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ABSTRACT 

SCOPE: The aim of this study was to develop and evaluate a parallel reaction monitoring mass spectrometry 

(PRM-MS) assay consisting of a panel of potential protein biomarkers in cerebrospinal fluid (CSF). 

EXPERIMENTAL DESIGN: Thirteen proteins were selected based on their association with neurodegenerative 

diseases and involvement in synaptic function, secretory vesicle function, or innate immune system. CSF 

samples were digested and two to three peptides per protein were quantified using stable isotope-labeled 

peptide standards. 

RESULTS: Coefficients of variation were generally below 15%. Clinical evaluation was performed on a cohort of 

10 patients with Alzheimer's disease (AD) and 15 healthy subjects. Investigated proteins of the granin family 

exhibited the largest difference between the patient groups. Secretogranin-2 (p<0.005) and neurosecretory 

protein VGF (p<0.001) concentrations were lowered in AD. For chromogranin A, two of three peptides had 

significantly lowered AD concentrations (p<0.01). The concentrations of the synaptic proteins neurexin-1 and 

neuronal pentraxin-1, as well as neurofascin were also significantly lowered in AD (p<0.05). The other 

investigated proteins, β2-microglobulin, cystatin C, amyloid precursor protein, lysozyme C, neurexin-2, 

neurexin-3, and neurocan core protein, were not significantly altered. 

CONCLUSION AND CLINICAL RELEVANCE: PRM-MS of protein panels is a valuable tool to evaluate biomarker 

candidates for neurodegenerative disorders.  
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INTRODUCTION 

Alzheimer’s disease (AD) is characterized by accumulation of aggregated hyperphosphorylated tau protein in 

neurofibrillary tangles and amyloid β (Aβ) peptides in plaques.1-4 Knowledge on AD pathogenesis has resulted in 

several disease-modifying drug candidates that are being evaluated in clinical trials.5 However, many trials have 

suffered from the low diagnostic accuracy of pure clinical assessment of patients, meaning that a high proportion 

of patients that do not have AD pathology have been enrolled.6 Thus, there is a great need for biomarkers, both 

to improve diagnostics and to monitor treatment effects.7 

The most validated cerebrospinal fluid (CSF) biomarkers for AD are Aβ42, total tau (T-tau) and tau phosphorylated 

at threonine 181 (P-tau), which consistently have shown a marked change in AD dementia and also in the early 

prodromal phase of the disease.8 Based on their high diagnostic performance, these core AD CSF biomarkers 

have been included in the diagnostic criteria for AD.9,10 Even though these CSF biomarkers discriminate AD cases 

well from healthy subjects,11 additional understanding of the disease mechanisms could be obtained by new 

biomarkers reflecting other aspects of pathophysiology. Moreover, it is frequently difficult with differential 

diagnosis between AD and other forms of dementia. Early loss of synaptic function is believed to play an 

important role in AD and recently the CSF levels of peptide products from both presynaptic12,13 and postsynaptic14 

proteins have been shown to be altered in AD. Moreover, inflammatory processes15 and oxidative stress16 may 

be involved in AD pathogenesis. To better understand the complicated biochemistry leading to AD it is important 

to investigate complementary potential biomarkers. These may also be useful to improve the current diagnosis 

efficiency, in differential diagnoses of AD and other neurodegenerative diseases, and to monitor therapeutic 

effects. 

While the immunoassay is presently the workhorse in biomarker analysis, in the search for novel biomarker 

candidates, mass spectrometry offers possibilities when no suitable antibodies exist.17 Even if there is still a 

limited number of clinical studies performed, targeted mass spectrometric analysis of protein compounds is 

presently a fast growing research field.18 An advantage is the possibility for multiplexing, allowing for analysis of 

a number of compounds in one analysis. However, complex samples, such as CSF, require instrumentation that 

can provide the necessary selectAivity. The Q Exactive is a high-resolution instrument capable of parallel reaction 

monitoring (PRM), a method related to selected reaction monitoring (SRM) but with the advantage of acquiring 

full fragment spectra instead of a choice of preselected fragments. This feature, together with the high mass 

resolution, considerably increases the possibility to avoid interfering signals that compromises the obtained 

data.19,20 For the method to be robust and capable of handling large sample numbers without interruption it is, 

however, necessary to operate with a liquid chromatography (LC) system using larger columns and higher flow 

rates than typically employed in discovery work. Sensitivity is a key parameter for analysis of clinically relevant 

samples where available sample amounts are low. When operating in PRM mode the sensitivity is still very high 

and low femtomole levels can be quantified.21,22 

Based on exploratory mass spectrometry studies, we selected novel biomarker candidates, which were 

associated with neurodegenerative diseases, involved in synaptic function, secretory vesicle function, and in the 
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innate immune system. Neurosecretory protein VGF, secretogranin-2, chromogranin A all three belong to the 

granin family: Granins are expressed in endocrine cells and peptidergic neurons, are present in large dense core 

vesicles, and have been associated with neurodegenerative diseases such as AD, multiple sclerosis, 

schizophrenia, and depression.23 Secretogranin-2 and chromogranin A have been shown to colocalize and 

exhibited significantly lower immunoreactivity in AD brains.24 Both proteins have been found in amyloid 

plaques25 and high CSF chromogranin A levels are associated with longitudinal Aβ42 reduction.26 CSF biomarker 

studies on chromogranin A have yielded different results depending on the precise type of AD that was studied.27-

29 Cystatin C is a cysteine protease inhibitor affecting, for example, cathepsin B30 and BACE1; in the latter case 

directly leading to lower Aβ40 levels and increased sAPPα levels as measured in human brain microvascular 

endothelial cells.31 Cystatin C has been shown to bind to Aβ and thus diminishing Aβ deposits in mouse brain.32 

CSF β2-microglobulin levels are increased as a result of immune system activation and are found to be elevated 

in, for example, purulent meningitis, viral meningitis/encephalitis, and neuroborreliosis.33 For soluble amyloid 

precursor protein (sAPP) there is a number of studies conducted for total sAPP as well as for sAPPα and -β with 

different results concerning changes in level for AD compared to control patients.34-42 CSF lysozyme C levels are 

increased in bacterial and fungal meningitis and acute inflammatory conditions.43 Lysozyme C is shown to co-

localize with Aβ, to prevent Aβ aggregation in vitro as well as in Drosophila melanogaster, and to be increased in 

