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Abstract

Weakening classical logic is one of the most popular ways of dealing
with semantic paradoxes. Their advocates often claim that such weak-
ening does not affect nonsemantic reasoning. Recently, however, Hal-
bach and Horsten (2006) have shown that this is actually not the case for
Kripke’s fixed-point theory based on the Strong Kleene evaluation scheme.
Feferman’s axiomatization KF in classical logic is much stronger than its
paracomplete counterpart PKF, not only in terms of semantic but also
arithmetical content. This paper compares the proof-theoretic strength
of an axiomatization of Kripke’s construction based on the paraconsis-
tent evaluation scheme of LP formulated in classical logic with that of
an axiomatization directly formulated in LP extended with a consistency
operator. The ultimate goal is to find out whether paraconsistent solu-
tions to the paradoxes that employ consistency operators fare better in
this respect than paracomplete ones.

Keywords— Kripke fixed points, LFIs, sequent-calculus truth theories, proof-
theoretic strength

The semantic paradoxes reveal a conflict between classical reasoning and intuitively
correct truth principles such as transparency, that is, the equivalence between each
sentence and its truth predication. For they allow us to derive every sentence of the
language of our naïve truth theories, trivialising them.

More often than not logicians have advocated the weakening of classical logic to
block the paradoxes and avoid triviality. Some hold independent reasons to believe
classical logic is incorrect, while others, such as Kripke [21], Field [16], and Beall [7],
somehow regret the conflict and seek to keep the trimming of classical reasoning to
a minimum. This paper is addressed to the latter. To justify their drastic move,
logicians of this view often claim that the restrictions imposed on classical inferences
need not affect non-semantic reasoning, but just that involving the truth predicate. In
other words, classical logic would still apply unrestrictedly to mathematic, scientific,
and every other kind of non-semantic discourse.

However, we can see this is not always the case. In [19], Halbach & Horsten
compare two different axiomatisations of Kripke’s family of fixed-point models with
the strong Kleene evaluation scheme: KF, formulated in classical logic, and PKF,
formulated in basic De Morgan logic. They show that (the internal logic of) KF is
stronger than PKF, not only with respect to their truth-theoretic content, but also
with respect to their truth-free consequences. As Halbach & Nicolai [20, p. 2] argue,
“[. . . ] the deductive weakness of PKF arises from the mutilation of classical logic,
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which invalidates certain patterns of mathematical reasoning that cannot be regained
in PKF in any way.” To show that neither the calculus nor the truth principles of
the non-classical theory are to blame for its weakness, they provide two results. First,
the completeness of the calculus in which PKF is formulated with respect to basic
De Morgan logic. Second, that both systems prove the same sentences to be true
and determine the same models if induction—arguably not a truth-theoretic but an
arithmetical principle—is restricted to formulae not containing the truth predicate.
Moreover, Halbach & Nicolai show that an analogous argument can be made for two
extensions of PKF, a paracomplete and a paraconsistent one. They result from the
addition of truth-theoretic principles so as to block the possibility of truth-value gluts
and truth-value gaps, respectively.

A novel and growing field of inquiry in logic is given by a family of paraconsistent
logics, that is, systems in which contradictions do not necessarily entail triviality, called
‘Logics of Formal Inconsistency’ (LFIs).1 They enrich the language of paraconsistent
logics to express consistency or classicality operators. When applied to a sentence,
these operators indicate that the sentence together with its negation does actually en-
tail everything. According to Carnielli, Coniglio, & Marcos [12, p. 1], the fundamental
feature of the LFIs “is the ability to recover all consistent reasoning right on demand,
while still allowing for some inconsistency to linger, otherwise” (my italics).

The obvious question is whether an axiomatisation of Kripke’s fixed-point models
with gluts and no gaps in a suitable LFI could overcome the weaknesses the other
theories suffer from, saving mathematical reasoning in full. I show that this is not the
case and extract a disjunctive conclusion: either consistency operators are not capable
of recovering classical reasoning in every case after all, contrary to what its promoters
maintain, or the weakening of classical logic in LP is so severe that the consistency of
arithmetical principles is simply impossible to recover.

In section 1 I give a semantic presentation of the Logic of Paradox, LP, and in-
troduce Kripke’s fixed-point models based on this logic. In section 2 I give a sequent
calculus for LP, and semantic and proof-theoretic presentations of the LFI LP◦, that
results from extending LP with a consistency operator. Soundness and completeness
proofs for LP and LP◦ can be found in the appendix. I then provide an axiomatisation
in LP◦ of the fixed-point models introduced in section 1, and dub it CKF. Finally, an
axiomatisation, KFG, of the same family of models in classical logic is given. In 3 I
show that (the internal logic of) KFG is stronger than CKF, not only with respect to
its truth-theoretic consequences, but also with respect to its non-semantic content. I
also provide a result that shows that the weakness of CKF cannot be blamed on its
truth-theoretic axioms. In 4 I infer, as Halbach & Nicolai [20] do, that the deductive
weakness of the non-classical axiomatisation is the result of crippling classical logic.
I further conclude that the consistency operators featured in LFIs do not do the job
they were originally intended to do.

1 Complete paraconsistent fixed-point models

LP was originally introduced by Asenjo [1] in 1966 for the study of paradoxes, and
adopted years later by Priest [25] for the same purpose. In models of LP, sentences
can be true, false, or both true and false. The paradoxes are treated as sentences of
the latter kind.

Kripke’s original fixed-point construction as conceived in [21] provides a family of

1The LFIs were first introduced as such by Carnielli & Marcos [13] and further developed
by Carnielli, Coniglio, & Marcos [12].
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non-classical models for a language containing its own truth predicate based on Strong
Kleene logic. In such models sentences can be true, false, or neither true nor false.
The paradoxes fall under the latter category. The models are said to be incomplete,
for they admit truth-value gaps. Making slight modifications to Kripke’s construction,
one can obtain models based on LP for a language containing its own truth predicate,
that is, complete models that do not admit truth-value gaps but do admit truth-value
gluts instead.

In this section I first introduce the semantics of LP for arbitrary first-order lan-
guages. Then, I present the languages L and LT, with which we work in the remainder
of the paper. LT contains a monadic predicate symbol T intended to serve as a truth
predicate. Finally, I briefly sketch a version of Kripke’s fixed-point construction to
provide models for LT based on LP in which T is a truth predicate, in a sense to be
specified.

1.1 The Logic of Paradox

Let L be a first-order language. L contains ¬,∨,∃, and = as primitive logical symbols.
Other symbols such as ∧,→,↔, ∀ are defined as usual.
Definition 1. An LP-model M of L consists of a non-empty set |M|, the domain,
and an interpretation function .M such that

• if c is an individual constant, cM ∈ |M|,
• if f is an n-ary function symbol, fM ∈ {f | f : |M|n → |M|},
• if R is an n-ary relation symbol, RM = 〈R+, R−〉 and R+ ∪R− = |M|n,
• =+ is the set {〈a, a〉 | a ∈ |M|}.

R+ and R− are to be understood as the extension and the anti-extension of R in
M. Note that nothing precludes the extension and anti-extension of a predicate to
overlap, but together they must exhaust the whole domain.
Definition 2. A variable assignment σ on an LP-model M of L is a function that
assigns members of |M| to each variable of the language. We extend σ recursively to
every term of the language as follows:

• if c is an individual constant, σ(c) = cM,
• if f is an n-ary function symbol and t1, . . . , tn are terms, σ(f(t1, . . . , tn)) =
fM(σ(t1), . . . , σ(tn)).

Definition 3. Let M be an LP-model of L, and let σ be an assignment on M. A
valuation vMσ in M is a function that assigns values from the set {0, 1

2
, 1} to each

formula of L as follows:

• vMσ (Rt1 . . . tn) =


1, if 〈σ(t1), . . . , σ(tn)〉 ∈ R+ \R−

0, if 〈σ(t1), . . . , σ(tn)〉 ∈ R− \R+

1
2
, otherwise,

• vMσ (¬ϕ) = 1− vMσ (ϕ),
• vMσ (ϕ ∨ ψ) = max{vMσ (ϕ), vMσ (ψ)},
• vMσ (∃vϕ) = max{vMσ′ (ϕ) | σ′(u) = σ(u) for all u 6= v}.

If Γ ⊆ L, we write vMσ (Γ) = i, i = 0, 1
2
, 1, to indicate that vMσ maps all members

of Γ to i. If ϕ contains no free variables, the assignment becomes irrelevant, that is,
vMσ (ϕ) = vMσ′ (ϕ) for every σ, σ′. In these cases, we sometimes omit the subscript and
simply write vM(ϕ) = i, i = 0, 1

2
, 1. We then say vM is the valuation function inM.

In a valuation, 1 stands for truth, 0 for falsity, and 1
2
for both truth and falsity.

3



Definition 4. LetM be an LP-model of L. A sentence ϕ ∈ L is true inM (M �LP ϕ)
iff vM(ϕ) > 1

2
.

If ¬ϕ is true in an LP-model, we say ϕ is false in that model. Note that in an
LP-model M there are no truth-value gaps. For every sentence ϕ either M �LP ϕ
or M �LP ¬ϕ. Since the extension and anti-extension of every predicate (including
the identity predicate) are allowed to overlap, in some models both a sentence and its
negation will turn out to be true, that is, there will be sentences that are both true and
false in some models. This means that in LP-models truth-value gluts are allowed. In
particular, all identity statements of the form t = t will come out true in every model,
but in some models also false.
Definition 5. Let Γ ⊆ L and ϕ ∈ L. ϕ is a semantic consequence of Γ in LP (Γ �LP ϕ)
iff, for every LP-model M and assignment σ on M, if vMσ (Γ) > 1

2
, then vMσ (ϕ) > 1

2
.

If ∆ ⊆ L, we say ∆ is a semantic consequence of Γ in LP (Γ �LP ∆) iff Γ �LP ϕ for
some ϕ ∈ ∆.

