28 and both MRS creatine normalized N-acetyl aspartate (NAA) concentration and grey matter 

volume. MSFC was correlated with grey matter volume (ρ=0.535, p=0.009). There were no associations 

between other imaging or clinical measures.  

 

Conclusions: MRS [myo-inositol] and PET [11C]PBR28 measure independent inflammatory processes 

which may be more commonly found together with more severe inflammatory disease. Microglial 

activation measured by [11C]PBR28 uptake was associated with loss of neuronal integrity and grey matter 

atrophy. 



Introduction 

Multiple sclerosis (MS) is a chronic inflammatory condition characterized by demyelination and 

neurodegeneration focally, as well as more diffusely in the central nervous system (CNS). The brain’s 

chronic inflammatory response includes astrocyte activation and microglial activation, as well as 

recruitment of peripheral macrophages. It is likely that this chronic inflammation is causally responsibly 

for the neurodegeneration that leads to long-term disability progression . Conventional MRI detects acute 

white matter inflammatory lesions and consequent demyelination and gliosis. However, it lacks 

sensitivity and specificity for quantifying chronic inflammation and the associated neuronal injury. 

 

Magnetic resonance spectroscopy (MRS) enables measurement of a range of brain metabolites in vivo. 

Two metabolites in relatively high concentration, myoinositol and N-acetyl aspartate (NAA), are amongst 

those showing pathology related changes in MS 1. Myoinositol has been proposed as a glial marker, as it 

is found in high concentrations in activated astrocytes and can be elevated in MS 2. Choline, a less 

specific marker of membrane turnover in glial cells, shows similar changes under some conditions 3.  

NAA is synthesized in the mitochondria of neurons.   Reduced concentrations are associated with 

neurodegeneration in MS and other diseases 2, 4. 

 

The relationships between neurodegeneration and activation of the innate immune response could be 

explored by coupling MRS and PET using radioligands that bind to the 18 kD mitochondrial translocator 

protein (TSPO) 5.  Activated microglia, macrophages and astrocytes express high levels of TSPO and 

show high TSPO radioligand binding. Several studies using the first generation TSPO ligand 

[11C]PK11195 have highlighted extensive multi-focal chronic innate inflammation and its association 

with disability and the likelihood of future clinical relapses 6-9. More recent work by different groups have 

further described heterogeneity amongst lesions within individuals and the inflammatory load in the white 



matter that appears normal with conventional MRI 10, 11.  Newer second generation TSPO ligands (such as 

[18F]PBR111 or [11C]PBR28) 5 with higher binding affinity for TSPO and less non-displaceable (i.e., non-

specific or “off target”) binding have been developed that may more specifically measure  inflammatory 

changes 12.  

 

However, specific interpretation of the increased brain TSPO signal in MS with any of these radioligands 

is confounded by their potential to reflect activated astrocytes, as well as microglia and macrophages.  A 

limited correlative [11C]PK11195 autoradiographic and histopathological study included in the original 

report suggested selectivity for activated microglia/macrophages in white matter lesions 6.  Additional 

immunohistopathological reports support this conclusion 13, but the more general relationships between 

astrocyte markers and TSPO radioligand binding are poorly defined.  Combining TSPO PET and MRS 

myoinositol offers one approach to assessing their relationship in vivo. 

 

In this study, we sought to explore the in vivo relationships between MRS measures of myoinositol and 

PET [11C]PBR28 binding in patients with MS selected to have a wide range of brain inflammatory load 

and disability. This allowed us to explore also how different measures of neuronal integrity (MRS NAA) 

and neurodegeneration (normalised gray matter volume) were related to these measures of inflammatory 

response. 

 

 

 

 

 

 



Material and methods 

Study population 

The study was approved by the West Bromley Research Ethics Committee and the Administration of 

Radioactive Substances Advisory Committee. Patients had a diagnosis of multiple sclerosis according to 

the revised McDonald criteria (2010) 14, with Expanded Disability Status Scale (EDSS) up to 7.0 and 

either relapsing-remitting course or a secondary progressive disease course. None of the subjects had 

been treated steroids or experienced a clinical relapse within 3 months of their scans. Women who were 

pregnant or breastfeeding were not eligible to participate. All subjects gave written informed consent in 

accordance with the Declaration of Helsinki. Neurological disability was scored using EDSS and the 

Multiple Sclerosis Functional Composite (MSFC) 15. 

