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The mitochondrial type IB topoisomerase drives
mitochondrial translation and carcinogenesis

S.A. Baechler!, V.M. Factor!, I. Dalla Rosa?, A. Ravjﬂ, D. Becker3, S. Khiati#, L.M. Miller Jenkins®, M. Lang 6

C. Sourbier®’, S.A. Michaels', LM. Neckers®, H.L. Zhang1, A. Spinazzola 2 SN. Huang1, J.U. I\/\arquardt3 &

Y. Pommier!

Mitochondrial topoisomerase IB (TOPTMT) is a nuclear-encoded topoisomerase, exclusively
localized to mitochondria, which resolves topological stress generated during mtDNA repli-
cation and transcription. Here, we report that TOPIMT is overexpressed in cancer tissues and
demonstrate that TOPTMT deficiency attenuates tumor growth in human and mouse models
of colon and liver cancer. Due to their mitochondrial dysfunction, TOPTIMT-KO cells become
addicted to glycolysis, which limits synthetic building blocks and energy supply required for
the proliferation of cancer cells in a nutrient-deprived tumor microenvironment. Mechan-
istically, we show that TOPIMT associates with mitoribosomal subunits, ensuring optimal
mitochondrial translation and assembly of oxidative phosphorylation complexes that are
critical for sustaining tumor growth. The TOPIMT genomic signature profile, based on
TopImt-KO liver cancers, is correlated with enhanced survival of hepatocellular carcinoma
patients. Our results highlight the importance of TOPIMT for tumor development, providing a
potential rationale to develop TOPTMT-targeted drugs as anticancer therapies.
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ancer metabolism has been equated with Warburg’s

observation that cancer cells undergo aerobic glycolysis

converting glucose to lactate in the presence of oxygen;
therefore, suggesting the plausibility of defective mitochondria in
cancer cells!2. However, ongoing research has revisited War-
burg’s initial conclusion and highlighted the central role of
mitochondria in cancer3~>. Numerous studies demonstrate that
mitochondria are not only functional in cancer cells but also that
tumors depend on mitochondrial respiration®. Furthermore, the
cellular functions of mitochondria expand beyond energy pro-
duction, encompassing redox homeostasis, promotion of cell
death, and supply of biosynthetic metabolism*7:8, Based on their
implication in multiple cellular functions, mitochondria empower
cancer cell growth and survival in the pathological tumor
microenvironment by ensuring biosynthetic and bioenergetics
supply®. Hence, developing therapeutic interventions specifically
targeting mitochondria and mitochondria-associated signaling
pathways has emerged as a potential approach to suppress tumor
growth9,

Topoisomerases are ubiquitous enzymes required to relax
DNA supercoiling and remove the intertwining of DNA mole-
cules such as knots and catenanes!?. During replication, tran-
scription, chromatin remodeling, or chromosomal segregation,
torsional stress occurs as the DNA is constrained due to the
highly organized and packed state of chromatin!!12. Topoi-
somerases release topological stress whilst introducing transiently
enzyme-linked DNA strand breaks!%13. Although the controlled
cleavage is required to ensure topological homeostasis, aberrant
topoisomerase activity represents a constant threat to the
genome!®13. Antibacterial and anticancer drugs stabilizing the
covalent enzyme-DNA-complex are referred to as topoisomerase
poisons, converting these essential enzymes into DNA damaging
proteins!3-15, The accumulation of DNA breaks and protein
crosslinks ultimately leads to cell death, which is the mode of
action of clinically used topoisomerase inhibitors!3-16,

Among the six vertebrate topoisomerases, TOP1MT is the only
topoisomerase exclusively devoted to mitochondrial®!7. Mito-
chondria contain their own circular DNA (mtDNA) encoding 13
proteins of the oxidative phosphorylation complexes. TOPIMT
has been shown to be critical for the maintenance of mtDNA
integrity and for limiting mtDNA negative supercoiling!8. In
contrast to other topoisomerases, TOP1MT is dispensable in mice
with no obvious phenotype of TOP1IMT knockout mice under
basal conditions!®1°. However, in a liver regeneration model,
TOPIMT deficiency attenuates hepatocyte proliferation by lim-
iting mtDNA expansion. This indicates that TOPIMT may
become a limiting factor for highly proliferating cells?0. Accord-
ingly, depletion of mtDNA impacts cellular proliferation resulting
in delayed tumorigenesis?!. As TOPIMT is strongly upregulated
in a wide range of cancers, including colon and liver carcinomas,
we investigated the impact of TOPIMT on carcinogenesis. Here,
we demonstrate that lack of TOPIMT results in delayed and
decreased tumor growth due to impaired mitochondrial transla-
tion. Our results reveal the importance of TOPIMT for tumor
development and identify TOPIMT as a potential target for
anticancer therapies.

Results

TOPIMT deficiency attenuates tumor growth in a xenograft
model. Based on the marked overexpression of TOPIMT in colon
tumors (Supplementary Fig. la, b), we utilized HCT116 colon
carcinoma cells as a model system, as this cell line shows the
highest TOPIMT expression among the NCI-60 colon cancer cell
lines. To study the function of TOPIMT in tumor development,
we transplanted TOPIMT-deficient and TOPIMT-proficient

HCT116 colon carcinoma cells generated by CRISPR/Cas9
(Supplementary Fig. 1c) into the flank of female nude mice0.
TOPIMT-KO cells shared the same morphology and cell size
compared with the parental cell line (Supplementary Fig. 1d).
Lack of TOPIMT significantly attenuated tumor growth (Fig. 1a)
in two independent TOPIMT knockout clones (KO1, p = 0.0004;
KO2, p =0.007, t-test), whilst no difference in tumor growth was
observed between the parental cells and TOPIMT-expressing cells
that underwent parallel genomic editing procedure (WT¥).
Tumor weight after dissection was significantly lower in the
TOPIMT-KO tumors compared to WT tumors (Fig. 1b; KO1:
p =10.001, KO2: p =0.0001, t-test). Additionally, bioluminescence
imaging reflected the reduction of tumor growth in the absence of
TOPIMT (Fig. lc, d; KOI: p=0.009, KO2: p=0.01, t-test).
Transplantation of a mix of WT and TOPIMT-KO cells (Sup-
plementary Fig. le) also showed that the arising tumors were
mostly formed by TOPIMT WT cells (Supplementary Fig. 1f).

To elucidate the impact of TOPIMT on tumor formation, we
performed limiting dilution assay?2. Lack of TOPIMT decreased
the frequency of tumor-initiating cells over 20-fold (from 1/1608
to 1/72 when compared to the parental cell line; Table 1),
suggesting that TOPIMT impacts the tumor-initiating cell
potential. Overall, we could not detect any difference in tumor-
initiating frequency, growth kinetics or weight between WT and
control WT# derived tumors, excluding potential off-target effects
of the CRISPR/Cas9 process. These results provide the first
evidence that TOPIMT promotes tumor growth.

TOPIMT diminishes dependency of tumor cells on glucose.
Next, we tested whether the reduced growth of TOPIMT-KO
tumors was due to decreased cell proliferation. Accordingly,
Ki67 staining showed that tumors arising from TOP1MT-defi-
cient cells were significantly less proliferative compared to
WT cells (Fig. 2a, b; p=0.026, t-test), while no difference in
nuclei count per field was observed excluding potential cell size
alterations (Fig. 2¢c, p = 0.53, t-test). Additionally, apoptosis was
enhanced in the TOPIMT-deficient xenograft tumors (Supple-
mentary Fig. 2a, b). However, overall apoptosis was low, sug-
gesting that decreased proliferation is the main determinant for
the slower growth rate of tumors derived from TOPIMT-KO
cells.

