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Abstract The module cancellation problem asks whether, given modules X , X 0 and Y
over a ring ƒ, the existence of an isomorphism X ˚ Y ŠX 0 ˚ Y implies that X ŠX 0.
Whenƒ is the integral group ring of a metacyclic groupG.p;q/, results of Klingler show
that the answer to this question is generally negative. By contrast, in this case we show that
cancellation holds when Y Dƒ andX is a generalized Swan module.

Introduction

Let ƒ be the integral group ring ƒD ZŒG� of a finite group G. For ƒ-modules X , X 0,
Y we consider the following cancellation question:

If X ˚ Y ŠX 0˚ Y is it true that X ŠX 0‹(*)

In this paper we focus on this question when G is a metacyclic group G.p;q/
defined as the semidirect product

G.p;q/D Cp ÌCq
where p is an odd prime, q is a positive integral divisor of p � 1 and Cq acts via the
canonical imbedding Cq ,!Aut.Cp/. We first analyze the group ringƒ; the projection
G.p;q/� Cq induces a surjective ring homomorphism � W ƒ� ZŒCq�. The two-
sided ideal Ker.�/ has the following non-obvious description; take A to be the fixed
ring A D ZŒ�p�

Cq under the Galois action of Cq on the ring of cyclotomic integers
ZŒ�p�; A is a Dedekind domain in which p ramifies completely. We take � 2 A to be
the unique prime over p. Then Ker.�/ can be identified with Tq , the subring of quasi-
triangular matrices in the ring Mq.A/ of q � q matrices over A; thus,

Tq D
®
X D .xrs/1�r;s�n 2Mq.A/

ˇ̌
xrs 2 .�/ if r > s

¯
:

A generalized Swan module X is one which occurs in an extension of the form

0! Tq!X! ZŒCq �! 0:(X)

In particular, given the above description of Ker.�/, we see that ƒ itself is a gen-
eralized Swan module. We shall prove the following:
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THEOREM A
Let Z, Z0 be ƒ-modules such that Z ˚ ƒ Š Z0 ˚ ƒ; if Z is a generalized Swan
module, then Z ŠZ0.

We note that Tq decomposes as a direct sum Tq D R.1/ ˚ � � � ˚ R.q/ where R.i/
consists of elements in the i th-row of Tq . The modulesR.i/ are isomorphically distinct
and Ext1.ZŒCq �;R.i//Š Fp , the field with p elements. The extension X is classified
up to congruence by a sequence c D .ci /1�i�q where ci 2 Fp D Ext1.ZŒCq�;R.i//.
We write

ı.X/D ¹i j ci D 0º:

The set ı.X/ is called the degeneracy of X; we will show that ı.X/ is an invariant
of the isomorphism class of the module X not merely of the congruence class of the
extension X. Consequently, we may write ı.X/D ı.X/. We say that the generalized
Swan module X is degenerate when ı.X/ ¤ ; and nondegenerate when ı.X/ D ;.
Nondegenerate modules are necessarily projective and for these the conclusion of The-
orem A already follows from the theorem of Swan–Jacobinski (cf. [4, 12]). However,
the (more numerous) degenerate modules are not projective and lie outside the scope
of the Swan–Jacobinski theorem. In these cases, Theorem A is a consequence of the
following, which can be viewed as a rigidity property.

THEOREM B
Let X , X 0 be degenerate generalized Swan modules; then X ŠX 0” ı.X/D ı.X 0/.

In formulating our approach we make use of the derived module category; that is, the
quotient of the category of ƒ-modules, by setting projectiveD 0. The salient features
are reviewed briefly in Section 1. A fuller account can be found in Chapter 5 of [7].

There is already a considerable literature on the general question of cancellation;
see, for example, [13]. In the case of the metacyclic groups considered here, the results
of Klingler [9] show that the question (*) has a generally negative answer. Thus, the
cancellation statement of Theorem A is atypical and, to that extent, unexpected.

1. The derived module category

In what follows, ƒ will denote the integral group ring ƒD ZŒG� of a finite group, as
yet unspecified. As a ring, ƒ is both left and right Noetherian. The category of right
ƒ-modules is denoted by Modƒ. If f WM ! N is a morphism in Modƒ, we write
f � 0, when f can be written as a composite of ƒ-homomorphisms f D � ı � via a
projective module P ; thus,

�

�
��� �

���

M N

P

f

� �
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We define hM;N i D ¹f 2 Homƒ.M;N / W f � 0º; hM;N i is an additive sub-
group of Homƒ.M;N /. We extend � to a binary relation on Homƒ.M;N / by

f � g ” f � g� 0:

So extended, � is an equivalence relation compatible with composition; that is,
given ƒ-homomorphisms f;f 0 WM0!M1, g;g0 WM1!M2 then

f � f 0 and g� g0 H) g ı f � g0 ı f 0:(1.1)

We denote by DerDDer.ƒ/ the derived module category (cf. [6, 7]); that is, the
quotient category of Modƒ in which the set of morphisms HomDer.M;N / is given by

HomDer.M;N /DHomƒ.M;N /=hM;N i:

Since hM;N i is a subgroup of Homƒ.M;N /, it follows that

HomDer.M;N / has the natural structure of an abelian group.(1.2)

It is important to distinguish, both notationally and conceptually, between isomor-
phism in Modƒ, which we write as � � � Šƒ � � � and isomorphism in Der.ƒ/, which we
write as � � � ŠDer � � � . For finitely generated ƒ-modules the relationship between the
two notions is as follows (see [7, p. 120]):

D ŠDer D
0 ” D˚P Šƒ D

0˚P 0(1.3)

for some finitely generated projective ƒ-modules. P , P 0.
There is a related notion, stable equivalence, written D �D0, and defined by

D �D0 ” D˚ƒm Šƒ D
0˚ƒn(1.4)

for some positive integers m, n.
Clearly we have

D �D0 H) D ŠDer D
0:(1.5)

The converse to (1.5) is, however, false.
Given a finitely generated ƒ-module M , we consider exact sequences in Modƒ;

thus,

0!D
i
! P

p
!M ! 0(E)

where P is finitely generated projective. Clearly such sequences always exist; we may
even take P to be free. Moreover, as ƒ is Noetherian then D is also finitely generated.
Given another such exact sequence,

