A cancellation theorem
for generalized Swan modules

F. E. A. Johnson

Abstract The module cancellation problem asks whether, given modules X, X’ and Y
over aring A, the existence of an isomorphism X @ Y = X’ @ Y implies that X = X'.
When A is the integral group ring of a metacyclic group G(p, g), results of Klingler show
that the answer to this question is generally negative. By contrast, in this case we show that
cancellation holds when Y = A and X is a generalized Swan module.

Introduction

Let A be the integral group ring A = Z[G] of a finite group G. For A-modules X, X',
Y we consider the following cancellation question:

*) IfX®Y =X @Y isit true that X = X'?

In this paper we focus on this question when G is a metacyclic group G(p,q)
defined as the semidirect product

G(p,q)=CpxCy

where p is an odd prime, ¢ is a positive integral divisor of p — 1 and C; acts via the
canonical imbedding C; < Aut(C,). We first analyze the group ring A ; the projection
G(p.q) = C, induces a surjective ring homomorphism 1 : A — Z[C,]. The two-
sided ideal Ker(n) has the following non-obvious description; take A to be the fixed
ring A = Z[¢ p]C‘/ under the Galois action of C; on the ring of cyclotomic integers
Z[¢p); A is a Dedekind domain in which p ramifies completely. We take w € A to be
the unique prime over p. Then Ker(#) can be identified with 7, the subring of quasi-
triangular matrices in the ring M, (A) of ¢ x ¢ matrices over A; thus,

T = {X = (Xrs)1<r.s<n € My(A) | Xrs € () if r > S}'
A generalized Swan module X is one which occurs in an extension of the form
(X) 0—T3—=>X—=Z[C4l—0.

In particular, given the above description of Ker(7), we see that A itself is a gen-
eralized Swan module. We shall prove the following:
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THEOREM A
Let Z, Z' be A-modules such that Z & A =~ Z' & A, if Z is a generalized Swan
module, then Z = Z'.

We note that 7; decomposes as a direct sum 7; = R(1) @ --- @ R(q) where R(i)
consists of elements in the i th-row of 7;. The modules R(i) are isomorphically distinct
and Ext' (Z[C,], R(i)) = F,, the field with p elements. The extension X is classified
up to congruence by a sequence ¢ = (¢;)1<i<q Where ¢; € F, = Ext'(Z[C,], R(i)).
We write

§(X) = {i | i = 0}.

The set §(X) is called the degeneracy of X ; we will show that §(X) is an invariant
of the isomorphism class of the module X not merely of the congruence class of the
extension X. Consequently, we may write §(X) = §(X). We say that the generalized
Swan module X is degenerate when §(X) # @ and nondegenerate when §(X) = 0.
Nondegenerate modules are necessarily projective and for these the conclusion of The-
orem A already follows from the theorem of Swan—Jacobinski (cf. [4, 12]). However,
the (more numerous) degenerate modules are not projective and lie outside the scope
of the Swan—Jacobinski theorem. In these cases, Theorem A is a consequence of the
following, which can be viewed as a rigidity property.

THEOREM B
Let X, X' be degenerate generalized Swan modules; then X =~ X' <= §(X) = §(X’).

In formulating our approach we make use of the derived module category; that is, the
quotient of the category of A-modules, by setting projective = 0. The salient features
are reviewed briefly in Section 1. A fuller account can be found in Chapter 5 of [7].
There is already a considerable literature on the general question of cancellation;
see, for example, [13]. In the case of the metacyclic groups considered here, the results
of Klingler [9] show that the question (*) has a generally negative answer. Thus, the
cancellation statement of Theorem A is atypical and, to that extent, unexpected.

1. The derived module category

In what follows, A will denote the integral group ring A = Z[G] of a finite group, as
yet unspecified. As a ring, A is both left and right Noetherian. The category of right
A-modules is denoted by Mody. If f: M — N is a morphism in Modp, we write
f ~ 0, when f can be written as a composite of A-homomorphisms f =& o7 viaa
projective module P; thus,

f
M N

INPL

P
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We define (M,N) ={f € Hompy(M,N) : f ~ 0}; (M,N) is an additive sub-
group of Homy (M, N). We extend = to a binary relation on Homp (M, N') by

f~r~g << [f-g=0.
So extended, & is an equivalence relation compatible with composition; that is,
given A-homomorphisms f, f': My — My, g, g’ : M1 — M then
(1.1) f~f and g~g = gofmgof.

We denote by Der = Der(A) the derived module category (cf. [6, 7]); that is, the
quotient category of Mod in which the set of morphisms Hom g (M, N) is given by

Homge (M, N) =Homp (M,N)/(M,N).
Since (M, N) is a subgroup of Homy (M, N), it follows that
(1.2) Hom g, (M, N) has the natural structure of an abelian group.