To elucidate the underlying transcriptional differences between
TOPIMT-KO and WT tumors, we analyzed gene expression
using the nCounter PanCancer Progression panel. Lack of
TOPIMT resulted in the activation of the phosphoinositide 3-
kinase PI3K/AKT signaling pathway (Fig. 2d, Supplementary
Data 1 and Supplementary Table 1). Upregulation of the key
enzymes AKT3, PI3KR1 and HKDCI was confirmed by RT-qPCR
and western blotting (Fig. 2e, Supplementary Fig. 2c, PI3KRI:
p=004; AKT3: p=0.0001; HK: p=0.04, t-test). As AKT
activation exerts a direct influence on cellular glucose home-
ostasis?3, we tested gene expression of the two key regulators of
glycolysis, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase
1 (PFKFBI) and hexokinase domain containing 1 (HKDCI).
Both were upregulated 2- to 3-fold in the TOPIMT-KO tumors
measured by the nCounter PanCancer Progression panel. These
findings indicate that loss of TOPIMT is associated with
activation of the PI3K/AKT pathway, potentially increasing
glucose utilization.

To test this possibility, we then determined growth of HCT116
cells in the presence or absence of TOPIMT under glucose
restriction (Fig. 2f). Under standard cell culture conditions,
HCT116 WT and TOPIMT-KO cells grew indistinguishably.
However, TOPIMT-KO cells were more sensitive to glucose
withdrawal than WT cells (Fig. 2f). We hypothesize that lack of
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Fig. 1 TOPTMT promotes tumor growth. a Tumor growth of isogenic WT and TOPIMT knockout HCT116 xenografts as determined by caliper measurement.
Cells (10,000) from two independent TOPIMT-deficient clones (KO1, n=5; KO2, n=9), a TOPIMT-expressing clone (WT%, n = 3), which went through a
mock CRISPR/Cas9 process, and the parental cell line (WT, n=8) were injected subcutaneously in the flanks of female Ncr-nu/nu mice. b Weights of
excised tumors were determined after 35 days (WT, KO2, n=20; WT¥, n=3; KO1, n= 8). ¢ Representative bioluminescence imaging 35 days after
transplantation of 10,000 cells of each type. d Quantification of the bioluminescence imaging. The total flux is plotted as photons per second (WT, n=28;
WTH n=3; KO1, n=9; KO2, n=5). All data are means + SEM; *p < 0.05, **p < 0.01, ***p < 0.001, unpaired, two-tailed Student's t-test

TOPIMT can be compensated by the presence of other
topoisomerases under basal growth conditions!$, while this
redundancy becomes restricted in a microenvironment where
supply of nutrients, oxygen, signaling molecules, and metabolites
is limited. Accordingly, we observed impaired growth of HCT116
TOPIMT-KO cells under serum starvation (Supplementary
Fig. 2d, p=0.01, multiple t-tests with correction for multiple
comparisons using the Holm-Sidak method). Further, murine
embryonic fibroblasts (MEF) lacking TOPIMT were more
sensitive to a nutrient and oxygen restricted environment than
WT cells (Supplementary Fig. 2e, f; p=0.0001, p=0.007,
multiple t-tests with correction for multiple comparisons using
the Holm-Sidak method). As 3D cultures mimic more closely an
in vivo tumor microenvironment by creating a gradient of
nutrients, oxygen, and catabolites?4, we determined the impact of
TOPIMT on the growth of multicellular tumor spheroids
(MCTS). Forty-eight hours after seeding, cells of both genotypes
formed similarly sized spheroids indicating that lack of TOP1IMT
did not affect spheroid maturation (Supplementary Fig. 2g, p =
0.7, t-test). However, MCTS grew significantly slower in the
absence of TOPIMT compared to the WT spheroids after
maturation (Fig. 2g, p = 0.0004, multiple t-tests with correction
for multiple comparisons using the Holm-Sidak method),
reflecting the dependency of TOPIMT-KO cells on sufficient
nutrient and oxygen supply. Similarly, glucose withdrawal
resulted in a slow but steady growth of WT spheroids, whereas
TOPIMT-KO spheroids failed to increase in size at any given
time point.

These results along with the concomitant activation of the
PI3K/AKT pathway prompted us to investigate the glycolytic

activity in primary tumor cells isolated from the WT and
TOPIMT-KO xenografts. We found that the glycolytic rate, as
measured by the extracellular acidification rate (ECAR), remained
the same in the absence or presence of TOPIMT (Supplementary
Fig. 2h), suggesting that cancer cells already operate at their
maximum glycolytic capacity. The inability to utilize other fuels
to maintain proliferation in TOPIMT-KO cells implies impaired
mitochondrial function, which is consistent with previous work in
Top1mt-KO murine embryonic fibroblasts (MEF)!°.

Mitochondria are dysfunctional in TOPIMT-deficient tumors.
To elucidate how TOPIMT affects mitochondria in tumor cells,
we analyzed the TOPIMT-KO and WT xenograft tumors by
electron microscopy. It revealed the presence of a substantial
fraction of swollen mitochondria in TOPIMT-KO tumors
(Fig. 3a, Supplementary Fig. 3a, b) characterized by a lucent-
swelling matrix and cristae disarrangement or partial cristolysis
(Fig. 3a, inset). As the enzymes involved in oxidative phosphor-
ylation are located on the inner mitochondrial membrane,
mitochondrial swelling with distortion of cristae has been asso-
ciated with the incapability to produce adequate amounts of ATP
by mitochondrial respiration?. Quantification showed that the
frequency of swollen mitochondria increased over 5-fold in
TOPIMT-KO tumors compared to WT (Fig. 3b, p=0.001,
t-test), while no alteration in the average mitochondrial content
was observed in the absence of TOPIMT (Fig. 3¢, Supplementary
Fig. 3¢, p = 0.6, t-test). Extracellular flux analysis also showed the
mitochondrial dysfunction of primary TOPIMT-KO tumor cells
with reduced respiratory activity and significantly decreased
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Table 1 Limiting dilution analyses

Cell line Weeks Tumor incidence/injected cells TIF Cl 95% P-value
100 1000 10,000

WT 3 3/4 4/4 4/4 1/72 1/21-1/245

WT# 3 2/4 4/4 4/4 1/142 1/37-1/548 ns

TOPIMT KO 3 0/4 2/4 4/4 1/1608 1/447-1/5787 <0.001

The frequency of tumor-initiating cells (TIF) and confidence interval (Cl 95%) were calculated based on the number of resulting tumors per injection site after 3 weeks (n=4)
ns, not significant
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Fig. 2 Knocking out TOPIMT restrains cell proliferation and sensitizes cells to glucose starvation. a Representative Ki67 immunofluorescence staining
of WT and TOPIMT-KO xenograft tumors. Scale bar, 50 pm. b, ¢ Quantification of the fraction of Ki67-positive cells (b) and nuclei count per field