AD CSF.44 Neurexin-1, -2, and -3 are transmembrane proteins found in presynaptic terminals. Neurexins act as 

neuronal cell-surface receptors but the precise function and localization of the different variants is yet to be 

elucidated.45 Recently, Schreiner et al.46 performed a thorough investigation of neurexin profiling and relative 

distribution in the brain and concluded that neurexins are relatively abundant synaptic proteins and that the 

alpha isoforms were more abundant than the beta isoforms. Neuronal pentraxin-1 is a member of the pentraxin 

family, which members are involved in neurodegeneration,47 and is found in pre- and post-synaptic 

compartments of excitatory synapses.48 Neuronal pentraxin-1 colocalizes with both SNAP-25 and tau in 

dystrophic neurites surrounding amyloid deposits in human brain.49 Neurofascin occurs in several isoforms, 

which are expressed in immature neurons and involved in neurite outgrowth and control of postsynaptic 

structures; expressed in mature neurons and involved in synaptic stabilization; and expressed in glia and involved 

in in stabilization of paranodes.50,51 Neurocan core protein has been shown to be expressed by reactive astrocytes 

in mice subjected to cortical brain injury and by astrocytes in primary cell culture.52 Neurocan core protein has 

also been shown to increase in astrocytes incubated with Aβ, possibly via Sox9 regulation.53 

For the thirteen selected proteins we aimed to develop two biomarker panels for a sufficient sensitive work-

load-efficient method robust enough for large sample sets. This was accomplished by adding of internal 

standards to the CSF, tryptic digestion in solution followed by SPE desalting and concentration step with 

subsequent drying of the samples. Reconstituted samples were then analysed by LC-PRM-MS. These biomarker 

panels were evaluated in CSF samples from a cohort of AD patients and controls. 

 

MATERIALS AND METHODS 

General 
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Quantitative mass spectrometric analysis of intact proteins is presently not feasible. By digestion, a number of 

peptides suitable for MS analysis are obtained. From previous nanoflow LC-MS analyses two or three suitable 

peptides were selected for each protein chosen to investigate. For PRM analysis, corresponding stable-isotope-

labeled peptides are used as reference peptides in the LC-MS analyses. In addition, human albumin, which is not 

produced in the central nervous system, was monitored and bovine serum albumin (BSA) protein was added 

together with one corresponding stable isotope-labeled peptide. BSA, having the same level in all samples, was 

used to monitor the general performance, e.g., digestion efficiency. To ensure good quality data the mass 

spectrometer was operated in a relatively slow mode with long injection times per acquisition. This put limits on 

the maximum number of peptides that could be handled simultaneously and therefore the analysis was divided 

into two panels, each analysing 17 or 18 peptides. The time between injections was 72 min, of which 7 min was 

sample loading time. To monitor intra- and inter-day variations a CSF pool was aliquoted and used for quality 

control. A schematic of the workflow is shown in Fig. 1. 

 

CSF samples 

Samples from ten patients (6 males, 4 females) diagnosed with AD and fifteen healthy controls (9 males, 6 

females) from the Danish Dementia Research Centre, Rigshospitalet, Copenhagen, Denmark, were analysed. 

Age for the AD group was 64.9 ± 7.6 years (mean ± standard deviation) and 62.7 ± 7.0 years for the control 

group. The project was approved by the ethical committee of the Copenhagen Capital Region and all patients 

gave informed consent. 

CSF samples (10-12 mL) were obtained by lumbar puncture, collected in polypropylene tubes and gently mixed. 

The samples were centrifuged at 2000×g for 10 min at +4 °C to remove cells and other insoluble material and 

stored in polypropylene tubes at –80 °C pending analysis. 

Samples were thawed, and divided into 100-µL-aliquots in Micronic 0.75 mL tubes with screw caps (Micronic, 

Lelystad; The Netherlands), refrozen and stored at –80 °C pending further preparation. The CSF pool was a 

mixture of CSF obtained from the Neurochemistry Laboratory at Sahlgrenska University Hospital, Mölndal, 

Sweden. It was divided and stored in the same way as the individual CSF samples. 

 

Patients and AD biomarker analysis 

Patients were divided into AD and control groups based on clinical evaluation as well as on the result of a 

computer tomography (CT) scan. The samples included in the control group all came from volunteers that were 

deemed not having any mental disorder. For the AD group an additional criterion for inclusion was a low CSF 

Aβ42 level, to assure patients having brain amyloid deposition. The CSF Aβ42 levels were determined at Statens 

Serum Institute, Copenhagen, Denmark, using Fujirebio immunoassay, and were 275.4 ± 106.8 pg/mL (mean ± 

standard deviation) for the AD group and 877.2 ± 206.3 pg/mL for the control group; P-value <10–4 (Student’s t-

test). 

 

Standards 
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Peptides to be analysed were identified previously by analysing trypsin digested CSF using nanoflow LC-MS/MS. 

Peptides providing a good enough signal and identification score were further investigated and verified to 

represent only the proteins of interest. Heavy-isotope-labeled standards were purchased from Thermo Fisher 

Scientific Inc. (Waltham, MA, USA; FasTrack 1, usable for relative measurements). BSA protein was from Sigma-

Aldrich Co. (Saint Louis, MO, USA). Peptides and BSA protein were dissolved in water or water/acetonitrile/formic 

acid 100/30/1 (v/v/v) and diluted individually in 50 mM NH4HCO3 to match protein levels in CSF samples. Diluted 

labeled peptides and BSA protein was pooled, aliquoted, and stored in solution at –20 °C pending further 

preparation. A parallel set of more concentrated standards (also diluted in 50 mM NH4HCO3) was prepared from 

the same stock solutions of heavy-isotope-labeled standards and BSA protein. These were then used to generate 

reverse calibration curves to evaluate the linearity and limits of quantification for each peptide in the assay. 

 

Reverse calibration samples 

Calibration samples were prepared by starting with the more concentrated standard solution and perform a two-

step dilution in 50mM NH4HCO3 producing a 10 000-fold concentration range of standards. These standard mixes 

were then added to CSF pool samples to generate reverse calibration curves, which were used to determine 

linearity and limits of quantification. The quantification limit was defined so that the CV at a particular point 

should be less than 25%. 

 

CSF protein digestion 

Frozen 100-µL CSF samples (individual and pool) were thawed and 20 µL of the thawed standard cocktail was 

added to each sample. For calibration samples the respective calibration standard cocktails were added to CSF 

pool samples. Reduction of sulphur bridges was performed by adding 25 µL of 30 mM 1,4-dithiothreitol (DTT, 5 

mM end conc., Sigma-Aldrich) in 50 mM NH4HCO3. Samples were then incubated at +60 °C for 30 min on gentle 

shaking using a Thermomixer Comfort (Eppendorf). After a cooling period of 30 min and subsequent spin-down, 

blocking of sulphur bridges was performed by adding 25 µL of 14 mM iodoacetamide (IAA, 2 mM end conc., 

Sigma-Aldrich) in 50 mM NH4HCO3 with subsequent incubation for 30 min at room temperature in darkness on 

gentle shaking. Digestion was performed by adding 25 µL of 0.8 µg/µL sequencing grade modified trypsin 

(Promega) in 50 mM NH4HCO3 and incubate over night (approximately 18 h) at +37 °C on gentle shaking. After a 

spin-down incubation was ended by adding 25 µL of 10% trifluoroacetic acid. 

