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Abstract 

Humans have been shown capable of performing many cognitive tasks using 

information of which they are not consciously aware. This raises questions about what role 

consciousness actually plays in cognition. Here, we explored whether participants can learn 

cue-target contingencies in an attentional learning task when the cues were presented below 

the level of conscious awareness, and how this differs from learning about conscious cues. 

Participants’ manual (Experiment 1) and saccadic (Experiment 2) response speeds were 

influenced by both conscious and unconscious cues. However, participants were only able to 

adapt to reversals of the cue-target contingencies (Experiment 1) or changes in the reliability 

of the cues (Experiment 2) when consciously aware of the cues. Therefore, although visual 

cues can be processed unconsciously, learning about cues over a few trials requires conscious 

awareness of them. Finally, we discuss implications for cognitive theories of consciousness.  
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Introduction 

Much of our mental life is conscious. We not only perceive our environment, engage 

cognitive processes, and execute movements, but we are often aware that we are doing so. 

These states and processing steps figure in our subjective experience. However, a large body 

of evidence (e.g. Boy & Sumner, 2010; Pessiglione et al., 2008; van Gaal, Ridderinkhof, van 

den Wildenberg, & Lamme, 2009; Wenke, Fleming, & Haggard, 2010) shows that many of 

these activities can be performed without subjective awareness: we can perceive stimuli, 

make decisions, and act, without being conscious of doing so.  

This raises the question: what role does consciousness play in cognitive processes? 

According to some accounts (e.g. Baumeister, Masicampo, & Vohs, 2011; Huxley, 1874; 

Pockett, Banks, & Gallagher, 2009) consciousness is an epiphenomenon — a causally inert 

by-product which makes no difference to the way cognition unfolds and actions are 

performed. According to others, consciousness plays a direct causal role in high-level 

cognition, for instance by facilitating the broadcast of information between different neural 

systems (Dehaene & Changeux, 2011; Dehaene, Kerszberg, & Changeux, 1998) or the 

integration of information from different sources (Tononi, 2004), monitoring of lower-level 

cognitive processes (Norman & Shallice, 1986) by allowing mental states to be 

communicated to others (C. Frith, 2010) or allowing us to think counterfactually about our 

own decisions (Byrne, 2016; C. D. Frith & Metzinger, 2016). 

One productive line of inquiry has been to identify ways in which information 

processing takes place differently when representations are conscious, compared to the 

operations that can be performed on information that is represented unconsciously (see 

Dehaene, Charles, King, & Marti, 2014 for a review). The strongest such evidence comes 

from paradigms where stimuli are rendered unconscious by a masking procedure (see 
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Kouider & Dehaene, 2007). In this way, a surprising number of processes have been found to 

operate on non-conscious representations. For instance, humans can process simple 

directional cues (Eimer & Schlaghecken, 1998), recruit executive processes (van Gaal et al., 

2009; Wokke, van Gaal, Scholte, Ridderinkhof, & Lamme, 2011), respond viscerally to 

emotional stimuli (Kiss & Eimer, 2008; Winkielman & Berridge, 2004), and partially 

integrate the meanings of multiple words (van Gaal et al., 2014), without conscious 

awareness of the stimuli.  

There may be a qualitative difference between the kinds of tasks that can be 

performed without consciousness and those that require consciousness. Bekinschtein et al. 

(2009), for instance, showed that participants’ ERPs reflected detection of local violations in 

temporal structure that participants were consciously unaware of, but that this detection only 

occurred for global violations when participants were conscious of them. However, given the 

increasing number of processes that have been shown to occur in the absence of conscious 

awareness, it is no longer certain that any phenomena exist that strictly require consciousness 

(Dehaene et al., 2014; Shea & Frith, 2016). An alternative hypothesis is that a 

representation’s being conscious serves to facilitate a range of cognitive processes that can be 

performed on it, each of which could individually be performed in some fashion in the 

absence of consciousness (Shea & Frith, 2016). 

In investigating which tasks consciousness is necessary for or facilitates, a capacity 

that has received relatively little attention is learning: does the way we update our beliefs 

about the world in response to new information depend on whether we are conscious of this 

information? We note that this article focuses on unconscious learning — learning from 

information of which we are not consciously aware — and not implicit learning — learning 

without being explicitly aware of what has been learned. There has been considerable work 



Running head: Consciousness During Learning 

 
 

5 

on implicit learning, using both artificial grammar learning and classical conditioning, and 

the topic remains somewhat contentious (Clark, 1998; Lovibond & Shanks, 2002; Vadillo, 

Konstantinidis, & Shanks, 2015). It is also worth noting that unconscious learning is not the 

same as learning without paying attention to the information being learned (e.g. Seitz & 

Watanabe, 2003) 

 Of course, there are many kinds of learning, and in the current article we focus on 

contingency learning, or classical conditioning. At its most basic, this is simply learning that 

some stimuli tend to occur together or in close succession, and how strong these 

contingencies are (e.g. Fanselow & Poulos, 2005). There is good evidence that participants 

can do this in quite sophisticated ways. Vossel et al. (2014), for instance, presented an 

experiment using a version of the attentional cueing task (Posner, 1980) where arrow cues 

(left or right) predicted the location of target stimuli in a detection task, and showed that 

participants flexibly adjusted their reliance on the cues – the extent to which they were faster 

to respond when the cues were valid, and slower when they were invalid – depending on both 

the proportion of cues that were valid, and the extent to which this proportion was subject to 

change (volatility). There is evidence that participants can achieve other forms of learning 

about stimuli they do not consciously see. For example, (Pessiglione et al., 2008) rewarded 

participants for pressing a button in response to one stimulus, and punished them for doing so 

in response to another, and found that participants could learn to respond more often to the 

rewarded stimulus even when the stimuli were rendered unconscious by masking, indicating 

that operant conditioning can occur for unconscious stimuli (see also Atas, Faivre, 

Timmermans, Cleeremans, & Kouider, 2014). There is mixed evidence, however, that 

contingency learning can also occur without conscious awareness. Interestingly, this evidence 

comes from work exploring conflict adaptation effects (see Ansorge, Kunde, & Kiefer, 2014; 

Desender & Van Den Bussche, 2012, for recent reviews). Conflict adaptation occurs on 
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classical conflict tasks (e.g. Eriksen & Eriksen, 1974; Simon & Wolf, 1963; Stroop, 1935) 

when the influence of stimuli that conflict with the target changes over time. The conflict 

effect – the difference between responses to congruent and incongruent trials – is modulated 

by participants’ previous experiences of conflict. Conflict effects are both reduced on trials 

immediately following conflict trials (Gratton, Coles, & Donchin, 1992), and reduced on 

blocks where there are many incongruent trials (Jacoby, Lindsay, & Hessels, 2003): the more 

often a cue conflicts with the target, the less it will be processed. The question of whether or 

not conflict adaptation occurs for unconscious stimuli is important, as cognitive control 

processes – those needed to overcome conflict – are traditionally seen as exclusively 

conscious in nature (Dehaene & Naccache, 2001), and evidence for the unconscious 

activation of these processes has implications for many theories of consciousness. Our 

interest in these phenomena, however, is more general, in that we are interested in 

unconscious learning more broadly, rather than the deployment of control processes. 