It is important to distinguish, both notationally and conceptually, between isomor-
phism in Modp, which we write as --- =4 --- and isomorphism in Der(A), which we
write as --+ X e -+ . For finitely generated A-modules the relationship between the
two notions is as follows (see [7, p. 120]):

(1.3) DepuD <= DO®Px,D &P

for some finitely generated projective A-modules. P, P’'.
There is a related notion, stable equivalence, written D ~ D’, and defined by

(1.4) D~D <& D@®A"=pD & A"

for some positive integers m, n.
Clearly we have

(1.5) D~D' = Dxgp,D"

The converse to (1.5) is, however, false.
Given a finitely generated A-module M, we consider exact sequences in Modp ;
thus,

) 0->D5PA M0

where P is finitely generated projective. Clearly such sequences always exist; we may
even take P to be free. Moreover, as A is Noetherian then D is also finitely generated.
Given another such exact sequence,

0D 5P 5 Moo,

then Schanuel’s Lemma shows that D @ P’ =, D' @ P so that D =g, D'. We
denote by D;(M) the isomorphism class in Der of any module D which occurs in
an exact sequence of the above form (&). We may think of Dy(M) as a first deriva-
tive of M. The correspondence M + D1 (M) is functorial in the following way. Given
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any such exact sequence (&) and a A-homomorphism f : M — M then the univer-
sal property of projective modules allows us to construct a commutative diagram of
A-homomorphisms:

o> D 5 P % M o0
- Lo S

0> D - P 2 M >o.

While the A-homomorphism f_ is not uniquely determined, nevertheless its class in
Der is uniquely determined. In particular, given another such commutative diagram,

0> D 5 P 2 M >0
VL VA LS

0 D 5 P 2 M =0
then we have
(1.6) f~f = f=f.

Further discussion will be simplified by confining attention to A-lattices, that is,
to A-modules which are finitely generated and torsion free as additive groups. For the
remainder of this section, all A-modules considered will be subject to this restriction.
When M is a A-lattice then Ext! (M, A) = 0, in consequence of which (cf. [7, p. 133])
(1.6) can be improved to
(1.7) f~f <= f~f.

Given f € Endp (M), we denote by p(f) = [f-] the class of f_ in Der. By (1.7),
the correspondence [ /] + p(f) = [ f=] determines a ring isomorphism

(1.8) p : Endper(M) —> Endper (D1 (M)).

The extension theory of A-lattices can be formulated in terms of the derived mod-
ule category. Given the exact sequence & above and a A-homomorphism ¢ : D — N,
we construct the pushout diagram

e 0> D 5 P 2 M o
b= L ln 4

2 (8) 0> N Slim@i)> M —0
—
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Then ax(&) = (0 > N 5 li_n)l(oz,i) M- 0) defines an extension class in

Ext!' (M, N). When P is projective, the correspondence o > [« (&)] defines a map-
ping § : Homgpe (D, N) — Ext! (M, N)). With this notation we have

(1.9) § : Homper (D1 (M), N) —> Ext'(M,N) is an isomorphism.

The isomorphism of (1.9) is a corepresentation formula; thereby the covariant
functor Ext!(M, —) is represented by the Hom functor Hom g (D1 (M), —). Given
the exact sequence (&), then for any A-module N we have exact sequences for k > 1,

5k 5 *
Ext* (P, N) 5 Ext* (D1 (M), N) - Ext*t1(M, N) 5> Ext* 1 (P, N).

As P is projective, then Ext*(P, N) = Ext**!1(P, N) = 0 and we obtain the usual
dimension shifting isomorphisms

(1.10) Ext* (M, N) = Ext*(D1(M), N).

We may regard the corepresentation formula (1.9) as the degenerate case of (1.10)
corresponding to the case k = 0.

We say that M has periodic cohomology when, for some positive integer d, there
is an exact sequence

0O>M-—>P; 1—-+—>Py—>M—0,

where each P; is projective. As M is a lattice it can be assumed, in addition, that each
P; is finitely generated. The integer d is then said to be a cohomological period for
M . If M has periodic cohomology, it has a minimal cohomological period denoted by
w(M) and any cohomological period of M is an integral multiple of w(M).

Finally we recall the tensor product construction for A-modules; thus, if M, N are
right A-modules by M ® N, we mean the abelian group M ®7 N endowed with the
diagonal right action of A, (m ® n) - A = mA ® nA. The following is well known (cf.
[2, p. 11]).

(1.11) If P is finitely generated projective, then so also is M ® P.

Suppose, given an exact sequence 0 — Z — P, (zy—1 —> --- — Po — Z — 0 where
each P; is finitely generated projective. Applying M ® — gives an exact sequence

0->MQZ—->MQOPyuzy-1—~>—>MOPy—>MQZ—0.
By (1.11), each M ® P; is finitely generated projective; as M ® Z =~ M, then:

If Z has periodic cohomology, then (Z) is a cohomological period
(1.12) )
of every A-lattice M.

2. Modules over the metacyclic group G(p,q)

For each integer n > 2, we denote by C, the cyclic group C, = (x | x" = 1). For
the remainder of this paper, we fix an odd prime p, an integral divisor g of p — 1
and write d = (p —1)/q. Recalling that Aut(Cp) = C,_1, then there exists an element
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0 € Aut(C,) such that ord(f) = g. Taking y to be a generator of C, and making a once
and for all choice of 8 with order ¢, we construct the semi-direct product G(p,q) =
Cp xp C4 where h: C; — Aut(C)p) is the homomorphism /(y) = 6. There is then a
unique integer a in the range 1 <a < p — 1 such that 8(x) = x%, and G(p, ¢) then has
the presentation

1 :xa)_

G(p.q) = (x,y|xP =y =1;yxy~

A theorem of Zassenhaus—Artin—Tate (cf. [3, Chapter 12]) shows that, over a finite
group G, the trivial module Z has periodic cohomology if and only if for each prime
7, every subgroup of order 72 is cyclic. By this criterion, Z has periodic cohomology
when G = G(p, q); indeed, it can be shown (cf. [8]) that

2.1 w(Z)=2q whenG =G(p,q).