 

Desalting and reconstitution 

Digested samples were desalted using Oasis 30 µm HLB 96-well µElution Plates (Waters). Wells were conditioned 

using 2×300 µL MeOH and equilibrated with 2×300 µL water using a rotary pump for controlled suction. Samples 

were the loaded onto the plate and the wells washed with 2×300 µL water. Samples were eluted with 2×100 µL 

MeOH into Micronic 0.75-mL tubes, which were dried in a speedvac and stored at –80 °C pending PRM analysis. 

Prior to PRM analysis samples were reconstituted in 50 mM NH4HCO3 and split as desired for each analysis set. 

The equivalent of 25 µL CSF was used for panel 1 and 50 µL for panel 2 (see Table 1). The two analyses were 

performed at two occasions, separated by two days. 
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LC-MS/MS analysis 

Mass spectrometric analysis was performed using a Dionex 3000 system (SRD-3600 degasser, WPS-3000TRS 

autosampler, HPG-3400RS pump, Thermo Fisher Scientific) coupled to a Q Exactive (Thermo Fisher Scientific) 

electrospray ionization hybrid quadrupole–orbitrap high resolution mass spectrometer. Separation was 

performed with a Hypersil Gold reversed phase column (id 2.1 mm, length 100 mm, Thermo Fisher Scientific) 

operated at a flowrate of 100 µL/min. For each assay the gradient was tailored to maximize separation of the 

peptides to be analysed. For both panels the mobile phase A was 0.1% formic acid, mobile phase B was 84% 

ACN/0.1% formic acid (v/v), the gradient was 50 min., and the sample cycle time was 75 min. MS analysis was 

performed as scheduled PRM with retention time windows no shorter than 4 min for each peptide. At most four 

different peptide pairs were toggled between, see Fig. S1. For general acquisition, including the study, isolation 

window was set to 8 m/z units enabling simultaneous acquisition of both “native” and labeled peptides. For 

comparison, in a limited number of analyses, isolation window was instead set to 3 m/z units with separate 

acquisitions of unlabeled and labeled peptides. The automatic gain control target value was set to 3x106 and 

maximum injection time to 300 ms for both precursor and fragment ion spectra. Acquisitions were made at a 

resolution setting of 70 000 (to match the maximum injection time) toggling between intact peptide and 

fragment mass spectra. 

 

Data processing 

Data processing was performed with PinPoint v1.3 (Thermo Fisher Scientific), which was used to generate peak 

areas of the “native” and labeled peptides. Extracted ion chromatograms for all transitions were inspected 

visually and those with peak shape differing from the internal standard were removed from the data set. Data 

was subsequently exported and further analysed using in-house developed software (PinPointEvaluator), which 

facilitated quality control and further refinement. Again, non-conformative transitions (e.g., transistions with 

light-to-heavy ratio different than the majority’s), likely affected by interferences, as well as those with low 

intensity, were removed. The CSF pool samples were utilized to evaluate the stability of the method. 

 

Statistical analysis 

Statistical analysis and plot generation was performed using GraphPad Prism 7.02. For the evaluation two-tailed 

Mann Whitney U test was used and P-values <0.05 were considered significant. Because the experimental 

approach was of a screening type rather than testing a full model hypothesis no further correction of significance 

values was required. 

 

RESULTS 

Evaluation of the PRM acquisition procedure 

The standard approach to set up parameters for SRM or PRM is to acquire unlabeled “native” and labeled 

compounds in separate acquisitions. To obtain good signals for the majority of the peptides analysed relatively 

long C-trap injection times (300 ms) were required. This meant that the number of data point acquired over the 
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chromatographic peak was on the low side. Because the limiting factor was the sensitivity therefore requiring 

long filling times, the instrument’s trapping multiplexing possibility would give no advantage (this operating 

mode is useful when the ion signal is relatively high, but a higher resolution is required for peak separation). 

Since the m/z difference between the compounds used was relatively low (5 m/z units or less) we investigated 

the simultaneous isolation of both unlabeled “native” and labeled using an 8 m/z unit isolation window. Since 

the instrument should have a dynamic range of >104 this should be no problem provided that the abundance 

difference between unlabeled “native” and labeled was well within this range. Apart from obtaining twice the 

number of data points, effects from variation in the electrospray current would be minimized. Refinement of the 

acquired data was required to remove transitions affected by interferences, see Table S1 for a list of the 

transitions used for quantification and Fig. S2 for extracted ion chromatograms of transitions used for 

quantification as well as tandem mass spectrum examples. 

The two approaches were evaluated using pool CSF and were found to give very similar results (Fig. 2a). The 

coefficient of variation (CV) was more or less the same. The average CV for the standard approach with separate 

isolation/acquisitions was 5.4% while it was 4.9% with simultaneous isolation. One difference was noted, 

however; the unlabeled “native”-to-labeled peptide ratio was different for the two approaches and was between 

1.2 and 1.8 times higher (peptide dependent) when using separate acquisitions (Fig. 2a). 

Acquisitions in SIM mode were also evaluated to evaluate the possibility to attain better sensitivity and utilizing 

the high resolution (together with MS/MS data for identification) to retain selectivity. However, it turned out 

that due to interferences it was for many of the peptides not possible to to obtain useful quantitative data. 

 

Reverse calibration and quality control samples 

The evaluation of the assay was performed by using pooled CSF. Reverse calibration curves spanning 4 orders of 

magnitudes were generated by spiking different amounts of the isotope labeled standards and BSA protein to 

100 µL of CSF. Depending on peptide, the 1-3 lowest concentration points did not produce quantifiable signals; 

see Table S2 and Fig. S3 for details. Pool CSF samples were prepared and analysed as QC samples at two separate 

occasions, see Table S3 and Fig. 2b, c. One of these occasions was at the time of patient sample analysis to 

monitor the robustness and the digestion efficiency also for the study sample set preparation. In all samples the 

added BSA labeled peptide and unlabeled protein was also used to monitor the stability and digestion quality. 

Generally the CVs for the peptide concentrations obtained for the two panels were below 15%. During the 

acquisitions every eight sample was a blank to monitor carry-over, which was negligible during the whole 

acquisition period (≤0.1%). 