It is also worth noting that learning or adaptation here can take a number of forms. For 

instance, participants could learn to what extent a cue, including a previously neutral one, is 

predictive of a particular target (simple contingency learning), learn that a cue elicits an 

unhelpful automatic response, and so its processing should be inhibited (conflict adaptation), 

or learn that a cue that was predictive of one target is now predictive of the other (reversal 

learning). Moreover, our current interest is in rapid learning. It is commonly accepted 

(McClelland, Rumelhart, et al, 1986) that even simple neural architectures can adapt over 

time by Hebbian learning, and recent work (Gagliano, Vyazovskiy, Borbély, Grimonprez, & 

Depczynski, 2016) has even claimed to demonstrate slow associative learning in plants. Our 

research question, therefore, is how conscious and unconscious learning differ, and if rapid 

learning can be achieved for unconscious stimuli. We would also point out that in conflict 
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adaptation the cue automatically affects behaviour, and so is referred to as a prime. For 

simplicity, we will use the term “cue” throughout this paper. 

 It is well established that participants adapt to the prevalence of incongruent trials on 

standard conflict tasks, even when they are not explicitly aware of the actual proportion of 

conflict trials (Blais, Harris, Guerrero, & Bunge, 2012; Crump, Gong, & Milliken, 2006). It 

has also been found that when a cue is presented subliminally, participants can use conscious 

knowledge about the likelihood of it being incongruent – obtained either from learning about 

consciously-presented cues, or from explicit instruction – to modulate how much they allow 

the cue to influence their behaviour (Jiang, van Gaal, Bailey, Chen, & Zhang, 2013; Reuss, 

Pohl, Kiesel, & Kunde, 2011). More importantly for the topic at hand, similar effects have 

been reported in studies using only subliminally masked stimuli, where participants were not 

informed of the validity of the cues. In a number of papers, Bodner and colleagues (Bodner & 

Dypvik, 2005; Bodner & Masson, 2003, 2004, 2001; Bodner, Masson, & Richard, 2006) 

report that lexical or numerical priming effects are reduced for participants who experienced 

a large number incongruent trials, compared to those who only experienced a few. Similarly, 

Klapp (2007) presented participants with a task (Eimer & Schlaghecken, 1998) where target 

arrows were preceded by primes that were either identical or pointed in the opposite 

direction, and found that the influence of unconsciously presented primes varied according to 

what proportion of primes were identical to the target. 

A serious limitation of these studies from our point of view, however, is that the 

proportion of congruent trials was manipulated only between participants, making it difficult 

to assess each participant’s actual learning. A within-participants manipulation was used by 

Bodner and Stalinski (2008), who also manipulated cognitive load between participants, and, 

surprisingly, found adaptation effects for participants under cognitive load, but not those 
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under normal conditions. This suggests that the effects found in between-participant designs 

may not be due to actual learning over the course of the experiment. Jaśkowski, Skalska, and 

Verleger (2003, Experiment 3) do report apparent within-participant unconscious conflict 

adaptation, but tested only 9 participants, and do not report a number of key details.  

Another substantial issue for many of these previous studies is that control of the 

subjective visibility of the primes was poor: in almost every case, a considerable portion of 

participants reported being able to at least somewhat see the masked cues, and although 

analyses are reported with these participants excluded, Vadillo et al. (2015) have 

demonstrated that this approach is not adequate to demonstrate unconscious processing. A 

small number of studies (i.e. Bodner & Mulji, 2010; Jaśkowski et al., 2003; Klapp, 2007) 

have presented participants with a forced-choice prime identification test at the end of their 

experiment, and tested the correlation between participants’ performance on the identification 

test and their priming effect, although issues remain with the statistical power of some these 

tests. Perhaps most importantly, however, to our knowledge no previous studies have 

investigated the relationship between participants’ ability to identify the masked stimuli and 

actual conflict adaptation effects, the phenomenon of interest, leaving it unclear if the 

adaptation effects were due to a subset of participants who were somewhat aware of the 

primes. This question is crucial for demonstrating unconscious learning, and we will return to 

it later in this paper. 

 

 Recently, studies of unconscious conflict adaptation have begun to focus on 

adaptation to the proportion of congruent trials within a specific context, where the context 

changed trial-by-trial, rather than across a whole block of trials. This shift has occurred 

largely in response to concerns (e.g. Desender & Van Den Bussche, 2012; Jaśkowski et al., 
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2003; Reuss, Desender, Kiesel, & Kunde, 2014) that even when primes themselves are 

processed unconsciously, their blockwise validity may be inferred from their subsequent 

metacognitive effects: participants may become aware that the mostly-incongruent condition 

is unusually difficult, either because they notice they are generally slower to respond or make 

more errors, or because they otherwise infer it from their own internal confidence or sense of 

difficulty. In the context-specific paradigm, in one context most cues are congruent, and in 

the other most are incongruent. Context can be signalled, for instance, by the type of mask 

used (Panadero, Castellanos, & Tudela, 2015), features of the cue, or features of the target 

itself (Reuss et al., 2014). Whether or not context-specific conflict adaptation occurs for 

unconscious stimuli remains a somewhat open question. Some studies have reported positive 

results (e.g. Reuss et al., 2014), some negative (Heinemann, Kunde, & Kiesel, 2009), and 

some have shown inconsistencies even within a single paper (Schouppe, de Ferrerre, Van 

Opstal, Braem, & Notebaert, 2014). Additionally, it appears that effects on response times 

and error rates may be somewhat dissociated, as a number of papers have reported 

unconscious effects for one, but not the other. Despite this, context-specific adaptation 

remains a key topic in cognitive control, largely because the paradigm eliminates a number of 

alternative explanations that could be offered for apparent blockwise learning. In the current 

work, however, we focus on learning and adaptation between experimental blocks. We do so 

for a number of reasons. First, a number of issues with the studies discussed above remain 

unresolved, and the existence of unconscious learning more broadly remains contentious. It is 

worthwhile, therefore, to further investigate the existence of blockwise adaptation effects 

while addressing the limitations of previous work, in particular the poor control of cue 

visibility, and the failure to test the relationship between cue visibility and adaptation effects. 