0!D0
i 0

! P 0
p0

!M ! 0;

then Schanuel’s Lemma shows that D ˚ P 0 Šƒ D0 ˚ P so that D ŠDer D
0. We

denote by D1.M/ the isomorphism class in Der of any module D which occurs in
an exact sequence of the above form .E/. We may think of D1.M/ as a first deriva-
tive of M . The correspondenceM 7!D1.M/ is functorial in the following way. Given
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any such exact sequence .E/ and a ƒ-homomorphism f WM !M then the univer-
sal property of projective modules allows us to construct a commutative diagram of
ƒ-homomorphisms:

0! D
i
! P

p
! M ! 0

# f� # f0 # f

0! D
i
! P

p
! M ! 0:

While the ƒ-homomorphism f� is not uniquely determined, nevertheless its class in
Der is uniquely determined. In particular, given another such commutative diagram,

0! D
i
! P

p
! M ! 0

# f 0� # f 00 # f 0

0! D
i
! P

p
! M ! 0

then we have

f � f 0 H) f� � f
0
�:(1.6)

Further discussion will be simplified by confining attention to ƒ-lattices, that is,
to ƒ-modules which are finitely generated and torsion free as additive groups. For the
remainder of this section, all ƒ-modules considered will be subject to this restriction.
When M is a ƒ-lattice then Ext1.M;ƒ/D 0, in consequence of which (cf. [7, p. 133])
(1.6) can be improved to

f � f 0 ” f� � f
0
�:(1.7)

Given f 2 Endƒ.M/, we denote by �.f /D Œf�� the class of f� in Der. By (1.7),
the correspondence Œf � 7! �.f /D Œf�� determines a ring isomorphism

� W EndDer.M/
'
�! EndDer

�
D1.M/

�
:(1.8)

The extension theory of ƒ-lattices can be formulated in terms of the derived mod-
ule category. Given the exact sequence E above and a ƒ-homomorphism ˛ WD!N ,
we construct the pushout diagram

E

# \

˛�.E/

D

0BBBBBB@
0! D

i
! P

p
! M ! 0

# ˛ # \ # Id

0! N
i
! lim
�!
.˛; i/

�
! M ! 0

1CCCCCCA :
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Then ˛�.E/ D .0 ! N
i
! lim
�!
.˛; i/

�
! M ! 0/ defines an extension class in

Ext1.M;N /. When P is projective, the correspondence ˛ 7! Œ˛�.E/� defines a map-
ping ı WHomDer.D;N /! Ext1.M;N /. With this notation we have

ı WHomDer
�
D1.M/;N

� '
�! Ext1.M;N / is an isomorphism.(1.9)

The isomorphism of (1.9) is a corepresentation formula; thereby the covariant
functor Ext1.M;�/ is represented by the Hom functor HomDer.D1.M/;�/. Given
the exact sequence .E/, then for any ƒ-module N we have exact sequences for k � 1,

Extk.P;N /
i�

! Extk
�
D1.M/;N

� ı
! ExtkC1.M;N /

p�

! ExtkC1.P;N /:

As P is projective, then Extk.P;N / Š ExtkC1.P;N / D 0 and we obtain the usual
dimension shifting isomorphisms

ExtkC1.M;N /Š Extk
�
D1.M/;N

�
:(1.10)

We may regard the corepresentation formula (1.9) as the degenerate case of (1.10)
corresponding to the case k D 0.

We say that M has periodic cohomology when, for some positive integer d , there
is an exact sequence

0!M ! Pd�1! � � � ! P0!M ! 0;

where each Pi is projective. As M is a lattice it can be assumed, in addition, that each
Pi is finitely generated. The integer d is then said to be a cohomological period for
M . If M has periodic cohomology, it has a minimal cohomological period denoted by
�.M/ and any cohomological period of M is an integral multiple of �.M/.

Finally we recall the tensor product construction forƒ-modules; thus, ifM , N are
right ƒ-modules by M ˝N , we mean the abelian group M ˝Z N endowed with the
diagonal right action of ƒ, .m˝ n/ � 	Dm	˝ n	. The following is well known (cf.
[2, p. 11]).

If P is finitely generated projective, then so also is M ˝P:(1.11)

Suppose, given an exact sequence 0! Z! P�.Z/�1! � � �! P0! Z! 0 where
each Pi is finitely generated projective. Applying M ˝� gives an exact sequence

0!M ˝Z!M ˝P�.Z/�1! � � � !M ˝P0!M ˝Z! 0:

By (1.11), each M ˝Pi is finitely generated projective; as M ˝ZŠM , then:

If Z has periodic cohomology, then �.Z/ is a cohomological period
of every ƒ-lattice M .

(1.12)

2. Modules over the metacyclic group G.p;q/

For each integer n � 2, we denote by Cn the cyclic group Cn D hx j xn D 1i. For
the remainder of this paper, we fix an odd prime p, an integral divisor q of p � 1
and write d D .p�1/=q. Recalling that Aut.Cp/Š Cp�1, then there exists an element
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 2Aut.Cp/ such that ord.
/D q. Taking y to be a generator of Cq and making a once
and for all choice of 
 with order q, we construct the semi-direct product G.p;q/D
Cp Ìh Cq where h W Cq ! Aut.Cp/ is the homomorphism h.y/D 
 . There is then a
unique integer a in the range 1� a � p � 1 such that 
.x/D xa, and G.p;q/ then has
the presentation

G.p;q/D hx;y j xp D yq D 1Iyxy�1 D xai:

A theorem of Zassenhaus–Artin–Tate (cf. [3, Chapter 12]) shows that, over a finite
group G, the trivial module Z has periodic cohomology if and only if for each prime
� , every subgroup of order �2 is cyclic. By this criterion, Z has periodic cohomology
when G DG.p;q/; indeed, it can be shown (cf. [8]) that

�.Z/D 2q when G DG.p;q/:(2.1)

We denote by ƒ the integral group ring ƒ D ZŒG.p; q/� and by i W ZŒCp� ,! ƒ

and j W ZŒCq � ,! ƒ, the respective inclusions. Depending on context, Z may denote
the trivial module over any of the group rings ƒ, ZŒCp� or ZŒCq�. We denote by IC the
augmentation ideal of ZŒCp�; IC is defined by the exact sequence of ZŒCp�-modules