 

Study samples 

The assay was evaluated using a cohort of samples from the Danish Dementia Research Centre. All samples were 

prepared at the same day but each PRM panel was analysed at different occasions separated by four days. The 

results from the first panel are presented in Fig. 3. Of the proteins analysed it is clear that for β2-microglubulin 

and APP there is no significant difference between the groups. The best separation between the AD and control 

groups was obtained for neurosecretory protein VGF (P<0.001) and for secretogranin-2 (P<0.005) which were 
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both lowered in AD. For cystatin C and chromogranin A the situation is less clear since one peptide for each 

protein is not significantly altered while the others are lowered. In Fig. 4 the results from the second panel are 

presented. Lysozyme C, neurexin-2, and neurocan core protein exhibit no significant difference between the 

patient groups. The peptides representing neurexin-1, neuronal pentraxin-1, and neurofascin were all 

significantly lowered (P<0.05) while only one peptide showed decreased level for neurexin-3. Notable also is that 

for all peptides exhibiting difference the levels are lower in AD. The control peptides from human albumin and 

BSA were analysed in both panels and produced very similar results at the two analysis time points. (Fig. S4). As 

can be seen in panels c and f, the sample-to-sample variation for BSA was low. 

 

DISCUSSION 

Evaluation of the PRM acquisition procedure 

The use of a high-resolution mass spectrometer capable of PRM provides both the advantage not to have to 

select the transitions in advance as well has having a very high degree of selectivity. Using high resolution MS we 

were able to investigate and evaluate possible interferences. We examined the possibility to use SIM acquisitions 

to monitor peptide precursor ion signals for the assay but that proved to be impossible because the limited 

specificity in this complex type of sample. However, we could use the SIM scans for trouble shooting. In the 

future there should be no need to collect SIM scans. With the additional selectivity step of monitoring product 

ions these interferences affected the quantification to a substantially lower degree and could be handled 

succesfully. Collection of signals from all product ions in a full MS/MS acquisition enabled us to refine the data 

by examining the unlabeled “native”-to-labeled transition intensity ratios. We could afford to remove transitions 

which ratios were different than that of the majority. Since LC conditions vary between analysis occasions a 

transition that was good at one occasion might not be useful due to an interfering signal at another. 

Since there was no apparent disadvantage with the simultaneous isolation approach we decided to conduct the 

study accordingly. The main advantage, as stated above, was the doubled acquisition speed allowing for a more 

efficient analysis. Some caution is however required, which is reflected in the difference in unlabeled “native”-

to-labeled peptide ratio which had a relative discrepancy of a factor about 1.6 between the acquisition 

approaches. The reason for this is that the isolation potential in the quadrupole is not entirely symmetric and 

may be further skewed with accumulation of deposits on the quadrupole 54. This causes a non-symmetric but 

reproducible isotope mass distribution (the distribution will slowly shift with deposit increase over a period of 

weeks or months depending on usage; quadrupole cleaning is required at regular intervals to keep the sensitivity 

up). The shift was experimentally supported by the positive correlation of the effect with peptide m/z difference, 

where the ratio differed least for the peptides pairs with heavy isotope labeled lysine (Δm = 8 Da; Δm/z = 4) and 

most for those with heavy isotope labeled arginine (Δm = 10 Da; Δm/z = 5), see Fig. 2a. With an isolation window 

of 8 m/z units peptide pairs with larger m/z difference will be closer to the edge of the non-symmetric isolation 

potential well and thus more affected. Note that this would not affect the measured peptide levels since an 

accurate abundance level has to be determined using an abundance characterized unlabeled peptide anyway. 
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The approach has been successfully implemented previously both by our laboratory55 and others.56 When 

attempting this approach with an abundance difference of 103 or higher the low intensity peak reproducibility 

was reduced (data not shown) and the standard approach with separate isolations should be used. Gallien, et al. 

has investigated different acquisition approaches and suggest that a broader isolation window, e.g., 8 m/z units, 

would lead to increased background and also reduced signal intensity57 but this was no problem with our current 

assays. There was a fair amount of co-isolation but not to the extent that the filling time was reduced. Care 

should, however, be taken if trap filling times get shorter than anticipated. This could mean that other compound 

eluting at the same time and having similar m/z to the compound of interest. If possible then a more narrow 

isolation window should be used. 

 

Reverse calibration and quality control samples 

From the standard curves it can be seen that the levels of the measured peptides were within the linear range; 

see Table S2 for quantification ranges. The overall reproducibility was deemed sufficient; CVs of about 15% is 

normal for these types of measurements. The column carry-over was carefully examined. It was 0.1% or lower 

depending on peptide, where carry-over correlated with hydrophobicity. By injecting a blank after every eight 

samples we could monitor the carry-over and verify that there was no visible build-up with consecutive 

injections. 

 

Study samples 

The first panel contained a number of proteins that have previously been implicated in AD and other neurological 

disorders. β2-microglobulin has been previously shown to have both increased CSF levels in AD58,59 and 

decreased or non-altered levels in mild dementia depending on analysis method.29 In the present study β2-

microglobulin was clearly not significantly altered in AD. Although CSF levels for soluble α and β variants of sAPP 

have been assayed relatively thoroughly with variable results,34-42 fewer studies have been conducted for the 

three splice variants of APP (APP695, APP751, and APP770). Splice variants containing the Kunitz protease 

inhibitory (KPI) encoded region (i.e., APP751 and APP770) have been shown to be increased relative to the non-

KPI containing APP695 in AD brains compared to control brains, see for example.60-62 In the present study, 

however, neither the peptide representing total APP nor the peptide representing APP containing the KPI domain 

were significantly altered in AD. CSF cystatin C levels have previously been reported to be decreased in AD,29,63 a 

result that is partially confirmed in the present study where both peptides appeared to be lowered in AD, but 

only one at a significant level.  

The most significantly altered proteins, secretogranin-2 and neurosecretory protein VGF, both belong to the 

granin family and both had lowered CSF levels in AD. For the third granin family member investigated, 

chromogranin A two peptides of three were also significantly down-regulated. These results are in line with 

previous reports. Endogenous secretogranin-2 peptides have previously been shown to have decreased CSF 

levels in AD64 which is the case also for endogenous VGF peptides.59,64-66 Endogenous chromogranin A peptide 

levels in CSF have been reported decreased in AD64,65 The third chromogranin A peptide, CHGA_194-213, did not 

correlate well with the other two and exhibited no significant difference between the AD and control groups. 
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The reason for this remains elusive and would need further investigations to explain. Proteins in CSF, including 

chromogranin A, are to a large extent present in various processed forms.67  

The proteins in panel 2 are much less investigated. In the present study CSF lysozyme level was not significantly 

altered in AD, a result contradicting the one previously published study on lysozyme C by Helmfors et al.44 where 

increased CSF levels were reported for AD. Neurexin-1 has previously been reported to be lowered in AD CSF,64 

and our results corroborate this finding. For the remaining proteins in panel 2 this is to our knowledge the first 

investigation on AD CSF levels that has been reported. Two of the other proteins in panel 2, neuronal pentraxin-

1 and neurofascin, also exhibited lowered AD CSF levels (also just below the 0.05 significance level). Analysis of 

a larger cohort preferably including other disease types would be required to evaluate the usefulness of these 

proteins as biomarkers for AD or other neurodegenerative diseases. 