Since 1
2
represents a kind of truth in LP-models, it must also be preserved from

premises to conclusion in valid arguments.

LP accommodates arguments with multiple conclusions. If ∆ is finite, we can say
that the argument from Γ to ∆ is semantically valid just in case the disjunction of the
formulae in ∆ is a semantic consequence of Γ.

The following definition will become handy later in this section.
Definition 6. The complexity c(ϕ) of a formula ϕ ∈ L is defined inductively as
follows:2

• c(Rt1 . . . tn) = 0,

• c(¬ϕ) = c(ϕ) + 1,

• c(ϕ ∨ ψ) = c(ϕ) + c(ψ) + 1,

• c(∃vϕ) = c(ϕ) + 1.

1.2 The language of truth

L is the language of first-order arithmetic. It contains an individual constant 0, and
function symbols S,+, and × for successor, addition, and multiplication, respectively.
It also contains finitely many function symbols for primitive recursive (p.r.) functions,
to be specified. The only atomic formulae of L are of the form s = t, where s and
t are terms. Let N be the standard model of L and let ω be its domain. For every
n ∈ ω, the term given by 0 preceded by n occurrences of S is the numeral of n. We
denote it n̄.

Let LT := L + T be obtained by adding a primitive monadic predicate symbol
T to L , and let L ◦T := LT + ◦ be obtained by adding a primitive monadic operator
◦ to LT. We assume a standard (i.e. effective and monotonic) Gödel coding for
expressions of L ◦T . If ε is an expression of the language, we write #ε for its code,
and pεq for the numeral of its code. LT contains formulae SentLT(x), CtermLT(x),
and VarLT(x) strongly representing the sets of sentences, closed terms, and variables
of LT, respectively. SentLT also features in the metalanguage as a name for the
corresponding set. We often write ϕ(t) and ϕ(v) as short for CtermLT(v)∧ϕ(v) and
VarLT(v)∧ϕ(v), correspondingly. Let ∃tϕ abbreviate ∃x(CtermLT(x)∧ϕ). LT also
contains a formula strongly representing the recursive function that maps the code of

2Since = is a binary relation symbol, for any two terms s, t, c(s = t) = 0.
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a term of L to its value. Although it is not possible to have a function symbol for it
in the language on pain of triviality, we write val(x) = y, for perspicuity.3

LT contains a function symbol =. representing the p.r. function that maps the
codes of two terms s and t to the code of s = t. T. does a similar job for T. ¬.
represents in LT the p.r. function that assigns the code of ¬ϕ to the code of each
formula ϕ, and similarly for ∨. . ∃. represents the function that takes the code of a
formula ϕ and a variable v and returns the code of ∃vϕ. Let num(x) represent the
function that maps each number to the code of its numeral. Finally, s represents the
function that takes the codes of a formula ϕ, term t, and variable v, and returns the
code of ϕ[t/v], that is, the result of substituting all free occurrences of v in ϕ with t,
if v is free for t in ϕ. Let pϕ(ẋ)q abbreviate s(pϕ(x)q, num(x), pxq), so that x is free in
pϕ(ẋ)q, and let pϕ(t.)q abbreviate s(pϕ(x)q, t, pxq), so we can quantify over t in pϕ(t.)q as
well.

Due to Tarski’s theorem, we know there is no classical expansion of N to LT in
which Tpϕq and ϕ receive the same truth value for every sentence ϕ of LT. The
traditional way to see this is via the liar paradox. Let 〈N, S〉 be a classical expansion
of N to LT, where S ⊆ ω is the extension of T in the model. By the diagonal lemma,
provable in Robinson arithmetic, there is a sentence λ ∈ LT such that λ ↔ ¬Tpλq is
true in 〈N, S〉. Thus, we cannot have a transparent truth predicate in 〈N, S〉.

1.3 Fixed-point models

Unlike classical logic, LP does contain expansions of N to LT where each sentence
and its truth predication have the same truth value, including λ. Following Kripke’s
method, we can construct such models, as shown in what follows.

Let 〈N, S+, S−〉 be an LP-model that expands N to LT. S+ is the extension of
T and S− its anti-extension. Note that, as in N, = is interpreted classically, so all
identity statements will get a classical truth value in 〈N, S+, S−〉. Truth-value gluts
are confined to the fragment of the language containing the truth predicate.

Let SentLT be ω \ SentLT , and let Φ : ℘(ω)2 → ℘(ω)2 be such that

Φ(S+, S−) = 〈{#ϕ ∈ SentLT | 〈N, S
+, S−〉 �LP ϕ},

{#ϕ ∈ SentLT | 〈N, S
+, S−〉 �LP ¬ϕ} ∪ SentLT〉

Φ maps the extension of T in an LP-model of LT to the set of codes of true sentences
in the model, and the anti-extension to the set of codes of false sentences plus the
numbers that don’t codify a sentence. Note that the resulting model 〈N,Φ(S+, S−)〉
is an LP-model as well. If Φ(S+, S−) = 〈S+, S−〉, we say 〈N, S+, S−〉 is a fixed-point
model of LT.
Proposition 7. If 〈N, S+, S−〉 is a fixed-point model and ϕ a sentence of LT, then
v〈N,S

+,S−〉(ϕ) = v〈N,S
+,S−〉(Tpϕq).

Proof. Let us write v for v〈N,S
+,S−〉, for perspicuity. If v(ϕ) = 1, then 〈N, S+, S−〉 �LP

ϕ but 〈N, S+, S−〉 2LP ¬ϕ. Thus, ϕ ∈ S+ \ S−, so v(Tpϕq) = 1. Similarly, if v(ϕ) = 0,
then 〈N, S+, S−〉 2LP ϕ and 〈N, S+, S−〉 �LP ¬ϕ. Thus, ϕ ∈ S− \ S+, so v(Tpϕq) = 0.
Finally, if v(ϕ) = 1

2
, then 〈N, S+, S−〉 �LP ϕ and 〈N, S+, S−〉 �LP ¬ϕ. Thus, ϕ ∈

S+ ∩ S−, so v(Tpϕq) = 1
2
.

3Since L has a function symbol s for the substitution function, as stated in the following
paragraph, we can obtain a version of the strong diagonal lemma. If val(x) were a term of the
language, strong diagonalisation would entail the existence of a term t such that t = pS(val(t))q,
which would imply that val(t) = S(val(t)).
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Therefore, if there were a fixed-point model, we would have an interpretation of
LT in which T is a transparent truth predicate. Next we construct such model. First,
we define a transfinite sequence of ordered pairs of subsets of ω as follows:

〈S+
α ,S

−
α 〉 =


〈ω, ω〉, if α = 0

Φ(S+
α−1, S

−
α−1), if α is a successor ordinal

〈
⋂
β<α S+

β ,
⋂
β<α S−β 〉, if α is a limit ordinal

Note that 〈N, S+
0 ,S

−
0 〉 is an LP-model of LT. For every ordinal α, let vα be the

valuation function in 〈N, S+
α ,S

−
α 〉.

Lemma 8. (i) Let α < β. If vα(ϕ) = 1, then vβ(ϕ) = 1, and if vα(ϕ) = 0, then
vβ(ϕ) = 0.

(ii) If α < β, then S+
β ⊆ S+

α and S−β ⊆ S−α , that is, the sequence is monotonically
decreasing.

Proof. (i) By induction on the complexity of ϕ. If ϕ is an atomic sentence, then it
is either an identity statement or of the form Tn̄. In the former case the result
follows trivially from the fact that identity statements receive the same value in
every model of the sequence. We prove the latter case by a transfinite induction
on α. If α = 0, vα(Tn̄) = 1

2
. Assume the result holds for all γ < α, and let

vα(Tn̄) = 1. Then, n ∈ S+
α \ S−α , so n = #ψ ∈ SentLT . If α is a successor

ordinal, 〈N, S+
α−1,S

−
α−1〉 2LP ¬ψ, that is, vα−1(ψ) = 1. By inductive hypothesis,

vβ(ψ) = 1 for all β > α − 1. Therefore, vβ(Tpψq) = 1 for all β > α. If α is a
limit ordinal, there exists γ < α such that #ψ ∈ S+

γ \ S−γ . Thus, vγ−1(ψ) = 1.
By inductive hypothesis, vβ(ψ) = 1 for all β > γ − 1. Therefore, vβ(Tpψq) = 1
for all β > α. The proof for vα(Tn̄) = 0 is symmetrical, except for n ∈ SentLT .
Note that in this case vβ(Tn̄) = 0 for every β > 0.
Assume the result holds for every sentence of complexity less than c(ϕ), and let
ϕ := ¬ψ. If vα(ϕ) = 1, vα(ψ) = 0. By inductive hypothesis, for every β > α we
have that vβ(ψ) = 0. Thus, for every β > α we also have that vα(¬ψ) = 1. If
vα(ϕ) = 0, the proof is symmetrical. The cases in which ϕ is a disjunction or an
existential claim can be dealt with in a similar way.

(ii) Let α < β. If β = 0, the proof is trivial. Thus, let β > 0, and assume n /∈ S+
α . If

n ∈ SentLT , then n /∈ S+
β either. If n = #ϕ ∈ SentLT , then vα−1(ϕ) = 0. By 1,

vβ−1(ϕ) = 0. Therefore, n /∈ S+
β . The proof of S−β ⊆ S−α is symmetrical.

Thus, once a sentence in the sequence of models 〈N, S+
α , S−α 〉 acquires a classical

truth value at some ordinal, it receives that value in every later stage in the sequence.
Also, once a sentence leaves the extension or anti-extension of the truth predicate in the
sequence at an ordinal, it never re-enters the extension or anti-extension, respectively,
at a later stage. Therefore, we have the following result.
Proposition 9. For some ordinal α, Φ(S+

α ,S−α ) = 〈S+
α , S−α 〉, that is, the sequence

reaches a fixed point.

Proof. By point 2 of Lemma 8 and cardinality considerations.