0! IC
�
,! ZŒCp�

�
! Z! 0:(2.2)

On dualizing, we get an exact sequence 0! Z
��

! ZŒCp�
��

! I �C ! 0where ��.1/D
†x D 1C xC x

2C � � � C xp�1. It is a standard and easily verified fact that

I �C and IC are isomorphic as ZŒCp�-modules.(2.3)

As I �C and IC are not actually identical, we find it convenient to distinguish
between them. We identify the dual I �C with the quotient ZŒCp�=.†x/. As .†x/ is a
two-sided ideal in ZŒCp�, then I �C is naturally a ring; indeed, putting � D exp.2�i=p/,
then

There is a ring isomorphism I �C Š ZŒ��.(2.4)

As is well known, ZŒCp� has a canonical fiber product decomposition

ZŒCp�! I �C

� # #

Z ! Zp

(2.5)

where � W ZŒCp�! Z is the augmentation map and Fp is the field with p elements. To
proceed, we briefly recall the cyclic algebra construction. Let S denote a commutative
ring and 
 W S ! S a ring automorphism of finite order dividing q; in particular, 

satisfies the identity 
q D Id. The cyclic ring Cq.S; 
/ is then the (two-sided) free S -
module

Cq.S; 
/D S1
�
C Sy

�
C � � �

�
C Syq�1
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of rank q with basis ¹1;y; : : :yq�1º and with multiplication defined by

yq D 1I y� D 
.�/y .� 2 S/:

So defined, Cq.S; 
/ is an extension ring of S . In the fiber product (2.5), 
 induces
a ring automorphism of order q on ZŒCp�. As 
 fixes †x , then 
 induces a ring auto-
morphism on the quotient I �C D ZŒCp�=.†x/. Likewise 
 stabilizes the augmentation
ideal IC and induces the identity automorphism both on the quotient ZD ZŒCp�=IC
and Fp . As the homomorphisms in (2.5) are equivariant with respect to these ring auto-
morphisms, we may apply the cyclic algebra construction Cq.�; 
/ to (2.5). Identifying
Cq.ZŒCp�/D ZŒG.p; q/�, Cq.Z/D ZŒCq�;Cq.Fp/D FpŒCq�, we obtain a fiber product

ZŒG.p; q/�! Cq.I
�
C ; 
/

# #

ZŒCq� ! ZpŒCq�:

(2.6)

To proceed to a more tractable description of Cq.I
�
C ; 
/, we first make the identification

Cq.I
�
C ; 
/˝QŠ Cq.Q.�/; 
/ where, as above, � is a primitive pth root of unity. Then


 acts on ZŒ�� via the isomorphism Gal.Q.�/=Q/Š Cp�1. Let AD ZŒ��� denote the
subring fixed by 
 . We note (see [1, Lemma 3]) that p D .� � 1/p�1u for some unit
u 2 ZŒ���. Putting � D .� � 1/q , then

p ramifies completely in A, and � is the unique prime in A over p.(2.7)

We denote by Tq.A;�/, the subring of quasi-triangular matrices in the ringMq.A/

of q � q matrices over A defined as follows:

Tq.A;�/D
®
X D .xrs/1�r;s�n 2Mq.A/

ˇ̌
xrs 2 .�/ if r > s

¯
:

Likewise, we define

Tq.A=�/D
®
X D .xrs/1�r;s�n 2Mq.A=�/

ˇ̌
xrs D 0 if r > s

¯
:

Taking the quotient by � defines a surjective ring homomorphism

� W Tq.A;�/� Tq.A=�/:(2.8)

In turn, the correspondence X 7! .x11; : : : ; xqq/ gives a surjective ring homomor-
phism

' W Tq.A=�/�A=� � � � � �A=�„ ƒ‚ …
q

:(2.9)

The following structural theorem is fundamental in what follows:

THEOREM 2.1
There exists a ring isomorphismb	� W Cq.I �C ; 
/! Tq.A;�/.
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This can be regarded as an explicit form of Rosen’s Theorem (see [11]; see also [10,
p. 373]; a proof in the above form may be found in [8]). Theorem 2.1 allows us to
re-interpret (2.6) as a fiber square of the form

ZŒG.p; q/�! Tq.A;�/

# #

ZŒCq� ! ZpŒCq�

(2.10)

If i�.�/ denotes extension of scalars from ZŒCp�-modules to ƒ-modules, then

i�.IC / and i�.I �C / are isomorphic as ƒ-modules.(2.11)

We note that Cq.I
�
C ; 
/ is simply another description of the induced module i�.I �C /.

As Tq.A;�/Š Cq.I
�
C ; 
/, it follows from (2.11) that

i�.IC /Š i�.I
�
C /Š Tq.A;�/:(2.12)

Applying i� to the exact sequence (2.2), we obtain an exact sequence

0! i�.IC /
�
,! i�

�
ZŒCp�

� �
! i�.Z/! 0:

However, i�.IC / Š Tq.A;�/, i�.ZŒCp�/ Š ƒ and i�.Z/ Š ZŒCq�, so giving an
exact sequence

0! Tq.A;�/
�
,!ƒ

�
! ZŒCq�! 0:(2.13)

Moreover, from this construction it follows easily that

Homƒ

�
Tq.A;�/;ZŒCq�

�
D 0:(2.14)

Applying �˝Q to (2.14), the semisimplicity of Tq.A;�/˝Q implies that

Homƒ

�
K;ZŒCq�

�
D 0

if K is a ƒ-submodule of Tq.A;�/˚ � � � ˚ Tq.A;�/.
(2.15)

We decompose Tq.A;�/ as direct sum of right ƒ-modules; thus,

Tq.A;�/ŠR.1/˚R.2/˚ � � � ˚R.q/(2.16)

where R.i/ is the i th row of Tq.A;�/. We note that

R.i/Šƒ R.j / ” i D j;(2.17)

Homƒ

�
R.i/;ZŒCq�

�
D 0 for all i 2 ¹1; : : : ; qº:(2.18)

Of the above, (2.17) is proved in Section 4 of [8], while (2.18) follows directly
from (2.14).