Second, although the metacognitive factors highlighted by Desender & Van Den Bussche 

(2012) and others are indeed problematic for accounts of unconscious cognitive control, our 
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interest here is in learning more generally. Our question, therefore, is whether or not learning 

occurs for unconscious stimuli when the issues raised above are addressed, and if so how it 

differs from conscious learning, not the route by which this might come about. Additionally, 

blockwise learning is the more commonly-studied phenomenon outside of the question of 

conscious awareness. A number of studies have shown that human learning can be 

remarkably adaptive: people construct rich mental models of their environments, and update 

these models in an approximately Bayesian manner in response to new evidence (Mathys, 

Daunizeau, Friston, & Stephan, 2011; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). If 

learning does occur for unconscious cues, it is natural to ask how this differs from normal 

conscious learning.  Third, given our aim here is to be more stringent than previous work 

with relation to our control of stimulus visibility, it is worth being more liberal in other 

regards. In other words, if we do find evidence against unconscious learning, it is preferable 

to have done so using a paradigm where rapid learning unambiguously occurs for conscious 

stimuli. 

To compare rapid learning about conscious information with our capacity for learning 

about unconsciously represented information, we adapted a classic attentional cuing task 

(Posner, 1980; Vossel et al., 2014). In this, participants are required to respond quickly to 

targets on either side of the screen. A cue is shown before these targets, and these cues can be 

used as probabilistic predictors of the location of the target, left or right, facilitating rapid 

responses. If participants successfully learn the contingencies between the cue and the target 

location, they should allocate their attention accordingly, and so respond faster, with fewer 

errors, on trials that follow these contingencies, and respond more slowly, and commit more 

errors, when these expectations are violated (Vossel et al., 2014). In the standard version of 

this paradigm, arrows are used as cues, and participants almost certainly begin with the 

assumption that arrows are positive predictors of the location of the target, and so their 
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automatic response will be to expect the target on the indicated side. As noted above, a 

number of different factors may be in play here. Participants should be initially driven by 

their automatic response to the cues, and, if learning occurs, also modulate these responses by 

changing their weighting of the cues, or even learning to expect a different target in response 

to them. 

 Previous work (McCormick, 1997; Webb, Kean, & Graziano, 2016) has shown that 

attention on this task can be unconsciously captured by the abrupt onset of peripheral cues: 

attention can be drawn towards a pre-target stimulus on either side of the screen, even when 

participants are not aware of this stimulus. However, orienting towards a novel stimulus is a 

relatively low-level capacity, known to be present from birth, as well as in non-human 

animals (see Sokolov, 1963). Processing centrally located cues, on the other hand — arrows 

pointing towards one or other side of the screen — is in principle a considerably more 

complex operation, requiring participants to process the meaning of the cue and orient their 

attention accordingly.  There is extensive evidence (Boy & Sumner, 2010; Eimer & 

Schlaghecken, 1998, 2003), however, that subliminal central cues can prime both attention 

and responses. It is worthwhile to note out that in these experiments the cue is typically 

equally likely to be congruent as incongruent, and so these effects appears to be the result of 

an already-acquired automatic response to the cue itself, rather than learning over the course 

of the experiment. 

 In the current work, we ask if participants can learn about such cue-target 

contingencies, and so adjust how they respond to cues, without being consciously aware of 

the cues themselves. In Experiment 1, we follow a procedure similar to that used by Jiang et 

al. (2013), and present participants with both cues that point to where the target will be 75% 

of the time and, in a separate block, cues that point in the opposite direction 75% of the time. 
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Unlike Jiang et al. (2013), however, we do not mix conscious and unconscious cues within a 

block, and so any adaptation that occurs must be due to learning from the unconscious cues. 

 In Experiment 2, we investigate a more subtle form of learning, and, following Vossel 

et al. (2014), present participants with blocks where cues point towards where the target will 

be 50%, 69%, or 88% of the time. By presenting the cues either consciously or unconsciously 

in different blocks (Experiment 1) or between participants (Experiment 2), we can isolate 

what aspects of cue utilisation and learning only occur for cues that are represented 

consciously, and what aspects can occur for unconscious cues.  

Experiment 1 

In Experiment 1, we presented participants with double arrow cues (« or ») that pointed 

towards where the target would be (i.e. cues that were congruent with the target) on 75% of 

trials in one block, and 25% of trials in another block. In the latter case the cue was a good 

(75%) predictor that the target would appear on the opposite side to where the arrow is 

pointing (i.e. in the incongruent direction). If participants utilise these cues, their response 

times should differ between trials where the target appears on the side pointed to by the cue 

and trials where it appears the opposite side. If they learn about the cues, this difference 

should vary between the blocks where most cues pointed to the same side and the blocks 

where most pointed to the opposite side.  

Method 

Participants 
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28 participants were recruited and took part in the experiment in a quiet area of the University 

of London Students’ Union (mean age = 26.3 years, SD = 10.1). All reported having normal 

or corrected-to-normal vision. Each received £5 for taking part in the experiment.  

 

Design 

The main experiment consisted of 400 trials. Cues were presented consciously for one half of 

the experiment, and unconsciously for the other half, with the ordering counterbalanced 

across participants. Each half of the experiment was split into 2 blocks of 100 trials each: a 

congruent block, where the cues pointed to where the target was going to appear 75% of the 

time and the opposite direction 25%, and an incongruent block, where they pointed to where 

the target was going to appear 25% of the time and the opposite direction 75%. This was also 

counterbalanced across participants, so there were four counterbalanced conditions in total: 

conscious cues first, congruent block first; conscious cues first, incongruent block first; 

unconscious cues first, congruent block first; and unconscious cues first, incongruent block 

first. Participants were not made aware of the transitions between blocks. 

After the main experiment, participants completed a visibility check, where the cues 

were presented as they were in the experiment, and participants were asked to indicate which 

way the cues pointed. Each participant did so 24 times for cues intended to be conscious, and 

then 24 times for cues intended to be unconscious. After each block of 24 trials, participants 

indicated to what extent they saw the cues on the previous trials, on a 9-point slider ranging 

from “Completely guessing” (left) to “Completely saw them” (right).  
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Stimuli and Procedure 

Participants were seated approximately 60 cm from a laptop computer which controlled the 

experiment. All stimuli were presented in black on a white background, using OpenSesame 

experiment builder and the PsychoPy back end. Responses were collected using a Cedrus 

response box, and participants rested the fingers of their left and right hands on the respective 

left and right buttons.  