 

CONCLUSIONS 

The two-panel assay is sufficiently robust with CVs generally below 15% and can be applied to larger study sets. 

The addition of BSA protein and labeled peptide proved to be very useful for keeping track of tryptic digestion 

efficiency and general method robustness monitoring. Using a slightly wider isolation window of 8 m/z units 

proved to be advantageous with a doubling of measured data points and limiting spray variability effects. 

Thirteen proteins were investigated in the pilot study; of these, secretogranin-2, neurosecretory protein VGF, 

and two out of three chromogranin A peptide had markedly lowered levels in the AD patient group, confirming 

earlier studies; the reason for the third chromogranin A peptide’s discrepancy is presently not clear. A similar 

result was obtained for cystatin C where one peptide was significantly lowered in AD and the other not. Neurexin-

1, neuronal pentraxin-1, and neurofascin were also lowered in AD; at a confidence level of 0.05. The remaining 

proteins exhibited a moderate significant difference for only one out of two peptides or for none of them. These 

findings for AD have to be validated with further studies and it would be very interesting to apply the method to 

other neurodegenerative diseases to investigate the potential for differential diagnosis. 
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Tables: 

 

Table 1. Internal standard peptide characteristics. 

Protein 
Protein 

mass 
[kDa] 

Peptide sequencea 
Amino acid 
positions 

Estimated 
conc. for 
ratio=1 

[nmol/L] 

Cystatin Cb 13.3 
LVGGPMDASVEEEGV[R] 35-50 140 

ALDFAVGEYN[K] 52-62 360 

β2-microglobulinb 11.7 
VEHSDLSFS[K] 69-78 84 

VNHVTLSQP[K] 102-111 90 

Neurosecretory protein 
VGFb 

65.0 
NSEPQDEGELFQGVDP[R] 64-80 120 

AYQGVAAPFP[K] 268-278 1.9 

Chromogranin Ab 48.9 

YPGPQAEGDSEGLSQGLVD[R] 194-213 33 

GLSAEPGWQA[K] 216-226 2.8 

EDSLEAGLPLQV[R] 400-412 2.9 

Secretogranin-2b 67.8 
ALEYIENL[R] 58-66 1.1 

VLEYLNQE[K] 593-601 2.4 

APP (751/770 isoform) b 83.0 EV(C)SEQAETGP(C)[R] 289-301 5.0 

APPb 85.2 VESLEQEAANE[R] 439-450 5.0 

Lysozyme Cc 14.7 
WESGYNT[R] 52-59 9.8 

STDYGIFQINS[R] 69-80 4.4 

Neurexin-1c 158.8 
LTVDDQQAMTGQMAGDHT[R] 823-841 26 

VDSSSGLGDYLELHIHQG[K] 1168-1186 9.7 

Neurexin-2c 182.0 
TALAVDGEA[R] 124-133 4.3 

VDLPLPPEVWTAAL[R] 637-651 3.9 

Neurexin-3c 177.8 
FI(C)D(C)TGTGYWG[R] 665-677 4.9 

LTVDDDVAEGTMVGDHT[R] 790-807 1.2 

Neuronal pentraxin-1c 45.0 
LENLEQYS[R] 144-152 9.6 

LTPGEVYNLAT(C)ST[K] 386-400 7.7 

Neurofascinc 147.5 
GNPAPSFHWT[R] 67-77 9.8 

VIAINEVGSSHPSLPSE[R] 702-719 2.5 

Neurocan CPc 140.7 
ELGGEVFYVGPA[R] 257-269 1.6 

DFQWTDNTGLQFENW[R] 1155-1170 13 

Albuminb, c 66.4 
L(C)TVATL[R] 098-105 850 

AEFAEVS[K] 250-257 900 

Bovine albuminb, c 66.4 LGEYGFQNALIV[R] 421-433 130 

 

a [X] indicates stable isotope labeled amino acid and (C) indicates carbamidomethylated cysteine; b Included in panel 1; c 

Included in panel 2.  
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Figures: 

 

Figure 1. Schematic of the methodological workflow. 

  



13 
 

 

Figure 2. Mean ratios for QC pool CSF samples when using separate acquisitions for the unlabeled “native” 

peptide and the internal standard peptide (blue, n = 8) and acquisitions where both peptides are acquired 

simultaneously (red, n = 8) (a). Mean ratios for QC pool CSF samples at two different preparation and acquisition 

occasions for peptides included in (b) panel 1 (n = 13 + 14) and (c) panel 2 (n = 13 + 14). L/H ratio denotes light-

to-heavy peptide ratio. Error bars indicate standard deviation. 
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Figure 3. CSF level difference in control (C) vs AD groups for the peptides included in panel 1. For β2-microglubulin 

(a, b) and APP (l, m) none of the peptides exhibited a significant difference. For cystatin C (c, d) one out of two 

peptides was significantly lowered in AD and for chromgranin A (e, f, g) two out of three peptides were 

significantly lowered in AD. The most confident differences were obtained for secretogranin-2 (h, i) and 

neurosecretory protein VGF (j, k) for which both peptides were significantly lowered in AD. Control n = 15 and 

AD n = 10. L/H ratio denotes light-to-heavy peptide ratio.  
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Figure 4. CSF level difference in control (C) vs AD groups for the peptides included in panel 2. For lysozyme C (a, 

b), neurexin-2 (e, f), and neurocan core protein (m, n) none of the peptides exhibited a significant difference. For 

neurexin-3 (g, h) one out of two peptides was significantly lowered in AD. For neurexin-1 (c, d), neuronal 

pentraxin-1 (i, j), and neurofascin (k, l) both peptides were significantly (P<0.05) lowered in AD. Control n = 15 

and AD n = 9. L/H ratio denotes light-to-heavy peptide ratio. 
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Supporting Information: 

 

Table S1. PRM transition characteristics. 

