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Abstract 

A connection between dementias and blood-brain barrier (BBB) dysfunction has been 

suggested, but previous studies have yielded conflicting results. We examined CSF/serum 

albumin ratio in a large cohort of patients diagnosed with Alzheimer’s disease (AD, early 

onset [EAD, n=130], late onset AD [LAD, n=666]), vascular dementia (VaD, n=255), mixed 

AD and VaD (MIX, n=362), Lewy body dementia (DLB, n=50), frontotemporal dementia 

(FTD, n=56), Parkinson’s disease dementia (PDD, n=23), other dementias (Other, n=48) and 

dementia not otherwise specified (NOS, n=271). We compared CSF/serum albumin ratio to 

two healthy control groups (n=292, n=20), between dementia diagnoses, and tested biomarker 

associations. Patients in DLB, LAD, VaD, MIX, Other and NOS groups had higher 

CSF/serum albumin ratio than controls. CSF/serum albumin ratio correlated with CSF 

neurofilament light in LAD, MIX, VaD and Other, but not with AD biomarkers. Our data 

shows that BBB leakage is common in dementias. The lack of association between 

CSF/serum albumin ratio and AD biomarkers suggests that BBB dysfunction is not inherent 

to AD but might represent concomitant cerebrovascular pathology.  

  



1. Introduction 

Dementia is a major health concern with more than 47 million affected patients worldwide 

and an increasing prevalence as the population ages. The most common causes of dementia 

are Alzheimer’s disease (AD) and vascular dementia (VaD) (Wimo et al., 2017). An 

increasing body of research suggests that there is a connection between dementia and vascular 

pathology (Nelson et al., 2016), including molecular and epidemiologic evidence that vascular 

disease is a risk factor for dementia (Beydoun et al., 2014, Hughes and Ganguli, 2009, 

Iadecola, 2013, McAleese et al., 2016, Wiesmann et al., 2013). Many risk factors for AD and 

reduced cognitive abilities, such as stroke, hypertension, hyperlipidemia, diabetes and atrial 

fibrillation, affect the vasculature (Gorelick, 2004, Hayden et al., 2006, Kilander et al., 1998, 

Kivipelto et al., 2001, Ott et al., 1996, Skoog et al., 1996). In addition, increased permeability 

of the blood brain barrier (BBB) has been indicated in several of these conditions (Hovsepyan 

et al., 2004, Hsu and Kanoski, 2014, Starr et al., 2003, Tang et al., 1992).  

There is great diversity in the vascular mechanisms that may underlie dementia, including 

diffuse white matter lesions, hypoperfusion, oxidative stress and inflammation (Iadecola, 

2013). Many of these have effects on the brain vasculature causing endothelial damage, BBB 

breakdown and activation of the innate immune response (McAleeseet al., 2016). BBB 

damage may lead to disruption of the tightly controlled metabolic balance between vascular 

and brain cells and suboptimal control of exposure of the brain tissue to blood-associated 

substances, which ultimately may result in demyelination, axonal loss and cognitive 

impairment (Fornari et al., 2012, Iadecola, 2013, Ryu et al., 2015). In the light of these 

findings, there is a need to further evaluate the contribution of BBB dysfunction in different 

dementias.  



The BBB is the interface between the blood and the brain, regulating the transport of 

molecules between the blood and the central nervous system (CNS). Its primary function is to 

maintain the tightly controlled microenvironment of the brain, which is a critical part in 

sustaining a healthy nervous system (Obermeier et al., 2013). A standard measure of BBB 

function in clinical laboratory practice is the CSF/serum albumin ratio (Tibbling et al., 1977). 