Unless otherwise stated, all stimuli subtended 1.5° visual angle. The fixation symbol 

(+) was located in the centre of the screen. This was presented for 750 msec before each trial, 

with small dots located 3° above and below it at the points where the cues could appear. The 

fixation thickened slightly for the final 100 msec to warn participants that the trial was about 

to begin. It then disappeared, to be replaced by the cue. As cues, we used left and right 

pointing double arrows (« and ») subtending 1.5° vertically and 3° horizontally. These cues 

were randomly presented at 3° above or below fixation in order to avoid the unconscious 

inhibition effects reported by (Schlaghecken & Eimer, 2000) for centrally positioned cues. 

These were shown for 400 (conscious condition) or 33 (unconscious condition) msec before 

being hidden by the mask, consisting of both right and leftward cues superimposed, shown 

for 33 msec. Finally, the target was presented: an X symbol offset to 7° left or right of the 

fixation. Participants were then required to respond as quickly as possible by pressing the 

corresponding button with their left or right hands. The stimuli for the post-test check were 

identical, except that instead of the target participants saw text reading “Left or Right”, 

presented centrally, and were asked to indicate which way the cue had pointed.  
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Figure 1. Task from Experiment 1 (not to scale). Double arrow cues pointed either left 

or right, and where shown slightly above or below fixation, before being covered by a pattern 

mask consisting of both cues superimposed for 33 msec, followed by the onset of the target 

on the left or right of the screen. Unconscious cues were shown for 33 msec, and conscious 

cues for 400. In Experiment 2, unconscious cues were shown for 50 msec, and the target X 

was replaced by a Gabor patch. 

 

Results 

Data Exclusions 

We excluded data from one participant who performed significantly below chance, and one 

did not differ from chance, for the 400 msec cues on the visibility check. Over the remaining 

with 10,400 trials, we excluded 20 trials with RTs greater than 1.5 seconds, and 120 

additional trials RTs more than 3 SDs above that participant’s mean. 

Errors 

Error rates, as a function of cue direction, block, block order, and cue visibility, are shown in 

Figure 2. Due to the extremely low error rate (3.2% overall), we do not report a statistical 

analysis of these errors. However, errors were generally more frequent when the cue pointed 
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to the opposite side to the target. This was the case for both conscious and unconscious cues, 

but appears to only hold for participants who completed the congruent block first. On 

conscious trials, these participants were more affected by the cue in the congruent block, as 

expected. On unconscious trials, unexpectedly, the influence of the cues was greater in the 

incongruent block. 

 

Response times 

For analysis, we calculated the cueing effect: the difference between mean response times on 

trials where the cue pointed to where the target would appear and response times when the 

cue pointed in the opposite direction – or how much slower participants were to respond 

when the cue pointed in the opposite direction – for each participant, in each block (Figure 3). 

We subjected this measure to an initial visibility (conscious or unconscious) x block (mostly 

congruent or mostly incongruent) x block order (mostly congruent first or mostly incongruent 

first) mixed ANOVA, with block order as a between-participants factor. Consistent results 

were obtained when using the percentage change in RT (that is, the difference in log RT), and 

when conducting a full cue (same or opposite side) x visibility x block x block order 

ANOVA. 

We found a significant main effect of block, F(1,24) = 8.577, p = .007, η² = 0.078, 

such that the cueing effect was greater on blocks where most cues were congruent. However, 

this was modulated by significant interactions between visibility and block, F(1,24) = 11.839, 

p = .002, η² = 0.100, and between visibility and block order, F(1,24) = 4.585, p = .043, η² = 

0.059. Therefore, we conducted separate analyses for the conscious and unconscious trials, 
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fitting block (mostly congruent or mostly incongruent) x block order (mostly congruent first 

or mostly incongruent first) mixed ANOVAs to each. 

 

Figure 2. Errors, as a function of cue direction, block, block order, and cue visibility, 

Experiment 1. 

 

Figure 3. Cueing effect on response times, as a function of cue visibility, block, and 

block order, Experiment 1 
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For the conscious cues, this revealed significant main effects of block, F(1,24) = 

17.764, p < .001, η² = 0.217, BFalt (Bayes Factor in favour of the alternative hypothesis) = 

52.4, indicating that the cueing effect was greater on blocks where most cues were congruent, 

and of block order, F(1,24) = 6.013, p = .022, η² = 0.135, BFalt = 5.8, indicating that cueing 

effects were greater overall for participants who completed the mostly congruent block first. 

There was no significant block x block order interaction, F(1,24) = 0.215, p = .647, η² = 

0.003, BF'null (Bayes Factor in favour of the null hypothesis) = 2.6. Planned t tests on each 

point shown in Figure 3 (left) showed that the cueing effect was significantly greater than 0 in 

the congruent block, regardless of block order, t’s > 3, p’s < .01, but not did not differ from 0 

in the incongruent block, t’s < 1.65, p’s > 1.22 .  

For the unconscious cues, there was crucially no effect of block, F(1,24) = 0.11, p = 

.743, η² < 0.01, BFnull = 3.3, as well as no effect of block order, F(1,24) = 0.14, p = .711, η² < 

0.01, BFnull = 3.4, and no interaction, F(1,24) = 0.315, p = .58, η² < 0.01, BFnull =3.4. Planned 

t tests showed no significant cueing effects for the congruent block when this block was 

completed first, t < 1.2, p > .25, but significant positive effects for the other three 

conditions/orders, t’s > 3, p’s < .01. 

 The results above show that participants adjusted the ways they used the arrow cues 

in response to the broader context of the task, but only when they were conscious of the cues. 

However, these analyses were based on average RTs over blocks of 100 trials. It could be that 

participants do learn from unconsciously presented cues, but that this learning only persists 

for a short period of time (see Gratton et al., 1992). To test this idea, we grouped trials 

according by participant, visibility, block, and the congruence of the previous trial, excluding 

incorrect responses, and trials where the previous response was incorrect, calculated the 

cueing effect in each group (Figure 5), and subjected this measure to ANOVA analysis. 
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Again, consistent results were obtained conducting cue x previous cue ANOVAs, and using 

linear mixed models at the trial level.   