3. Preliminary cancellation

Let K be a finite extension field of Q and let A denote the ring of algebraic integers in
K. Let B be a finite dimensional semisimple K-algebra. By Wedderburn’s Theorem,
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B˝Q R decomposes as a direct product of matrix rings

B˝Q RŠ

mY
iD1

Mdi .Di /;

where each Di is either R, C or H. Let 
 	B be an A-order; that is, 
 is an A-
subalgebra of B such that 
˝A KŠB. We say that 
 satisfies the Eichler condition
when, in the above Wedderburn decomposition, Di ŠHH) di � 2. We have the fol-
lowing much simplified version of Jacobinski’s Cancellation Theorem [5]:

Let L;M be 
-lattices such that L˚M Š�M ˚M ; if 
 satisfies
the Eichler condition, then LŠ�M .

(3.1)

An account of the more general version can be found on page 324 in [4].
We apply (3.1) to two of the modules considered in Section 2. In the first case we

take 
D Tq.A;�/ and BDMq.K/ where K is the field of fractions of A. Then for
some integers a, b, we have K˝Q RŠR.a/ �C.b/ and hence B˝Q RŠMq.R/

.a/ �

Mq.C/
.b/. In particular, 
 satisfies Eichler’s condition. Applying (3.1) gives the fol-

lowing:

Let L be a Tq.A;�/-lattice such that
L˚ Tq.A;�/ŠTq.A;�/ Tq.A;�/˚ Tq.A;�/; then

LŠTq.A;�/ Tq.A;�/.
(3.2)

We extend this to certain ƒ-lattices where ƒD ZŒG.p; q/�. We have a surjective
ring homomorphism � W ZŒG.p; q/�� Tq.A;�/ and induction and co-induction func-
tors

�� WModƒ!ModTq.A;�/I �� WModTq.A;�/!Modƒ:

By regarding Tq.A;�/ as a module over ƒ, we are abusing notation; the correct
symbol for the intended ƒ-module is ��.Tq.A;�//. To avoid this confusion in the
discussion that follows, we write T D ��.Tq.A;�//. Moreover, it is straightforward to
check that

��.T /D Tq.A;�/:(3.3)

As ƒ satisfies the Eichler condition, it follows directly from (3.1) that

If K is a ƒ-lattice such that K ˚ T Šƒ T ˚ T , then K Šƒ T .(3.4)

Next we take 
D ZŒCq�, KDQ and BŠ
Q
d jqQŒx�=.cd .x// where cd .x/ is the

d th cyclotomic polynomial. Then B˝QRŠR.a/�C.b/ for some integers a, b so that
again 
 satisfies the Eichler condition. Applying (3.1) gives

Let L be a lattice over ZŒCq� such that
L˚ZŒCq �ŠZŒCq � ZŒCq �˚ZŒCq�; then LŠZŒCq � ZŒCq �.

(3.5)

We may modify this statement slightly in the context of ƒ-lattices. We also have a
surjective ring homomorphism � W ZŒG.p; q/�� ZŒCq � and functors

�� WModƒ!ModZŒCq �I �� WModZŒCq �!Modƒ:
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In regarding ZŒCq� as a module over ƒ, we should really write ��.ZŒCq �/. To
avoid this confusion in the discussion that follows, we write QD ��.ZŒCq �/. With this
modification, as ƒ satisfies the Eichler condition, we have

Let Q0 be a ƒ-lattice such that Q0˚QŠƒ Q˚Q; then Q0 Šƒ Q.(3.6)

4. Cohomology calculations

For the remainder of this paper, we fix an odd prime p and a positive integral divisor q
of p � 1. As in Section 2, we put G DG.p;q/ and write ƒD ZŒG.p; q/�. In addition,
we put � D ZŒCp�. We proceed to calculate the cohomology of the ƒ-modules intro-
duced in Section 1. In doing so, we will employ restriction and extension of scalars
to and from the subring � 	 ƒ. To this end, we shall use boldface symbols Hom,
End and Exta, when describing homomorphisms, endomorphisms and extensions of
ƒ-modules; and standard Roman font, Hom, End and Extk , when referring to the cor-
responding notions over � . The calculations that follow are essentially a summary of
those of [8], to which paper we refer the reader for fuller details.

Extk.Z; IC /Š

´
Fp k D 1

0 k D 2;

Ext1
�
ZŒCq �; i�.IC /;

�
Š Ext1

�
i�
�
ZŒCq�

�
; IC

�
Š

qM
iD1

Ext1.Z; IC /

Š Fp � � � � � Fp„ ƒ‚ …
q

:

(4.1)

As i�.IC /Š Tq , then

Ext1
�
ZŒCq �;Tq

�
Š Fp � � � � � Fp„ ƒ‚ …

q

:(4.2)

As there is an exact sequence 0! Tq!ƒ! ZŒCq �! 0, it follows by the corep-
resentation formula that

Ext1
�
ZŒCq�;Tq

�
Š EndDer.Tq/:(4.3)

It follows that

EndDer.Tq/Š Fp � � � � � Fp„ ƒ‚ …
q

:(4.4)

From the decomposition Tq Š
Lq
iD1R.i/, it follows from (4.4) that

EndDer

� qM
iD1

R.i/
�
Š Fp � � � � � Fp„ ƒ‚ …

q

:
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Consequently,
qM

i;jD1

HomDer
�
R.i/;R.j /

�
Š Fp � � � � � Fp„ ƒ‚ …

q

:

As R.i/ is not projective over ƒ, then HomDer.R.i/;R.i//¤ 0. Hence, we have

HomDer
�
R.i/;R.j /

�
Š

´
Fp i D j

0 i ¤ j:

Note that

Ext1
�
ZŒCq�;R.k/

�
Š Fp for all k .1� k � q/:(4.5)

Ext2
�
R.i/;R.j /

�
Š

´
Fp j D i C 1

0 j ¤ i C 1;
(4.6)

Ext2j
�
R.i/;R.q/

�
Š

´
Fp j 
 i modq

0 j ¤ i C 1;
(4.7)

Ext2jC1
�
R.i/;R.q/

�
D 0 for all i; j:(4.8)

The above formulae exemplify the 2q-fold cohomological periodicity ofƒ-lattices.
If i is a positive integer, then for any ƒ-lattice X we put

G i .X/D Ext2i
�
X;R.q/

�
I G �.X/D

qM
iD1

Ext2i
�
X;R.q/

�
I

H i .X/D Ext2iC1
�
X;R.q/

�
I H�.X/D

qM
iD1

Ext2iC1
�
X;R.q/

�
:

By the dimension shifting argument of (1.10), we see that:

PROPOSITION 4.1
Let 0!K! P !Q! 0 be an exact sequence of ƒ-lattices; if P is projective then
H i .Q/Š G i .K/.