Proteins will pass from blood to CSF across the BBB at different rates, depending on their 

hydrodynamic radii, with passage of larger proteins being more restricted than that of smaller 

proteins (Felgenhauer and Renner, 1977). This limits the movement of albumin from blood to 

CSF. As albumin is not produced in the CNS, CSF/serum albumin ratio can be used to assess 

the integrity of the BBB (Reiber and Peter, 2001). There are other candidate methods for 

investigating BBB integrity. These include measurements of fluid biomarkers such as blood 

occludin (Pan et al., 2017) and other tight junction proteins (Sweeney et al., 2015), serum 

MMP-9 (Waubant et al., 1999), plasma fibrinogen (Bridges et al., 2014) and markers related 

to pericyte breakdown (Halliday et al., 2016), as well as non-fluid biomarker methods such as 

dynamic contrast-enhanced magnetic resonance imaging (MRI) (Montagne et al., 2015, 

Taheri et al., 2011, van de Haar et al., 2016). Although contrast-enhanced MRI can provide 

improved spatial and temporal resolution, CSF/serum albumin ratio has the advantage of 

being a readily available test in automated clinical chemistry analyzers that are standardized 

for routine use in general clinical laboratory practice around the world. It is also the only fluid 

biomarker that has been validated for clinical use.  

 

Most studies investigating CSF/serum albumin ratio in dementia patients have included a 

relatively small number of individuals and have primarily focused on AD {Elovaara, 1986 

#127;Wada, 1998 #129;Wada, 1998 #129;Farrall, 2009 #133;Alafuzoff, 1983 #126;Kay, 1987 

#135;Hampel, 1997 #128;Blennow, 1990 #132;Hermann, 2014 #30}. However, there is a 

more comprehensive study of CSF/serum albumin ratio in dementia patients focusing mainly 



on Creutzfeldt-Jakob disease {Karch, 2013 #213}. There have been conflicting reports as to 

whether BBB damage can be linked to AD, and reports of higher incidence of BBB damage in 

AD compared to controls have been published (Elovaara et al., 1986, Farrall and Wardlaw, 

2009, Janelidze et al., 2017, Skoog et al., 1998, Wada, 1998), as well as reports where no 

difference in BBB integrity compared to controls could be found (Alafuzoffet al., 1983, 

Blennowet al., 1990, Hampelet al., 1997, Kayet al., 1987). A recent meta-analysis suggests 

that there is no significant change in CSF/serum albumin ratio in AD (Olsson et al., 2016a). In 

animal models, most studies report that cerebrovascular changes and BBB alterations are part 

of the AD pathology (Blair et al., 2015, Gama Sosa et al., 2010, Giannoni et al., 2016, Kumar-

Singh et al., 2005, Park et al., 2013), whilst one study reports no change in BBB permeability 

for several AD models (Bien-Ly et al., 2015).  

Conflicting results have also been reported in studies of the prevalence of BBB damage in 

patients with VaD compared to AD (Alafuzoff et al., 1983, Blennow et al., 1990, Blennow et 

al., 1991, Farrall and Wardlaw, 2009, Skoog et al., 1998, Wada, 1998). Considering the 

contradictive findings in this area, we set out to investigate BBB integrity in a large 

population of dementia patients using data from the Swedish Dementia Registry (SveDem). 

We hypothesized that a subgroup of dementia patients have increased CSF/serum albumin 

ratio, as a marker of BBB dysfunction, and that this is partly linked to cerebrovascular 

disease. Since BBB integrity is tightly linked to the important homeostasis of the CNS, we 

also hypothesized that increased CSF/serum albumin ratio would be related to worse disease 

severity.    

2. Methods 

2.1 Data sources and clinical criteria 

Two sources of patient information were combined and used for this study. The first was a 



complete set of archived data on all CSF/serum albumin ratios, Aβ42, total tau (T-tau), 

phosphorylated tau (P-tau) and neurofilament light protein (NFL) measurements performed in 

clinical practice at the Mölndal site of the Sahlgrenska University Hospital, Sweden from 

January 1, 2005 to June 1, 2012. The inclusion criteria for this study were an age of sampling 

above 30, and a maximum of 24 months between dementia diagnosis and lumbar puncture.  