(¢) measured by ZEN software (6 images per animal, 5 animals per genotype). d Heat map showing significant changes in gene expression profiles
analyzed with the nCounter PanCancer Progression panel in four TOPIMT-deficient vs. four WT tumors (89 genes, p < 0.05). e Transcript levels of selected
genes of the PI3K/AKT pathway determined by RT-qPCR (n = 4, each performed in triplicates). f Kinetics of cell growth under standard culture conditions
and under glucose withdrawal (1g L~ glucose, dashed lines) (four independent experiments performed in quadruplets). g Growth of WT and TOPIMT-KO
multicellular tumor spheroids (MCTS) formed by 10,000 HCT116 cells in six independent experiments, each performed in quintuplets. Day O corresponds
to 48 h after cell seeding (spheroid maturation). Dashed and solid lines represent growth in the absence and presence of glucose, respectively. Data
represent the means + SEM, *p <0.05, **p < 0.01, ***p <0.001, Student's t-test
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Fig. 3 Mitochondria are defective in TOPIMT-KO HCT116 tumor xenografts. a Representative electron micrographs. The insets depict higher magnification
of the boxed areas. Scale bar, 2 pm. b Quantification of swollen mitochondria in WT and TOPIMT-KO tumors. At least 48 images were analyzed from 12
independent areas at x5000 magnification. ¢ Mitochondrial mass determined by MitoTracker Deep Red FM staining of tumor cells isolated from WT and
TOPIMT-KO tumor xenografts. The median = SEM is plotted (n =5 for each genotype). d Differential oxygen consumption rate measured by Seahorse
XF96 Extracellular Flux Analyzer in WT and TOPIMT-KO cells isolated from tumor xenografts (n =5 for each genotype, each performed in quintuplets).
e Scheme of mitochondrial functions for cellular biosynthesis, bioenergetics and redox signaling. f Cellular energy levels measured by ATPlite (n=7).
g Redox state determined by glutathione levels (n =5). h Steady-state level of the TCA cycle metabolite a-ketoglutarate, n =10-12. i Reduced aspartate
levels in TOPTIMT-KO tumor xenografts (n=10). Data represent mean £ SEM except in ¢, *p <0.05, **p < 0.01, Student's t-test

maximal respiratory capacity (Fig. 3d, Supplementary Fig. 3d,
p =0.04, t-test).

Mitochondria represent not only important hubs for cellular
metabolism but also function as signaling platforms26. In
particular, they play a central role in redox homeostasis, catabolic
processes producing bioenergy, as well as anabolic processes
supplying macromolecules for cellular proliferation (Fig. 3e).
Hence, we tested whether the morphological alterations and
reduced respiratory rate in the TOPIMT-KO tumor cells might
affect the biochemical functions of mitochondria. Accordingly,
TOPIMT-deficient tumors showed significantly reduced ATP
levels (Fig. 3f, p = 0.039, t-test) and enhanced oxidative stress, as
determined by glutathione levels (Fig. 3g, p=0.02, t-test).
Additionally, loss of TOPIMT was associated with perturbations
in the electron transport chain measured by a significant decrease
in the tricarboxylic acid cycle (TCA) metabolite a-ketoglutarate,
which after metabolic conversion to glutamate serves as precursor

for glutathione (Fig. 3h, p =0.02, t-test). Aspartate has been
reported to be essential for cellular proliferation by ensuring
sufficient supply of building blocks. As a result of impairment of
the electron transport chain aspartate levels drop2”-28. Consis-
tently, aspartate levels were significantly diminished in TOP1MT-
deficient tumors (Fig. 3i, p = 0.04, t-test). Thus, we conclude that
mitochondrial dysfunction caused by the loss of TOPIMT
induces oxidative stress, reduces energy supply and impairs the
anabolic function of mitochondria limiting building blocks,
ultimately resulting in suppressed tumor growth.

TOPIMT deficiency impairs mitochondrial translation. To
examine the molecular mechanism underpinning the mitochon-
drial dysfunction of TOPIMT-KO cancer cells, and because
TOPIMT is known to act primarily as a DNA processing
enzymel71829 we examined mtDNA copy number and tran-
scripts. Consistent with our prior studies in normal tissues from
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Fig. 4 Lack of TOPIMT impairs mitochondrial translation. a Reduced mtDNA copy number was determined by RT-gPCR in TOPIMT-KO and WT HCT116
tumor xenografts (n =9, each genotype, each performed in triplicates). b Conserved mitochondrial transcription profiles of TOPIMT-KO vs. WT tumor
xenografts determined by tiling array3' (n =4, each genotype). ¢ Representative western blots showing reduced levels of mitochondrial OXPHOS proteins
in TOPTMT-KO tumor xenografts (lane 5-8). d Quantification of mitochondrial OXPHOS proteins (n =7, each genotype). e Gene ontology analysis of
TOPIMT binding partners identified by TOPIMT immunoprecipitation followed by mass spectrometry. f, g Co-immunoprecipitation of TOPIMT-GFP
(f) and MRPS22 (g) followed by western blotting. h Reduced growth of TOPIMT-KO HCT116 multicellular tumor spheroids. Day O corresponds to 48 h
after cell seeding (spheroid maturation); n =5, each performed in quintuplets. Dashed and solid lines represent spheroids treated with and without (CTRL)
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WT and Topimt-KO MEFs. A representative gel shows the autoradiography of newly synthesized mitochondrial proteins (left). Equal protein loading was
ensured by Coomassie staining (right). Data are mean = SEM; *p < 0.05, **p < 0.01, Student's t-test

Top1mt-KO mice!8-20-30, mtDNA copy number was decreased in
the TOPIMT-deficient xenograft tumors compared to WT
tumors (Fig. 4a, p = 0.04, t-test). Sequencing of mtDNA revealed
very few significant shifts in mtDNA heteroplasmy, with more
frequent alternations occurring in the non-coding regulatory
regions (Supplementary Fig. 4a). Notably, in spite of decreased
mtDNA, mitochondrial transcript levels were increased in
TOPIMT-KO tumor cells per mtDNA molecule (Fig. 4b, Sup-
plementary Fig. 4b), which is consistent with our recent findings
in Top1mt-KO MEFs3!. Although mitochondrial transcripts were
elevated, steady-state levels of the respiratory chain proteins,
encoded by both mitochondrial and nuclear DNA, were sig-
nificantly diminished in TOPIMT-KO tumors (Fig. 4c, d,
NDUEFBS8: p=0.003, SDHB: p=0.01, CO2: p=0.01, ATP5A:
p =0.04, t-test).

Likewise, a reduction of complex IV was observed by
immunofluorescence staining for the subunit MT-CO2 in the
TOPIMT-KO xenograft sections (Supplementary Fig. 4c, d). It
has been previously reported that defective mitochondrial protein

synthesis is often associated with increased transcript levels as
part of a compensatory mechanism to overcome impaired
oxidative phosphorylation32-33. Thus, our results reveal a function
of TOPIMT in mitochondrial translation in addition to its roles
in the release of DNA torsional stress!82° and mitochondrial
transcription!.