We denote by A the integral group ring A = Z[G(p.q)] and by i : Z[Cp] — A
and j : Z[C4] — A, the respective inclusions. Depending on context, Z may denote
the trivial module over any of the group rings A, Z[C,] or Z[C,]. We denote by /¢ the
augmentation ideal of Z[C)]; I¢ is defined by the exact sequence of Z[C,]-modules

(2.2) 0— Ic <> Z[Cp] > Z — 0.

On dualizing, we get an exact sequence 0 — 7Z S Z[Cp] 5 15 — O where €*(1) =
Yy =1+ x4+ x%4---4 xP7 1 Itis a standard and easily verified fact that
(2.3) I and I¢ are isomorphic as Z[C p]-modules.

As I and Ic are not actually identical, we find it convenient to distinguish
between them. We identify the dual /7 with the quotient Z[C,]/(Zx). As (Xy) is a
two-sided ideal in Z[C], then I is naturally a ring; indeed, putting { = exp(27i/ p),
then

2.4) There is a ring isomorphism /75 = Z[{].
As is well known, Z[C ] has a canonical fiber product decomposition

ZICpl — 1

(2.5) el !

7 — Zp

where € : Z[C,] — Z is the augmentation map and F, is the field with p elements. To
proceed, we briefly recall the cyclic algebra construction. Let S denote a commutative
ring and 6 : S — S a ring automorphism of finite order dividing ¢; in particular, 6
satisfies the identity 69 = Id. The cyclic ring €4(S. 0) is then the (two-sided) free S-
module

€,(S.0)=S1+ Sy+ -+ Sy
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of rank ¢ with basis {1,y,...y?"!} and with multiplication defined by

=1 y§=0@©y (€9).

So defined, €, (S, ) is an extension ring of S. In the fiber product (2.5), 6 induces
a ring automorphism of order ¢ on Z[C,]. As 8 fixes X, then 6 induces a ring auto-
morphism on the quotient / = Z[C,]/(Xy). Likewise ¢ stabilizes the augmentation
ideal /¢ and induces the identity automorphism both on the quotient Z = Z[Cp]/I¢
and IF,. As the homomorphisms in (2.5) are equivariant with respect to these ring auto-
morphisms, we may apply the cyclic algebra construction €, (—, 8) to (2.5). Identifying
C(Z[Cp)) = Z[G(p.q)], €4 (Z) = Z[Cy), €4 (Fp) = F,[C,4], we obtain a fiber product

ZIG(p,q)] — €415, 0)

(2.6) ¥ ¥

ZICql = Zp[Cql.

To proceed to a more tractable description of €, (1}, 8), we first make the identification
Cy(15,0) ® Q =€, (Q(8), 0) where, as above, ¢ is a primitive pth root of unity. Then
6 acts on Z[{] via the isomorphism Gal(Q({)/Q) = Cp—;. Let A = Z[£)? denote the
subring fixed by 6. We note (see [1, Lemma 3]) that p = (¢ — 1)?~u for some unit
u € Z[L]*. Putting = = (¢ — 1)4, then

2.7 p ramifies completely in 4, and = is the unique prime in A over p.

We denote by 74 (A4, ), the subring of quasi-triangular matrices in the ring M, (A)
of ¢ X g matrices over A defined as follows:

Ta (A7) = {X = (¥rs)1rsen € Mg(A) | Xy € () if 7 > 5.
Likewise, we define
T4(A)m) = {X = (Xrs)1<r,s<n € My(A/7) \ Xps =0if r > s}.

Taking the quotient by 7 defines a surjective ring homomorphism

2.8) v:Tg(A, ) > T4(A/ ).
In turn, the correspondence X +— (x11,...,X4q) gives a surjective ring homomor-
phism
(2.9) @:T3(A/n) > A/m x---xAJm.
—_—
q

The following structural theorem is fundamental in what follows:

THEOREM 2.1
There exists a ring isomorphism A : €4 (15, 0) — T4(A, ).
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This can be regarded as an explicit form of Rosen’s Theorem (see [11]; see also [10,
p. 373]; a proof in the above form may be found in [8]). Theorem 2.1 allows us to
re-interpret (2.6) as a fiber square of the form

ZIG(p.q)] = T4(A, )

(2.10) ! !

ZICq]  — ZplCyl
If i (—) denotes extension of scalars from Z[C,]-modules to A-modules, then
2.11) ix(Ic) and ix(I}) are isomorphic as A-modules.

We note that €, (1, 0) is simply another description of the induced module i (/).
As T4(A, ) 2 €4(1 5. 0), it follows from (2.11) that

(2.12) ix(Ic) = ix(I5) = Tg(A, 7).
Applying i, to the exact sequence (2.2), we obtain an exact sequence
0 — ix(Ic) = ix(Z[Cpl) > ix(Z) — 0.

However, ix(Ic) = T4(A, ), i«(Z[Cp]) = A and i+(Z) = Z[C,], so giving an
exact sequence

(2.13) 0— Ty(A, 1) <> A S Z[C,] — 0.
Moreover, from this construction it follows easily that
(2.14) Homa (74 (A, ), Z[C4]) = 0.

Applying — ® Q to (2.14), the semisimplicity of 75 (A4, 7) ® Q implies that

Homy (K, Z[C4]) =0
(2.15)
if K is a A-submodule of 75 (A, 7) ® --- & T4(A, 7).