The second source of data was the Swedish Dementia Registry, SveDem, which was started in 

May 2007 to improve the quality of the diagnostic workup, treatment and care for dementia 

patients throughout Sweden, and which presently covers 100% of all memory clinics and 75% 

of all primary care units in Sweden (Religa et al., 2015, SveDem, 2015). From SveDem 

information on clinical diagnoses, medications, date of diagnosis, and mini mental state 

examination (MMSE) scores were drawn. In SveDem, each patient is assigned to a single 

diagnosis group out of nine preset options in the report form: early onset AD (EAD, < 65 

years of age), late onset AD (LAD, > 65 years of age) and vascular dementia (VaD) according 

to ICD-10 (World Health Organization., 1993),  FTD according to Manchester criteria (The 

Lund and Manchester Groups, 1994), dementia with Lewy bodies (DLB) according to 

McKeith criteria (McKeith et al., 2005), Parkinson’s with dementia (PDD) according to 

Movement Disorder Society Task Force criteria (Martinez-Martin et al., 2011), mixed AD and 

vascular dementia (MIX), dementia not otherwise specified (dementia NOS) and a group for 

the collected remainders of named dementia diagnoses called “Other” (including for example, 

Creutzfeldt-Jakob disease, HIV-associated neurocognitive disorder and Huntington’s disease).  

Information from the two data sources was cross-referenced using the unique Swedish 

personal identity number. Multiple CSF analyses on the same individual were excluded and 

only the measurement closest to the date of diagnosis was left in the dataset. 1,861 individuals 

were matched between the CSF data file and SveDem and used for the analyses in this study. 



Reference data on the CSF/serum albumin ratio from healthy age matched control subjects 

without symptoms of cognitive dysfunction were obtained from two previously published 

sources from our laboratory. Data for 292 healthy controls (HC1) were obtained from a study 

conducted at the Memory Clinic of Skåne University Hospital in Malmö, Sweden (Janelidze 

et al., 2017) and data for 20 healthy controls (HC2) were obtained from a study conducted at a 

memory clinic in Falköping, Sweden (Johansson et al., 2011). 

  

2.2 Biochemical measurements 

All CSF analyses were performed in clinical practice by board-certified laboratory technicians 

using procedures accredited by the Swedish Board for Accreditation and Conformity 

Assessment (SWEDAC; the national accreditation body for laboratory medicine in Sweden). 

INNOTEST enzyme-linked immunosorbent assays were used to measure CSF T-tau, P-tau 

and A42 concentrations (Fujirebio, Ghent, Belgium). CSF NFL concentration was measured 

as previously described (Skillback et al., 2014). Serum and CSF albumin concentrations were 

measured by immunonephelometry on a Beckman Immage Immunochemistry system 

(Beckman Instruments, Beckman Coulter, Brea, CA, USA). The CSF/serum albumin ratio 

was calculated as CSF albumin (mg/L)/serum albumin (g/L). Longitudinal stability in the 

measurements over years was ascertained using an elaborate system of internal quality control 

samples and testing of incoming reagents and intra- and inter-day coefficients of variation 

were below 5%.  

All patients were classified as having either a presence or absence of a pathological 

CSF/serum albumin ratio according to the clinical reference limits at the Sahlgrenska 

University hospital. The cutoffs used were > 6.8 for study participants 30-45 years of age and 

> 10.2 for study participants > 45 years of age. The AD group was further sub-classified into 

biochemically positive or negative AD according to IWG-2. Biochemically positive patients 



had low Aβ42 and high T-tau or P-tau (Dubois et al., 2014). The following cutoffs were used: 

Aβ42 ≤ 550 pg/mL, T-tau ≥ 400 pg/mL, P-tau > 60 pg/mL for patients < 60 years, and P-tau > 

80 pg/mL for patients ≥ 60 years. When specified, the LAD, EAD and MIX groups were 

analyzed together as an AD group. Reporting clinicians were instructed to follow diagnostic 

guidelines as specified in ICD-10 to secure a unified basis for diagnosis (Sorbi et al., 2012). 

2.3 Data analysis Age differences between groups were tested by Kruskal-Wallis analysis. 

CSF/serum albumin ratio and MMSE scores across diagnosis groups and subgroups 

(classifications according to biochemical profiles, presence of pathological CSF/serum 

albumin ratio, and presence of prescriptions for vascular medicine) were tested in age and sex 

corrected ANCOVA models. Age corrected linear regression models were fitted for Aβ42, T-

tau, P-tau and NFL concentrations and CSF/serum albumin ratio in AD. Chi2 statistics were 

used to analyze differences in proportions of patients with pathological vs. normal CSF/serum 

albumin ratios in each diagnosis group. Logarithmic transformations were applied to correct 

for significantly skewed data distributions. All statistics, charts and tables were produced in 

SPSS version 20 (IBM, New York). 