Protein Peptide sequencea 
Amino acid 
positions 

Precursor 
ion charge 

Product ions used for 
quantification 

Cystatin Cb 
LVGGPMDASVEEEGVR 35-50 2+ 

y6+, y7+, y8+, y9+, y10+, 
y11+, y12+, y14+ 

ALDFAVGEYNK 52-62 2+ y5+, y6+, y7+, y8+, y9+ 

β2-microglobulinb 
VEHSDLSFSK 69-78 3+ y3+, y4+, y5+, y7+ 

VNHVTLSQPK 102-111 3+ y4+, y5+, y6+, y7+ 

Chromogranin Ab 

YPGPQAEGDSEGLSQGLVDR 194-213 3+ 
y3+, y4+, y5+, y6+, y7+, y8+, 

y9+ 

GLSAEPGWQAK 216-226 2+ y6+, y7+, y8+, y9+ 

EDSLEAGLPLQVR 400-412 2+ 
y3+, y5+, y6+, y7+, y8+, y9+, 

y10+ 

Secretogranin-2b 
ALEYIENLR 58-66 2+ y4+, y5+, y6+, y7+ 

VLEYLNQEK 593-601 2+ y4+, y5+, y6+, y7+ 

Neurosecretory 
protein VGFb 

NSEPQDEGELFQGVDPR 64-80 2+ 
y3+, y5+, y6+, y7+, y8+, 

y10+, y11+, y12+ 

AYQGVAAPFPK 268-278 2+ y4+, y5+, y6+, y7+, y8+, y9+ 

APP (751/770 
isoform) b 

EV(C)SEQAETGP(C)R 289-301 2+ y4+, y5+, y6+, y7+, y8+ 

APPb VESLEQEAANER 439-450 2+ 
y3+, y4+, y5+, y6+, y7+, y8+, 

y10+ 

Lysozyme Cc 
WESGYNTR 52-59 2+ y3+, y4+, y5+, y7+ 

STDYGIFQINSR 69-80 2+ 
y3+, y4+, y5+, y6+, y7+, y8+, 

y9+, y10+ 

Neurexin-1c 
LTVDDQQAMTGQMAGDHTR 823-841 3+ 

y3+, y5+, y6+, y7+, y9+, 
y10+, y11+, y12+ 

VDSSSGLGDYLELHIHQGK 1168-1186 4+ y3+, y4+, y5+, y6+, y7+, y8+ 

Neurexin-2c 
TALAVDGEAR 124-133 2+ y5+, y6+, y7+, y8+ 

VDLPLPPEVWTAALR 637-651 2+ y9+, y10+, y11+ 

Neurexin-3c 
FI(C)D(C)TGTGYWGR 665-677 2+ 

y5+, y6+, y7+, y8+, y9+, 
y10+, y11+ 

LTVDDDVAEGTMVGDHTR 790-807 3+ y5+, y6+, y9+, y10+, y11+ 

Neuronal 
pentraxin-1c 

LENLEQYSR 144-152 2+ y3+, y6+, y7+, y8+ 

LTPGEVYNLAT(C)STK 386-400 2+ 
y3+, y4+, y5+, y6+, y7+, y8+, 

y9+, y10+, y12+, y13+ 

Neurofascinc 
GNPAPSFHWTR 67-77 3+ y4+, y5+, y6+ 

VIAINEVGSSHPSLPSER 702-719 3+ 
y5+, y6+, y7+, y8+, y10+, 

y11+, y12+ 

Neurocan CPc 
ELGGEVFYVGPAR 257-269 2+ 

y3+, y4+, y5+, y6+, y7+, y8+, 
y9+, y10+ 

DFQWTDNTGLQFENWR 1155-1170 3+ y3+,y4+, y5+, y6+, y8+ 

Albuminb, c 
L(C)TVATLR 098-105 2+ y3+, y4+, y5+, y6+, y7+ 

AEFAEVSKd 250-257 2+ y3+, y4+, y5+, y6+, y7+ 

Bovine albuminb, c LGEYGFQNALIVR 421-433 2+ 
y3+, y4+, y5+, y6+, y7+, y8+, 

y9+, y10+, y11+, y12+ 
 

a (C) indicates carbamidomethylated cysteine; b Included in panel 1; c Included in panel 2, d y3+ included only in panel 2.  
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Table S2. Reverse calibration dilution data. Estimated internal standard peptide concentrations for highest and 

lowest quantifiable points. Limits were set so that a CV below 25% was required for acceptance. 

Protein 
Amino acid 
positions 

Sequencea 
Highest 

[nmol/L] 
Lowest 

[nmol/L] 

Cystatin C 
35-50 LVGGPMDASVEEEGV[R] 1400 0.47 

52-62 ALDFAVGEYN[K] 1800 6.0 

β2-microglobulin 
69-78 VEHSDLSFS[K] 2500 25 

102-111 VNHVTLSQP[K] 900 3.0 

Chromogranin A 

194-213 YPGPQAEGDSEGLSQGLVD[R] 990 9.9 

216-226 GLSAEPGWQA[K] 83 0.28 

400-412 EDSLEAGLPLQV[R] 88 0.29 

Secretogranin-2 
58-66 ALEYIENL[R] 33 0.11 

593-601 VLEYLNQE[K] 71 0.24 

Neurosecretory 
protein VGF 

64-80 NSEPQDEGELFQGVDP[R] 590 5.9 

268-278 AYQGVAAPFP[K] 58 0.19 

APP 751/770 289-301 EV(C)SEQAETGP(C)[R] 25 0.25 

APP 439-450 VESLEQEAANE[R] 25 0.25 

Lysozyme C 
52-59 WESGYNT[R] 290 0.97 

69-80 STDYGIFQINS[R] 130 0.43 

Neurexin-1 
823-841 LTVDDQQAMTGQMAGDHT[R] 780 2.6 

1168-1186 VDSSSGLGDYLELHIHQG[K] 290 0.97 

Neurexin-2 
124-133 TALAVDGEA[R] 130 0.43 

637-651 VDLPLPPEVWTAAL[R] 120 0.40 

Neurexin-3 
665-677 FI(C)D(C)TGTGYWG[R] 150 0.50 

790-807 LTVDDDVAEGTMVGDHT[R] 35 0.35 

Neuronal 
pentraxin-1 

144-152 LENLEQYS[R] 290 0.97 

386-400 LTPGEVYNLAT(C)ST[K] 230 0.77 

Neurofascin 
67-77 GNPAPSFHWT[R] 290 0.97 

702-719 VIAINEVGSSHPSLPSE[R] 74 0.25 

Neurocan CP 
257-269 ELGGEVFYVGPA[R] 49 0.16 

1155-1170 DFQWTDNTGLQFENW[R] 390 1.3 

Albumin 
098-105 L(C)TVATL[R] 2500 25 

250-257 AEFAEVS[K] 2700 9.0 

Bovine albumin 421-433 LGEYGFQNALIV[R] 400 1.3 
 

a [X] indicates stable isotope labeled amino acid and (C) indicates carbamidomethylated cysteine 
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Table S3. Quality control sample data. Values are light-to-heavy peptide ratios. 