We decompose T, (A, ) as direct sum of right A-modules; thus,
(2.16) T,(A,7) = R(1) & RQ2) & -+ & R(q)
where R(i) is the i th row of 75 (A4, 7). We note that
2.17) Ri)=A R(j) < i=]
(2.18) HomA(R(i),Z[Cq]) =0 forallie{l,...,q}.

Of the above, (2.17) is proved in Section 4 of [8], while (2.18) follows directly
from (2.14).
3. Preliminary cancellation

Let K be a finite extension field of QQ and let A denote the ring of algebraic integers in
K. Let ‘B be a finite dimensional semisimple K-algebra. By Wedderburn’s Theorem,
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B ®qg R decomposes as a direct product of matrix rings

m
B o R = H My, (D;),
i=1
where each D; is either R, C or H. Let 2 C B be an A-order; that is, Q is an A-
subalgebra of B such that Q ® 4 K == 8. We say that Q satisfies the Eichler condition
when, in the above Wedderburn decomposition, D; =~ H = d; > 2. We have the fol-
lowing much simplified version of Jacobinski’s Cancellation Theorem [5]:

Let L, M be Q-lattices such that L & M =g M & M ; if Q satisfies

.1
G.D the Eichler condition, then L ~g M.

An account of the more general version can be found on page 324 in [4].

We apply (3.1) to two of the modules considered in Section 2. In the first case we
take Q2 = 7;(A4, ) and B = M, (K) where K is the field of fractions of A. Then for
some integers a, b, we have K ®g R = R@ x C® and hence B ®oR =M, (R)@ x
M, (©)® . In particular, Q satisfies Eichler’s condition. Applying (3.1) gives the fol-
lowing:

Let L be a 74 (A, )-lattice such that
(3.2) L& T4(A,7) 27,4, Tg(A, ) @ T4(A, 7); then
L gjq(A,n) Tq(A,JT).
We extend this to certain A-lattices where A = Z[G(p, q)]. We have a surjective
ring homomorphism p : Z[G(p, q)] = T4(A, 7) and induction and co-induction func-
tors

Mo - Modp — MOdfj’q(A,n); pL* : MOqu(A,,,) — Mody.

By regarding 7;(A, ) as a module over A, we are abusing notation; the correct
symbol for the intended A-module is u*(74(A,7)). To avoid this confusion in the
discussion that follows, we write T = u*(7; (A, r)). Moreover, it is straightforward to
check that

(3.3) 1(T) = Ty (A, ).
As A satisfies the Eichler condition, it follows directly from (3.1) that
(3.4) If K is a A-lattice suchthat X @ T =A T ® T, then K =, T.
Next we take 2 = Z[C;], K= Q and B =~ ]_[d‘q Q[x]/(cq(x)) where ¢4 (x) is the

dth cyclotomic polynomial. Then B ®g R = R@ x C® for some integers a, b so that
again 2 satisfies the Eichler condition. Applying (3.1) gives

Let £ be a lattice over Z[C,] such that
£ @ Z[Cy] =z1c,] Z[Cq4] ® Z[Cy); then £ =z1c,] Z[Cq].

We may modify this statement slightly in the context of A-lattices. We also have a
surjective ring homomorphism 7 : Z[G(p, q)] = Z[C,] and functors

(3.5)

Nx : Modp — Modyc,: n* : Modzic,] — Mody.
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In regarding Z[C,] as a module over A, we should really write n*(Z[C,]). To
avoid this confusion in the discussion that follows, we write @ = n*(Z[C,]). With this
modification, as A satisfies the Eichler condition, we have

(3.6) Let @’ be a A-lattice such that Q" @ Q@ =, Q@ ® Q; then Q' =~ Q.

4. Cohomology calculations

For the remainder of this paper, we fix an odd prime p and a positive integral divisor g
of p — 1. As in Section 2, we put G = G(p, q) and write A = Z[G(p, q)]. In addition,
we put I' = Z[C,]. We proceed to calculate the cohomology of the A-modules intro-
duced in Section 1. In doing so, we will employ restriction and extension of scalars
to and from the subring I' C A. To this end, we shall use boldface symbols Hom,
End and Ext®, when describing homomorphisms, endomorphisms and extensions of
A-modules; and standard Roman font, Hom, End and Extk , when referring to the cor-
responding notions over I'. The calculations that follow are essentially a summary of
those of [8], to which paper we refer the reader for fuller details.

F, k=1

Ext*(Z, I¢c) =~
(Z,1c) {0 k=2,

Ext!(Z[C,.ix(Ic).) = Ext' (i*(Z[Cy4)). Ic)

4.1 a
~ (PExt'(Z.I¢)

i=1

=F, x---xF,.

N—————
q
Asiy(Ic) = T4, then
4.2) Ext' (Z[Cy]. Tg) = Fp x --- x Fp.
q

As there is an exact sequence 0 — 7; — A — Z[C;] — 0, it follows by the corep-
resentation formula that

(4.3) Ext' (Z[C,], 73) =~ Endpe (T;).
It follows that
(4.4) Endgpe (7)) =Fp x -+ xFp.
N——’
q

From the decomposition 7; = ?:1 R(i), it follows from (4.4) that

q
End@er<@ R(i)) ~F, % xF,.

i=1
q
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Consequently,

q
P Homp. (R(i). R(j)) =Fp x -+ xF,.
ij=1 aqq,_./

As R(i) is not projective over A, then Hom g, (R (i), R(i)) # 0. Hence, we have

. . Fp i=]
Homyo. (R(),R(j)) = 7
omyp.(R(i), R(j)) {o P
Note that
4.5) Ext' (Z[C,]. R(k)) =F, forallk (1 <k <gq).
, , F, j=i+1
4.6 Ext>(R(i),R(j)) = 7
(4.6) xt*(R (i), R(j)) {0 F
: . F, j=imodg
4.7 Ext> (R(i),R(q)) ={ 7
(4.7) xt*/ (R(i), R(q)) {0 PPl
(4.8) Ext?’ 1 (R(i),R(q)) =0 foralli, .