 

TSPO genotyping 

TSPO genotype was assessed using a TaqMan based polymerase chain reaction (Applied Biosystems® 

QuantStudioTM 7) assay specific for the rs6971 polymorphism in the TSPO gene, as previously 

described 16.   Patients having genotypes associated with LAB were excluded, as they show negligible 

displaceable binding 16.  

 

MRI Scanning 

MRI scans were performed on a Siemens 3 Tesla Trio scanner (Siemens Healthcare, Erlangen Germany) 

equipped with a 32-channel phased-array head coil. Volumetric T1-weighted MP-RAGE images were 

acquired for all subjects using a 1 mm isotropic resolution 3D SPACE sequence, before and 5 minutes 

after intravenous gadolinium-chelate administration (0.2 mL/kg Gadoteric Acid, Dotarem®; repetition 

time = 2300 ms, echo time = 2.98 ms, inversion time =9 00 ms with 256 x 240 x 160mm field of view .  

Volumetric T2-weighted FLAIR (fluid attenuated inversion recovery) images were acquired using a 1mm 



isotropic resolution 3D SPACE sequence with a 250 x 250 x 160 mm field of view, echo time = 395 ms, 

repetition time = 5 s, inversion time = 1800 ms, turbo factor of 141, 256 x 256 x 160 matrix, and parallel 

imaging factor of 2 in 5 m:52 s. 

Single voxel MR spectroscopy was acquired in the same session as the other MRI sequences. A sagittal 

survey image was used to identify the anterior commissure (AC) and posterior commissure (PC).  The 

spectroscopy voxel was positioned just superior to the lateral ventricles in the midline (de Stefano et al. 

2001). The spectroscopy voxel measured 40 mm anteroposterior x  25 mm craniocaudal x  40 mm left–

right 17. 

 

Proton spectra were acquired using a 90o –180o –180o sequence for volume selection (repetition time = 

2000 s, echo time =  272 s). Magnetic field homogeneity was optimized to a linewidth of ~5 Hz over the 

spectroscopy voxel using the proton signal from water.Water suppression was achieved by a chemically 

selective saturation, the WET method 18. 

 

MRS analyses 

LCModel software (version 6.3) was used for metabolite quantification applying the internal water 

reference method, accounting for different water content in grey matter, white matter and cerebrospinal 

fluid 19. Only metabolites with Cramér–Rao bounds < 20% were considered. Concentrations of N-

acetylaspartate (NAA), myo-inositol, glycerophosphocholine and creatine plus phosphocreatine were 

included for analysis. Concentrations in millimole (mM) units were calculated for all metabolites and 

results are presented in institutional units. 

 

 

 



PET scanning 

[11C]PBR28 was injected as an intravenous bolus over approximately 20 s at the start of a 90 min 

dynamic PET acquisition. Injected activities for [11C]PBR28 ranged from 223.8- 379.6 MBq (325.6+/-

34.6 MBq, n=44).  Injected mass for different subjects ranged from 1.16 - 8.91 μg (2.75+/-1.64 μg).  

 

Radioligand synthesis 

Radiosynthesis and quality control was performed on site as previously described, as previously 

described, obtaining radiochemical purities of > 95% 12.  

 

[11C]PBR28  PET Image and Kinetic analysis  

T2 FLAIR images were rigidly registered to T1 using FLIRT (FMRIB Software Library v5.0). WML 

were manually segmented on the registered T2 image using Jim software (Xinapse Systems v7). The 

WML mask was used for lesion- filling the T1 image before segmentation into white matter, grey matter, 

cerebral cortex and cerebrospinal fluid using the FSL tools FAST and FIRST (FMRIB Software Library 

v5.0) 20. Normalised brain volumes were calculated using SIENAX 21. A mask of NAWM was created by 

subtracting the WML mask dilated by 6mm around its edges in 3D and the resulting mask further eroded 

by 3 mm. The masks of WML, NAWM and grey matter were multiplied by the mask of the spectroscopy 

voxel to create the respective masks within the spectroscopy voxel. 