2.4 Ethics 

Patients and caretakers were informed orally and in writing about SveDem and could opt to 

decline participation and withdraw consent. This study was approved by the regional ethical 

boards at the University of Gothenburg and Lund University.  

3. Results 

3.1 Demographics of study cohort 

Demographics of the study cohort can be found in Table 1. The EAD subjects were younger 

(p < .001) than all other groups, and the FTD subjects were younger (p < .001 for NOS, LAD, 

VaD and MIX, p = .038 for DLB) than all groups except EAD, PDD and other. The MIX 



subjects were older (p < .001) than all other groups except VaD and PDD, and the VaD 

subjects were older (p < .001) than the LAD, EAD, FTD, NOS and other groups. 

3.2 CSF/serum albumin ratios across diagnosis groups 

CSF/serum albumin ratios across the diagnostic groups are shown in Figure 1. The VaD group 

had higher CSF/serum albumin ratio than HC1 (mean diff = .26, p <.001, SE = .046), HC2 

(mean diff = .33, p = .001, SE = .099), LAD (mean diff = .09, p = .017, SE = .039), FTD 

(mean diff = .20, p = .002, SE = .062), EAD (mean diff = .28, p < .001, SE = .055), PDD 

(mean diff = .22, p = .02, SE = .089) and NOS (mean diff = .10, p = .016, SE = .043). The 

LAD group had higher ratios than HC1 (mean diff = .16, p < .001, SE = .041), HC2 (mean 

diff = .24, p = .015, SE = .096) and EAD (mean diff = .19, p < .001, SE = .051). The MIX 

group had higher ratio than HC1 (mean diff = .21, p < .001, SE = .044), HC2 (mean diff = 

.287, p = .003, SE = .098), EAD (mean diff = .24, p < .001, SE = .054) and FTD (mean diff = 

.16, p = .011, SE = .061). The NOS group had higher ratio than HC1 (mean diff = .15, p = 

.001, SE = .045), HC2 (mean diff = .23, p = .022, SE = .098) and EAD (mean diff = .18, p = 

.001, SE = .055). The Other group had higher ratio than HC1 (mean diff = .22, p = .001, SE = 

.067), HC2 (mean diff = .30, p = .007, SE = .110), EAD (mean diff = .25, p = .001, SE = .074) 

and FTD (mean diff = .17, p = .037, SE = .079). The DLB group had higher ratio than HC1 

(mean diff = .27, p < .001, SE = .069), HC2 (mean diff = .35, p = .002, SE = .111), EAD 

(mean diff = .30, p < .001, SE = .075), FTD (mean diff = .21, p = .008, SE = .081) and PDD 

(mean diff = .23, p = .024, SE = .103). These comparisons were for logarithmic values and 

corrected for age and sex. 

We also classified all subjects according to prevalence of pathologic CSF/serum albumin 

ratio. Proportions per diagnosis are shown in Figure 2. VaD had higher proportion of 

pathologic CSF/serum albumin ratio than HC1, EAD, FTD, LAD, MIX and NOS (p < .05). 

LAD had a higher proportion than HC1 (p < .05). MIX had higher proportion than HC1, EAD 



and LAD (p < .05). NOS had higher proportion than HC1 and LAD (p < .05). Other had 

higher proportion than HC1, EAD, FTD and LAD (p < .05). DLB had higher proportion than 

HC1, EAD, FTD and LAD. All other differences were non-significant. The HC2 group had 

lower mean CSF/serum albumin value than all of the dementia diagnosis groups but the 

differences failed to reach significance. 