The above formulae exemplify the 2g-fold cohomological periodicity of A-lattices.
If i is a positive integer, then for any A-lattice X we put

q
' (X)=Ext* (X.R(¢)):  §*(X)=PExt’ (X.R(9)):

i=1

q
J(X) =Ext TN (X.R(g)):  H*(X)=EPExt* ! (X, R(q)).
i=1

By the dimension shifting argument of (1.10), we see that:

PROPOSITION 4.1
Let 0 > K — P — Q — 0 be an exact sequence of A-lattices; if P is projective then

J(’i(Q) o~ ﬁi(K).
For future reference we note that:

PROPOSITION 4.2
Leta,B C{1,...,q}; then

5*(R(oz))’£§*(R(ﬂ)) = a=4.
Proof

It suffices to show (=). As Z has cohomological period 2¢ then by (1.12), it suffices
to compare the values §'(R(x)), §'(R(fB)) in the range 1 <i < q. It follows from
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(4.6) and (4.7) that

i N IFp ] =i i ~ Fp I €a
7 (R(J)):{o j#i, 7 (R(a)):{o i¢a
Thus, if §*(R(x)) = §*(R(p)), then « = B. O

We note also, immediately from (4.8), that

4.9) H'(R(a)) =0 foralli.

5. Invariance of degeneracy

Ifa C{l,...,q}, we put R(ex) = ;o R(i). An extension of the form

(Z) 0 R(@) >z 27[C,]—0

is said to have kernel type o. In fact, the kernel type of the extension Z depends only on
the isomorphism class of the module Z. To see this, suppose that the module Z’ occurs
in an exact sequence

(Z') 0— R(B) > Z' % Z[Cy] — 0

and that there exists an isomorphism % : Z — Z’. Then the homomorphism
gohoi:R(x)—Z[Cy]

is zero by (2.18). Consequently, / induces a commutative diagram with exact rows

0—>R(oz)—i> Z ﬁ)Z[Cq]—>0
Vhe o Lh Lhe

0— R(B) > 72 % zic,] —o.

Moreover one sees easily that the induced homomorphism /4 : Z[Cy] — Z[C,] is sur-
jective. As the underlying additive group of Z[C,] is free abelian of finite rank, it fol-
lows that &4 is an isomorphism. Extending the above diagram one place to the left by
zeroes, it follows from the Five Lemma that 2_ : R(«) — R(p) is also an isomorphism.
Consequently, §*(R(«)) = §*(R(B)), so that by Proposition 4.2 it follows that § = «;
that is,

5.1) In Z above the kernel type « is an isomorphism invariant of the
: module Z.

Now consider extensions of the form

(%) 07,5 x 2z[C,]—0:
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that is, where = {1,..., ¢} so that the module X is a generalized Swan module. Then
X is classified up to congruence by a cohomology class

q
¢ € Ext'(Z[C,). 7)) = @) Ext' (Z[C,]. R(i))
i=1
described as an ||-tuple ¢ = (¢;)1<i<4 Where ¢; € Ext!(Z[C,], R(i)) = F,. We shall
then say that X is nondegenerate when each c¢; # 0.

PROPOSITION 5.1
Let X = (0= T, Lx 2 Z|C4] — 0) be an extension defining a generalized Swan

module X ; then

X is nondegenerate <= X is projective.

Proof
(=) X is classified by ¢ = (¢;)1<i<q € Ext'(Z[Cy), Tg) = Fp x - x ).
——————

q
As we have seen in (4.3), Ext!(Z[C,], T;) = Endpe: (7). As each ¢; # 0, then

¢ € Autp(75) and we may construct X by means of the pushout construction

0—- 7, - A — Z[Cj] =0

be Lo }1d
0— 7, - X — Z[C;] —0.

As ¢ € Autp(7y), then X is projective by Swan’s criterion (see [7, p. 115]).

(«<=) Conversely, suppose that some ¢; = 0. Let X’ be the module described
by the extension 0 — (P, ; R(i) — X’ — Z[C4] — 0 with cohomology class ¢’ =
(ci)i#j. Then X = R(j) @ X'. As R(j) is not projective, then neither is X. In the
contrapositive, if X is projective then X is nondegenerate. ]

The more general extension Z is classified up to congruence by a cohomology class
c € Ext' (Z[C,). R(@)) = @D Ext' (Z[C,). R(7))
i€a
described as an |a|-tuple ¢ = (c;);eq Where ¢; € Ext'(Z[C4], R(i)) = F,. We say that
Z is nondegenerate relative to o when ¢; # 0 for each i € «. If some ¢; = 0, we say

that Z is degenerate relative to . If o C {1,...,q}, write @ = {1,...,¢q} — o. From
Proposition 5.1 we derive:

PROPOSITION 5.2

Let Z = (0 — R(@) Lz XA Z[C4] — 0) be an extension of kernel type o, nondegen-
erate with respect to o. Then R(e) represents D1(Z).
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Proof