For future reference we note that:

PROPOSITION 4.2
Let ˛;ˇ 	 ¹1; : : : ; qº; then

G �
�
R.˛/

�
Š G �

�
R.ˇ/

�
” ˛D ˇ:

Proof
It suffices to show .H)/. As Z has cohomological period 2q then by (1.12), it suffices
to compare the values G i .R.˛//, G i .R.ˇ// in the range 1 � i � q. It follows from
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(4.6) and (4.7) that

G i
�
R.j /

�
Š

´
Fp j D i

0 j ¤ i;
G i
�
R.˛/

�
Š

´
Fp i 2 ˛

0 i … ˛:

Thus, if G �.R.˛//Š G �.R.ˇ//, then ˛D ˇ. �

We note also, immediately from (4.8), that

H i
�
R.˛/

�
D 0 for all i:(4.9)

5. Invariance of degeneracy

If ˛ 	 ¹1; : : : ; qº, we put R.˛/D
L
i2˛R.i/. An extension of the form

0!R.˛/
i
!Z

p
! ZŒCq�! 0(Z)

is said to have kernel type ˛. In fact, the kernel type of the extension Z depends only on
the isomorphism class of the module Z. To see this, suppose that the module Z0 occurs
in an exact sequence

0!R.ˇ/
j
!Z0

q
! ZŒCq �! 0(Z0)

and that there exists an isomorphism h WZ!Z0. Then the homomorphism

q ı h ı i WR.˛/! ZŒCq�

is zero by (2.18). Consequently, h induces a commutative diagram with exact rows

0! R.˛/
i
! Z

p
! ZŒCq �! 0

# h� # h # hC

0! R.ˇ/
j
! Z0

q
! ZŒCq �! 0:

Moreover one sees easily that the induced homomorphism hC W ZŒCq �! ZŒCq� is sur-
jective. As the underlying additive group of ZŒCq� is free abelian of finite rank, it fol-
lows that hC is an isomorphism. Extending the above diagram one place to the left by
zeroes, it follows from the Five Lemma that h� WR.˛/!R.ˇ/ is also an isomorphism.
Consequently, G �.R.˛//Š G �.R.ˇ//, so that by Proposition 4.2 it follows that ˇD ˛;
that is,

In Z above the kernel type ˛ is an isomorphism invariant of the
module Z.(5.1)

Now consider extensions of the form

0! Tq
i
!X

p
! ZŒCq�! 0I(X)
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that is, where D ¹1; : : : ; qº so that the module X is a generalized Swan module. Then
X is classified up to congruence by a cohomology class

c 2 Ext1
�
ZŒCq�;Tq

�
Š

qM
iD1

Ext1
�
ZŒCq�;R.i/

�
described as an j˛j-tuple cD .ci /1�i�q where ci 2 Ext1.ZŒCq �;R.i//Š Fp . We shall
then say that X is nondegenerate when each ci ¤ 0.

PROPOSITION 5.1

Let X D .0! Tq
i
! X

p
! ZŒCq �! 0/ be an extension defining a generalized Swan

module X ; then

X is nondegenerate ” X is projective:

Proof
.H)/ X is classified by cD .ci /1�i�q 2 Ext1.ZŒCq �;Tq/Š Fp � � � � � Fp„ ƒ‚ …

q

.

As we have seen in (4.3), Ext1.ZŒCq�;Tq/ Š EndDer.Tq/. As each ci ¤ 0, then
c 2AutDer.Tq/ and we may construct X by means of the pushout construction

0! Tq ! ƒ ! ZŒCq � ! 0

# c # \ # Id

0! Tq ! X ! ZŒCq � ! 0:

As c 2AutDer.Tq/, then X is projective by Swan’s criterion (see [7, p. 115]).
.(H/ Conversely, suppose that some cj D 0. Let X 0 be the module described

by the extension 0!
L
i¤j R.i/! X 0 ! ZŒCq �! 0 with cohomology class c0 D

.ci /i¤j . Then X Š R.j /˚ X 0. As R.j / is not projective, then neither is X . In the
contrapositive, if X is projective then X is nondegenerate. �

The more general extension Z is classified up to congruence by a cohomology class

c 2 Ext1
�
ZŒCq �;R.˛/

�
Š
M
i2˛

Ext1
�
ZŒCq �;R.i/

�
described as an j˛j-tuple cD .ci /i2˛ where ci 2 Ext1.ZŒCq �;R.i//Š Fp . We say that
Z is nondegenerate relative to ˛ when ci ¤ 0 for each i 2 ˛. If some ci D 0, we say
that Z is degenerate relative to ˛. If ˛ 	 ¹1; : : : ; qº, write ˛ D ¹1; : : : ; qº � ˛. From
Proposition 5.1 we derive:

PROPOSITION 5.2

Let ZD .0! R.˛/
i
!Z

p
! ZŒCq �! 0/ be an extension of kernel type ˛, nondegen-

erate with respect to ˛. Then R.˛/ represents D1.Z/.