3.2.1 Correlations with biomarkers of neurodegeneration and Aβ42 

CSF/serum albumin ratio correlated with Aβ42 concentrations in LAD (β = .11, p = .003, R2  

= .12), with T-tau in MIX (β = .15, p = .003, R2  = .14), and with P-tau in MIX (β = .12, p = 

.013, R2  = .14) and VaD (β = -.13, p = .030, R2  = .12). CSF/serum albumin ratio correlated 

with NFL concentrations in LAD (β = .24, p < .001, R2  = .17), MIX (β = .21, p < .001, R2  = 

.17), NOS (β = .25, p < .001, R2  = .21), Other (β = .35, p = .41, R2  = .13) and VaD (β = .24, 

p < .001, R2  = .15). All biomarker levels were on logarithmic scale. 

3.2.2 Disease severity 

To test associations between CSF/serum albumin ratio and cognitive impairment, we used 

MMSE as a proxy for clinical severity and tested associations between MMSE and presence 

of pathological CSF/serum albumin ratio. No significant differences between the two groups 

were found for any diagnosis, in age and sex corrected analyses.  

3.3 CSF/serum albumin ratio in AD 

3.3.1 Biochemical profile 

The AD group (LAD + EAD + MIX) was split according to the IWG-2 guidelines into a 

biochemically positive AD group (IWG-2+, n = 613, median age = 75) and a biochemically 

undetermined group (IWG-2-, n = 545, median age = 75). There were no differences in 

CSF/serum albumin ratio between the groups in an age and sex corrected analysis (p = .72). 



3.3.2 Treatment for vascular risk factors  

We further sub-classified the AD group according to declared use of medications for 

cardiovascular co-morbidities (n = 724 on treatment vs. n = 434 without treatment). 

Cardiovascular drugs comprised antihypertensives, anticoagulants, lipid-lowering drugs, anti-

diabetics and anti-angina medication. Subjects with prescriptions had higher CSF/serum 

albumin ratio (p = .007, mean diff = .06). However, after age and sex correction, the presence 

of prescriptions no longer significantly predicted the CSF/serum albumin ratio (p = .60).  

4. Discussion 

We tested CSF/serum albumin ratio, as a surrogate measure of BBB integrity, in patients with 

different dementia diagnoses to elucidate if certain diagnoses are associated with more BBB 

damage. We found that the VaD, LAD, MIX, NOS, Other and DLB groups had higher 

CSF/serum albumin ratio than healthy controls. VaD in particular, but also DLB and MIX, 

had higher CSF/serum albumin ratio than the other groups. EAD had the lowest CSF/serum 

albumin ratio, although it should be noted that age correction cannot fully remove age as a 

confounder in the case of EAD vs. LAD as the age distributions in these groups do not 

overlap. Nevertheless, EAD were indistinguishable from similarly aged controls in terms of 

CSF/serum albumin ratio. In addition, we investigated the relationship between CSF/serum 

albumin ratio and AD biomarkers and found that a positive biomarker profile for AD was not 

linked to more BBB damage. The CSF/serum albumin ratio correlated positively with CSF 

NFL concentrations in VaD, MIX, LAD, NOS and Other. This is consistent with the presence 

of leaking vessels, as reflected by increased CSF/serum ratio, and injury to myelinated axon, 

as reflected by increased NFL, in diseases with white matter changes. Taken together, these 

findings show that BBB damage is most evident in VaD but also occurs in LAD, MIX, NOS 

and Other.  



4.1 Differences in BBB permeability in patients with different diagnoses of dementia 

CSF/serum albumin ratios were highest in the groups VaD, MIX, DLB and Other. The 

prevalence of pathological CSF/serum albumin ratio was higher in DLB, LAD, MIX, NOS, 

Other and VaD compared to HC1. Among these diagnoses, the prevalence of patients with 

pathological CSF/serum albumin ratio ranged from 10.5% in LAD to 26% in DLB, which is 

in accordance with a previous study showing a prevalence of pathological CSF/serum 

albumin ratio in VaD of 25% (Brettschneider et al., 2005). Importantly, the same study found 

that about 15% of patients receiving diagnostic lumbar puncture, who showed no other 

evidence of neurological disease had increased CSF/serum albumin ratio. Our healthy control 

groups combined showed a lower prevalence of pathological CSF/serum albumin ratio of 

5.4% (5.1% and 10.0% in HC1 and HC2, respectively). Although rare, this shows that it is 

possible to have a slight BBB dysfunction, at least as reflected by the CSF/serum albumin 

ratio, without having significantly impaired cognition. This is also an inherent consequence of 

how reference limits are established in clinical chemistry; normality is defined by cut-points 

that define 95% of the tested individuals.   