Suppose that Z is classified by ¢ = (cj);e and consider the cohomology class y =
(Vi)iea, Vi € Extl(Z[Cq], R(i)) defined by y; =1 for i € «. Consider the extension
P =(0— R(@) ® R(e) > P — Z[C4] — 0) defined by (y,c). We note that R(a) &
R(a) = 7. As each y; # 0 and each c¢; # 0, then & is nondegenerate so that P is
projective by Proposition 5.1. Putting Z=P /R(@) gives an extension

0—>R@ —P—>Z—0,

where Z occurs in the extension (0 > R(a) — 7 — Z[C4] — 0) classified by c.
Hence, Z =~ Z so that Z occurs in an extension (0 - R(&) - P — Z — 0) where P
is projective. Consequently, R (o) represents D1 (Z) as claimed. O

Let & = (0 > 7; - E — Z[C4] — 0) be an extension defining a generalized Swan
module E and classified by ¢ = (¢;)1<i<4 Where ¢; € Ext'(Z[C,], R(i)) = F,. The
degeneracy §(8) of & is defined by §(&) = {i | ¢; = 0}, and the support of & is defined
by supp(&) = {i | ¢; # 0}. Evidently §(&) and supp(&) are complementary subsets
of {1,...,q}, supp(€) = 8(&). Given such an extension &, we may decompose the
cohomology class as ¢ = (¢~,¢™) where ¢~ = (¢;);es(¢) is identically zero and where
¢ = (¢i)iesupp(e) determines an extension

X = (0 R@ - X 2 z[C,] - 0)

of kernel type supp(&) which is nondegenerate with respect to supp(&). As ¢~ is iden-
tically zero, then £ =~ R(x) & X; that is,

PROPOSITION 5.3
Let & = (0 — T; — E — Z[C4] — 0) be an extension defining a generalized Swan
module E; then E =~ R(x) & X where X occurs in an extension

X = (0— R(supp(€)) > X 3 Z[C,] - 0)

of kernel type supp(&) which is nondegenerate with respect to supp(&).

PROPOSITION 5.4
Let & = (0 — T; — E — Z[C4] — 0) be an extension defining a generalized Swan
module E; then #*(E) =~ §*(R(3(8)).

Proof
Decompose E =~ R(6(8)) & X as in Proposition 5.3. Then

H*(E) = H*(R(5(E))) @ H*(X).

It follows from (4.8) that J*(R(6(€)) = 0 so that H*(F) = J*(X). Thus, it
suffices to show that #*(X) =~ §*(R(5(&))). However, R(supp(&)) represents D1 (X)
by Proposition 5.2 and supp(&) = §(&). Thus, R(5(&)) represents Dq(X), and hence
H*(X) =E*(R(5(8))) by Proposition 4.1. O
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Clearly §(&) is an invariant of the congruence class of the extension &. In fact, it is also
an invariant of the isomorphism class of the module E in the derived module category.
Formally we have the following:

PROPOSITION 5.5
Let E(1), E(2) be generalized Swan modules; then

E()z=p,s EQ) = 8(8(1)) = 5(8(2)).
Proof
If E(1) ~per E(2), then for some projective modules P (1), P(2) we have
EMHdP)=EQR) D PQR)

sothat H*(E(1)@® H*(P(1)) = H*(EQ)D H*(P(2)). As P(1), P(2) are projective,
then J*(P (1)) = #H*(P(2)) =0, and so K *(E(1)) = J*(E(2)). By Proposition 4.1
it follows that €*(§(€(1))) =~ §*(6(&(2))) so that, by Proposition 4.2, §(&(1)) =
5(€(2)). O

From (1.5) we obtain the following special case of Proposition 5.5:

COROLLARY 5.1
Fork =1,2, let (k) = (0 - T3 — E(k) — Z[C4] — 0) be extensions defining gen-
eralized Swan modules E(1), E(2); then

E)~EQ2 = §&1)=5(62).

6. Proof of Theorem B

In what follows, [F,, will denote the field with p elements where p is an odd prime,
and a will denote an integer in the range 1 <a < p — 1 chosen so that the residue
class [a] € IE“; generates the multiplicative group ]F;‘,. For each integer k in the range

1 <k <gq, we define elements vfk), e, Uék) in IF; X oo X IF; as follows:
~—_—————
q
lal  r=j
W) =1t r=k <k
1 r ki,
[a]' r=k
k . .
W =1la) =y (k< j).
1 r¢dJ.ky,
Moreover, we define (Ulgk)), =1 for all  and denote by U(k = (vfk), cees vlgk)) the
subgroup of IF; X +ee X ]F; generated by U{k), e v,gk). For A € ]Fgl) we define the
~—_———

q
degeneracy §(A) of A = (A1,...,Ay) by S(A) ={i : 1 <i <q:A; =0}.
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Fora C {1.....q}, we define J (o) C F by # (o) = {A e F : §(1) = or}. The
proofs of the following two statements are straightforward:

(6.1) H («) is stable under the action of F, x --- x F7 .
—————
q
(6.2) If k € , then U(k) acts transitively on J (a).