116 F. E. A. Johnson

Proof
Suppose that Z is classified by c D .ci /i2˛ and consider the cohomology class � D
.�i /i2˛ , �i 2 Ext1.ZŒCq �;R.i// defined by �i D 1 for i 2 ˛. Consider the extension
P D .0!R.˛/˚R.˛/! P ! ZŒCq �! 0/ defined by .�; c/. We note that R.˛/˚
R.˛/ Š Tq . As each �i ¤ 0 and each cj ¤ 0, then P is nondegenerate so that P is
projective by Proposition 5.1. Putting eZ D P=R.˛/ gives an extension

0!R.˛/! P ! eZ! 0;

where eZ occurs in the extension .0! R.˛/! eZ ! ZŒCq�! 0/ classified by c.
Hence, eZ ŠZ so that Z occurs in an extension .0!R.˛/! P !Z! 0/ where P
is projective. Consequently, R.˛/ represents D1.Z/ as claimed. �

Let E D .0! Tq ! E ! ZŒCq �! 0/ be an extension defining a generalized Swan
module E and classified by c D .ci /1�i�q where ci 2 Ext1.ZŒCq �;R.i// Š Fp . The
degeneracy ı.E/ of E is defined by ı.E/D ¹i j ci D 0º, and the support of E is defined
by supp.E/ D ¹i j ci ¤ 0º. Evidently ı.E/ and supp.E/ are complementary subsets
of ¹1; : : : ; qº, supp.E/ D ı.E/. Given such an extension E , we may decompose the
cohomology class as cD .c�; cC/ where c� D .ci /i2ı.E/ is identically zero and where
cC D .ci /i2supp.E/ determines an extension

X D
�
0!R.˛/

i
!X

p
! ZŒCq �! 0

�
of kernel type supp.E/ which is nondegenerate with respect to supp.E/. As c� is iden-
tically zero, then E ŠR.˛/˚X ; that is,

PROPOSITION 5.3
Let E D .0! Tq ! E ! ZŒCq�! 0/ be an extension defining a generalized Swan
module E; then E ŠR.˛/˚X where X occurs in an extension

X D
�
0!R

�
supp.E/

� i
!X

p
! ZŒCq�! 0

�
of kernel type supp.E/ which is nondegenerate with respect to supp.E/.

PROPOSITION 5.4
Let E D .0! Tq ! E ! ZŒCq�! 0/ be an extension defining a generalized Swan
module E; then H�.E/Š G �.R.ı.E//.

Proof
Decompose E ŠR.ı.E//˚X as in Proposition 5.3. Then

H�.E/ŠH�
�
R
�
ı.E/

��
˚H�.X/:

It follows from (4.8) that H�.R.ı.E// D 0 so that H�.E/ Š H�.X/. Thus, it
suffices to show that H�.X/Š G �.R.ı.E///. However,R.supp.E// representsD1.X/
by Proposition 5.2 and supp.E/D ı.E/. Thus, R.ı.E// represents D1.X/, and hence
H�.X/Š G �.R.ı.E/// by Proposition 4.1. �
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Clearly ı.E/ is an invariant of the congruence class of the extension E . In fact, it is also
an invariant of the isomorphism class of the module E in the derived module category.
Formally we have the following:

PROPOSITION 5.5
Let E.1/, E.2/ be generalized Swan modules; then

E.1/ŠDer E.2/ H) ı
�
E.1/

�
D ı

�
E.2/

�
:

Proof
If E.1/ŠDer E.2/, then for some projective modules P.1/, P.2/ we have

E.1/˚P.1/ŠE.2/˚P.2/

so that H�.E.1/˚H�.P.1//ŠH�.E.2/˚H�.P.2//. As P.1/, P.2/ are projective,
then H�.P.1//ŠH�.P.2//D 0, and so H�.E.1//ŠH�.E.2//. By Proposition 4.1
it follows that G �.ı.E.1/// Š G �.ı.E.2/// so that, by Proposition 4.2, ı.E.1// D
ı.E.2//. �

From (1.5) we obtain the following special case of Proposition 5.5:

COROLLARY 5.1
For k D 1; 2, let E.k/D .0! Tq! E.k/! ZŒCq �! 0/ be extensions defining gen-
eralized Swan modules E.1/, E.2/; then

E.1/�E.2/ H) ı
�
E.1/

�
D ı

�
E.2/

�
:

6. Proof of Theorem B

In what follows, Fp will denote the field with p elements where p is an odd prime,
and a will denote an integer in the range 1 � a � p � 1 chosen so that the residue
class Œa� 2 F�p generates the multiplicative group F�p . For each integer k in the range

1� k � q, we define elements �.k/1 ; : : : ; �
.k/
q in F�p � � � � � F

�
p„ ƒ‚ …

q

as follows:

.�
.k/
j /r D

8̂̂<̂
:̂
Œa� r D j

Œa��1 r D k

1 r … ¹j; kº;

.j < k/I

.�
.k/
j /r D

8̂̂<̂
:̂
Œa��1 r D k

Œa� r D j

1 r … ¹j; kº;

.k < j /:

Moreover, we define .�.k/
k
/r D 1 for all r and denote by U.k D h�.k/1 ; : : : ; �

.k/
q i the

subgroup of F�p � � � � � F
�
p„ ƒ‚ …

q

generated by �.k/1 ; : : : ; �
.k/
q . For 	 2 F

.q/
p we define the

degeneracy ı.	/ of 	D .	1; : : : ; 	q/ by ı.	/D ¹i W 1� i � q W 	i D 0º.
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For ˛ 	 ¹1; : : : ; qº, we define H .˛/	 F
.q/
p by H .˛/D ¹	 2 F

.q/
p W ı.	/D ˛º. The

proofs of the following two statements are straightforward:

H .˛/ is stable under the action of F�p � � � � � F
�
p„ ƒ‚ …

q

:(6.1)

If k 2 ˛; then U.k/ acts transitively on H .˛/:(6.2)

Recall the surjective ring homomorphisms � W Tq.A;�/ ! Tq.A=�/ and ' W

Tq.A=�/!A=� � � � � �A=�„ ƒ‚ …
q

defined in (2.8) and (2.9), respectively. Taking the com-

position gives a surjective ring homomorphism \ W Tq.A;�/! A=� � � � � �A=�„ ƒ‚ …
q

. In

the present case, the inclusion Z ,!A has the property that Z\ .�/D .p/ and A=� D
Z=pD Fp . Thus, there is a commutative diagram of ring homomorphisms

	 �

�
�

�
�

���

�
�

�
�

���

�
�

�
�

���

�
�

�
�

���

Tq.Z; p/ Tq.A;�/

Zp � � � � �Zp„ ƒ‚ …
q

j

\1 \2

in which \1 and \2 are surjective. Maintaining the previous choice of a in the range
1 � a � p, then as a and p are coprime, appealing to Bezout’s Theorem we can find
integers b, d such that

ad C pb D 1:(6.3)