The higher prevalence of pathological CSF/serum albumin ratio in DLB compared to AD was 

in accordance with a previous study (Llorens et al., 2015). The prevalence of cerebrovascular 

lesions in DLB (De Reuck et al., 2013), which may lead to reduced CSF flow rate, could 

contribute to increased CSF/serum albumin ratio. Other studies using the SveDem data found 

that, despite a high burden of cerebrovascular disease, DLB patients have less diabetes 

mellitus than other dementia patients (Cermakova et al., 2015). Taken together with our 

findings of high prevalence of BBB damage in DLB but no correlation between NFL and 

CSF/serum albumin ratio, this could indicate separate mechanisms of vascular pathology 

between DLB and VaD.  



4.2 Increased BBB permeability is more prevalent in VaD than other dementia 

diagnoses 

VaD patients had significantly higher CSF/serum albumin ratio than most other patients. This 

indicates that BBB disruption plays a part in, or reflects VaD pathophysiology, which has also 

been suggested in other studies (Blennow et al., 1990, Blennow et al., 1991, Farrall and 

Wardlaw, 2009, Skoog et al., 1998). A previous study showed that late stage PD patients 

without dementia had elevated CSF/serum albumin ratios (Pisani et al., 2012). However, we 

found no evidence of this, as the median CSF/serum albumin ratio did not increase with age in 

the PDD subjects in our cohort. 

4.3 Increased BBB permeability is more prominent in LAD than in EAD  

Post mortem neuropathological studies show degeneration of several important parts and 

functions of the BBB in AD (Halliday et al., 2016, Hultman et al., 2013, Sengillo et al., 2013). 

Similarly several other studies show increased occurrence of blood derived proteins in AD 

brains (Cortes-Canteli et al., 2010, Halliday et al., 2016, Hultman et al., 2013, Sengillo et al., 

2013), and expression of the E4 isoform of apolipoprotein E, a strong genetic risk factor of 

developing AD (Hauser and Ryan, 2013, Michaelson, 2014), has been shown to lead to BBB 

breakdown in mice (Bell et al., 2012). Considering these reports, it is plausible that BBB 

integrity is compromised in some way in AD. Although the role of BBB damage in AD has 

been disputed, a recent meta-analysis found no significant association of CSF/serum albumin 

ratio with AD (Olssonet al., 2016a). We found higher CSF/serum albumin ratio in LAD than 

in the control groups but no difference between the control groups and EAD. This may 

suggest increased BBB damage in LAD, but not in EAD. Pathological CSF/serum albumin 

ratios did not correlate with lower MMSE scores or IWG-2 positivity, and the CSF/serum 

albumin ratio correlated positively to Aβ42 levels. Taken together, our results indicate that 

BBB damage in AD is not primarily linked to AD pathology but rather to pathological 



vascular events that occur in LAD (Iturria-Medina et al., 2016). This is view further supported 

by the lack of difference in CSF/serum albumin ratio between EAD patients and age-matched 

controls in our study. 

In contrast to our findings, studies using imaging techniques have found increased BBB 

leakage in EAD patients (van de Haar et al., 2016) and BBB damage in patients with mild 

cognitive impairment (Montagne et al., 2015). Indeed, using different techniques to measure 

BBB permeability will affect disease correlation. The conflicting results in this area are a 

testament to that BBB changes are subtle and large cohort sizes are important. Considering 

the different scopes of fluid biomarkers and imaging techniques, it may be beneficial to 

include both techniques in future studies of BBB damage in dementia patients. In addition, 

our data highlights that analyzing AD patients as one group or separated in to LAD and EAD 

can influence the outcome. The patient cohort in the study where HC1 was originally 

published is similar to our, however in that study LAD and EAD were analyzed as one AD 

group which was found to have increased BBB permeability compared to healthy controls 