Recall the surjective ring homomorphisms v : 75(4,7) — T3(A/x) and ¢ :
T4(A/m) - A/m x --- x A/7 defined in (2.8) and (2.9), respectively. Taking the com-
—————
q
position gives a surjective ring homomorphism f : 75 (4, 7) - A/w x---x A/m. In
—_——

q
the present case, the inclusion Z < A has the property that Z N (7w) = (p) and A/7 =
Z/p =T p. Thus, there is a commutative diagram of ring homomorphisms

j
I4(Z, p) C Ty (A, )
Zy x 7
q

in which f; and f, are surjective. Maintaining the previous choice of a in the range
1 <a < p, then as a and p are coprime, appealing to Bezout’s Theorem we can find
integers b, d such that

(6.3) ad + pb=1.
For k in the range 1 < k < ¢, we define elements ﬁgk), e ,U,(Ik) in 74(Z, p) as

follows:
a r=s=j
—p r=k,s=j
b r=js=k

if j <kthen @©%®),; = ’
J ( j )rs d =k

1 r=s,ré¢{j,k}
0 otherwise
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d r=s=k
b r=k,s=j
itk <jthen (©%),=1"7 r=Js=k
a r=s=j
r=s,ré¢{jk}
0 otherwise

(k)
k

Moreover, we define v, * = Id,. Using row and column operations and appealing to

(6.3), one sees easily that det(ﬁ,((k)) =1 for all j. Hence, we have

~k) _
vg- ) e T4(Z, p)*.

Under the homomorphism fj; : 75 (Z, p) - F, x --- x F,, we see that

q

(6.4) 1 @) = v

Define U (k) = (65’”, ... ,ﬁ,(]k)) C T4(Z. p)*. As T4(Z, p) is a subring of T, (A4, 1),
we regard U (k) as a subgroup of 75 (A4, 7)*. In consequence of (6.4), we see that
(6.5) 12 (U (k)) = U(k).

For any subset @ C {1,...,q}, we define :}’Vf(oz) C Bxt' (Z[C,), T4 (A, 7)) by

H(@) = fe=(ci)izizq :8(0) = a}.

It follows from (6.2) and (6.5) that

(6.6) U (k) acts transitively on J (v)ifk €.
To proceed we fix an extension
q
(X) 0—> @D R(k) > X — Z[Cy] — 0.
k=1

The corepresentation formula (1.9) then shows that

q
6.7) Ext! (Z[C,]. Ty(A. 7)) 2 Endper (T (A, 7)) = End@er(@ R(k)).
k=1

Thus, the extension X is classified by a matrix
¢ = (cij)1<i,j<q> ¢ij € Hompe (R(j). R(i)).

For each 7, j choose a A-homomorphism y;; € Homp (R(j), R(i)) which represents
cij after passing to the derived module category. Then y = (¥ij)i<i,j<q iS @ A-
endomorphism of @Zzl R(k) which represents c in the derived module category. Let
L: @izl R(k) — A denote the inclusion; then X can be described as X = X(y) via
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the pushout diagram

0->@I_ Rk)> A —Z[Cl—0

by NN O
0— @zzl R(k) - X(y) = Z[C4] - 0

where X(y) = li_r)n(L, y). However, by (4.5), Homge (R(j), R(i)) =0 if j # i so that
cij =0 for i # j and the classifying matrix c is diagonal

C1
C2

Cq

where ¢k = cxr € Endpe(R(i)) = F . Making the identification

q
@Extl(Z[Cq],R(i)) «—F,x---xFp.
i=1 —
q

Then, following Section 5, we associate with ¢ its degeneracy 8(¢) = {i | ¢; = 0}.
Now suppose given another such extension,

q

(X" 0> @D R>) > X' - Z[Cy] >0,
i=1

parametrized by ¢’ = (c¢])1<i<4. It follows from (6.6) that

(6.8) If k € 8(c) = §(c’), then there exists @ € U (k) such that @ - ¢ = ¢’

We come to the following, which is Theorem B of the Introduction.

THEOREM 6.1
Let X, X' be degenerate generalized Swan modules; then

XX << §X)=38X).

Proof
(=). Suppose that X =~ X’; then X g, X’. It follows from Proposition 5.5 that
3(X) =48(X).

(<=) We may suppose that X, X’ are described by extensions

X=(0—7— X —Z[C)] —0); X' =(0— 7 — X' — Z[Cq] — 0)
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classified by ¢, ¢’ respectively. By the above discussion, X can be described as a
pushout X = X(y)

0—- T, - A —=Z[C)—0

S (N

0— T, —X(y)—>Z[C4] =0

where y is a A-endomorphism of 7; = @Z=1 R(k) which represents ¢ on passage to
the derived module category. Suppose that §(X) = §(X’) = « where @ # {1,...,q}.
Choose i €{1,...,q} such that ¢; = ¢; = 0. Then by (6.8), there exists « € Autp (73)
such thata - ¢ =¢'.

Now « oy : J; — T4 is a A-endomorphism which represents ¢ = « o ¢ in the
derived module category so that, on forming the pushout extension

0o—- 7 - A — Z[C4] =0
aoyl aoyl Id |}
0— Ty — X(xoy) > Z[C4] =0

we see that X (o o y) = X'. There is now a commutative diagram with exact rows

0— T, — X)) —Z[C)l—0

al al Id|
0= T3 = X(oy)—=Z[C4] -0

in which & and Id are isomorphisms. By the Five Lemma, @ : X(y) — X(« o y) is also
an isomorphism. The conclusion follows as X =~ X(y) and X(x o y) =~ X’. ]

7. Proof of Theorem A

We first consider the notion of separating an extension as a direct sum. Given an exten-

sion& =(0— K LxZc— 0) where X is the internal direct sum X = X1+ X of
submodules X, X5, we put K; = X; N Ker(p) so that we have extensions &, = (0 —

K, 5 X, 2 p(X,) — 0). The direct sum extension &; @ &, is then defined by

() (@

0
8106 =0>K K, — X1 88X, -3 p(X1) ® p(X2) — 0)
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and there is a mapping of extensions u : &, ® &, — &

("1‘0) P10
&1 868, 0— K1 ® K>, 2) X160 X, (0_1)2) p(X])@]?(Xz)—)O
b = bk b x Ve
& i p
0—- K — X = C -0

where g, iLx, [Lc are given by the appropriate additions (i ;) — x1 + x2. With this
it is straightforward to show that
7.1) u: 81 d &, — & is an isomorphism of extensions
' < p(X1) N p(X2) =0.
For the rest of this section we shall write 7 = 7;(A, 7) and @ = Z[C,] so that a
generalized Swan module E is given by an extension

0T —FE—-@Q—0.