Let ξ be the smallest ordinal such that Φ(S+
ξ ,S

−
ξ ) = 〈S+

ξ , S
−
ξ 〉. Therefore, 〈N, S

+
ξ ,S

−
ξ 〉

is a fixed-point model of LP. This shows that LP is able to accommodate a transparent
truth predicate in the presence of paradoxical expressions.

Paradoxical expressions such as λ cannot receive a classical truth value in any
model in which every sentence and its truth ascription have the same truth value.
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Therefore, in fixed-point LP-models, all paradoxical expressions receive truth value 1
2
.

In less technical terms, they are all both true and false.

2 Two axiomatisations

In this section a calculus for LP is given. Then, the logic LP◦ is introduced both
semantically and proof-theoretically. I show that LP◦ is an LFI, as it extends LP with
a consistency operator ◦, intended as a device for recovering classical reasoning on
demand. Then, I present two axiomatisations of the family of fixed-point LP-models
introduced in 1.3: a paraconsistent one, CKF, and a classical one, KFG. As we will see
in the next section, it turns out that (the internal logic of) KFG is stronger than CKF,
not because CKF’s underlying logic is incomplete, and not with respect to the truth-
theoretic content of each theory, but with respect to their arithmetical consequences.
This implies that abandoning classical logic for a paraconsistent one can affect the non-
semantic content of a theory even in the presence of consistency operators, contrary
to what is normally believed.

2.1 Axiomatising the Logic of Paradox

The obvious way of axiomatising the fixed-point LP-models introduced in the previous
section is over a sound and complete calculus with respect to the class of all LP-
models. In this section I provide a Gentzen-style multiple-conclusion sequent calculus
with such characteristics. However, the theory will be formulated in LP◦. We enrich
the language with a consistency operator to enforce classicality when needed, that is,
when no truth-theoretic content is involved.

There are several ways to give a sequent calculus for LP.4 My presentation is close
to Avron’s [2, 3], but contains rules for the quantifiers and the identity predicate. Let
L be a first-order language as in section 1.1. Recall a literal is a formula that is either
atomic or the negation of an atomic formula. Let Γ,∆ ⊆ L be finite sets of formulae,
ϕ,ψ be formulae, t be a term, and u, v variables of L. A sequent of L has the form
Γ ⇒ ∆. For perspicuity, we write Γ, ϕ and Γ,∆ for Γ ∪ {ϕ} and Γ ∪∆, respectively.
The calculus for LP consists of the following axiom and rules:

Γ, ϕ⇒ ϕ,∆ (I)

Γ, ϕ⇒ ∆ Γ⇒ ϕ,∆
(Cut)

Γ ⇒ ∆

Γ, t = t ⇒ ∆
(Ref)

Γ ⇒ ∆

Γ, s = t, ϕ[s/v], ϕ[t/v] ⇒ ∆
(Repl)

Γ, s = t, ϕ[s/v] ⇒ ∆

Γ, ϕ⇒ ¬ϕ,∆
(¬R)

Γ ⇒ ¬ϕ,∆

4See, for instance, Beall [6] for a formulation of a multi-conclusion 2-sided sequent calculus
for the propositional fragment of LP inspired in tableaux, and Ripley [28] for a 3-sided sequent
calculus for first-order languages with identity.
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Γ, ϕ ⇒ ∆
(¬¬L)

Γ,¬¬ϕ ⇒ ∆

Γ ⇒ ϕ,∆
(¬¬R)

Γ ⇒ ¬¬ϕ,∆

Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆
(∨L)

Γ, ϕ ∨ ψ ⇒ ∆

Γ ⇒ ϕ,ψ,∆
(∨R)

Γ ⇒ ϕ ∨ ψ,∆

Γ,¬ϕ,¬ψ ⇒ ∆
(¬∨L)

Γ,¬(ϕ ∨ ψ) ⇒ ∆

Γ⇒ ¬ϕ,∆ Γ⇒ ¬ψ,∆
(¬∨R)

Γ ⇒ ¬(ϕ ∨ ψ),∆

Γ, ϕ[u/v] ⇒ ∆
(∃L)

Γ, ∃vϕ ⇒ ∆

Γ ⇒ ϕ[t/v],∆
(∃R)

Γ ⇒ ∃vϕ,∆

Γ,¬ϕ[t/v] ⇒ ∆
(¬∃L)

Γ,¬∃vϕ ⇒ ∆

Γ ⇒ ¬ϕ[u/v],∆
(¬∃R)

Γ ⇒ ¬∃vϕ,∆

The axiom and (Repl) are restricted to cases in which ϕ is a literal. In (¬R) ϕ
must be an atomic formula. In (∃L) and (¬∃R), u cannot be free in the conclusion.
Restrictions on (I), (Repl), and (¬R) are just there to facilitate the proofs of cut-
elimination, soundness, and completeness given in the appendix. Unrestricted versions
of these rules can be easily shown to be admissible in the system.

Given the availability of (Cut) and that we allow for contexts in (I), the structural
rule of weakening, that is,

Γ ⇒ ∆ (W)
Γ,Γ′ ⇒ ∆,∆′

is also admissible in LP.

(Ref) and (Repl) are inter-derivable with the sequents⇒ t = t and s = t, ϕ[s/v]⇒
ϕ[t/v], respectively. Although the latter are more commonly used, I choose the rules
over the sequents to facilitate proofs of metatheoretic results, following Takeuti [30].5

The unrestricted version of (¬R), the sequents Γ ⇒ ϕ,¬ϕ,∆, and the following
inference

Γ, ϕ ⇒ ∆

Γ ⇒ ¬ϕ,∆

are all inter-derivable. They express that the negation in LP is exhaustive, that is, for
every sentence ϕ we have that either ϕ or ¬ϕ; there are no truth-value gaps. Indeed,
together with (∨R), they entail all sequents of the form ⇒ ϕ∨¬ϕ, that is, the Law of
Excluded Middle.

On the other hand, since we lack a rule that allows us to introduce the negation
symbol to the left, we cannot derive any sequent of the form ϕ,¬ϕ ⇒.6 As a con-
sequence, the rule of Explosion, given by the sequents ϕ,¬ϕ ⇒ ψ, and according to
which a contradiction entails everything, is not valid in LP.

Note as well that not all sequents of the form ϕ,ϕ → ψ ⇒ ψ—i.e. ϕ,¬ϕ ∨ ψ ⇒
ψ—are derivable in LP, for they are not all sound with respect to the semantics
introduced in section 1.1. If ϕ is both true and false in a model and assignment

5See also Troelstra & Schwichtenberg [31] and Negri & von Plato [22].
6This follows from the soundness theorem, Proposition 37.
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and ψ is just false, ϕ → ψ (¬ϕ ∨ ψ) turns out both true and false in that model and
assignment. In other words, neither Modus Ponens nor Disjunctive Syllogism are valid
inferences in LP.

Let the formula with the connectives in the conclusion of a rule be the principal
formula of that rule. (Ref) and (Repl) have no principal formulae. The calculus for
LP is not canonical in the following sense: more than one connective occurs in the
principal formulae of some rules, connectives occur sometimes also in the premisses,
and formulae in the premisses are not always subformulae of those in the conclusion,
that is, the subformula property doesn’t hold. Unfortunately, this is not a defect of
our formulation but an intrinsic feature of LP’s consequence relation (cf. Avron [3]).

If a sequent Γ ⇒ ∆ is derivable in LP from a (possibly empty) set of sequents
Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n, let us write Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n `LP Γ ⇒ ∆, and
similarly for LP◦, the system that will be introduced in the next section.
Definition 10. Let Γ ⊆ L and ϕ ∈ L. ϕ is a proof-theoretic consequence of Γ in LP
(Γ `LP ϕ) iff `LP Γ⇒ ϕ.

2.2 A Logic of Formal Inconsistency

We now expand the language and the calculus for LP with a consistency operator. Let
L◦ := L+ ◦ extend L with a monadic primitive operator ◦. If ϕ is a formula of L◦, so
is ◦ϕ. An LP◦-model is just an LP-model, and assignments are defined as before.
Definition 11. Let M be an LP◦-model of L◦, and let σ be an assignment on M.
A valuation vMσ inM is a function that assigns values from the set {0, 1

2
, 1} to each

formula in L◦ according to the clauses in Definition 1 plus the following:

• vMσ (◦ϕ) =

{
1, if vMσ (ϕ) 6= 1

2

0, otherwise

Definition 12. Let M be an LP◦-model of L◦. A sentence ϕ ∈ L◦ is true in M
(M �LP◦ ϕ) iff v

M
σ (ϕ) > 1

2
for every assignment σ onM.

As before, a sentence ϕ can be both true and false in a model. In that case, every
assignment on the model will map ϕ to 1

2
. As a consequence, ◦ϕ will receive the value

0. If, on the contrary, ϕ has a classical truth value in a model, ◦ϕ receives the value 1.
Thus, ◦ is a consistency operator: it applies precisely to those formulae that are not
both true and false. Moreover, no formula of the form ◦ϕ can be both true and false.
Consistency is a classical matter.
Definition 13. Let Γ ⊆ L◦ and ϕ ∈ L◦. ϕ is a semantic consequence of Γ in LP◦

(Γ �LP◦ ϕ) iff, for every LP◦-model M and assignment σ on M, if vMσ (Γ) > 1
2
, then

vMσ (ϕ) > 1
2
.

The calculus for LP◦ extends LP’s with the following rules:

Γ⇒ ϕ,∆ Γ⇒ ¬ϕ,∆
(◦L)

Γ, ◦ϕ ⇒ ∆

Γ, ϕ,¬ϕ ⇒ ∆
(◦R)

Γ ⇒ ◦ϕ,∆

Γ, ϕ,¬ϕ ⇒ ∆
(¬◦L)

Γ,¬◦ϕ ⇒ ∆

Γ⇒ ϕ,∆ Γ⇒ ¬ϕ,∆
(¬◦R)

Γ ⇒ ¬◦ϕ,∆

Definition 14. Let Γ ⊆ L◦ and ϕ ∈ L◦. ϕ is a proof-theoretic consequence of Γ in
LP◦ (Γ `LP◦ ϕ) iff `LP◦ Γ⇒ ϕ.