(Janelidze et al., 2017). There are several similarities between our results and the results 

reported by Janelidze et al.; for example, the CSF/serum albumin ratio in DLB and VaD was 

found to be higher than in AD in both studies. In addition, the study by Janelidze et al. found 

that increased CSF/serum albumin ratio is independent of AD-related features such as 

amyloid pathology and APOE genotype. Similarly, we found that pathological CSF/serum 

albumin ratio in AD did not correlate with IWG-2 positivity. Our results suggest that BBB 

leakage in dementia may not be linked directly to AD pathology but rather to contaminant 

cerebral vascular pathology (Olsson et al., 2016b, Zhao et al., 2015). 

 

CSF NFL concentrations correlated to the CSF/serum albumin ratio, as did declared use of 

medications for cardiovascular co-morbidities before correction for age and sex was 



introduced. CSF NFL correlates with white matter (WM) lesions in several conditions, and 

while AD patients show significant WM atrophy, which could lead to both elevated CSF NFL 

concentrations and CSF/serum albumin ratio, WM atrophy is more prominent and CSF NFL 

concentrations are considerably higher in VaD (Blennowet al., 1991, Jonsson et al., 2010, 

Lycke et al., 1998, Sjogren et al., 2001, Skillback et al., 2014, Zanier et al., 2011). Taken 

together, these results might stem from contaminant cerebral vascular pathology and a relative 

rarity of biochemically pure AD, but could also indicate abundance of WM lesions (Attems 

and Jellinger, 2014, McAleese et al., 2016). Further studies are required to understand the 

extent of the overlap between AD and VaD. The MIX group had a large proportion of patients 

with pathological CSF/albumin ratios and a positive correlation between CSF NFL 

concentration and CSF/albumin ratio, consistent with the notion of concomitant VaD as a 

driving force of BBB damage in AD, corroborating previous studies (Hermann et al., 2014). 

4.4 Strengths and Limitations 

The main strength of this study was the large cohort size, the broad referral base and the wide 

range of dementia diagnoses represented. The main limitation is the lack of detailed clinical 

data, for example APOE genotype and post-mortem diagnosis confirmation. In addition, we 

did not test different subtypes of VaD, which have distinct effects on BBB integrity 

(McAleese et al., 2016). Further, some researchers caution against describing the CSF/serum 

albumin ratio as a BBB test and state that it actually reflects the blood-CSF barrier at the 

choroid plexus (Reiber and Peter, 2001). However, in for example stroke, leaving the choroid 

plexus intact but injuring cerebrovascular endothelial cells, the CSF/serum albumin ratio may 

be increased (Brouns et al., 2011), suggesting that albumin ratio probably is a marker of both 

barriers. Albumin levels may also be affected by other factors for which we lack information, 

such as cleavage, degradation or uptake by microglia, astrocytes, pericytes and NG2-positive 

cells, or presence of spinal stenosis or other deformations affecting the flow rate of CSF 



(Braganza et al., 2012, Ivens et al., 2007, LeVine, 2016). Another limitation was the use of 

MMSE as a measure of disease severity, as MMSE is a test primarily designed to measure 

cognitive decline due to AD and hippocampal dysfunction, and is not an ideal test for 

cognitive decline due to VaD, FTD, DLB or PDD (Hodges et al., 1999, Palmqvist et al., 2009, 

Prieto et al., 2011). A previous study has indicated that measures of executive function might 

be more closely linked to BBB integrity in VaD, MIX and AD (Hermann et al., 2014).  

4.5 Conclusions 

Our results indicate that BBB permeability is increased in dementia patients compared to 

healthy controls, with increased CSF/serum albumin ratio primarily in DLB, LAD, VaD, 

MIX, Others and NOS. The influence of BBB function impairment is most prominent in VaD, 

DLB, MIX Other and NOS, and more prominent in LAD than in EAD. The results suggest 

that BBB leakage in AD may be a consequence of contaminant cerebrovascular pathology 

rather than the AD process per se.  
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Figure legends 

Figure 1. CSF/serum albumin ratio per diagnosis 

Median and IQR levels of CSF/serum albumin ratio. Observed data are shown here; see main 

text for comparisons adjusted for age and sex. Dashed lines indicate thresholds for albumin 

quotient pathology for 30-49 year olds (orange) and >50 year olds (red). VaD, MIX and DLB 

have the highest CSF/serum albumin ratios while the healthy control groups and EAD have 

lower CSF/serum albumin ratios.  