For k in the range 1 � k � q, we define elements b� .k/1 ; : : : ;b� .k/q in Tq.Z; p/ as
follows:

if j < k then .b�.k/j /rs D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

a r D s D j

�p r D k; s D j

b r D j; s D k

d r D s D k

1 r D s; r … ¹j; kº

0 otherwise
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if k < j then .b�.k/j /rs D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

d r D s D k

b r D k; s D j

�p r D j; s D k

a r D s D j

1 r D s; r … ¹j; kº

0 otherwise

Moreover, we define �.k/
k
D Idq . Using row and column operations and appealing to

(6.3), one sees easily that det.b� .k/
k
/D 1 for all j . Hence, we have

b�.k/j 2 Tq.Z; p/
�:

Under the homomorphism \1 W Tq.Z; p/! Fp � � � � � Fp„ ƒ‚ …
q

, we see that

\1.b�.k/j /D �
.k/
j(6.4)

Define bU .k/D hb� .k/1 ; : : : ;b� .k/q i 	 Tq.Z; p/
�. As Tq.Z; p/ is a subring of Tq.A;�/,

we regard bU .k/ as a subgroup of Tq.A;�/
�. In consequence of (6.4), we see that

\2
�bU .k/�DU.k/:(6.5)

For any subset ˛ 	 ¹1; : : : ; qº, we define eH .˛/	 Ext1.ZŒCq �;Tq.A;�// byeH .˛/D
®
cD .ci /1�i�q W ı.c/D ˛

¯
:

It follows from (6.2) and (6.5) thatbU .k/ acts transitively on eH .˛/ if k 2 ˛:(6.6)

To proceed we fix an extension

0!

qM
kD1

R.k/!X! ZŒCq�! 0:(X)

The corepresentation formula (1.9) then shows that

Ext1
�
ZŒCq�;Tq.A;�/

�
Š EndDer

�
Tq.A;�/

�
Š EndDer

� qM
kD1

R.k/
�
:(6.7)

Thus, the extension X is classified by a matrix

cD .cij /1�i;j�q I cij 2HomDer
�
R.j /;R.i/

�
:

For each i; j choose a ƒ-homomorphism �ij 2 Homƒ.R.j /;R.i// which represents
cij after passing to the derived module category. Then � D .�ij /1�i;j�q is a ƒ-
endomorphism of

Lq

kD1
R.k/ which represents c in the derived module category. Let

� W
Lq

kD1
R.k/!ƒ denote the inclusion; then X can be described as X Š X.�/ via
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the pushout diagram

0!
Lq

kD1
R.k/

�
! ƒ ! ZŒCq�! 0

# � # \ # Id

0!
Lq

kD1
R.k/! X.�/! ZŒCq�! 0

where X.�/D lim
�!
.�; �/. However, by (4.5), HomDer.R.j /;R.i//D 0 if j ¤ i so that

cij D 0 for i ¤ j and the classifying matrix c is diagonal

cD

0BBB@
c1

c2
: : :

cq

1CCCA ;
where ck D ckk 2 EndDer.R.i//Š Fp . Making the identification

qM
iD1

Ext1
�
ZŒCq �;R.i/

� '
 ! Fp � � � � � Fp„ ƒ‚ …

q

:

Then, following Section 5, we associate with c its degeneracy ı.c/D ¹i j ci D 0º.
Now suppose given another such extension,

0!

qM
iD1

R.i/!X 0! ZŒCq�! 0;(X0)

parametrized by c0 D .c0i /1�i�q . It follows from (6.6) that

If k 2 ı.c/D ı.c0/, then there exists b̨2 bU.k/ such that b̨ � cD c0.(6.8)

We come to the following, which is Theorem B of the Introduction.

THEOREM 6.1
Let X , X 0 be degenerate generalized Swan modules; then

X ŠX 0 ” ı.X/D ı.X 0/:

Proof
.H)/. Suppose that X Š X 0; then X ŠDer X

0. It follows from Proposition 5.5 that
ı.X/D ı.X 0/.

.(H/ We may suppose that X , X 0 are described by extensions

X D
�
0! Tq!X! ZŒCq�! 0

�
I X0 D

�
0! Tq!X 0! ZŒCq �! 0

�
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classified by c, c0 respectively. By the above discussion, X can be described as a
pushout X ŠX.�/

0! Tq ! ƒ ! ZŒCq �! 0

� # b� # Id #

0! Tq ! X.�/! ZŒCq �! 0

where � is a ƒ-endomorphism of Tq Š
Lq

kD1
R.k/ which represents c on passage to

the derived module category. Suppose that ı.X/ D ı.X 0/ D ˛ where ˛ ¤ ¹1; : : : ; qº.
Choose i 2 ¹1; : : : ; qº such that ci D c0i D 0. Then by (6.8), there exists ˛ 2 Autƒ.Tq/
such that ˛ � cD c0.

Now ˛ ı � W Tq ! Tq is a ƒ-endomorphism which represents c0 D ˛ ı c in the
derived module category so that, on forming the pushout extension

0! Tq ! ƒ ! ZŒCq �! 0

˛ ı � # 1̨ı � # Id #

0! Tq ! X.˛ ı �/ ! ZŒCq �! 0

we see that X.˛ ı �/ŠX 0. There is now a commutative diagram with exact rows

0! Tq ! X.�/ ! ZŒCq�! 0

˛ # b̨# Id #

0! Tq ! X.˛ ı �/! ZŒCq�! 0

in which ˛ and Id are isomorphisms. By the Five Lemma, b̨ WX.�/!X.˛ ı �/ is also
an isomorphism. The conclusion follows as X ŠX.�/ and X.˛ ı �/ŠX 0. �

7. Proof of Theorem A

We first consider the notion of separating an extension as a direct sum. Given an exten-

sion E D .0!K
i
!X

p
! C ! 0/ where X is the internal direct sum X DX1 PCX2 of

submodules X1, X2, we put Ki DXi \Ker.p/ so that we have extensions Er D .0!