To gain further evidence for the role of TOPIMT in
mitochondrial translation and to identify potential binding
partners of TOP1IMT, we performed pulldown experiments of
TOPIMT followed by mass spectrometry. Nearly half of the
detected proteins were involved in mitochondrial translation and
constituents of the mitoribosome (Supplementary Data 2). The
association of TOPIMT with mitochondrial translation was also
reflected in gene ontology enrichment analysis, showing sig-
nificant scores for processes associated with mitochondrial
translation, rRNA processing, and cell redox homeostasis (Fig. 4e).
Binding of TOPIMT to MRPS22, the small subunit of the
mitoribosome was further established by co-immunoprecipitation
experiments of TOPIMT-GFP or MRPS22 (Fig. 4f and g). To test
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the functional impact of TOP1MT on mitochondrial translation,
we challenged TOPIMT-KO and WT MCTS with tigecycline, a
mitochondrial translation inhibitor34, TOPIMT-deficient spheres
displayed increased sensitivity to tigecycline compared to their
WT counterparts indicating altered mitochondrial translation in
TOPIMT-KO cells (Fig. 4h, p=0.032, t-test). To further
corroborate a functional role of TOPIMT in mitochondrial
translation, we labeled newly synthesized mitochondrial proteins
with [3°S]-methionine in the presence of emetine, which
selectively inhibits cytoplasmic translation. Mitochondrial trans-
lation was decreased in Toplmt-deficient MEFs compared to
WT cells (Fig. 4i). HCT116 cells lacking TOPIMT showed only a
mild reduction of mitochondrial translation under standard
culture conditions (Supplementary Fig. 4e). However, pretreat-
ment with tigecycline followed by a short release period markedly
impaired mitochondrial translation in TOPIMT-KO compared to
WT cells indicating the role of TOP1MT in efficient mitochon-
drial translation both in human and murine cells. Taken together,
these findings indicate a novel role of TOP1IMT in mitochondrial
translation and its association with mitoribosomes.

Lack of TOPIMT suppresses hepatocarcinogenesis. Next, we
extended our findings on the tumor-promoting role of TOPIMT
in human colon cancer cell xenografts to another cancer model.
Given the fact that TOPIMT is frequently overexpressed in
human hepatocellular carcinomas (HCC) (Supplementary Fig. 1a,
b), and based on our previous work demonstrating that TOPIMT
enhances liver regeneration®’, we utilized our TopImt-KO mouse
line!® to induce liver cancer. Due to a low propensity of C57BL/6
mice to develop HCC, male Toplmt—/— and WT (Toplmt+/+)
littermates were subjected to a combined treatment with the
mutagen diethylnitrosamine (DEN) and the hepatotoxin carbon
tetrachloride (CCly). This model shares features with human liver
cancer, which predominantly develops in the background of
chronic liver inflammation caused by hepatitis B or C viruses,
alcoholic steatohepatitis, or nonalcoholic steatohepatitis>. After
22 weeks of treatment with DEN/CCl, (Fig. 5a), all WT and
TopImt—/~ mice developed liver tumors (Fig. 5b). Histologically,
DEN/CCl,-induced tumors were indistinguishable (Fig. 5¢, Sup-
plementary Fig. 5a). However, Toplmt—/— mice showed reduced
tumor burden (~40%) (Fig. 5d, p =0.019, t-test) due to a sig-
nificant decrease of tumor number and size (Fig. 5e, f; p = 0.04
and p = 0.03, t-test).

Consistent with the findings in human HCC (Supplementary
Fig. la-b), Toplmt gene expression levels were upregulated 1.9-
fold in murine HCC as compared to surrounding liver (Fig. 5g,
p=0.07, t-test). To exclude a contribution of hepatic fibrosis
caused by carbon tetrachloride treatment to the observed
differences in hepatocarcinogenesis, we stained liver tissue
sections for collagen using a Picro Sirius Red staining
(Supplementary Fig. 5a, bottom). We found no obvious
differences in the extent of hepatic fibrosis between WT and
Toplmt-KO mice. Additionally, expression levels of inflammatory
(Infg) and fibrotic (Tgfbl) genes were not significantly altered
(Supplementary Fig. 5b-c, p =0.9, p=0.4, t-test). Furthermore,
we followed tumor burden in mice injected with DEN only.
Hepatic tumor burden was significantly decreased in TopImt-KO
mice as compared to the WT littermates at 50 weeks after DEN
injection (Supplementary Fig. 5d, p =0.04, t-test). Thus, loss of
TOPIMT rather than the secondary effects triggered by CCly
treatment contributes to the suppression of tumor burden in
TopImt-KO mice.

In line with the results of the HCT116 xenograft study,
Toplmt-deficient liver tumors were less proliferative (Fig. 5h,
Supplementary Fig. 5a, p=0.000001, t-test) and displayed

activation of glucose uptake (Supplementary Fig. 5e, p=0.04,
p=0.048, t-test). Mitochondrial transcript levels were also
significantly increased in the liver tumors of Toplmt—/— mice
compared to the WT counterparts, while no difference was
observed in mitochondrial transcript levels in the non-cancerous
livers from Toplmt—/— and WT mice (Fig. 5i, Supplementary
Fig. 5f, NdI: p=0.01, Col: p=0.01, Atp6: p=0.04, t-test).
Protein levels of the OXPHOS enzyme subunits were significantly
decreased in the TopImt—/— liver tumors consistent with our
findings in the xenograft model (Fig. 5j, k; ATP5A: p=0.02,
NDUEFBS8: p =0.009, t-test). These results further establish the
tumor-promoting role of TOPIMT and its role in enforcing
mitochondrial translation.

Relevance of TOP1MT expression signature for HCC patients.
To explore the potential clinical relevance of a Toplmt gene
expression signature, we first performed transcriptome analysis of
WT and Toplmt-deficient tumors of similar size. Supervised
hierarchical clustering of 93 differentially expressed genes (Sup-
plementary Data 3) separated the murine liver tumors into two
clusters depending on the Toplmt genotype (Fig. 6a). Pathway
analysis of the differentially expressed mitochondrial genes
showed enrichment of genes related to folate, glycine, serine,
threonine, and carbon metabolism (Supplementary Fig. 6a, b),
and molecular function analysis revealed a link with ribosomal
function (Supplementary Fig. 6c). Additionally, PERK together
with ATF4 were identified as upstream regulators (Supplemen-
tary Fig. 6d), which both have been reported as key players in the
mitonuclear stress response by reducing total protein synthesis>°.
Taken together, these data further support the role of TOPIMT
in mitochondrial translation.

Next, we applied the Toplmt gene signature derived from the
murine liver tumors to a cohort of 53 HCC patients3”. The HCC
data set was obtained from Caucasian and Chinese patients using
Mumina bead chips. Integrative cluster analysis of orthologous
genes led to the separation of the HCC samples into two clusters
(Fig. 6b). Notably, the Toplmt-deficient liver tumors clustered
with the patients with good prognosis, while the more aggressive
WT liver tumors clustered with patients characterized by a poor
survival (Fig. 6b, ¢). This finding is in line with TCGA data
showing a reverse relationship between the TOPIMT expression
levels and prognosis for HCC patients (Fig. 6d, p=0.036). To
mitigate concerns that proliferation and cell cycle-related genes
significantly contribute to the observed correlation between
TOPIMT expression and prognosis, we computed the overlap
between our TopImt-KO gene expression signature and a curated
consensus catalog of cell cycle regulated genes’®. The two
signatures did not overlap supporting our conclusion that the
TopImt-KO signature is not driven by the differences in the
proliferation state (Supplementary Fig. 6e).