PROPOSITION 7.1

Lt E=0—->T 7T Lx2a @ @ — 0) be an extension and suppose X is the
internal direct sum X = X+ X, of submodules Xy, X,. If X1 is a generalized Swan
module, then p(X1) N p(X3) =0.

Proof

Let IF be a field of characteristic zero and put g = 7 @z F, Qr = Q®zF, Y = X ®;F,
Y; = X; ®z F. By Maschke’s Theorem, Y = 5 & Tr & Qp & @p. By hypothesis, X,
occurs as an extension (0 - 7 — X; — @ — 0) so that, again by Maschke’s The-
orem Y; = Tp @ Qp. As Y = Y;+7Y,, it follows from Wedderburn’s Theorem that
Y, = Jp & @Qp. As Homp (7, @) = 0, then the restrictions p : ¥Y; — Qp & Qp van-
ish on Jr and hence dimp(p(Y;) < dimp(&Qp) = ¢q. However, dimp(p(Y1) + p(Y2)) =
dimp(p(Y)) = dimp(@r ® @r) = 2q. Thus,

dimp(p (Y1) 4 dimg(p(Y2) < dimg(p (Y1) + p(Y2)).
and so dimp(p (Y1) N p(Y2)) = 0. Hence, p(X1) N p(X3) =0. a

Suppose given an extension § = (0> T & T Lx2eea—> 0) where X is the
internal direct sum X = X1+ X, of submodules X, X», and consider the extensions
&1, &, as defined above. With this notation we have

PROPOSITION 7.2
If X1 is a generalized Swan module, then X5 is also a generalized Swan module.

Proof
As X, is a generalized Swan module, then p(X;) N p(X2) = 0 by Proposition 7.1
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above. Consider the extension which defines X as a generalized Swan module
€=0-T5x,2a-0

and compare this with the exact sequence &, = (0 - K; Sx 1 2 p(X1) — 0) via the

diagram

0—>K1<l—1> X; ﬁ)p(Xl)—>0

Dy l1d

/

0T x, 5 @ =o

As K is a submodule of T @ T, then p’oi; = 0 by (2.15). Thus, we may complete
D4 to a commutative diagram

i]

0—> Ki < X; 2 p(X)) =0

D, Lhe  lud Lhy

/ /

0> 7 &S x5 a —o
in which &y is necessarily surjective. Note that Homp (7, &) = 0 by (2.14). As

p(X1) C@® @, then Homy (T, p(X1)) = 0. In particular, p oi’ = 0 so that, in similar
fashion to the above, we obtain a diagram

0— T <= X5 - @ =0

D- | 8- | 1d 1&g+

i1

0> K1 < X1 2 pxy) =0

Composing D_ o D we obtain a commutative diagram

0— K SN X1 L p(X1) -0
| g—oh- | 1d | g+ohy
i p
00— Kl — Xl — P(Xl) —0

from which it follows that g4 o A4 = Id. Thus, A4 is also injective and so gives an

isomorphism /4 : p(X1) = Q. Extending ;Lfv)+ one place to the left by zeroes and
applying the Five Lemma, we see that h_ : K; — T is also an isomorphism. Now
consider the exact sequence

€= (0— Ky 3 X, 5 p(X2) —0).
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We have K1 +K, =T & T and K; = 7. Hence, K, = 7 by (3.4). Also, p(X1)+
p(X2) =@ & @ and p(X;) = @. Hence, p(X2) = @ by (3.6). Thus, X, occurs in an
exact sequence 0 > 7 — X, — @ — 0 and so X is a generalized Swan module. [

COROLLARY 7.1
Let X, S be A-lattices such that X ® A = S & A. If X is a generalized Swan module,
then so also is S and 5(S) = §(X).

Proof
As both X and A are generalized Swan modules, then there is an extension

0>THT >XDOA—> 00 Q0 —0.
As S & A = X @ A, then there is an extension
0->TdT>SdA—->00 Q0 —0.

Again, as A is a generalized Swan module, it follows from Proposition 7.2 that S is
a generalized Swan module. As X ~ §, the conclusion §(S) = 6(X) follows from
Corollary 5.1. g

We come to the following which is Theorem A of the Introduction.

THEOREM 7.1

Let X be a generalized Swan module. If X' is a A-lattice such thatX' @ A = X & A,
then X' ~ X.

Proof

First suppose that §(X) = @. Then X is projective by Proposition 5.1. Hence, X’ is also
projective and the conclusion follows from the Swan—Jacobinski Theorem as A satisfies
the Eichler condition. In the general case, §(X) # @. Then by Corollary 7.1, X’ is also
a generalized Swan module and §(X’) = §(X). It now follows from Theorem 6.1 that
X' ~=X. O
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