The T1 image and dynamic PET images were used as inputs for the MIAKAT software package 

(www.miakat.org) for kinetic analysis of PET data. For this, PET images were motion corrected using a 

frame-by-frame realignment algorithm, in which all frames were individually realigned to a reference 

frame and rigid registered to MNI (Montreal Neurological Institute) space using SPM5 (Wellcome Trust 

Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm) with a mutual information cost function. 

http://www.miakat.org/


These transformed 4D PET images were integrated over time to obtain 3D PET summation images in 

MNI  space. The CIC Neuroanatomical Atlas was non-linearly deformed into the individual’s space, via 

mapping of T1-weighted MR imaging data, to obtain a personalized anatomical parcellation of regions of 

interest, which were used to generate time-activity curves for the caudate and voxel-wise for whole brain.  

The Logan graphical reference method 22 using a reference tissue time-activity curve as the input function 

and a linear start time at 35 min and model fitting performed with linear regression  was used to estimate 

the DVR at the voxel level to produce parametric DVR maps, relative to the caudate nucleus VT. The 

whole spectroscopy voxel mask and the WML, NAWM and grey matter masks within the spectroscopy 

voxel were applied to the PET parametric DVR image to obtain the DVR for the respective regions of 

interest. 

 

We chose to use a normalised quantitation to allow studies to be conducted without an arterial line.  

[11C]PBR28 VT has a high test-retest variability of approximately 20%, the major contribution to which 

appears to come in the blood to tissue transfer modelling 23.  Alternatively, reference based methods show 

less test-retest variability (5% or less) 23.  While TSPO is expressed throughout the brain, lower levels of 

specific binding within a proposed pseudo-reference region do not affect the reliability of the parameter 

estimates, although this may lead to underestimation of relative binding differences between regions of 

interest 24. We used the caudate nucleus as a pseudo-reference region as relatively lower levels of 

microglial activity and TSPO expression is found in the caudate and normalized standardized uptake 

ratios are low in caudate compared to other brain regions 13, 25.  

 

Statistical Analyses 

Statistical analyses were performed using SPSS software (IBM, SPSS v22). For correlational analyses, 

the Spearman’s correlation coefficient was calculated, unless otherwise stated. Descriptive statistics were 



reported as mean +/- standard deviation (SD) unless otherwise stated. A p-value of less than 0.05 was 

considered significant for all statistical tests. The primary hypothesis (positing a correlation between PET 

[11C]PBR28 DVR and [myo-inositol]) was tested first.  Exploratory relationships reported were tested 

subsequently and are reported with uncorrected p-values.   

 

Results 

24 people with clinically definite multiple sclerosis underwent [11C]PBR28 PET, single voxel MR 

spectroscopy and structural MRI scanning (Table 1, Fig. 1).  One patient was excluded from the final 

analysis because noise artifacts precluded reliable estimates of metabolite concentrations. Of the 23 

remaining patients (nine men, median age 48 years, range 22-66 years) included in the final analysis, 

seven had a diagnosis of secondary progressive disease and 16 had relapsing remitting disease. The 

median EDSS was 5.0 (range, 1.0-7.0). 

 

Differences in [11C]PBR28 uptake are not explained by brain [myo-inositol] 

The concentration of myo-inositol in the spectroscopy voxel (expressed as either an absolute 

concentration [ρ=0.250, p=0.25] or as a ratio to total tissue creatine [ρ=0.111, p=0.65]) was not 

significantly correlated to TSPO binding measured as the mean PET [11C]PBR28 DVR within the 

spectroscopy voxel.   We explored post hoc whether an association could be found in those people with a 

higher inflammatory burden. To do this, we divided subjects into two groups based on the median 

[11C]PBR28 DVR (1.26). There was a significant (un-corrected) correlation between the normalised 

[myo-inositol] and [11C]PBR28 DVR weighted by WML fraction within the high inflammatory load 

(DVR > 1.26) subgroup (ρ=0.685, p=0.014)(Fig. 2a). We further explored whether there was an 

association between choline and myo-inositol concentrations. There was a moderately significant (un-

corrected) correlation between myo-inositol and choline concentrations (ρ=0.547, p=0.007) (Fig 2b). 