Finally, we addressed the question whether the observed
correlation between gene expression and prognosis was a
common property of type I topoisomerases in the mitochondria
or whether it was specific for TOPIMT. Notably, TOP3a is
upregulated only in a very small fraction of HCC patients (4.8%
versus 37% patients with high TOPIMT expression) and TOP3«
expression levels did not correlate with patient survival. Likewise,
upregulation of TOP3f was found only in 22 out of 371 patients
(5.9%) and did not correlate with survival (Supplementary
Fig. 6f, g). Thus, we conclude that the correlation between good
clinical prognosis and low TOPIMT gene expression is specific
for TOPIMT. Overall, these findings demonstrate the role of
TOPIMT in promoting tumor growth and support the
prognostic value of the TOPIMT genomic signature for HCC
patients.
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Fig. 5 TOPIMT promotes tumor growth in a mouse model of liver carcinogenesis. a Experimental design. Male mice received a single intraperitoneal (i.p.)
administration of diethylnitrosamine (DEN, 25 mg kg~ body weight) 14 days after birth. Beginning at 8 weeks, mice received biweekly injections of carbon
tetrachloride (CCl,, 0.2 mL kg=") for 14 weeks. b Representative images of liver tumors in WT and TopTmt—/— livers at the end of treatment. Tumors are
encircled with white dashed circles. Scale bar, 1cm. € Hematoxylin and eosin (H&E) staining of representative paraffin-embedded liver sections. Tumor
areas are encircled with black dashed lines. Scale bar, Tmm. d Quantification of tumor burden expressed as proportion of hepatic parenchyma occupied
by tumor tissue on H&E sections, n=10-11. e, f Maximum tumor size (e) and tumor number (f) determined by analysis of H&E sections, n =10-11.

g Transcript levels of Topimt in surrounding liver versus tumor tissue (n =3, each performed in duplicates). h Quantification of Ki67-positive cells in the
liver tumors (n =5). i Transcript levels of selected mitochondrial-encoded genes in TopImt—/— liver tumors relative to WT tumors (n = 3) determined by
mitochondrial tiling array. j Representative western blots depicting protein levels of mitochondrial OXPHOS proteins in WT (lane 1-3) and Topimt-/-
(lane 4-6) tumors. GAPDH was used as loading control. k Quantification of mitochondrial OXHOS protein levels in WT and TopImt-/- liver tumors relative
to GAPDH (n=3). Data are presented as mean + SEM. *p <0.05, **p < 0.01, ***p <0.001, Student's t-test

Discussion
Mitochondria are emerging as essential organelles for the survival
and proliferation of cancer cells, as well as potential targets for
cancer therapy>%40, Here, we introduce the role of TOPIMT, the
only topoisomerase exclusively localized to mitochondrial®17, in
carcinogenesis.

Based on two independent in vivo tumor models, we show
that TOPIMT promotes tumor growth by enabling sustained
cancer cell proliferation in an environment in which oxygen

and nutrient supplies are limited. TOP1MT has been shown to
play a vital role in mtDNA homeostasis by limiting mtDNA
negative supercoiling!® and ensuring efficient mtDNA replica-
tion?, which becomes critical in the absence of TOP3a*!. Thus,
reduced mtDNA expansion might at least partially account for
the observed decrease in cancer cell proliferation in the absence
of TOPIMT. Conversely, high TOPIMT expression levels are
commonly observed in aggressive cancers (as observed in
HCCs).

8 NATURE COMMUNICATIONS | (2019)10:83 | https://doi.org/10.1038/s41467-018-07922-3 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-07922-3

ARTICLE

Cluster 1 Cluster 2
I 1
1 2 3 4 5 6 lA(poor)
I B Bl BN ccswype
[ | [ | fxo1-3fwr1-3
€ 100 d
100
£ 075 —— TOP1MT high
8 80 —— TOP1MT low
8 g
S 050 % 60l
[ >
= »
< Cluster 1 c p=0.036
@ 025 “Cluster2 8 407
p=0.03 & LI_:E_‘
0.00 207
0 500 1000 1500 2000 2500 0 . . .
Time (days
Number at risk (days) 0 50 . 100 150
8 6 4 3 2 1 Survival (mo)
[ — |
36 14 13 5 0 0
~2.00 0.00 200 Cluster?
0 500 1000 1500 2000 2500
Time (days)

Fig. 6 TOPIMT-KO gene expression signature and expression predict survival of HCC patients. a Supervised hierarchical clustering of gene expression
profiles from 3 independent TopTmt-KO and WT mouse HCCs. b Integrative cluster analysis of murine HCCs applied to 53 human HCC patient samples
using orthologous genes. Light blue bars indicate HCC patients with good survival prognosis, dark blue bars, HCC patients with poor survival, dark red bars,
murine TopImt-KO HCC, and black bars, murine HCC expressing TopTmt. ¢ Overall survival of HCC patients based on the TOPIMT gene expression
signature. d High expression of TOPIMT is associated with poor survival of patients with HCC (370 total cases from the TCGA database including 138
patients with high TOPIMT expression and 232 patients with low TOPIMT expression)

An unexpected finding of the present study is that, in addition
to its canonical role on mtDNA, TOPIMT directly impacts
mitochondrial translation through interaction with proteins of
the small mitoribosomal subunit (and specifically MRPS22). We
also demonstrate that lack of TOPIMT sensitizes cells to the
mitochondrial translation inhibitor tigecyline. The detailed pro-
cesses involved in posttranscriptional modification of poly-
cistronic mRNAs and the mechanism of mitoribosome assembly
are not fully understood*>#3. Early steps of mitoribosomal
assembly have been shown to occur at mitochondrial nucleoids,
with mitoribosomal proteins of the small subunit being more
abundant in nucleoid preparations than the large subunit pro-
teins*4. The early intermediates of either subunit might be lib-
erated from the nucleoids to RNA granules for further RNA
processing and mitoribosome assembly due to steric reasons*’.
Mitochondrial RNA granules contain RNA-modifying enzymes
including the RNase P complex and members of the FASTK
family and RNA helicases, but also proteins of both the small and
large mitochondrial ribosomal subunits?®. The protein GRSF1
(G-rich sequence binding factor 1), which plays a crucial role in
mitochondrial RNA processing and translational regulation, was
found to localize to RNA granules*’#8. As TOP1MT was recently
found in the mitochondrial RNA granule proteome by immu-
noprecipitation of GRSF143, we hypothesize that TOP1MT, as
part of nucleoids and RNA granules, contributes to the regulation
of mitochondrial translation and ribosome assembly.

Notably, mitochondrial mRNAs are overexpressed in
TOPIMT-KO cancer cells (Fig. 4b, Supplementary Fig. 5f), which
is in line with our recent genomic analyses of mitochondrial
transcription3!. The upregulation of mitochondrial transcripts
could result from a compensatory mechanism in the context of

impaired mitochondrial translation. Such compensation has been
found in various mouse models with defective mitochondrial
protein synthesis’>33. The precise control of mtDNA home-
ostasis, RNA processing, and mitochondrial translation are cru-
cial for proficient respiratory complex activity and metabolic
homeostasis®. We propose a pleiotropic function of TOP1MT, as
a key regulatory factor enabling mtDNA replication and expan-
sion as well as mitochondrial translation.

Mitochondria and mitochondrial translation are moving into
the focus as potential targets for cancer therapy>®-°0-2, Enhanced
mitochondrial biogenesis and reliance on oxidative phosphor-
ylation of cancer cells are critical for drug selectivity and pre-
venting off-tumor effects. For instance, K-Ras mutant tumors are
sensitive to mitochondrial translation inhibitors, suggesting that a
combinational therapy of BRAF and MEK inhibitors together
with mitochondrial translation inhibitors might be a promising
approach3%. Thus, we anticipate that TOPIMT could be a
potential target for intervention in combinational therapies
against K-Ras mutant tumors, as well as in cancers with upre-
gulated TOPIMT or high reliance on mitochondrial biogenesis.