 Compound Day 1 (n = 13) Day 2 (n = 14) 

 
Protein 

Amino acid 
positions 

Sequencea Mean St.dev. CV [%] Mean St.dev. CV [%] 

P
an

el
 1

 

Cystatin C 
35-50 LVGGPMDASVEEEGVR 0.29 0.011 3.8 0.31 0.013 4.2 

52-62 ALDFAVGEYNK 1.3 0.039 3.1 1.4 0.13 9.3 

β2-microglubulin 
69-78 VEHSDLSFSK 0.84 0.074 8.7 0.87 0.1 12 

102-111 VNHVTLSQPK 2.2 0.053 2.5 2.3 0.13 5.6 

Chromogranin A 

194-213 YPGPQAEGDSEGLSQGLVDR 0.3 0.051 17 0.29 0.08 27 

216-226 GLSAEPGWQAK 1.8 0.053 3 1.9 0.07 3.6 

400-412 EDSLEAGLPLQVR 1 0.031 3.1 1.1 0.058 5.4 

Secretogranin-2 
58-66 ALEYIENLR 1.4 0.047 3.4 1.6 0.18 12 

593-601 VLEYLNQEK 1.8 0.08 4.5 1.8 0.11 6.1 

Neurosecretory 
protein VGF 

64-80 NSEPQDEGELFQGVDPR 0.1 0.0035 3.4 0.11 0.0033 3 

268-278 AYQGVAAPFPK 0.71 0.028 4 0.79 0.11 14 

APP (751/770 
isoform) 

289-301 EV(C)SEQAETGP(C)R 0.078 0.012 15 0.086 0.011 13 

APP 439-450 VESLEQEAANER 0.39 0.029 7.6 0.41 0.043 10 

Albumin 
098-105 L(C)TVATLR 2.7 0.3 11 3 0.35 11 

250-257 AEFAEVSK 4.2 0.098 2.3 4.5 0.14 3.1 

Bovine albumin 421-433 LGEYGFQNALIVR 0.42 0.0055 1.3 0.56 0.044 7.9 

P
an

el
 2

 

Lysozyme C 
52-59 WESGYNTR 0.45 0.0092 2 0.51 0.017 3.3 

69-80 STDYGIFQINSR 2.3 0.066 2.9 2.8 0.34 12 

Neurexin-1 
823-841 LTVDDQQAMTGQMAGDHTR 0.24 0.0059 2.5 0.26 0.034 13 

1168-1186 VDSSSGLGDYLELHIHQGK 0.17 0.0038 2.2 0.23 0.013 5.7 

Neurexin-2 
124-133 TALAVDGEAR 0.28 0.0097 3.4 0.28 0.009 3.2 

637-651 VDLPLPPEVWTAALR 0.13 0.013 9.9 0.22 0.069 31 

Neurexin-3 
665-677 FI(C)D(C)TGTGYWGR 0.096 0.0079 8.3 0.15 0.0092 6.2 

790-807 LTVDDDVAEGTMVGDHTR 0.23 0.025 11 0.26 0.035 14 

Neuronal 
pentraxin-1 

144-152 LENLEQYSR 0.21 0.0061 3 0.24 0.0069 2.9 

386-400 LTPGEVYNLAT(C)STK 0.2 0.013 6.3 0.32 0.045 14 

Neurofascin 
67-77 GNPAPSFHWTR 0.21 0.0093 4.4 0.26 0.029 11 

702-719 VIAINEVGSSHPSLPSER 0.31 0.012 3.9 0.36 0.038 11 

Neurocan core 
protein 

257-269 ELGGEVFYVGPAR 0.4 0.0098 2.4 0.43 0.041 9.5 

1155-1170 DFQWTDNTGLQFENWR 0.16 0.0051 3.2 0.22 0.026 12 

Albumin 
098-105 L(C)TVATLR 2.7 0.32 12 3.2 0.39 12 

250-257 AEFAEVSK 4.2 0.09 2.2 4.6 0.13 2.8 

Bovine albumin 421-433 LGEYGFQNALIVR 0.42 0.0041 0.99 0.59 0.045 7.6 

 

a (C) indicates carbamidomethylated cysteine. 
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Figure S1. Acquisition schematics for (a) panel 1 and (b) panel 2. The red bars indicate the acquisition windows 

(at least 4 min) for each peptide (traces in orange). At most 4 peptides were acquired at the same time. The set 

gradients are shown in pink, while in blue is shown the actual conditions at time of spraying (the time delay due 

to the dead volume of the LC system was about 7 min). 
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Figure S2. Extracted ion chromatograms for transitions used and example MS/MS acquisitions for all peptides analysed. (a)-(p) panel 1 and (q) - (ag) panel 2. 

   

Cystatin C CysC_35-50
LVGGPMDASVEEEGVR

RT: 26.33 AV: 1 NL: 8.70E5
FTMS + p ESI Full ms2 825.85@hcd28.00 [200.00-1710.00]

200 400 600 800 1000 1200 1400 1600

m/z

0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e

A
b

u
n
d

a
n

c
e

985.48
1100.51

914.45

1442.65

344.13

728.35

212.10 1328.61827.42
1231.55

599.30267.15
470.26

664.81
401.15

484.19

1541.72

1134.53

1661.79

Time [min]

Time [min]

(a) Cystatin C CysC_52-62
ALDFAVGEYNK

RT: 34.16 AV: 1 NL: 2.35E4
FTMS + p ESI Full ms2 616.35@hcd24.00 [200.00-1285.00]
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2-microglubulin b2M_69-78
VEHSDLSFSK

RT: 15.89 AV: 1 NL: 1.33E6
FTMS + p ESI Full ms2 385.35@hcd22.00 [200.00-1210.00]
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(c) 2-microglubulin b2M_102-111
VNHVTLSQPK

RT: 13.83 AV: 1 NL: 2.81E6
FTMS + p ESI Full ms2 376.70@hcd20.00 [200.00-1180.00]
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Chromogranin A CHGA_194-213
YPGPQAEGDSEGLSQGLVDR

RT: 28.53 AV: 1 NL: 1.98E5
FTMS + p ESI Full ms2 694.50@hcd24.00 [200.00-2155.00]
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(e) Chromogranin A CHGA_216-226
GLSAEPGWQAK

RT: 19.46 AV: 1 NL: 1.26E5
FTMS + p ESI Full ms2 574.75@hcd18.00 [200.00-1200.00]
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(f) Chromogranin A CHGA_400-412
EDSLEAGLPLQVR

RT: 44.15 AV: 1 NL: 8.33E4
FTMS + p ESI Full ms2 716.85@hcd22.00 [200.00-1490.00]
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Secretogranin-2 SCG2_58-66
ALEYIENLR

RT: 34.82 AV: 1 NL: 2.52E5
FTMS + p ESI Full ms2 563.85@hcd22.00 [200.00-1175.00]
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(h) Albumin HSA_098-105
LcTVATLR