In the appendix I prove cut-elimination, soundness, and completeness for this
calculus with respect to the semantics just given. The rule (W) is also admissible in
LP◦.
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LP◦ is equivalent to the well-known system LFI1∗ of Carnielli, Marcos, & de Amo
[14], later axiomatised by Omori & Waragai [23] in a Hilbert-style calculus. LP◦

and LFI1∗ are also equivalent to the system CLuNs with a primitive symbol ⊥ for
the ‘Falsehood’, introduced semantically and axiomatised in a Hilbert-style calculus
in Batens & De Clercq [5]. The logical operators of each of these three systems are
definable in the other two in a straightforward manner.

LFI1∗ and CLuNs are often seen as expansions of classical logic rather than weak-
enings, as all classical operators can be easily defined in them. A fortiori, the same
can be said about our LP◦. However, LP◦ must be understood here as a subclassical
logic, since the official negation can only behave as our primitive one ¬ and the official
conditional as the material conditional of LP, to guarantee the existence of fixed-point
models.

As a consequence, just like in LP, neither Explosion nor Modus Ponens (or, what
is the same, Disjunctive Syllogism) can be said to be valid in LP◦. Nonetheless, it’s
easy to show that all sequents of the form

◦ϕ,ϕ, ϕ→ ψ ⇒ ψ

that is,
◦ϕ,ϕ,¬ϕ ∨ ψ ⇒ ψ

are derivable in the system. If consistency of the antecedent is ensured, then Modus
Ponens is a valid inference. Thus, so is Disjunctive Syllogism.

An LFI can be seen as a paraconsistent logic in which Explosion is allowed only
locally. More formally, we have the following two definitions:7

Definition 15. A logic L formulated in L◦ is an LFI iff

1. ϕ,¬ϕ 0L ψ for some formulae ϕ,ψ ∈ L◦;
2. there are ϕ,ψ ∈ L◦ such that

(a) ◦ϕ,ϕ 0L ψ, and
(b) ◦ϕ,¬ϕ 0L ψ; and

3. ◦ϕ,ϕ,¬ϕ `L ψ for all ϕ,ψ ∈ L◦.
Definition 16. A logic L formulated in L◦ is a strong LFI iff

1. there are formulae ϕ,ψ ∈ L◦ such that
(a) ϕ,¬ϕ 0L ψ,
(b) ◦ϕ,ϕ 0L ψ, and
(c) ◦ϕ,¬ϕ 0L ψ; and

2. ◦ϕ,ϕ,¬ϕ `L ψ for all ϕ,ψ ∈ L◦.

Every strong LFI is an LFI, but the other direction of the implication is not true.
This is because in Definition 16, ϕ and ψ have to be the same witnesses of clauses
2.(a), 2.(b), and 2.(c), whereas in Definition 15 only clauses 2.(a) and 2.(b) have to
satisfy this condition; the witnesses of clause 1 can be different formulae.
Proposition 17. LP◦ is a strong LFI.

Proof. Clauses 1.(a)-(c) of Definition 16 follow by the soundness of the system, if we
take ϕ and ψ to be different atomic formulae of L◦. For clause (2), consider the
following derivation in LP◦:

ϕ,¬ϕ ⇒ ϕ,ψ ϕ,¬ϕ ⇒ ¬ϕ,ψ
(◦L)

◦ϕ,ϕ,¬ϕ ⇒ ψ
7See, e.g. Carnielli, Coniglio & Marcos [12] and Carnielli & Coniglio [11, chap. 2].
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2.3 Kripke’s fixed-point models in an LFI

In the present section I introduce the system CKF, standing for ‘Complete Kripke-
Feferman’. CKF is a variant of the system PKF of Halbach & Horsten [19], an ax-
iomatisation of Kripke’s fixed-point models with the Strong Kleene evaluation scheme
formulated in basic De Morgan logic. PKF is in turn a variant of the axiomatisation of
these models in classical logic introduced by Feferman [15], dubbed ‘KF’ after Kripke
and Feferman.8

We want CKF ⊆ L ◦T to axiomatise the class of fixed-point LP-models of LT in
LP◦. This is plausible, since every LP-model is an LP◦-model. Note that, while it
will still be true that vM(ϕ) = vM(Tpϕq) for every valuation vM in a fixed-point
model M and every sentence ϕ ∈ LT, some sentences containing the consistency
operator ◦ will not satisfy this equivalence. For only codes of sentences of LT are
allowed in the extension of the truth predicate in such models. Unfortunately, it is
not possible to redefine the operator Φ in order to achieve fixed points, that is, a
transparent truth predicate for the whole language L ◦T . The diagonal lemma applied
to the formula ◦Tx∧¬Tx delivers a sentence λ′, such that, in every model 〈N, S+, S−〉
of LT, v〈N,S

+,S−〉(λ′) = v〈N,S
+,S−〉(◦Tpλ′q ∧ ¬Tpλ′q). Thus, λ′ ‘says’ of itself that

it’s just false, excluding the possibility of it being both true and false. This implies
that v〈N,S

+,S−〉(λ′) 6= v〈N,S
+,S−〉(Tpλ′q).9 Sentences like λ′ are known as ‘revenge

paradoxes’. They are paradoxical expressions that emerge from the very machinery
we introduce to deal with the ordinary paradoxes. To avoid them, we settle for applying
the truth predicate to expressions of LT only.

To axiomatise the class of fixed-point models 〈N, S+, S−〉 in LP◦ we need to add
axioms for both the arithmetical and the truth-theoretic vocabulary. Let CKF extend
LP◦ with an initial sequent Γ ⇒ ϕ,∆ for each basic axiom ϕ of Peano arithmetic,
including definitions for each function symbol other than S, +, and ×, and the rule of
induction

Γ, ϕ(x) ⇒ ϕ(Sx),∆
(IND)

Γ, ϕ(0) ⇒ ϕ(t),∆

for each formula ϕ(v) ∈ L ◦T , if x is not free in Γ,∆, and ϕ(0) and t is arbitrary. We
need to add the contexts Γ,∆ to guarantee the admissibility of (W) in the theory.

Since we want to keep classical reasoning for the T-free fragment of the language,
we also add initial sequents

Γ⇒ ◦ϕ,∆ (CON)
for each ϕ ∈ L . This means that we can apply, for instance, Modus Ponens to
sentences in L when needed. In particular, we can reason classically from the basic
axioms of Peano arithmetic of conditional form. However, the same cannot be said
about the induction schema. Some instances of this principle do contain T. Given that
the material conditional does not necessarily detach in LP◦ for formulae containing T,
we need to formulate induction as a rule instead. In any case, it is clear that we can
derive ⇒ ϕ for every theorem ϕ ∈ L of Peano arithmetic.

Beall [9, 8] puts forward a so-called ‘shrieking’ rule in order to equip (a Hilbert-
style calculus presentation of) LP with a device for recovering classical reasoning when

8‘KF’ is not the original name Feferman gave to the system. See Halbach [18, chap. 15].
9This means that CKF contains what Barrio, Pailos, & Szmuc [4] call a ‘strong procedure

for self-reference’. Note that the identity of truth values in every extension of N already follows
from standard (weak) versions of diagonalisation. The strong diagonal lemma is not required.
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needed.10 His proposal consists, roughly, in closing a theory formulated over LP under
the rule11

ϕ,¬ϕ ` ⊥
for every ϕ from which we wish to reason classically. Unfortunately, Halbach & Nicolai
[20] show that this strategy cannot succeed in bringing us back classical reasoning for
all arithmetical principles. Our hope is that enriching the language with a consistency
operator, which is not definable in LP, has better results.

CKF also contains the following initial sequents governing the truth predicate:

CKF1 (i) Γ, val(s) = val(t),¬T(s=. t)⇒ ∆

(ii) Γ, val(s) 6= val(t),T(s=. t)⇒ ∆

CKF2 (i) Γ, SentLT(x),T¬. x⇒ ¬Tx,∆
(ii) Γ, SentLT(x),¬Tx⇒ T¬. x,∆

CKF3 (i) Γ, SentLT(x∨. y),T(x∨. y)⇒ Tx ∨ Ty,∆
(ii) Γ, SentLT(x∨. y),Tx ∨ Ty ⇒ T(x∨. y),∆

CKF4 (i) Γ, SentLT(x∨. y),T¬. (x∨. y)⇒ ¬(Tx ∨ Ty),∆

(ii) Γ, SentLT(x∨. y),¬(Tx ∨ Ty)⇒ T¬. (x∨. y),∆

CKF5 (i) Γ, SentLT(∃.vx),T(∃.vx)⇒ ∃tTs(x, t,v),∆

(ii) Γ, SentLT(∃.vx), ∃tTs(x, t,v)⇒ T(∃.vx),∆

CKF6 (i) Γ, SentLT(∃.vx),T(¬. ∃.vx)⇒ ¬∃tTs(x, t,v),∆

(ii) Γ, SentLT(∃.vx),¬∃tTs(x, t,v)⇒ T(¬. ∃.vx),∆

CKF7 (i) Γ,Tval(t)⇒ TT. t,∆
(ii) Γ,TT. t⇒ Tval(t),∆

CKF8 (i) Γ,¬Tval(t)⇒ T¬. T. t,∆
(ii) Γ,T¬. T. t⇒ ¬Tval(t),∆

CKF9 Γ,Tx⇒ SentLT(x),∆

CKF1 guarantees that true identity statements belong just to the extension of T,
and false ones just to the anti-extension. CKF2-CKF6 ensure that the extension and
anti-extension of the truth predicate are closed under logical consequence. CKF7 and
CKF8 allow us to iterate the truth predicate. Finally, CKF9 ensures that only sentences
are in the extension of the truth predicate. Despite having initial sequents CKF2.(i) and
(ii) indicating that truth commutes with negation, we need special axioms for negated
disjunctions, negated existential claims, and negated truth ascriptions to ensure that
formulae on each side of the sequent arrow have the same truth value—e.g. T(x∨. y)
and Tx ∨ Ty. The reason is the sequent arrow in LP◦ does not contra-pose: ϕ ⇒ ψ
does not necessarily imply ¬ψ ⇒ ¬ϕ.