We first conducted a previous cue x visibility x block x block order mixed ANOVA, 

which revealed that visibility interacted significantly with the effect of the previous cue 

F(1,24) = 4.382, p = .047, η² = 0.011. Therefore, we once again conducted separate analyses 

for the conscious and unconscious trials, fitting previous cue x block (mostly congruent or 

mostly incongruent) x block order (mostly congruent first or mostly incongruent first) mixed 

ANOVAs to each. 

For conscious trials, we found no main effect of previous cue F(1,24) = 1.504, p = 

.232, η² = 0.01, BFnull = 2.419, and no interaction between the previous cue and block F(1,24) 

= 1.598, p = .218, η² = 0.007, BFnull = 3.376. There were however marginally significant 

interactions previous cue x block order. F(1,24) = 2.899, p = .102, η² = 0.02, BFnull = 1.545, 

and previous cue x block x block order, F(1,24) = 3.339, p = .08, η² = 0.014, BFnull = 1.616 

(see Figure 3). 

For unconscious cues, we found no effect of the previous cue F(1,24) = 1.82, p = .19, 

η² = 0.012, BFnull = 2.794, and no interactions of this factor with block order, F(1,24) = 0.975, 

p = .333, η² = 0.006, BFnull = 3.056. Although there was a previous cue x block interaction, 

F(1,24) = 5.25, p = .031, η² = 0.076, BFalt = 8.58, planned comparisons found no significant 

effects of the previous cue in either block or for either block order, and the trend was in the 

opposite direction to that predicted: participants tended to slow down more on trials where 

the cue pointed in the opposite direction if the previous cue also pointed in the opposite 

direction (Figure 3).. Therefore, while the unconscious cue on the previous trial influenced 

the current trial, it did not do so in the way consistent with participants learning about cue-

target contingencies.  
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Figure 5. Cueing effect on response times, as a function of the previous cue, cue 

visibility, block, and block order, Experiment 1. In this and all further figures, error bars 

show SEM calculated independently for each cell in the design, and so are wider than the 

actual unexplained variance in our between-subjects analyses. 

 

Visibility Check 

Following the exclusion of data from two participants due to poor performance on the 

visibility check for the conscious cues, reported above, performance was close to ceiling for 

conscious cues, accuracy = 98%, SD = 11%, d’ = 4.38 SD = 1.72, t(25) = 13.493, p < .001, 

BFalt > 1019 , and at chance for unconscious cues, accuracy = 50% SD = 11%, d’ = -.01 SD = 

0.75, t(25) < 0.01, p > .99, BFnull = 5.00.  Binomial tests on every participant’s accuracy 

scores for the unconsciously presented cues indicated that twenty participants did not differ 

significantly from chance, two were significantly above chance, and two were significantly 

below. When asked to indicate to what extent they saw the cues and were not merely 
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guessing, participants gave an average rating of -3.3 for the unconscious cues (SD = 1, max = 

0, where -4 = “Completely guessing” and +4 = “Completely saw them”), and 2.9 for the 

conscious cues (SD = 1.6, min = -2).  

 There was no relationship between d’ sensitivity for unconscious cues in the visibility check 

and the average cueing effect for each participant, b = -0.12, t(24) = 0.061, p > .95, BFnull = 2.753, 

and a positive intercept, b = 9.39, t(24) = 6.115, p < .001, indicating that subliminal cueing 

should occur for participants with d’ of 0 (indeed, this was the average sensitivity). 

Importantly, there was also no relationship between d’ and the average change in cueing for 

unconscious cues between congruent and incongruent blocks, b = 1.82, t(24) = 0.321, p > .75, 

BFnull = 2.65, and in this case no significant intercept term, b = 1.45, t(24) = 0.340, p > .70, 

consistent with our findings above. 

 

Discussion 

In line with previous work (e.g. Eimer & Schlaghecken, 2003), we found that left or right 

arrow cues facilitate their corresponding responses, even when presented subliminally.  In 

contrast to a number of previous studies (e.g. Bodner & Dypvik, 2005; Jaśkowski et al., 2003; 

Klapp, 2007), however, we found that participants modulated their use of these cues in 

response to the broader context, but apparently only when consciously aware of the cues. We 

consider our results in light of previous work in the general discussion below. 

 

As an aside, we found considerable individual differences in how participants used the 

consciously presented cues, but not the unconsciously presented ones. This suggest that, 
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when participants were consciously aware of the cues, they explored various strategies for 

dealing with conflict.  These data can be found in the Supplementary Materials. 

Experiment 2 

In Experiment 1, we investigated a rather extreme form of learning: adjusting to 

complete reversal of the cue-target contingencies. In Experiment 2, we explore learning of a 

subtler kind, specifically adjusting beliefs about how predictive the cue is of the target. 

Additionally, in Experiment 1 participants responded by manually pressing buttons. It could 

be that learning of some sort does occur for unconsciously presented visual stimuli, but this 

learning is not broadcast globally, and so does not affect the speed of manual actions. For this 

reason, in Experiment 2 we monitor participants’ eye gaze, and require them to simply 

saccade to the target as soon as it appears.  

We adopt a version of the cuing task reported by Vossel et al. (2014). They presented 

participants with a series of blocks of 33–38 trials, where in each block the cue pointed to the 

target location on 50%, 69%, or 88% of trials. They showed that, as the reliability of the cue 

increased, participants became faster when the cue pointed the right way, and slower when it 

pointed the wrong way, reflecting learning. They also demonstrated that this learning was 

best explained by a hierarchical learning model that updates beliefs about both the reliability 

of the cues and about the degree to which this reliability changed, rather than by a simple 

reinforcement learning model.  

Here, we repeat their experiment, with some changes. First, we replaced their cues 

with the arrow cues used in Experiment 1. Second, half of our participants were presented 

with unconscious cues, presented quickly and then masked, while the remainder saw the cues 

for long enough for them to be clearly visible.  
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Method 

Participants 

28 participants (mean age = 22.7, SD = 5.3) completed the experiment in a laboratory at the 

University of London. All reported having normal or corrected-to-normal vision, and 

received £10 for taking part in the experiment.  

Design 

Following Vossel et al. (2014) the main phase of the experiment consisted of 12 blocks of 33-

38 trials each, for a total of 612 trials. In each block, the cue pointed towards where the target 

would appear either 50%, 69%, or 88% of the time. There were 4 blocks of each type, and no 

two consecutive blocks were of the same type. The hierarchical model used by Vossel et al. 

(2014) is computationally intractable with this number of trials unless the order of trials is 

held constant across participants (see Vossel et al., 2014, p. 1438) and so for consistency with 

their work we used the same trial order here.  