Figure 2. CSF/serum albumin ratio pathology proportions per diagnosis 

Pathologic albumin quotients are most common in DLB, Other, VaD and MIX. 



 

Table 1. Demographics and CSF/serum albumin ratio in all diagnostic groups 

Diagnosis HC1 HC2 LAD EAD MIX VAD FTD DLB PDD Other NOS 

N 292 20 666 130 362 255 56 50 23 48 271 

Sex F (%) 60 50 448 (67%) 81 (62%) 210 (58%) 110 (43%) 29 (52%) 14 (28%) 6 (26%) 23 (48%) 144 (53%) 

M (%) 40 50 218 (33%) 49 (38%) 152 (42%) 145 (57%) 27 (48%) 36 (72%) 17 (74%) 25 (52%) 127 (47%) 

Age at sampling Mean (SD) 73 (5) 74 (5) 75 (6) 59 (4) 79 (7) 77 (8) 67 (10) 73 (7) 73 (8) 72 (10) 74 (9) 

Mdn (IQR) 73 (69-76) 75 (71-78) 75 (71-80) 60 (56-62) 79 (74-84) 78 (72-83) 65 (60-74) 74 (69-79) 73 (68-78) 73 (65-80) 75 (68-80) 

MMSE Mean (SD) 29 (1) 28 (2) 22 (5) 22 (5) 22 (5) 22 (4) 25 (5) 22 (5) 24 (4) 23 (5) 22 (5) 

Mdn (IQR) 29 (29-30) 29 (27-29) 23 (20-26) 22 (18-25) 23 (19-25) 22 (20-25) 26 (23-28) 22 (20-25) 27 (22-28) 25 (20-27) 23 (20-26) 

Albumin quotient Mean (SD) 5.9 (2.2) 5.9 (2.4) 6.8 (2.7) 6.8 (7.6) 7.7 (3.4) 8.9 (8.2) 6.5 (2.4) 8.4 (4.3) 6.6 (2.4) 8 (3.8) 7.4 (3.4) 

Mdn (IQR) 5.8 (4.3-7.0) 5.5 (3.9-7.8) 6.3 (4.9-8.2) 5.4 (4.1-7.7) 7.3 (5.4-9.0) 7.6 (5.6-10.1) 6.5 (4.6-7.8) 7.4 (5.6-10.5) 6.1 (4.7-8.8) 7.3 (5.1-9.6) 6.6 (5.1-8.8) 

Age stratified 

Alb quotients 

-50 Mdn (N) (0) (0) (0) 5.1 (4) (0) (0) 7.3 (2) (0) (0) 9.9 (1) 5.2 (1) 

51-60 Mdn (N) (0) (0) (0) 5.5 (68) 6 (3) 7.4 (13) 4.7 (13) 7.8 (2) 6.1 (1) 7.1 (4) 6.7 (17) 

61-70 Mdn (N) 5.3 (109) 5.8 (5) 5.9 (164) 5.3 (58) 6.5 (53) 7.1 (31) 6.2 (24) 8.2 (14) 6.5 (6) 5.1 (16) 6.2 (69) 

71-80 Mdn (N) 5.8 (157) 5.5 (14) 6.1 (353) (0) 7.3 (149) 7.9 (116) 6.9 (12) 7 (27) 6 (13) 8.3 (18) 6.9 (120) 

81-90 Mdn (N) 6.3 (26) 2.8 (1) 7.5 (148) (0) 7.4 (148) 7.5 (92) 7.8 (5) 7.6 (7) 5.8 (3) 6.7 (9) 6.7 (61) 

90+ Mdn (N) (0) (0) 4.4 (1) (0) 9.6 (9) 6.9 (3) (0) (0) (0) (0) 6.4 (3) 

 


	2. Methods
	3. Results
	4. Discussion