We say ϕ is a theorem of CKF ( CKF `LP◦ ϕ) if the sequent ⇒ ϕ is derivable in
CKF, and similarly for the other theories that will be introduced later. The system
CKF� is obtained from CKF by restricting (IND) to formulae of L only.
Proposition 18. The following sequents are derivable in CKF� for every formula
ϕ(v1, . . . , vn) ∈ LT:

Γ, ϕ(val(t1), . . . , val(tn))⇒ Tpϕ(t.1, . . . , t.n)q,∆ (T-In)
Γ,Tpϕ(t.1, . . . , t.n)q⇒ ϕ(val(t1), . . . , val(tn)),∆ (T-Out)

Γ,¬Tpϕ(t.1, . . . , t.n)q⇒ ¬ϕ(val(t1), . . . , val(tn)),∆ (CT-In)
Γ,¬ϕ(val(t1), . . . , val(tn))⇒ ¬Tpϕ(t.1, . . . , t.n)q,∆ (CT-Out)

10See also Beall [6].
11⊥ is any sentence that is never true.
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Proof. By induction on the complexity of ϕ. Recall that if t is a term, val(ptq) = t is
a theorem of Peano arithmetic. Also, SentLT(pϕ(t.1, . . . , t.n)q) is a theorem of Peano
arithmetic, since v1, . . . , vn are the only free variables in ϕ(v1, . . . , vn) and t1, . . . , tn
are codes of closed terms. As initial cases we have to consider literals. Then, T-In
and T-Out can be derived easily from CKF1, CKF2, CKF7, and CKF8. Cases in which
ϕ is of the form ¬¬ψ, ψ ∨ χ, ¬(ϕ ∨ χ) follow directly from the inductive hypothesis
and the initial sequents CKF2-CKF4. For ∃vψ and ¬∃vψ, the sequents CKF5, CKF6,
and CKF9 are needed. As an example, I consider the case for T-Out in which ϕ is of
the form ¬(ψ ∨χ). The first sequents of the following two derivations are obtained by
inductive hypothesis:

Γ,Tpψ(t.1, . . . , t.n)q ⇒ ψ(val(t1), . . . , val(tn)), χ(val(t1), . . . , val(tn)),∆
(∨R)

Γ,Tpψ(t.1, . . . , t.n)q ⇒ ψ(val(t1), . . . , val(tn)) ∨ χ(val(t1), . . . , val(tn)),∆

Γ,Tpχ(t.1, . . . , t.n)q ⇒ ψ(val(t1), . . . , val(tn)), χ(val(t1), . . . , val(tn)),∆
(∨R)

Γ,Tpχ(t.1, . . . , t.n)q ⇒ ψ(val(t1), . . . , val(tn)) ∨ χ(val(t1), . . . , val(tn)),∆

By an application of (∨L) to the last sequents of these derivations, we obtain

Γ,Tpψ(t.1, . . . , t.n)q ∨ Tpχ(t.1, . . . , t.n)q ⇒ ϕ(val(t1), . . . , val(tn)),∆

Finally, by CKF3 and an application of (Cut), we get

Γ,Tpϕ(t.1, . . . , t.n)q ⇒ ϕ(val(t1), . . . , val(tn)),∆

Call a sequent Γ ⇒ ∆ sound with respect to a class of pairs of models and
corresponding assignments iff for every model M and assignment σ in the class, if
vMσ (Γ) > 1

2
, then vMσ (ϕ) > 1

2
for some ϕ ∈ ∆. Both CKF and CKF� are sound with

respect to the class of fixed-point models introduced in section 1.3.
Lemma 19 (Soundness of CKF). If Γ⇒ ∆ is derivable in CKF and 〈N, S+, S−〉 is a
fixed-point model, Γ⇒ ∆ is sound in 〈N, S+, S−〉 (relative to every assignment).

Proof. Let 〈N, S+, S−〉 be a fixed-point LP-model. We have to show that all the initial
sequents Γ⇒ ∆ of CKF are sound in 〈N, S+, S−〉 relative to every assignment, and that
(IND) preserves soundness in this model, relative to every assignment. This is clearly
the case for every sequent that corresponds to a basic axioms of Peano arithmetic,
since the axioms are all true in N. The rule of induction must preserve soundness as
well, for the domain of the model is ω. Given that this model assigns classical truth
values to all sentences in L , the initial sequents Γ⇒ ◦ϕ,∆ are also sound.

Let σ be an assignment on 〈N, S+, S−〉, and let us write vσ for v〈N,S
+,S−〉

σ . The
soundness of CKF1 follows directly from Proposition 7 and the fact that 〈N, S+, S−〉
extends N. For CKF2.(i), assume vσ(SentLT(x)) > 1

2
and vσ(T¬. x) > 1

2
. Let σ(x) =

#ϕ. If vσ(T¬. x) = 1, then vσ(¬ϕ) = 1, so #ϕ ∈ S−. Thus, vσ(¬Tx) > 1
2
. If

vσ(T¬. x) = 1
2
, then vσ(¬ϕ) = 1

2
, so #ϕ ∈ S− again. Therefore, vσ(¬Tx) > 1

2
. The

proof for CKF2.(ii) is symmetrical. The proofs of soundness of the other initial sequents
are similar.

If Th is a theory over a logic L andM is a model for that logic, we writeM �L
Th to indicate that all sequents derivable in Th are sound in M relative to every
assignment on the model.
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Lemma 20. If 〈N, S+, S−〉 �LP◦ CKF�, then 〈N, S+, S−〉 is a fixed-point model.

Proof. Assume every sequent derivable in CKF is sound in 〈N, S+, S−〉 relative to every
assignment. We need to show that Φ(S+, S−) = 〈S+, S−〉, that is,

S+ = {#ϕ ∈ SentLT | 〈N, S
+, S−〉 �LP ϕ}

S− = {#ϕ ∈ SentLT | 〈N, S
+, S−〉 �LP ¬ϕ} ∪ SentLT

We know that n ∈ S+ iff n = #ϕ ∈ SentLT for some ϕ, by CKF9, and Tpϕq is true in
the model. By Proposition 18, this is the case iff ϕ is also true in the model, which
holds iff n ∈ {#ϕ ∈ SentLT | 〈N, S

+, S−〉 �LP ϕ}.

On the other hand, n ∈ S− iff either n = #ϕ ∈ SentLT for some ϕ ∈ LT and
¬Tpϕq is true in the model, or n ∈ SentLT . By CT-In in Proposition 18, this is
equivalent to having that either n = #ϕ ∈ SentLT for some ϕ ∈ LT and ¬ϕ is true
in the model, or n ∈ SentLT , which means that n ∈ {#ϕ ∈ SentLT | 〈N, S

+, S−〉 �LP

¬ϕ} ∪ SentLT .

Proposition 21. 〈N, S+, S−〉 �LP◦ CKF (CKF�) iff 〈N, S+, S−〉 is a fixed-point model.

Proof. Directly from Lemmata 19 and 20.

2.4 Kripke-Feferman with gluts

Since the fixed-point models introduced in section 1.3 are not classical but paracon-
sistent, there is little point in trying to capture them in classical logic, at least in
the sense of Proposition 21. This would require a transparent truth predicate over
arithmetic, which is not possible. If we want to remain within the limits of classical
logic, what we can do instead is aim at an external axiomatisation of these models, as
suggested by Reinhardt [27].

Given a theory Th formulated in LT, its internal logic ITh is the set of sentences
ϕ ∈ LT such that Tpϕq is a theorem of Th, whereas its external logic is the set of
theorems of Th. Thus, the internal logic of a truth theory is the set of sentences the
theory proves to be true, and the external logic is simply the set of sentences that
can be derived in the system. In an external axiomatisation of the class of fixed-
points models, only the internal logic will be sound with respect to this class, whilst
the classicality of the external logic will reflect the classicality of the metalanguage in
which these models are specified.

Feferman’s famous KF is an external axiomatisation of Kripke’s paracomplete and
paraconsistent fixed-point models with the strong Kleene evaluation scheme. In this
section I introduce KFG, for ‘Kripke-Feferman with Gluts’. KFG is an extension of
KF with initial sequents that preclude the possibility of truth-value gaps, ensuring
complete extensions of the truth predicate. I show that the internal logic of KFG,
IKFG, captures Kripke’s paraconsistent fixed-point models in such a way that KFG can
indeed be seen as an external axiomatisation of this class of models.

An alternative way of understanding classical theories such as KF and KFG is as
axiomatisations, not of Kripke’s fixed-point models, but of a closely related family:
the one that results from closing off the non-classical models. The closing-off of an
LP-model 〈N, S+, S−〉 is the classical model 〈N, S+〉. Since, for instance, λ belongs to
S+ and S−, both λ and ¬λ are in S+, so some sentences are declared to be both true
and false in the classical model as well. In this section I show that KFG can be said
to capture the class of closing-offs of fixed-point LP-models.
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A sequent calculus for first-order classical logic with identity, CL, is obtained by
extending the calculus for LP with

Γ,¬ϕ ⇒ ϕ,∆
(¬L)

Γ,¬ϕ ⇒ ∆

for every atomic sentence ϕ of the language. As before, we can show that an unre-
stricted version of this rule is admissible in the system. Moreover, the unrestricted
version of (¬L), the sequents Γ, ϕ,¬ϕ⇒ ∆, and the inference

Γ ⇒ ϕ,∆

Γ,¬ϕ ⇒ ∆

are inter-derivable, so the rule of explosion becomes valid. As a consequence, so does
Disjunctive Syllogism (i.e. Modus Ponens).