The main experiment was again followed by a visibility check. Lin and Murray 

(2014) have suggested that blocked visibility checks of the kind we employed in Experiment 

1 can lead participants to stop trying to see the stimuli on the blocks where every trial’s 

stimuli are believed to be unconscious. Therefore, we randomly presented 30 conscious trials 

and 30 unconscious trials, with the target replaced by a prompt asking “Left or Right?”. As in 

Experiment 1, responses were made using a button box. This check was only completed by 

the 14 participants who completed the experiment with unconscious cues.  

Stimuli & Procedure 
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Participants were seated in a dimly-lit room, approximately 57 cm from a monitor, with an 

EyeLink eye-tracker located below the screen. All stimuli were presented in black on a white 

background, using OpenSesame experiment builder and the PsychoPy back-end, and the 

PyGaze library was used to communicate with the eye-tracker.  

The fixation cross, cues, and mask were unchanged from Experiment 1, except that 

they now subtended 1.2° vertically and 1.2° (fixation and targets) or 2.4° (cues) horizontally. 

The cues were offset 2.5° vertically from fixation. Following Vossel et al. (2014), Gabor 

patches were used as targets, and offset horizontally by 8° from fixation. The possible 

locations of the targets were marked by empty boxes.  

Each trial began with a central fixation, which participants were required to saccade to 

before proceeding. After fixation was detected, the cross thickened for 250 msec, before 

being replaced by the cue for 400 (conscious condition) or 49 (unconscious condition) msec, 

which was then hidden by the mask, which remained onscreen for 34 msec. The target then 

appeared, and remained onscreen until a saccade away from the fixation was detected. The 

unconscious cues used here were 16 msec (one frame) longer than in the previous 

experiment. This was done in part to ensure that the null results obtained in Experiment 1 

were not due to the cues being overly-stringently masked, and in part on the basis of pilot 

data indicating that this presentation time produced robust priming effects without rendering 

the cues consciously visible. 

The procedure for the visibility check was again the same as for the trials, except that 

participants saw a prompt reading “Left or Right?” instead of the target, and they responded 

manually. 
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Eye Movement Data Recording and Analysis 

Eye-tracking samples were recorded at 500 Hz, and head movements were compensated for 

using the EyeLink Remote Camera system. A 9 point calibration sequence was used at the 

start of the experiment, and after each self-paced break. Our dependant variable, the time 

taken for participants to initiate a saccade after the onset of the target (RT) was calculated 

using a custom python script. Saccades were defined as movements over 2º with a velocity in 

excess of 30º/s, and saccade onsets defined as the point at which pupil velocity exceeded 15% 

of the maximum velocity achieved during the saccade. 

Results 

Data Exclusions and Analysis 

Participants initiated their eye movements before the onset of the target for 20.4% of 

conscious cues, and 5.1% of unconscious cues (pre-emptive responses), and furthermore 

initiated within 100 msec of target onset, and so presumably made their decision before 

seeing the target, for 12.5% of conscious cues and 2.6% of unconscious (early responses). On 

an additional 2.6% of conscious cues, and 0.6% of unconscious cues, the initial eye 

movement did not meet our threshold for definition as a proper saccade (ambiguous 

responses). For our analyses of errors we include these trials, but also examine the effect of 

excluding them on our results. All of these trials were excluded in our analysis of response 

times, along with a further 1.0% and 1.2% of trials following conscious and unconscious cues 

respectively with response times greater than 400 msec. 

We used multilevel regression models in our analyses in order to treat the proportion 

of valid cues in a block as a continuous variable, and thus to increase our power to detect 

learning in the subliminal condition. This approach is also preferable to classical ANOVA in 
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the current context as we were forced to exclude a large number of trials from the response 

time analysis due to both incorrect responses and cases where participants initiated their eye 

movements before the onset of the target (see Baayen, Davidon & Bates, 2008). In each 

analysis, we included a random intercept term for each participant, consistent with classical 

repeated-measures ANOVA. However, as a number of models failed to converge when 

additional random effects were included, only participants were treated as a random effect. 

Furthermore it is not straightforward to calculate Bayes Factors for models with multiple 

random effects terms. 

Errors 

Figure 6 (left) shows the proportion of errors on trials with visible and invisible cues, as a 

function of the cue validity, and the proportion of congruent cues in that block. For conscious 

cues, but not unconscious cues, participants were more likely to saccade in the wrong 

direction when the cue pointed in that direction, and this effect increased as the proportion of 

cues pointing the right way within a block increased. A cue x block ANOVA for the 

conscious cues indicated a significant main effect of cue direction, χ2 (1) = 983, p < .001, and 

a cue x block interaction, χ2 (1) = 27.86, p < .001. As the average error rate for the 

unconscious cues was only 2.9%, it was not appropriate to analyses these trials in the same 

way. When pre-emptive, early, and ambiguous responses were excluded, the same pattern of 

results was found, with considerably fewer errors in all conditions (see Supplementary 

Materials). 

Response Times 

Figure 6 (right) shows average response times, for visible and invisible cues, as a function of 

the cue validity, and the proportion of congruent cues that block, after excluding error trials 
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and the other problematic responses, discussed above. An initial cue x block x visibility 

model revealed a significant interaction between cue and visibility, χ2(1) = 121.6, p < .001, 

indicating that the cueing effect was stronger for conscious cues, a significant interaction 

between cue and block, χ2 (1) = 7.6, p = .006, indicating greater cueing effects on blocks with 

more congruent cues, and, crucially, a cue x block x visibility interaction, χ2 (1) = 6.8, p = 

.009. To unpick this, we again fit separate cue x block models for the conscious and 

unconscious cues. For conscious cues, we found significant effects of cue, χ2 (1) = 256.3, p < 

.001, of block, and, importantly, their interaction, χ2 (1) = 10.4, p < .001, BFalt = 8.9: 

participants were faster for congruent cues, faster on blocks with more congruent cues, and 

were more influenced by the cues on blocks where more of the cues were congruent. For 

unconscious cues, we found a significant effect of cue, χ2 (1) =39.9, p < .001. The crucial cue 

x block interaction was not significant, χ2 (1) = 0.3, p = .571, BFnull = 21.6. Consistent results 

were found when also including actual block number (1 to 12) as a linear predictor to allow 

for changes in cue use over time, and the crucial cue x block interaction for unconscious cues 

remained non-significant, χ2 (1) = 0.5, p = .464, BFnull = 14.4. 