  

Relationships between measures of inflammatory burden and measures of neurodegeneration 

We explored the relationships of inflammatory markers ([11C]PBR28 DVR and myo-inositol with 

measures of neurodegeneration.  A moderate correlation was found between the creatine normalized 

NAA concentration and [11C]PBR28 DVR in WML (ρ=-0.443, p=0.034 (un-corrected) (Fig. 3a).  We also 

found a correlation  between the whole brain normalized GM volume, as a measure of relative 

neurodegeneration, and [11C]PBR28 DVR weighted by WML fraction in the spectroscopy voxel  (ρ=-

0.535, p=0.009)(Fig. 3b).    There was no evidence for correlations between myo-inositol and either NAA 

(p=0.274) or the normalised GM volume (p=0.574 and p=0.299, respectively). 

 

Imaging measures and disability 

Disability measured by MSFC was correlated with normalised GM volume (ρ=0.535, p=0.009). We 

found within a general linear model that a large component of disability, as measured by MSFC, was 

explained by normalised GM volume (F=19.5, p=2x10-4). This relationship was driven predominantly by 

lower and upper limb motor scores (25FTW, F=18.8, p=0.007; 9HPT, F=11.6, p=0.003).  We further 

tested for additional explanatory power from measures here by including the TSPO DVR, myo-inositol 

and NAA , but did not find that they added further to the model.   We also did not find significant 

relationships between any of these measures and EDSS.  

 

 

 

 

 

 



Discussion 

Increased brain TSPO uptake with non-malignant brain pathology could be attributed to either an 

increased density of activated microglia or to increased astrocytes, as TSPO expression can be elevated in 

both cell types 5.  Histopathological studies in MS have shown that the [myo-inositol] detected by MRS 

signal corresponds to astrocyte activation 2 and that increased TSPO expression co-localises with 

activated microglia 13.  We have been able to test the independence of these markers in vivo for the first 

time in a group of MS patients with a range of inflammatory loads.  We failed to find a meaningful 

correlation between MRS [myo-inositol] and PET [11C]PBR28 uptake.  Changes in the two measures in 

this population therefore must be related to distinct processes or to elements of a common process with 

different time courses.  Similar findings were reported for HIV positive patients studied using the first 

generation PET radioligand [11C]PK11195 in conjunction with MRS for [myo-inositol] 26. The results 

support interpretation of TSPO PET primarily as a marker of activated microglia/macrophages in MS. 

 

However, these results should not be interpreted as evidence that there is never an association between 

the independent processes of microglial activation reflected in the PET TSPO signal and astrocyte 

activation in the disease.  Activated astrocytes and microglia are found within and outside lesions at all 

stages of MS 27.  Brex et al. highlight the l heterogeneity of changes in MRS neurodegenerative and 

inflammatory markers amongst lesions and between patients 28. The two markers of brain inflammation 

thus can be related under some conditions. Our post hoc exploratory analysis suggests in patients with a 

higher inflammatory load there is a convergence of the two glial cell population inflammatory 

pathologies.  Similar observations were made in a study that found the  [myo-inositol] concentration is 

associated with at higher levels of brain inflammatory pathology in Alzheimer’s disease 29.  

The correlation of greater microglial activation within T2 lesion with either reduced NAA or grey matter 

volume, both of which are markers of neurodegeneration, provide further evidence for the potential 



clinical significance of the increased brain PET TSPO radioligand uptake.  This is consistent with 

histopathological findings in MS in which microglial activation is associated with grey matter 

neurodegeneration 30, 31, the association of increased  PET [11C]PK11195 uptake in NAWM with greater 

brain atrophy 9 and correlations reported between PET TSPO radioligand uptake and measures of 

disability or likelihood of a diagnosis of clinically definite MS after presentation with the clinically 

isolated syndrome 8, 9, 32. Both populations of glial cells also could contribute to axonal damage 3.   