Let KFG ⊆ LT extend CL with all initial sequents Γ ⇒ ϕ,∆ where ϕ is a basic
axiom of Peano arithmetic, the rule (IND) for all formulae in LT, and the following:

KFG1 (i) Γ, val(s) = val(t)⇒ T(s=. t),∆

(ii) Γ,T(s=. t)⇒ val(s) = val(t),∆

KFG2 (i) Γ, val(s) 6= val(t)⇒ T(¬. s=. t),∆

(ii) Γ,T(¬. s=. t)⇒ val(s) 6= val(t),∆

KFG3 (i) Γ, SentLT(x),T¬.¬. x⇒ Tx,∆
(ii) Γ, SentLT(x),Tx⇒ T¬.¬. x,∆

KFG4 (i) Γ, SentLT(x∨. y),T(x∨. y)⇒ Tx ∨ Ty,∆
(ii) Γ, SentLT(x∨. y),Tx ∨ Ty ⇒ T(x∨. y),∆

KFG5 (i) Γ, SentLT(x∨. y),T¬. (x∨. y)⇒ T¬. x ∧ T¬. y,∆
(ii) Γ, SentLT(x∨. y),T¬. x,T¬. y ⇒ T¬. (x∨. y),∆

KFG6 (i) Γ, SentLT(∃.vx),T(∃.vx)⇒ ∃tTs(x, t,v),∆

(ii) Γ, SentLT(∃.vx), ∃tTs(x, t,v)⇒ T(∃.vx),∆

KFG7 (i) Γ, SentLT(∃.vx),T(¬. ∃.vx)⇒ ∀tTs(¬. x, t,v),∆

(ii) Γ, SentLT(∃.vx), ∀tTs(¬. x, t,v)⇒ T(¬. ∃.vx),∆

KFG8 (i) Γ,Tval(t)⇒ TT. t,∆
(ii) Γ,TT. t⇒ Tval(t),∆

KFG9 (i) Γ,T¬. val(t) ∨ ¬SentLT(val(t))⇒ T¬. T. t,∆
(ii) Γ,T¬. T. t⇒ T¬. val(t) ∨ ¬SentLT(val(t)),∆

KFG10 Γ, SentLT(x),¬Tx⇒ T¬. x,∆
KFG11 Γ,Tx⇒ SentLT(x),∆

KF is defined as KFG minus KFG10. The system KFG� is obtained by restricting in
KFG (IND) to formulae of L only. Although now the sequent arrow does contrapose,
we don’t have that T commutes with ¬ anymore, on pain of triviality. Thus, negations
have to be considered separately once more, in this case to guarantee that the extension
of the truth predicate is closed under disjunction, existential quantifiers, and iterations
of T. KFG10 ensures that there are no gaps in the extension of the truth predicate,
that is, if a sentence is not in the extension, then its negation must be.

The following results establish that KFG�, and a fortiori KFG, are able to prove a
great deal of transparency. They will be needed in later proofs.
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Proposition 22. The following sequents are derivable in KFG� for every formula
ϕ(v1, . . . , vn) ∈ L :

Γ, ϕ(val(t1), . . . , val(tn))⇒ Tpϕ(t.1, . . . , t.n)q,∆ (T-In�)
Γ,Tpϕ(t.1, . . . , t.n)q⇒ ϕ(val(t1), . . . , val(tn)),∆ (T-Out�)

Proof. The result follows easily from the sequents KFG1-KFG7 by induction on the
complexity of ϕ.

Proposition 23. The following sequents are derivable in KFG� for every formula
ϕ(v1, . . . , vn) ∈ LT:

Γ, ϕ(val(t1), . . . , val(tn))⇒ Tpϕ(t.1, . . . , t.n)q,∆ (T-In)

Proof. By induction on the complexity of ϕ. For the base case we need to consider
literals instead of just atomic formulae. The interesting case is for formulae of the
form ¬Tt. The following is a derivation in KFG� (we omit logical steps):

Γ,¬Tt ⇒ ¬Tt,∆
(KFG10)

Γ,¬Tt ⇒ T¬. t,∆ (KFG9.(i))
Γ,¬Tt ⇒ Tp¬Tt.q,∆

For the inductive step cases in which ϕ a disjunction, an existential claim, or a negation
of these two, or a double negation must be considered. They all follow easily from the
truth axioms of KFG� and the inductive hypothesis.

Following the same reasoning as Halbach & Nicolai [20], the subsequent proposition
suggests that KFG and KFG� embody somehow the same conception of truth as CKF
and CKF�, for the capture the closing-offs of the same family of models.
Proposition 24 (N-categoricity of KFG and KFG�). 〈N, S〉 �CL KFG (KFG�) iff 〈N, S〉
is the closing-off of a fixed-point LP-model.

Proof. See Lemma 4 and section 5 of Halbach & Nicolai [20].

Fischer et al. [17] ponder several ways in which an axiomatic truth system could
be said to capture a certain semantic construction. Despite there being certain draw-
backs, they lean towards the criterion of N-categoricity. Given an axiomatic theory
Th formulated over a logic L in an extension L of LT, and a class of models M for
that language expanding N, Th is N-categorical with respect to this class of models iff,
for every model M that expands N to the whole language L, M �L Th iff M ∈ M .
In other words, we say that an axiomatic theory of truth is N-categorical if, once
the interpretation of the arithmetical vocabulary is fixed, the axioms of the system
pin down the interpretation of the semantic vocabulary exactly in the desired way.
Of course, categoricity simpliciter is an impossible goal. N-categoricity, on the other
hand, is a perfectly reasonable requirement. CKF and CKF�, for instance, are both
trivially N-categorical with respect to the class of fixed-point models introduced in 1.3,
as Proposition 21 shows. In this sense, we say CKF and CKF� axiomatise or capture
the class of paraconsistent fixed-point models. More interestingly, Proposition 24 es-
tablishes the N-categoricity of KFG and KFG� with respect to the class of closing-offs
of fixed-point LP-models. Therefore, KFG and KFG� can be said to capture this class
of interpretations.

Nonetheless, neither KFG nor KFG� are sound with respect to the class of paracon-
sistent fixed-point models of the language. The internal logics of the classical systems,
by contrast, can be shown to be not only sound, but also N-categorical with respect
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to Kripke’s paraconsistent fixed-point models. Therefore, it is far more reasonable to
compare, e.g. the internal logic of KFG with CKF, rather than KFG itself.

Recall IKFG is the set {ϕ ∈ LT | KFG `CL Tpϕq}, and let IKFG� := {ϕ ∈
LT | KFG� `CL Tpϕq}. To establish our N-categoricity result, we first need the following
lemma.
Lemma 25. For every formula ϕ(v1, . . . , vn) ∈ LT, the following belong to IKFG�:

Tpϕ(t.1, . . . , t.n)q↔ ϕ(val(t1), . . . , val(tn)) (T-schema)
¬Tpϕ(t.1, . . . , t.n)q↔ ¬ϕ(val(t1), . . . , val(tn)) (CT-schema)

Proof. The result follows trivially from the definition of IKFG� and the sequents KFG8
and KFG9.

Proposition 26 (N-categoricity of IKFG and IKFG�). 〈N, S+, S−〉 �LP IKFG ( IKFG�)
iff 〈N, S+, S−〉 a fixed-point LP-model.

Proof. Let ϕ ∈ IKFG and 〈N, S+, S−〉 be a fixed-point model of LT. By Proposition
24, 〈N, S+〉 �CL KFG. Since KFG `CL Tpϕq, we have that #ϕ ∈ S+. Therefore,
〈N, S+, S−〉 �LP ϕ.

For the converse, assume 〈N, S+, S−〉 �LP IKFG�, and let v be the valuation func-
tion in 〈N, S+, S−〉. Then, we have that #ϕ ∈ S+ iff v(Tpϕq) > 1

2
, which is the case,

by the (T-schema) in Lemma 25, iff v(ϕ) > 1
2
, which means that 〈N, S+, S−〉 �LP ϕ.

Also, #ϕ ∈ S− iff v(Tpϕq) 6 1
2
, which is the case, by the (CT-schema) in Lemma

25, iff v(ϕ) 6 1
2
, which means that 〈N, S+, S−〉 �LP ¬ϕ. Therefore, 〈N, S+, S−〉 is a

fixed-point model.

3 The classical vs. the non-classical

In this section I compare CKF and CKF� with the internal logics IKFG and IKFG� of
their respective classical counterparts, KFG and KFG�. I provide two main results.
First, I show that CKF is proof-theoretically much weaker than IKFG. Second, I prove
that CKF� and IKFG� prove the same theorems in LT.

3.1 A low upper bound for the non-classical

Let BTG ⊆ LT be the result of replacing in KFG the rule of induction (IND) with the
weaker rule of internal induction,

Γ,Tpϕ(ẋ)q ⇒ Tpϕ(Sẋ)q,∆
(IIND)

Γ,Tpϕ(0)q ⇒ Tpϕ(t.)q,∆

for every formula ϕ(v) ∈ LT, if x is not free in Γ,∆, and ϕ(0) and t is arbitrary.
BTG is an extension of the system BT studied by Cantini [10], which is defined as
BTG minus KFG10. Cantini shows that BT is a subsystem of KF. Thus, BTG is a
subsystem of KFG. Extending a result by Halbach & Horsten [19], in this section
I show that BTG can internalise the proof of the soundness of CKF. Together with
Cantini’s proof-theoretic analysis for BT and some extensions, this gives an upper
bound for what CKF can prove. As it turns out, this upper bound is far lower than
IKFG’s.