As in Experiment 1, we wished to investigate if learning could occur for unconscious 

cues across shorter time-scales, specifically, between one trial and the next. We again coded 

the data according to the congruence of the cue on the previous trial, excluding incorrect 

responses, trials where the previous response was incorrect, and the other problematic trials 

discussed above. Figure 7 shows the effect of the current cue and the previous cue on both 

errors and response times, for conscious and unconscious cues. As expected for conscious 

cues there was a significant cue x previous cue interaction, χ2 (1) = 25.0, p < .001, as the 

effect of the current cue was strongest when the previous cue was congruent. Again, there 

were insufficient errors for unconscious cues for a proper analysis, but the mean error rates 

were close to identical. For response times, we found a significant cue x previous cue x 
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visibility interaction, χ2 (1) = 8.8, p = .003. Follow-up models revealed a significant cue x 

previous cue interaction, in the expected direction, for conscious cues, χ2 (1) =14.0, p < .001, 

BFalt = 32.4, but, crucially, not for unconscious cues, χ2 (1) =0.5, p = .504, BFnull = 20.6. 

 

 

Figure 6. Errors (left) and response times for correct responses (right) for conscious 

and unconscious cues in Experiment 2, as functions of the congruence of the cue, and the 

proportion of congruent cues within a given block. 

Figure 7. Errors (left) and response times for correct responses (right) for conscious and 
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unconscious cues in Experiment 2, as functions of the congruence of the cue, and congruence 

of the cue on the previous trial. 

Visibility check 

Performance was near ceiling in the visibility check for the 400 msec cues, accuracy = 96% 

(20%), d’ = 4.0 (1.1), t(13) = 14.077, p < .001. Performance for the 50 msec cues was 

significantly above chance, accuracy = 65% (14%), d’ = 0.9 (0.8), t(13) = 4.266, p = .001. 

Binomial tests on every participants’ accuracy score were significantly above chance for 

conscious cues for all participants, and above chance for 7 of 14 participants for unconscious 

cues. Therefore participants could to some degree discriminate between leftward and 

rightward cues that were intended to be unconscious. 

To estimate the unconscious cueing effect for each participant, we subtracted their 

response times for congruent cues from their times for congruent cues, as in Experiment 1. 

This effect was not predicted by participants’ d’ score for unconscious cues in the visibility 

test, b = -0.5, t(12) = .860, BFnull = 2.21, and was in fact slightly negatively related to 

sensitivity on the visibility test. As an estimate of the influence of block congruence on the 

subliminal cueing effect, we calculated cueing effects in the same way separately for each 

block, and subtracted the effect for the 88% congruent block from that for the 50% block. 

This measure was also not predicted by d’ scores, b = -1.317, t(12) = 0.352, p = .741, BFnull = 

2.15, and was again actually negatively correlated with sensitivity. Therefore, although 

participants performed above chance on the visibility test for supposedly unconscious cues, 

individual difference in performance on this test predicted neither simple cueing effects in the 

main experiment nor the modulation of these effects by learning. This suggests that the 

apparently visibility of the cues in the post test did not affect their use in the main 

experiment. 
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Discussion 

The current results broadly replicate those of Experiment 1. Participants were faster to 

respond on trials where the cue was congruent with the target, for both unconscious and 

conscious cues. For conscious cues only, there was also evidence of learning between blocks, 

as participants relied more on the cues during blocks where a greater proportion of the cues 

were congruent. The same was true of learning from trial to trial, as participants relied more 

on the cue when the previous cue was congruent for conscious cues, but not for unconscious 

cues.  

One potential issue for this experiment is that performance on the visibility check for 

supposedly unconscious cues was above chance overall, and above chance for 7 of the 14 

participants. Therefore, participants may have had access to some information about the cues 

on some trials, despite the absence of learning when cues were masked. This makes our 

experiments a conservative test of the absence of unconscious learning. We will return to this 

issue in the General Discussion.  

General Discussion 

Across two experiments, we have replicated the classic finding that attention can be directed 

by both conscious and unconscious cues (e.g. Eimer & Schlaghecken, 1998; Jiang et al., 

2013; Schlaghecken & Eimer, 2002). However, while participants learned rapidly about cues 

that they were consciously aware of, changing strategy when the cue-target contingencies 

reversed in Experiment 1, or adjusting the credence they gave the cues in Experiment 2, we 

found no evidence of learning about cues that were processed unconsciously. Furthermore, 

these differences between the conscious and unconscious conditions were significant. 

Similarly, while the way participants used a cue on a given trial was affected by the accuracy 
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of the cue on the previous trial when the cues were conscious, this was not consistently the 

case when the cues were presented unconsciously. Taken together, these results suggest that 

while some information can be processed and affect behaviour without reaching conscious 

awareness, effective rapid learning, at least on this particular task, within the time frames we 

investigated of up to 100 trials, requires that information is represented consciously. That is, 

consciousness facilitated learning.  

These results stand in contrast to previous studies of blockwise conflict adaptation 

(Bodner & Dypvik, 2005; Bodner et al., 2006; Jaśkowski et al., 2003; Klapp, 2007), which 

found apparent learning, or adaptation, effects. One possible reason for this discrepancy 

between our results and previous work may be the issues inherent in previous studies outlined 

in the introduction, and in particular the poor control over the conscious visibility of the 

stimuli (see Vadillo et al., 2015). Furthermore, while some previous studies have reported 

better controls for the visibility of the stimuli than others, to our knowledge no previous work 

has performed the necessary test of the relationship between cue visibility and conflict 

adaptation effects, as we do here. Of course, our results do not comprehensively rule out the 

possibility that participants learn cue-target contingencies, or even the attention to give to 

automatically processed cues, over time at the timescales in question here, and future 

questions remain. For instance, it remains to be seen if positive results reported elsewhere 

using slightly different paradigms survive when cue visibility, and in particular the 

relationship between visibility and learning effects, are taken into account. 

 

(I think this section is unnecessarily negative and the critique of visibility dangerous, 

given our experiment 2. I suggest:) 
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Some studies of conflict adaptation have reported blockwise learning effects for 

subliminal cues (Bodner & Dypvik, 2005; Bodner et al., 2006; Jaśkowski et al., 2003). 

However, the tasks used in these studies were very different from ours (parity judgement, 

lexical decision, gap detection) and the statistical analyses and tests for visibility were not 

always ideal. The study of this type that most closely resembles our design, using different 

cue contingencies within participants (Bodner and Stalinski, 2008), found no unconscious 

learning for participants in a condition equivalent to ours with no cognitive load. 