HCC is the most common primary malignancy of the liver, and
HCC incidence and mortality rates are steadily increasing.
However, effective treatment strategies for advanced stages are
lacking®3. By applying the gene expression signature from our
murine Toplmt-deficient HCCs, we were able to divide 53 HCC
patients into two subgroups with a significantly different clinical
outcome. This suggests that the TopImt gene expression signature
derived from our murine model could be tested further to predict
high-risk patients and to adapt treatment modalities.

In summary, our results present the first evidence that loss of
TOPIMT suppresses tumor growth by decreasing mitochondrial
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translation, thereby sensitizing tumor cells to a microenviron-
ment with limited access to oxygen and nutrients. We also pro-
pose that the TopIlmt gene expression signature could be utilized
as prognostic tool for HCC patients and present TOPIMT as a
putative mitochondrial target for adjuvant chemotherapy.

Methods

Cell lines and reagents. HCT116 cells were obtained from the NCI Development
Therapeutics Program in 2014, and authentication of this cell line was performed
prior to CRISPR/Cas9 genomic editing of TOPIMT. Isogenic cell lines were gen-
erated as described?’. HCT116 cells and murine embryonic fibroblasts (MEF)!9
were cultured in DMEM supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin at 37 °C in 5% CO,. All experiments were performed
within 25 passages from thawing, and cell lines were routinely tested for myco-
plasma contamination. Antibodies were obtained from the following sources
(Supplementary Table 2): abcam: OXPHOS Rodent (ab110413), OXPHOS
(ab110411), Ki67 (ab16667); Cell Signaling Technologies: Akt (#4691S), p-Akt
(#9271S), cleaved caspase 3 (#9661), GAPDH (#5174); Thermo Fisher Scientific:
MRPS22 (#PA5-52249); MT-CO2 (#MS-1372-P1); DSHB: TOPIMT (#CPTC-
TOP1-MT-3), A6 (#A6 BCM-s); Sigma-Aldrich: p-actin (#A5441), Santa Cruz: IgG
(#sc-2027). Picrosirius Red (#24901-250) was purchased from Polysciences Ing;
tigecycline (#PZ0021), N-Nitrosodiethylamine (DEN) (#N0756), and CCl,
(#289116) were purchased from Sigma-Aldrich, and olive oil (#75343) from Fluka.

Transfection of HCT116 cells. Cells were seeded in 6-well plates and at a con-
fluency of 70% transfected using Lipofectamine3000 (Thermo Fisher) according to
the manufacturers’ protocol. The green fluorescent protein (GFP)-tagged TOPIMT
vector pEGFP-TOPIMT was constructed by cloning TOPIMT cDNA into the
Nhel and EcoRI sites of the pEGFP-N2 vector (CLONTECH) as previously
described!”.

Xenograft study. All procedures were performed in accordance with the guide-
lines of the Animal Care and Use Committee (ACUC) of the National Cancer
Institute, NIH. Aliquots of 10,000 cells in DMEM were mixed 1:1 with Matrigel
(Corning, # 356231), and 100 pL were subcutaneously injected into the flank of
athymic Ner-nu/nu female mice (NCI-Frederick) at 5 weeks of age. Before injec-
tion, all cell lines were tested for a panel of viruses, per NIH ACUC regulations.
The cells were negative for mycoplasma and all the viruses tested. Tumor growth
was followed over time by caliper measurement. Tumor volume was calculated
using the standard formula % x Lx W2. Bioluminescence imaging was performed
35 days post transplantation. Mice were injected i.p. with 100 pL p-luciferin
(Biosynth International, #L-8200) and imaged ten minutes post-injection using the
IVIS Lumina system (Xenogen, Caliper Life Sciences). Images were analyzed using
the Living Image software.

Immunocytochemistry. Xenograft and liver sections were fixed overnight at 4 °C
in zinc formalin fixative (Sigma, #72902). Five micrometre paraffin sections were
stained with Ki67 (1:100), cleaved caspase 3 (1:100) and MT-CO2 (1:200), or Picro
Sirius Red according to the suppliers’ recommendations. Fluorescently stained
tissues from 6 tumors (for each genotype) were viewed by a Zeiss LSM 880
microscope (Zeiss, Thornwood, NY). Images (at least 5 images for each tumor)
were quantified and analyzed using the Zen 2012 software (Zeiss, Thornwood, NY).
Nuclei count per field was determined using the Zen 2012 software (6 images per
animal, 5 animals per genotype).

Hematoxylin and Eosin (H&E) staining for routine histology was performed by
Histoserv, Inc. (Gaithersburg).

NanoString analysis. Gene expression analysis of xenograft tumors (n =4, each
genotype) was performed using the nCounter Pancancer Progression panel
(Nanostring Technologies, Seattle, WA) according to the manufacturers’ protocol.
RNA was isolated with TRIzol™ (Invitrogen, #15596026), and 100 ng of total
RNA was used for nCounter hybridizations. Data were normalized to endogenous
housekeeper controls.

Quantitative PCR. RNA was extracted using TRIzol™ (Thermo Fisher Scientific,
#15596026) or RNeasy Mini Kit (Qiagen, #74104) and reverse transcribed using
RevertAid RT Reverse Transcription Kit (Thermo Fisher Scientific, #K1691)
according to the manufacturers’ instructions. Quantitative PCR (qPCR) was per-
formed using TagMan Universal PCR Mastermix (Thermo Fisher Scientific,
#4304437) and TaqMan probes for PI3KRI, AKT3, HK, Glut4, Toplmt, and Pparg
or PrimeTime Std qPCR Assay (Integrated DNA Technologies) for Infg and Tgfbl
(Supplementary Table 3). Gene expression was normalized to GAPDH and Gapdh
or b2m (Thermo Fisher Scientific).

Quantification of mtDNA copy number. Total DNA was isolated from xenograft
tumors using PureLink Genomic DNA Mini Kit (Thermo Fisher Scientific,
#K182001) according to the manufacturers’ protocol. Quantitative PCR was

performed in triplicates on 384-Well Reaction Plates (Applied Biosystem) after
DNA quantification with Nanodrop1000. For each PCR reaction, 25 ng DNA, 5 uL
Power SYBR-Green PCR Master Mix (Applied Biosystems), and 0.5 uM of each
forward and reverse primer were used. p2-microglobulin (f2m) was used as
standard reference. Primer sequences used: p2m F (5'-TGCTGTCTCCATGTT
TGATGTATCT-3'); f2m R (5'-TCTCTGCTCCCCACCTCTAAGT-3); ND1 F
(5'-AAGTCACCCTAGCCATCATTCTAC-3'); and ND1 R (5'-GCAGGAGTAA
TCAGAGGTGTTCTT-3').

Mitochondrial DNA tiling array. Total RNA was isolated from human HCT116
xenografts (n = 4 for each genotype), murine livers (n = 3 for each genotype), and
liver tumors (n =3 for each genotype) using TRIzol™ (Thermo Fisher Scientific,
#15596026) before loading onto RNeasy Mini Kit columns (Qiagen, #74104)
according to manufacturers’ instructions as described. Mitochondrial DNA tiling
array was performed as previously described3!.