Since the language of CKF, L ◦T , contains symbols that are not in LT, we need to
provide a translation of L ◦T to LT before we can prove the soundness of CKF in BTG.
Let ~v abbreviate v1, . . . , vn, and let τ : L ◦T → LT be defined by the following clauses:
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• τ(ϕ) := ϕ, if ϕ is an atomic formula
• τ(¬ϕ) := ¬τ(ϕ)

• τ(ϕ ∨ ψ) := τ(ϕ) ∨ τ(ψ)

• τ(∃vϕ) := ∃vτ(ϕ)

• τ(◦ϕ(~v)) := ¬Tpϕ(~̇v)q ∨ ¬Tp¬ϕ(~̇v)q, if ϕ is an atomic formula
• τ(◦¬ϕ) := τ(◦ϕ)

• τ(◦(ϕ ∨ ψ)) := τ((◦ϕ ∨ (ψ ∧ ◦ψ)) ∧ (◦ψ ∨ (ϕ ∧ ◦ϕ)))

• τ(◦∃vϕ) := τ(∃v(◦ϕ ∧ ϕ) ∨ ∀v(◦ϕ ∧ ¬ϕ))

• τ(◦◦ϕ) := (0 = 0)

We can say in LT that an atomic sentence of LT is consistent by indicating that
either the sentence or its negation are not in the extension of the truth predicate.
The consistency of other formulae will depend on the consistency of their atomic
components. We need to consider all cases for consistency statements because our truth
predicate is not defined for sentences containing ◦, so the clause for the translation of
◦ϕ where ϕ is atomic cannot be directly extended to all formulae of L ◦T .

To prove our first result, we need the following observation.
Proposition 27. The following sequents are derivable in BTG for every formula
ϕ(v1, . . . , vn) ∈ L :

Γ, ϕ(val(t1), . . . , val(tn))⇒ Tpϕ(t.1, . . . , t.n)q,∆ (T-In�)
Γ,Tpϕ(t.1, . . . , t.n)q⇒ ϕ(val(t1), . . . , val(tn)),∆ (T-Out�)

Proof. The proof is the same as that of Proposition 22.

If Γ ⊆ L ◦T is finite, let τ(Γ) := {τ(ϕ) : ϕ ∈ Γ},
∧

Γ be the conjunction of members
of Γ, and

∨
Γ their disjunction.

Proposition 28. If Γ ⇒ ∆ is derivable in CKF, then Tp
∧
τ(Γ)q ⇒ Tp

∨
τ(∆)q is

derivable in BTG.

Proof. It is enough to show that all initial sequents in CKF are provably sound in BTG
and that all rules of CKF provably preserve soundness in BTG. Halbach & Horsten
[19] show that BT can prove the soundness of CKF’s logical axiom and rules except
for (¬R), all of CKF’s initial arithmetical sequents, as well as (IND) for formulae of
LT, CKF2, CKF3, CKF5, CKF7, and CKF9. It remains to be seen that (¬R) and the
instances of (IND) for formulae containing ◦ provably preserves soundness, and that
(CON), CKF1, CKF4, CKF6, and CKF8 are provably sound sequents in BTG.

For (¬R), let ϕ(~v) ∈ L ◦T be an atomic formula. Thus, τ(ϕ(~v)) = ϕ(~v) ∈ LT.
Therefore, we have the following derivation in BTG:

Tp
∧
τ(Γ, ϕ(~̇v))q ⇒ Tp

∨
τ(¬ϕ(~̇v),∆)q

(KFG4,5)
Tp

∧
τ(Γ)q,Tpϕ(~̇v)q ⇒ T¬. pϕ(~̇v)q,Tp

∨
τ(∆)q

Tp
∧
τ(Γ)q ⇒ ¬Tpϕ(~̇v)q,T¬. pϕ(~̇v)q,Tp

∨
τ(∆)q

(KFG10)
Tp

∧
τ(Γ)q ⇒ T¬. pϕ(~̇v)q,T¬. pϕ(~̇v)q,Tp

∨
τ(∆)q

(KFG4)
Tp

∧
τ(Γ)q ⇒ Tp

∨
τ(¬ϕ(~̇v),∆)q

For the instances of (IND) containing ◦, note that the translation τ(ϕ) of any
ϕ ∈ L ◦T is a formula of LT. We prove the soundness of (CON) by induction on the
complexity of ϕ. Note that ϕ ∈ L , so τ(ϕ) = ϕ. If ϕ is atomic, we have the following
derivation in BTG:
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Tp
∧
τ(Γ)q ⇒ ¬ϕ(~v), ϕ(~v),Tp

∨
τ(∆)q

(T-In�)
Tp

∧
τ(Γ)q ⇒ Tp¬ϕ(~̇v)q,Tpϕ(~̇v)q,Tp

∨
τ(∆)q

(KFG3)
Tp

∧
τ(Γ)q ⇒ Tp¬ϕ(~̇v)q,Tp¬¬ϕ(~̇v)q,Tp

∨
τ(∆)q

(KFG9)
Tp

∧
τ(Γ)q ⇒ T¬. T. pϕ(~̇v)q,T¬. T. p¬ϕ(~̇v)q,Tp

∨
τ(∆)q

(KFG4)
Tp

∧
τ(Γ)q ⇒ Tp

∨
τ(¬Tpϕ(~̇v)q ∨ ¬Tp¬ϕ(~̇v)q,∆)q

Assume (CON) is provably sound in BTG for every formulae of complexity less
than ϕ’s. If ϕ := ¬ψ, τ(◦ϕ) = τ(◦ψ), so the result follows trivially from the inductive
hypothesis. The cases in which ϕ is a disjunction or an existential claim follow similarly
from the definition of τ and the inductive hypothesis.

Finally, we prove the soundness of CKF1.(i) in BTG. The case for CKF1.(ii) is
analogous. The soundness of the remaining initial sequents of CKF follows from the
axioms of BTG in a similar fashion.

Tp
∧
τ(Γ)q, val(s) = val(t), val(s) 6= val(t) ⇒ Tp

∨
τ(∆)q

(T-Out�)
Tp

∧
τ(Γ)q,Tpval(s) = val(t)q,T¬. (s=. t) ⇒ Tp

∨
τ(∆)q

(KFG9)
Tp

∧
τ(Γ)q, val(s) = val(t),Tp¬T(s=. t)q ⇒ Tp

∨
τ(∆)q

(KFG5)
Tp

∧
τ(Γ, val(s) = val(t),¬T(s=. t))q ⇒ Tp

∨
τ(∆)q

Corollary 29. For every ϕ ∈ L , if CKF `LP◦ ϕ, then BTG `CL ϕ.

Proof. If ⇒ ϕ is derivable in CKF, then ⇒ Tpϕq is derivable in BTG by Proposition
28. By Proposition 27, we have that BTG `CL ϕ, since ϕ is arithmetical.

As Cantini points out, the addition of principles blocking the occurrence of gaps
or gluts to BT, such as KFG10, does not increase the strength of the resulting system.
Thus, the proof-theoretic power of BTG coincides with that of BT. This, together with
Cantini’s proof-theoretic analysis of BT, entails the following result.12

Proposition 30 (Cantini). BTG is proof-theoretically equivalent to ramified truth
RT<ωω up to ωω.

The theory of ramified truth RT<α up to ordinal α consists of α-many iterations
of the axiomatisation of Tarski’s truth definition over Peano arithmetic (cf. Halbach
[18, chap. 9]). Proposition 30 sets an upper bound on the proof-theoretic power of
CKF.
Corollary 31. CKF cannot prove more than ωω iterations of the truth predicate.

On the other hand, it is well known that KF, and a fortiori KFG, can prove iterations
of the truth predicate up to the ordinal ε0, the limit of all the ordinals ω, ωω, ωω

ω

, . . .
(cf. Halbach [18, chap. 15.3]). As a consequence, KFG is much stronger than its non-
classical counterpart, CKF. As Halbach & Nicolai [20] point out, this difference can also
be spelled out in terms of instances of arithmetical transfinite induction. While KFG
can prove instances of transfinite induction for LT up to any ordinal smaller than
ε0, CKF only contains transfinite induction for LT up to any ordinal smaller than
ωω. Moreover, this translates into differences in the purely arithmetical vocabulary.
In particular, KFG proves arithmetical instances of transfinite induction up to ϕε0(0),
whereas CKF proves arithmetical transfinite induction only up to ordinals smaller than
ϕω(0) in the Veblen hierarchy.13

12See Cantini [10, §3, 4 & 9].
13For an introduction to the Veblen functions and the Veblen hierarchy, see Pohlers [24].
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Note that, since BTG is a subsystem of KFG, Proposition 28 implies that CKF is
contained in IKFG.
Corollary 32. For every ϕ ∈ LT, if CKF `LP◦ ϕ, ϕ ∈ IKFG.

Proof. If ⇒ ϕ is derivable in CKF, then ⇒ Tpϕq is derivable in BTG by Proposition
28. Since BTG ⊆ KFG, we have that KFG `CL Tpϕq, so ϕ ∈ IKFG.

Furthermore, note that KFG and IKFG have the same arithmetical theorems, by
Proposition 22. Therefore, the discrepancy in arithmetical content also holds between
CKF and IKFG. The latter can prove, for instance, the consistency of CKF, as well as
iterated reflection principles for this system. IKFG is proof-theoretically much stronger
than CKF, the latter is a proper subsystem of the former.

3.2 Setting induction aside

In this section I show that when the rule of induction is restricted to formulae not
containing the truth predicate, the differences in arithmetical content between the
classical and the non-classical axiomatisations of Kripke’s construction fade away. In
other words, I prove that CKF� and IKFG� are equivalent over LT. The proofs are a
variant of Halbach & Nicolai’s [20, §4.2].
Proposition 33. If ϕ ∈ LT and CKF� `LP◦ ϕ, then ϕ ∈ IKFG�.

Proof. It is enough to prove in KFG� the soundness of all initial sequents and rules of
CKF�. For then, if ϕ ∈ LT and⇒ ϕ is derivable in CKF�, we have that KFG� `CL Tpϕq,
so ϕ ∈ IKFG�. In the proof of Proposition 28 we have seen that all logical rules and
all truth-theoretic axioms of CKF�, as well as (CON), can be proved to be sound in
BTG without turning to (IIND). By Proposition 22, we can also prove the soundness
of every basic arithmetical sequent in KFG�, as well as that of (IND) restricted to
arithmetical formulae.