However, the lack of a relationship between brain [myo-inositol] and measures of neurodegeneration in 

this study again emphasizes that the TSPO PET and MRS measure are reporting largely independent 

phenomena or phenomena with different timecourses.   For example, astrocyte activation could be 

antecedent to neurodegeneration with a longer time course 33.  Future, longer term longitudinal studies 

combining MRS and PET TSPO imaging as described here could evaluate their independent predictive 

value for future neurodegeneration and increases in disability.  

 

We did not find relationships between disability and the inflammatory marker measures, although a well 

precedented  17 correlation between grey matter atrophy and disability measured with MSFC was 

observed, despite the limited study power.  This perhaps is not surprising, as MRS and PET TSPO are 

measures of inflammatory state, potentially predictive of future change rather than antecedent 

neurodegenerative processes 32, 34. However, there is the additional confound of different delays between 

inflammatory, neurodegenerative and disability changes in patients with MS 27, 33. 

 

This small study was powered to test for a relatively strong, general relationship between [myo-inositol] 

and PET [11C]PBR28 uptake in MS.  While the results clearly distinguish between results from the two 

measures, a limitation of the study design is that the range of disease investigated was limited; the 

possibility of a relationship under some conditions cannot be ruled out.  If increased TSPO expression 



and radioligand binding depends on the specific activation phenotypes of astrocytes, the conclusion that 

PET TSPO radioligand uptake reflects microglial activation predominantly could not be generalized 

safely.  This deserves further histopathological study.  A fundamental limitation lies in the use of the 

MRS [myo-inositol] as an index of astrogliosis.  While there is a strong evidence in support of the 

approach from correlative neuropathology 2, anabolic and catabolic pathways for myo-inositol are 

expressed in other cell types, as well 3.  Additional corroborative observations with other, potential more 

specific markers of astroglial activation would support the argument 35. 
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Figure Legends 

 

Figure 1. Placement of spectroscopy voxel shown in (A) sagittal, (B) axial and (C) coronal slice. The 

parametric TSPO DVR surfaceplot from a representative section of  the spectroscopy voxel a patient with 

MS with high inflammatory load (D) with (E) representative MR spectra from a patient. 

mIns=myoinositol, Cho= choline, Cr+PCr=creatinine and phosphocreatinine, NAA=N-acetylaspartate. 

The colorbar to the right of D represents the DVR for the surface plot of the PET parametric DVR. 

 

 

Figure 2. Relationships of different imaging measures of glial cell activation.  (A)The concentration of 

myo-inositol (Ins) normalised to total creatinine and phosphocreatinine concentration (Cr+PCr) compared 

to [11C]PBR28 distribution volume ratio (DVR) of the T2 FLAIR white matter lesions weighted by the 

WML fraction within the spectroscopy voxel. (B) Correlation of choline to myo-inositol concentration in 

the spectroscopy voxel.  

 

Figure 3. Relationships of neurodegeneration measures to  [11C]PBR28 DVR. (A) Normalised 

concentration of N-acetylaspartate (NAA) correlated with average distribution volume ratio (DVR) in T2 

FLAIR weighted white matter lesions across the whole spectroscopy voxel (Spearman’s ρ=-0.443, 

p=0.034) (B) Grey matter volume by lesion weighted [11C}PBR28 DVR. 

 

 

 

 

 



Table 1. Summary of study population characteristics. 

Gender, male : female  9:14 

Age, years, median (range) 48 (22-66) 

Multiple sclerosis subtype, RRMS : SPMS 16:7 

Disease duration, years, mean (SD) 13.7 (6.7) 

EDSS, median (range) 5.0 (1.0-7.0) 

 

Abbreviations: RRMS=relapsing remitting multiple sclerosis; SPMS=secondary progressive 

multiple sclerosis; EDSS=Expanded Disability Status Scale; SD=standard deviation 
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