RT: 19.49 AV: 1 NL: 1.22E8
FTMS + p ESI Full ms2 470.25@hcd18.00 [200.00-985.00]
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Neurosecretory protein VGF VGF_64-80
NSEPQDEGELFQGVDPR

RT: 34.05 AV: 1 NL: 6.53E5
FTMS + p ESI Full ms2 961.95@hcd22.00 [200.00-1990.00]
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(j) Neurosecretory protein VGF VGF_268-278
AYQGVAAPFPK

RT: 24.90 AV: 1 NL: 9.07E4
FTMS + p ESI Full ms2 577.30@hcd20.00 [200.00-1205.00]
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Amyloid precursor protein APP(751,770)_289-301
EVcSEQAETGPcR

RT: 12.47 AV: 1 NL: 5.20E4
FTMS + p ESI Full ms2 764.85@hcd25.00 [200.00-1585.00]
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(l)
Amyloid precursor protein APP(total)_439-450
VESLEQEAANER

150421_CSF1_Other_015 #2636 RT: 17.32 AV: 1 NL: 1.36E5
T: FTMS + p ESI Full ms2 690.85@hcd27.00 [200.00-1435.00]
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Albumin HSA_098-105
LcTVATLR

RT: 19.49 AV: 1 NL: 1.22E8
FTMS + p ESI Full ms2 470.25@hcd18.00 [200.00-985.00]
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(n) Albumin HSA_250-257
AEFAEVSK

RT: 15.13 AV: 1 NL: 2.56E8
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(o) Bovine serum albumin BSA_421-433
LGEYGFQNALIVR

RT: 48.95 AV: 1 NL: 2.36E6
FTMS + p ESI Full ms2 743.45@hcd24.00 [200.00-1540.00]
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(q) Lysozyme C LysC_52-59
WESGYNTR

RT: 15.21 AV: 1 NL: 3.14E5
FTMS + p ESI Full ms2 509.75@hcd20.00 [200.00-1065.00]
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(r) Lysozyme C LysC_69-80
STDYGIFQINSR

RT: 39.79 AV: 1 NL: 5.91E5
FTMS + p ESI Full ms2 703.85@hcd20.00 [200.00-1460.00]
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(s) Neurexin-1 NRXN1_823-841
LTVDDQQAMTGQMAGDHTR

RT: 23.62 AV: 1 NL: 4.22E4
FTMS + p ESI Full ms2 694.50@hcd26.00 [200.00-2155.00]
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(t) Neurexin-1 NRXN1_1168-1186
VDSSSGLGDYLELHIHQGK

RT: 39.93 AV: 1 NL: 2.45E5
FTMS + p ESI Full ms2 516.05@hcd26.00 [200.00-2140.00]
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(u) Neurexin-2 NRXN2_124-133
TALAVDGEAR

RT: 17.11 AV: 1 NL: 2.32E6
FTMS + p ESI Full ms2 504.75@hcd22.00 [200.00-1055.00]
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(v) Neurexin-2 NRXN2_637-651
VDLPLPPEVWTAALR

RT: 55.41 AV: 1 NL: 3.81E4
FTMS + p ESI Full ms2 841.95@hcd24.00 [200.00-1745.00]
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(w) Neurexin-3 NRXN3_665-677
FIcDcTGTGYWGR

RT: 32.78 AV: 1 NL: 6.41E4
FTMS + p ESI Full ms2 799.85@hcd26.00 [200.00-1655.00]
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(x) Neurexin-3 NRXN3_790-807
LTVDDDVAEGTMVGDHTR

RT: 29.19 AV: 1 NL: 3.99E6
FTMS + p ESI Full ms2 646.45@hcd26.00 [200.00-2010.00]
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(y) Neuronal pentraxin-1 NPTX1_144-152
LENLEQYSR

RT: 22.42 AV: 1 NL: 1.15E5
FTMS + p ESI Full ms2 579.25@hcd20.00 [200.00-1205.00]
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(z) Neuronal pentraxin-1 NPTX1_386-400
LTPGEVYNLATcSTK

RT: 41.80 AV: 1 NL: 2.34E5
FTMS + p ESI Full ms2 829.95@hcd26.00 [200.00-1720.00]

200 400 600 800 1000 1200 1400 1600

m/z

0

10

20

30

40

50

60

70

80

90

100

R
e
la

ti
v
e

A
b

u
n
d

a
n

c
e

832.53

967.46

284.13 749.36 1066.53
350.14 724.36

587.36
383.20 1195.58

902.45
1447.711350.65

1561.75



34 
 

   

(aa) Neurofascin NFASC_67-77
GNPAPSFHWTR

RT: 28.09 AV: 1 NL: 1.25E5
FTMS + p ESI Full ms2 426.05@hcd28.00 [200.00-1335.00]
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(ab) Neurofascin NFASC_702-719
VIAINEVGSSHPSLPSER

RT: 31.55 AV: 1 NL: 5.93E4
FTMS + p ESI Full ms2 633.50@hcd28.00 [200.00-1970.00]
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(ac) Neurocan core protein NCANP_257-269
ELGGEVFYVGPAR

RT: 39.50 AV: 1 NL: 5.59E4
FTMS + p ESI Full ms2 700.35@hcd22.00 [200.00-1455.00]
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(ad) Neurocan core protein NCANP_257-269
ELGGEVFYVGPAR

RT: 50.83 AV: 1 NL: 2.03E5
FTMS + p ESI Full ms2 688.50@hcd18.00 [200.00-2135.00]
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(ae) Albumin HSA_098-105
LcTVATLR

RT: 23.00 AV: 1 NL: 1.62E8
FTMS + p ESI Full ms2 470.25@hcd18.00 [200.00-985.00]
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(af) Albumin HSA_250-257
AEFAEVSK

RT: 16.80 AV: 1 NL: 2.78E8
FTMS + p ESI Full ms2 443.25@hcd18.00 [200.00-930.00]
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(ag) Bovine serum albumin BSA_421-433
LGEYGFQNALIVR

RT: 45.56 AV: 1 NL: 3.52E6
FTMS + p ESI Full ms2 743.45@hcd24.00 [200.00-1540.00]
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Figure S3. Individual peptide calibration curves for both panels. The graphs show the heavy-to-light peptide ratios (H/L) plotted vs the amount of spiked in heavy peptide (H). 

The human albumin peptides, which were included in both panels are presented as overlays. 
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Figure S4. Difference in AD vs control groups for the human serum albumin peptides included in both panel 1 (a, 

b) and panel 2 (d, e). There was no significant difference between the groups for these peptides. For both panel 

1 (c) and panel 2 (f) it can be concluded from the small variation of the bovine serum albumin control peptide 

used to monitor the tryptic digestion that the overall reproducibility was good. L/H ratio denotes light-to-heavy 

peptide ratio. 
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