Kr
ir
!Xr

pr
! p.Xr /! 0/. The direct sum extension E1˚ E2 is then defined by

E1˚ E2 D .0!K1˚K2

�
i1 0

0i2

�
�! X1˚X2

�
p1 0

0p2

�
�! p.X1/˚ p.X2/! 0/
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and there is a mapping of extensions � W E1˚ E2! E

E1˚ E2

# �

E

D

0BBBBBBB@
0!K1˚K2

�
i1 0

0i2

�
�! X1˚X2

�
p1 0

0p2

�
�! p.X1/˚ p.X2/! 0

# �K # �X #�C

0! K
i
! X

p
! C ! 0

1CCCCCCCA
where �K , �X , �C are given by the appropriate additions

�
x1
x2

�
7! x1 C x2. With this

it is straightforward to show that

� W E1˚ E2! E is an isomorphism of extensions
” p.X1/\ p.X2/D 0.(7.1)

For the rest of this section we shall write T D Tq.A;�/ and QD ZŒCq � so that a
generalized Swan module E is given by an extension

0! T !E!Q! 0:

PROPOSITION 7.1

Let E D .0! T ˚ T
i
! X

p
! Q ˚ Q! 0/ be an extension and suppose X is the

internal direct sum X D X1 PCX2 of submodules X1, X2. If X1 is a generalized Swan
module, then p.X1/\ p.X2/D 0.

Proof
Let F be a field of characteristic zero and put TF D T ˝ZF, QF DQ˝ZF, Y DX˝ZF,
Yi DXi ˝Z F. By Maschke’s Theorem, Y Š TF ˚ TF ˚QF ˚QF. By hypothesis, X1
occurs as an extension .0! T ! X1 ! Q! 0/ so that, again by Maschke’s The-
orem Y1 Š TF ˚ QF. As Y D Y1 PCY2, it follows from Wedderburn’s Theorem that
Y2 Š TF ˚ QF. As Homƒ.T ;Q/ D 0, then the restrictions p W Yi ! QF ˚ QF van-
ish on TF and hence dimF.p.Yi /� dimF.QF/D q. However, dimF.p.Y1/C p.Y2//D

dimF.p.Y //D dimF.QF˚QF/D 2q. Thus,

dimF.p.Y1/C dimF.p.Y2/� dimF

�
p.Y1/C p.Y2/

�
:

and so dimF.p.Y1/\ p.Y2//D 0. Hence, p.X1/\ p.X2/D 0. �

Suppose given an extension E D .0! T ˚ T
i
! X

p
! Q˚Q! 0/ where X is the

internal direct sum X D X1 PCX2 of submodules X1, X2, and consider the extensions
E1, E2 as defined above. With this notation we have

PROPOSITION 7.2
If X1 is a generalized Swan module, then X2 is also a generalized Swan module.

Proof
As X1 is a generalized Swan module, then p.X1/ \ p.X2/ D 0 by Proposition 7.1
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above. Consider the extension which defines X1 as a generalized Swan module

E 0 D .0! T
i 0

!X1
p0

!Q! 0/

and compare this with the exact sequence E1 D .0!K1
i1
!X1

p1
! p.X1/! 0/ via the

diagram

DC

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0!K1
i1
,! X1

p
! p.X1/! 0

# Id

0! T
i 0

,! X1
p0

! Q ! 0

AsK1 is a submodule of T ˚T , then p0ı i1 D 0 by (2.15). Thus, we may complete
DC to a commutative diagram

eDC
8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0! K1
i1
,! X1

p
! p.X1/ ! 0

# h� # Id # hC

0! T
i 0

,! X1
p0

! Q ! 0

in which hC is necessarily surjective. Note that Homƒ.T ;Q/ D 0 by (2.14). As
p.X1/	Q˚Q, then Homƒ.T ; p.X1//D 0. In particular, p ı i 0 D 0 so that, in similar
fashion to the above, we obtain a diagram

eD�
8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0! T
i 0

,! X1
p0

! Q ! 0

# g� # Id # gC

0! K1
i1
,! X1

p
! p.X1/ ! 0

Composing eD� ı eDC we obtain a commutative diagram8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0! K1
i1
,! X1

p
! p.X1/ ! 0

# g� ı h� # Id # gC ı hC

0! K1
i1
,! X1

p
! p.X1/ ! 0

from which it follows that gC ı hC D Id. Thus, hC is also injective and so gives an

isomorphism hC W p.X1/
'
�!Q. Extending eDC one place to the left by zeroes and

applying the Five Lemma, we see that h� W K1 ! T is also an isomorphism. Now
consider the exact sequence

E2 D
�
0!K2

i2
!X2

p2
! p.X2/! 0

�
:
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We haveK1 PCK2 Š T ˚T andK1 Š T . Hence,K2 Š T by (3.4). Also, p.X1/ PC
p.X2/ŠQ˚Q and p.X1/ŠQ. Hence, p.X2/ŠQ by (3.6). Thus, X2 occurs in an
exact sequence 0! T !X2!Q! 0 and so X2 is a generalized Swan module. �

COROLLARY 7.1
Let X , S be ƒ-lattices such that X ˚ƒŠ S ˚ƒ. If X is a generalized Swan module,
then so also is S and ı.S/D ı.X/.

Proof
As both X and ƒ are generalized Swan modules, then there is an extension

0! T ˚ T !X ˚ƒ!Q˚Q! 0:

As S ˚ƒŠX ˚ƒ, then there is an extension

0! T ˚ T ! S ˚ƒ!Q˚Q! 0:

Again, as ƒ is a generalized Swan module, it follows from Proposition 7.2 that S is
a generalized Swan module. As X � S , the conclusion ı.S/ D ı.X/ follows from
Corollary 5.1. �

We come to the following which is Theorem A of the Introduction.

THEOREM 7.1
Let X be a generalized Swan module. If X 0 is a ƒ-lattice such thatX 0 ˚ƒŠX ˚ƒ,
then X 0 ŠX .

Proof
First suppose that ı.X/D;. ThenX is projective by Proposition 5.1. Hence,X 0 is also
projective and the conclusion follows from the Swan–Jacobinski Theorem asƒ satisfies
the Eichler condition. In the general case, ı.X/¤;. Then by Corollary 7.1, X 0 is also
a generalized Swan module and ı.X 0/D ı.X/. It now follows from Theorem 6.1 that
X 0 ŠX . �
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original version.
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