 

Interestingly, our results are not totally inconsistent with previous work. Recall, for 

instance, that Bodner and Stalinski (2008), in one of the few studies to use different cue 

contingencies within-participants, found no unconscious learning for participants not placed 

under cognitive load. A number of other studies have found that the validity of the previous 

cue does not alter the processing of the cue on the current trial when cues are presented 

unconsciously (Frings & Wentura, 2008; Kunde, 2003; but see also van Gaal, Lamme, & 

Ridderinkhof, 2010 for a conflicting result). We would also note that it is not clear how 

unconscious learning across an entire experimental block might take place, if not as the 

accumulation of minor adjustments made on a trial-by-trial basis. 

We also note that our results do not go directly against more recent work on context-

specific conflict adaptation (e.g. Panadero et al., 2015; Reuss et al., 2014; Schouppe et al., 

2014). In these studies participants can benefit from a subliminal cue indicating the context 

(high or low conflict) in which they are working. , There were no such signals about conflict 

in our study, so it remains possible that participants may be able to unconsciously adjust to 

the prevalence of conflict in different contexts when this is signalled, but do not do so within 
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a block if there is no such signal. Our results do not directly address this question, and so we 

will not discuss it further.  

As noted above, performance on the visibility checks for Experiment 2 did not 

provide strong evidence that participants were not consciously aware of the arrow cues 

intended to be unconscious. However, we argue that this limitation does not invalidate our 

results for two reasons. First, the visibility checks do not demonstrate that participants were 

consciously aware of the cues either: a number of studies have shown that above chance 

discrimination can occur in the absence of conscious awareness of the stimuli presented 

(Forster & Govier, 1978; Kunimoto, Miller, & Pashler, 2001; Lamy, Salti, & Bar-Haim, 

2009; Persaud & McLeod, 2008). Second, our aim was to investigate whether learning occurs 

in this kind of task when the cues are unconscious. The possibility that some subjects were 

conscious of some cues in some trials makes it more, not less likely that learning would 

occur, so our experiments are a conservative test of the absence of unconscious learning. Our 

data consistently show that participants do learn about the conscious cues, but do not learn 

about the masked cues. That finding supports the conclusion that learning did not occur when 

the cues were not consciously represented. This pattern of results would not be expected if 

both kinds of cue were actually processed consciously. More generally, our visibility check 

results would be problematic if we were to make claims about what can be done with 

unconscious representations, rather than claims about what cannot. We take it as known that 

unconscious cues can prime behaviour (Boy & Sumner, 2010; Schlaghecken & Eimer, 2000; 

Sumner et al., 2007; Wenke et al., 2010).  

We would stress that these results should not be over interpreted. As noted above, it is 

not clear that consciousness is strictly necessary for any task. It may be that our participants 

learned both consciously and unconsciously, but that unconscious learning here was 
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ineffective, and required either more experience than the 100 trials per block we allowed 

participants in Experiment 1, or a more sensitive behavioural measure. Similarly, we do not 

claim, on the basis of our data, that conscious awareness of stimuli is necessary for all 

meaningful kinds of learning; this experiment focused on a very restricted form of learning, 

about the best ways for participants to shift their attention in response to visual cues on our 

task. Indeed, it should be clear, a priori, that consciousness cannot be necessary for learning 

more generally: no one would argue that the evolution of conscious awareness occurred 

before that of Hebbian learning. Rather, our claim here is that conscious and unconscious 

information processing differ in terms of how they facilitate learning. Participants showed no 

evidence of learning from unconscious cues, but were able to learn from a single exposure to 

a conscious cue, indicating that whatever the nature of unconscious processing here, it differs 

significantly from conscious processing.  

Another claim we do not wish to make is that these results show that learning must be 

a deliberate process, rather than an automatic one. Shea and Frith (2016) argued that the 

distinction between conscious and unconscious representations is orthogonal to the 

distinction between deliberate and automatic processes. Automatic process can apply to 

conscious or unconscious representations, and it remains unclear whether deliberate 

processes are restricted so that they can only operate on conscious representations. From this 

perspective, our data indicate that learning on our task occurred only for conscious 

representations, but say little about whether the learning found in the conscious case is 

automatic or deliberate.  

With that said, these results clearly have implications for theories of consciousness. 

First, they are inconsistent with accounts that hold that consciousness is epiphenomenal 

(Baumeister et al., 2011; Huxley, 1874; Pockett, 2004), or, in other words, that the only 
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difference between conscious and unconscious information processing is that we are 

subjectively aware of the former but not the latter. Instead, they indicate qualitative 

differences between conscious and unconscious processing of the same information. In our 

specific case at least, these results indicate that learning is facilitated by conscious awareness 

of the stimuli.  

According to one theory of consciousness (Dehaene & Changeux, 2011; Salti et al., 

2015), conscious and unconscious processing both involve similar processes over a range of 

cortical systems, but differ in terms of their neural dynamics. Unconscious processes are 

characterised by transient, largely feed-foward passages of information through cortical 

systems. Beyond a critical point, however, non-linear recurrent loops become engaged, 

allowing information to be maintained and updated over longer periods of time, and to be 

broadcast to disparate cortical systems via a global workspace. On our task, from this point of 

view, the initial passage of information about the cues through the visual system is sufficient 

to guide participants’ attention. However, the transition to conscious, recurrent processing 

allows for the rapid adjustment of higher-order beliefs, or learning. This could be the case for 

two reasons. It may be that feedforward activation is simply too short lived for higher-order 

learning about cue-target contingencies to occur (see Draine & Greenwald, 1998). 

Alternatively, it may be global broadcast of information is necessary for effective learning 

here — information about unconsciously processed cues may not be accessible beyond the 

visuomotor system, whereas consciously processed cues are accessible to higher-order 

systems necessary for this kind of learning.  

Finally, it is worth considering that the nature of our task likely renders a whole 

swathe of processing unconscious. When presented with unconscious cues, participants a) 

process these cues without awareness, b) likely predict the target location and reallocate their 
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attention without being aware of doing so, and c) while they are conscious of the target 

location, they are not aware if this confirms or violates their unconscious prediction. By 

contrast, Pessiglione et al. (2008) presented participants with masked cues, and rewarded or 

punished their subsequent overt responses (button presses). They found that participants did 

learn the appropriate cue-response contingencies, indicating that learning about 

unconsciously-presented cues can occur when participants are conscious of both their 

responses and their consequences. Therefore, a task for future research will be to dissociate 

these components of the learning process to discover what information it is necessary or 

sufficient that be participants be conscious of for learning to occur: the cue, their response to 

the cue, or feedback about the appropriateness of their response.  
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