Immunoblot analyses. For detection of protein levels, 50 mg of xenograft tumor or
murine liver tumor tissue were homogenized and lysed in RIPA buffer supple-
mented with 0.4 M NaCl and protease inhibitor cocktail (Roche Applied Science).
Lysates were centrifuged at 15,000x g at 4 °C for 10 min and protein concentration
was measured using the DC™ Protein Assay kit (Bio-Rad) in the supernatant.
Twenty micrograms of protein were loaded onto Novex™ tris-glycine gels
(Thermo Fisher Scientific). Blotted membranes were blocked with 5% milk in PBS
with 0.1% Tween-20. The primary antibodies were diluted in 5% milk in PBST at
1:1000 for OXPHOS Human Cocktail, OXPHOS Rodent Cocktail, Akt, and
MRPS22; 1:500 for p-Akt, 1:250 for TOPIMT and at 1:2000 for GAPDH and B-
actin (Supplementary Table 2). Uncropped blots are included in Supplementary
Figure 7.

Immunoprecipitation and IP-mass spectrometry. IP samples were prepared
using the GFP-Trap® kit from Chromotek according to the manufacturers’ protocol.
HCT116 cells overexpressing TOP1MT-GFP and TOP1IMT-KO cells (1 x 107) were
collected and resuspended in 200 pL lysis buffer supplemented with 1 mgmL~!
benzonase (Sigma-Aldrich), I mgmL~! RNase A, 2.5 mM MgCl, and 1x protease
inhibitor cocktail (Roche Applied Science). For MRPS22-IP or IgG-IP, 4 ug anti-
body was added and incubated for 1h at 4 °C under agitation. Pierce Protein A/G
magnetic beads (Thermo Fisher Scientific, #88802) for pulldown of MRPS22 and
IgG and 25 pL of GFP-Trap beads for TOPIMT-GFP pulldown in HCT116 cells,
respectively, were equilibrated in dilution buffer. Beads were added to the respective
samples and incubated at 4 °C under constant agitation. After 1h, beads were
washed with 0.5 mL wash buffer three times and resuspended in 100 uL 2x SDS
sample buffer (Thermo Fisher Scientific). IP samples were analyzed by western
blotting and by mass spectrometry. GFP-pulldown was also performed in non-
transfected cells as a background control.

For mass spectrometry, interacting proteins were fractionated by SDS-PAGE,
and each lane cut into 10 slices. The protein bands were then in-gel digested with
trypsin (Thermo Fisher Scientific) overnight at 37 °C as described>*. The peptides
were extracted following cleavage and lyophilized. The dried peptides were
solubilized in 2% acetonitrile, 0.5% acetic acid, and 97.5% water for mass
spectrometry analysis. They were trapped on a trapping column and separated on a
75 um x 15 cm, 2 pm-Acclaim PepMap reverse phase column (Thermo Scientific)
using an UltiMate 3000 RSLCnano HPLC (Thermo Scientific). Peptides were
separated at a flow rate of 300 nL min~! followed by online analysis by tandem
mass spectrometry using a Thermo Orbitrap Fusion mass spectrometer. Peptides
were eluted into the mass spectrometer using a linear gradient from 96% mobile
phase A (0.1% formic acid in water) to 55% mobile phase B (0.1% formic acid in
acetonitrile) over 30 min. Parent full-scan mass spectra were collected in the
Orbitrap mass analyzer set to acquire data at 120,000 FWHM resolution; ions were
then isolated in the quadrupole mass filter, fragmented within the HCD cell (HCD
normalized energy 32%, stepped #+ 3%), and the product ions analyzed in the ion
trap. Proteome Discoverer 2.2 (Thermo) was used to search the data against human
proteins from the UniProt database using SequestHT. The search was limited to
tryptic peptides, with maximally two missed cleavages allowed. Cysteine
carbamidomethylation was set as a fixed modification, and methionine oxidation
set as a variable modification. The precursor mass tolerance was 10 ppm, and the
fragment mass tolerance was 0.6 Da. The Percolator node was used to score and
rank peptide matches using a 1% false discovery rate.

Flow cytometry analysis of mitochondrial mass. Cells (300,000) were seeded in
6-well plates and allowed to grow for 24 h. Cells were then incubated with 100 nM
MitoTracker Deep Red dye (Thermo Fisher) for 20 min in normal culture medium
at 37 °C. After three washes with 3 mL warm PBS, cells were trypsinized and
resuspended in PBS supplemented with 1% FBS and 2 mM EDTA and immediately
analyzed by flow cytometry (BD LSR Fortessa). Data analysis was performed
using FlowJo 10.4.2 (FlowJo LLC) as exemplified in Supplementary Figure 8.

Measurement of intracellular ATP levels. Tumor tissue (50 mg) was homo-
genized, and ATP levels were determined using the ATPlite 1-step kit (Perki-
nElmer). Briefly, 50 uL. ATPlite solution was added to 50 uL tissue homogenate in a
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96-well white plate (Perkin Elmer Life Sciences, #6005680). After 5 min, lumi-
nescence was measured with an EnVision 2104 Multilabel Reader (PerkinElmer).

Cells at a density of 5000 cells per well were seeded in 96-well plates and
allowed to attach for 4 h. Cells were grown for 48 h and 72 h in normal growth
medium or incubation medium (1 gL~! glucose and 1% FBS, respectively) under
normoxic conditions and in a hypoxia incubator (2% oxygen), respectively.
Chemiluminescence was measured after adding 100 uL ATPlite solution (Perkin
Elmer).

Glutathione measurement. Reactive oxygen species (ROS) production was mea-
sured quantifying reduced glutathione®! in xenograft tumor tissue. GSH levels were
assessed in 50 mg tissue lysates using the luminescence-based GSH-Glo™ Glu-
tathione Assay (Promega) according to the manufacturers’ protocol.

Single metabolite measurement. Steady-state levels of aspartate and a-
ketoglutarate in xenograft tumors were measured using the aspartate assay kit
(Sigma-Aldrich, MAK095) and a-ketoglutarate assay kit (Sigma-Aldrich,
MAKO054), respectively, according to the manufacturers’ protocol. Briefly, 20 mg
fresh tumor sample (1 =10-13 for each genotype) were homogenized in 100 puL
ice-cold buffer. Samples were then centrifuged at 13,000x g for 10 min at 4 °C.
Supernatant was deproteinized with a 10 kDa MWCO spin filter (Biovision, #1997-
25). A volume of 50 pL was used for assay reaction which was performed according
to manufacturers’ manual.

Measurement of oxygen consumption rate. Xenograft tumors (n =5 for each
genotype) were minced and incubated with Accutase solution (Millipore Sigma,
#SCR005) for 30 min under continuous shaking. The resulting cell suspension was
filtered through a 70 um mesh, centrifuged at 1300x g and resuspended in DMEM.
Isolated primary tumor cells were seeded at a density of 20,000 cells/96-well. For
OCR measurements, cells were incubated in medium supplemented with 2 mM
glutamine, 10 mM glucose, and 1 mM pyruvate for 1 h, prior to the measurements
using the XF Cell Mito Stress Kit (Agilent, #103015-100). For ECAR measurements
(n=3 for each genotype), cells were incubated with basal medium prior to
injections using the Glycolysis Stress Test kit (Agilent, #103020-100). Experiments
were run on a XF96 Extracellular Flux Analyzer (Seahorse Bioscience) in at least six
replicates and raw data were normalized to DNA content measured using the
CyQUANT Cell Proliferation Assay Kit (Thermo Fisher Scientific, #C7026).

Multicellular tumor spheroid growth. Spheroids were generated from WT and
TOPIMT-KO HCT116 cells using GravityTRAPT™™ ULA plates (insphero, Perkin
Elmer) according to manufacturers’ protocol. Briefly, 10,000 cells were seeded in
70 uL DMEM per well, and the plate was centrifuged for 2 min at 250 RCF.
Spheroids were formed by cell aggregation and self-assembly to a 3D structure after
48 h (sphere maturation) which was considered as time 0. Spheroid growth was
measured in quintuplets over time by determination of spheroid diameter under a
bright field microscope and is represented as ratio over the matured spheroid (48 h
after cell seeding, time 0). Growth or incubation medium was replaced every 48 h.
Incubation medium was supplemented with 5 uM tigecycline to inhibit mito-
chondrial translation, and spheroid growth was followed over the duration of seven
days.

Transmission electron microscopy. Xenograft tumor samples (n =2 for each
genotype) were cut into small (1 x 1 mm?) cubes and fixed in a mix of 2% glu-
taraldehyde and 4% paraformaldehyde in 0.1 M cacodylate buffer. Samples were
processed and examined in an electron microscope operated at 80 kV (Hitachi
H7650, Tokyo by the Electron Microscopy Core at the National Cancer Institute
(Frederick) as previously described?’. At least 48 digital images taken at x5000
magnification from 12 independent areas were captured by CCD camera (AMT,
Danvers, MA) and used for a quantitative evaluation of mitochondrial
morphology.

Mitochondrial protein synthesis. Mitochondrial translation in WT and Toplmt-
KO MEFs was assessed as described in ref. 5°. Briefly WT and TopImt-KO MEFs
were washed with methionine/cysteine-free DMEM, 2 mM L-glutamine, 96 ug/mL
cysteine and 5% (v/v) dialyzed FBS and incubated for 10 min in the same media at
37 °C. 100 pg/mL emetine was then added directly to the media in order to inhibit
cytosolic translation; after 20 min proteins newly synthetized in the mitochondrial
compartment were labeled with 100 pCi [3>S]-methionine (Perkin Elmer) for 1 h at
37 °C. Cells were then washed three times with PBS and lysed in PBS, 0.1% n-
dodecyl-B-p-maltoside (DDM, Sigma), 1% SDS, 1X protease inhibitor cocktail
(Roche) and 50 U benzonase (Novagen). 25 pg of total protein lysates were sub-
jected to SDS-PAGE (Novex), gels were dried and radiolabelled proteins were
detected by Phosphorimager.

Mitochondrial translation analysis of HCT116 cells was performed as
previously described with slight modifications®®. HCT116 WT and TOPIMT-KO
cells were seeded (1 Mio) in 6-well plates and allowed to attach. Cells were cultured
in growth medium or in the presence of tigecyline (10 uM) for 16 h, followed by a
2-hour washout phase. Media was replaced with 2 mL DMEM lacking methionine

or cysteine (Life Technologies) with 10% FBS for 30 min before adding 100 L of a
2 mg mL~! emetine solution for 15 min. Cells were labeled using 200 uCi mL~! 3>S
EasyTag (Perkin Elmer) for 45 min. After three washes with 2 mL PBS, normal
growth medium was applied to the cells for 10 min. Cells were scraped in 1 mL ice-
cold PBS, after two washes with PBS, and collected by centrifugation. Cell pellets
were resuspended in RIPA buffer (50 mM Tris-HCI pH7.5, 150 mM NaCl, 1% NP-
40, 1 mM MgCl,, 1x protease inhibitor mix and 1 mg mL~! benzonase) and
incubated on ice for 20 min. After centrifugation at 2000x g for 10 min, protein
concentration was determined by BCA assay (Biorad). A volume of 50 pg lysate
was loaded onto a 12% SDS-PAGE gel. The gel was dried at 70 °C for 1h, before
exposing it to a film at —80 °C for at least three days.

mitoRCA-seq analysis. Mutation frequency was determined by mitoRCA-seq as
described®”. Quality check of Illumina DNA-Seq data was performed using FastQC
0.10.1. followed by trimming of data by Trimmomatic-0.35. mtDNA sequence
analysis was performed using the MToolBox pipeline® utilizing the computational
resource of the NIH HPC Biowulf cluster. The Revised Cambridge Reference
Sequence (RCRS) was used for alignment.

RNA-Seq analysis. Total RNA was isolated from WT and TopImt-KO murine
liver tumors of the same size (3 x 5 mm) using TRIzol™ (Thermo Fisher Scientific,
#15596026). Quality check (RIN > 8) was performed with the Agilent Bioanalyzer.
RNA-Seq libraries were prepared using the TruSeq Stranded RNA Prep Kit (Illu-
mina, #RS-122-2201) and sequenced on the Ilumina HiSeq2500 instrument (125
bp paired end reads). Preprocessing and quality check of Illumina RNA-Seq data
was performed using FastQC 0.10.1. followed by trimming of data by
Trimmomatic-0.36. Reads were aligned against the reference genome (Mm 8) using
BWA with default parameters. Only uniquely mapped reads were used for sub-
sequent analyses followed by read summarization with featureCounts (subread-
1.5.0-p1)°%60, All data analysis was performed using R programing language and
related packages. The output matrix from featureCounts was input into the Bio-
conductor package DESeq2 for differential expression analysis®!. Significance
testing was performed using Wald Test statistics. Functional networks were
assessed using Ingenuity pathway analyses.

Liver carcinogenesis model. Toplmt-KO mice were generated as described in
C57BL/6 background!® and maintained by heterozygous breeding. Genotyping was
done by PCR analysis of tail genomic DNA (gDNA) at 3 weeks of age. Mice were
maintained at an American Association for the Accreditation of Laboratory Animal
Care-accredited animal facility at the National Cancer Institute and housed in
accordance with the procedures outlined in the Guide for the Care and Use of
Laboratory Animals under an animal study proposal approved by the NCI Animal
Care and Use Committee.

To induce liver cancer, 14-day-old male littermates received a single
intraperitoneal injection of diethylnitrosamine (DEN, 25 mgkg~! body weight).
When mice reached 8 weeks of age, they received biweekly injections of carbon
tetrachloride (CCly; 0.2 mlkg™! in olive oil) for 14 weeks®2. Liver tissue was
harvested 4 days after the last injection, i.e., after the peak of proliferation
associated with CCly-induced tissue injury. A second group of fourteen-day old
male mice received a single intraperitoneal injection of DEN (25 mgkg~! body
weight) without tumor promotion with CCly. Liver tissue was harvested 50 weeks
after DEN injection.

TCGA data analysis. All TCGA data were accessed, analyzed, and figures were
generated using the cBio Cancer Genomics Portal. All the included data agree with
the TCGA publication guidelines®3.

Statistical analysis. The statistical analyses were conducted using two-tailed
unpaired Student t-test. For growth kinetics, multiple t-tests were performed with
correction for multiple comparisons using the Holm-Sidak method. In Figs. 2b and
5f one-tailed unpaired Student t-test was performed. For RNA-seq data analysis,
significance testing was performed using Wald Test statistics. All data are expressed
as the mean + SEM, except Fig. 3¢ and Supplementary Fig. 3¢ where the median *
SEM is plotted. Individual data points are plotted in the graph for all in vivo data.
Number of technical and biological replicates is described in each figure legend. All
data were analyzed using the software Graphpad Prism 7 (GraphPad Software,
Inc.)

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The data sets for the RNA-seq are available from GEO under Accession code
GSE122489. All data within the manuscript is available from the authors upon
reasonable request. A Reporting Summary for this Article is available as Supple-
mentary Information file.
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