Let 〈M, S+, S−〉 be an LP-model of LT such that M interprets the non-logical
vocabulary of LT plus the identity predicate, and S+, S− are the extension and anti-
extension of T, respectively. Then, the classical model 〈M, S+〉 is the closing-off of
〈M, S+, S−〉. To show that the converse of Proposition 33 also holds we first need to
prove the following result. Let σ be an assignment on a model M for a logic L. We
writeM, σ �L ϕ to indicate that ϕ is true inM under σ.
Lemma 34. If 〈M, S+, S−〉, σ �LP◦ CKF�, then 〈M, S+〉, σ �CL KFG�.

Proof. It is enough to show that if 〈M, S+, S−〉, σ �LP◦ CKF�, then all initial sequents
and rules of KFG� are sound in 〈M, S+〉 under σ. We only consider assignments
explicitly when needed. Note first that

〈M, S+, S−〉, σ �LP◦ Tpϕq iff 〈M, S+〉, σ �CL Tpϕq

KFG�’s logical axiom and rules are sound in 〈M, S+〉, for this is a classical model.
Arithmetical initial sequents and (IND) restricted to formulae of L are also sound
in 〈M, S+〉, for they obtain in CKF� andM assigns arithmetical formulae a classical
truth value, due to (CON). Regarding the remaining initial sequents in KFG�, we just
consider KFG9.(i) and KFG10. The other cases are similar.

For KFG9.(i), let 〈M, S+〉 �CL T¬. val(t) ∨ ¬SentLT(val(t)). If 〈M, S+〉 �CL

¬SentLT(val(t)), by (CON) we know that 〈M, S+, S−〉 2LP◦ SentLT(val(t)). By
CKF9, 〈M, S+, S−〉 2LP◦ Tval(t), which means that 〈M, S+, S−〉 �LP◦ ¬Tval(t).
By (T-In) in Proposition 18, 〈M, S+, S−〉 �LP◦ T¬. T. t, so 〈M, S+〉 �CL T¬. T. t. If
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〈M, S+〉 �CL T¬. val(t) ∧ SentLT(val(t)), by CKF8 we have that 〈M, S+, S−〉 �LP◦

T¬. T. t, so 〈M, S+〉 �CL T¬. T. t as well.

For KFG10 assume 〈M, S+〉, σ �CL SentLT(x)∧¬Tx. Thus, we have that 〈M, S+, S−〉, σ �LP◦

SentLT(x) and σ(x) /∈ S+. Therefore, σ(x) ∈ S−. By CKF2, 〈M, S+, S−〉, σ �LP◦

T¬. x, which implies that 〈M, S+〉, σ �CL T¬. x.

Proposition 35. If ϕ ∈ IKFG�, then CKF� `LP◦ ϕ.

Proof. Assume CKF� 0LP◦ ϕ. By the strong completeness of LP◦ (cf. Proposition 49 in
the appendix), there is a model 〈M, S+, S−〉 of CKF� such that 〈M, S+, S−〉 2LP◦ ϕ.
Thus, 〈M, S+〉 is a model of KFG� by Proposition 33, and #ϕ /∈ S+. Therefore,
〈M, S+〉 2CL Tpϕq, so ϕ /∈ IKFG�.

We are now ready to prove the last result of the section, that IKFG� and CKF� are
equivalent with respect to their consequences in LT.
Corollary 36. If ϕ ∈ LT, then CKF� `LP◦ ϕ iff ϕ ∈ IKFG�.

4 Conclusion

Halbach & Nicolai [20] consider the class of Kripke’s fixed-point models of LT with
both gaps and gluts, including models in which gaps and gluts occur simultaneously.
They provide an axiomatisation of this class in a sound and complete calculus for basic
De Morgan logic, and compare the resulting system, PKF, with the internal logic of
KF, IKF. This comparison is fair, as both theories have a transparent truth predi-
cate and are sound and N-categorical with respect to the models under consideration.
They show that while PKF�, the theory that results from restricting the rule of in-
duction (IND) to arithmetical formulae in PKF, is equivalent to the internal logic of
KF�, IKF is much stronger than PKF, both with respect to its truth-theoretic and its
arithmetical content. Moreover, they provide analogous results comparing classical
and non-classical axiomatisations of classes of Kripke’s fixed-point models where gaps
or gluts are excluded. In each case, arithmetical content is lost when we move from
the classical to the non-classical setting.

Halbach & Nicolai infer that the arithmetical weakness of PKF and the other non-
classical systems cannot be blamed on any other factor than the mutilation of classical
logic. It cannot be blamed on the incompleteness of the calculus, since the calculi they
work with are shown to be complete. Nor can it be blamed on the truth-theoretic
content of the non-classical systems, for otherwise the differences in strength would
also show when comparing PKF� and IKF�, and the other corresponding restricted
theories.

One could object that the instances of induction that contain the truth predicate
are actually truth principles of some sort. However, as Halbach & Nicolai point out,
induction is not to be considered a truth-theoretic but a mathematical principle. Our
intuitive understanding of natural numbers comes with the disposition to accept any
instance of this principle, including those in which the truth predicate occurs. There
is nothing special about the truth predicate that contributes to the adoption of those
instances of induction. Another way of seeing this is to consider instances of schematic
principles of a different, e.g. logical nature. As we wouldn’t think of the instances of
the Law of Excluded Middle in which the truth predicate occurs as truth-theoretic
principles, we shouldn’t think of the corresponding instances of induction that way.

Consequently, Halbach & Nicolai [20, p. 2] conclude that, contrary to what many
truth-theorists have claimed, abandoning classical logic can have an impact on non-
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semantic reasoning. In their own words, “[...] the incisions to classical logic, when
applied to sentences with the truth predicate, severely impede schematic reasoning
with the truth predicate. More specifically, classical patterns of mathematical reason-
ing are no longer licensed in PKF.” These are instances of the rule of induction.

In this paper I have considered what initially seemed to be a more promising
scenario for those who wish to circumscribe the restrictions to classical logic to truth-
theoretic reasoning and other areas prone to paradoxes. While Halbach & Nicolai
axiomatise the family of Kripke’s fixed-point models with gluts but no gaps in basic
De Morgan logic, I have done so in an extension of LP, LP◦. In basic De Morgan logic
without gaps, models are the same as LP’s. However, for a sequent Γ⇒ ∆ to be sound
it is not only required that in all models in which all members of Γ are true (i.e. receive
truth-value 1 or 1

2
) at least one member of ∆ is true as well, but also that falsity is

preserved from the conclusions to the premises. That is, if all members of ∆ are false
(i.e. receive truth-value 0 or 1

2
), then at least one element in Γ must also be false. In

LP the latter condition is dropped, as indicated in Definition 5. Thus, more sequents
turn out to be valid in this logic; LP is already stronger than basic De Morgan logic.

Moreover, LP◦ extends LP with the consistency operator ◦, deemed a recovery op-
erator, designed specifically for restoring classical reasoning whenever needed within
paraconsistent logics such as LP.14 According to Carnielli, Coniglio, & Marcos [12,
p. 19], “This feature will permit consistent reasoning to be recovered from inside an
inconsistent environment”. I’ve provided a sound and complete calculus for LP◦ (see
Propositions 44 and 38 in the appendix). In the axiomatisation of Kripke’s paraconsis-
tent fixed-point models in LP◦ sequents indicating the consistency of the arithmetical
fragment of LT in terms of ◦ were added as axioms.

Nonetheless, we were still able to prove analogous results as those obtained by
Halbach & Horsten [19] and Halbach & Nicolai [20]. We have seen that, on the one
hand, IKFG can prove more arithmetical sentences than CKF. On the other hand,
IKFG� and CKF� are equivalent with respect to their consequences in LT. Therefore,
we must draw similar conclusions. The weakness of CKF with respect to IKFG is
not due to the incompleteness of the calculus, nor to CKF’s truth-theoretic content.
It is a result of the mutilation of classical logic, that shrinks the consequences we
can draw from the instances of the arithmetical principle of induction in which the
truth predicate occurs. These consequences cannot be retrieved in LP◦, despite the
availability of consistency operators. Given that this weakness of CKF also concerns
expressions with purely mathematical content, it is clear that weakening the logic this
way does have an impact on mathematical reasoning.

The impossibility of retrieving classical reasoning for arithmetical principles by
means of consistency operators could have two different reasons, neither of which
flatters those who embrace LP◦ as the base logic for their truth theories and, at the
same time, wish to reason classically from arithmetical principles. One reason could
be the way LP deals with paradoxical expressions, that is, it treats them as dialetheias
(i.e. as both true and false). Given how connectives and quantifiers work in LP, this
extends to many other sentences in which the truth predicate occurs, including several
instances of induction. It could be that this irreversibly precludes us from reasoning
classically from these instances, no matter what expressive resources, principles, or
rules we extend the theory with (cf. Priest [26, §7.3]). In other words, it could be
that the incisions made to classical logic are so severe that classical reasoning for all
arithmetical principles is irretrievable.

If, instead, classical reasoning were retrievable for all instances of induction con-

14See Carnielli & Marcos [13], Carnielli, Coniglio, & Marcos [12], and Carnielli & Coniglio
[11].

22



taining the truth predicate in some way or other, the blame for LP◦’s failure would be
on the consistency operator’s performance. This would mean that consistency opera-
tors, within the framework of an LFI, are not always able to recover classical reasoning
whenever desired or, as its promoters maintain, right on demand.

Appendix

In what follows I offer proofs of the soundness and completeness of the calculi for LP
and LP◦ given in sections 2.1 and 2.2 with respect to the corresponding notions of
semantic consequence introduced in Definitions 5 and 13, respectively.
Proposition 37 (Soundness of LP). If Γ⇒ ∆ is derivable in LP, then Γ �LP ∆.

Proof. Note that every sequent obtained by (I) contains a literal ϕ both in Γ and ∆,
so is trivially sound. One can easily check that all the rules in LP preserve soundness.
I show it for (Cut), (Repl), and (¬R).

For (Cut), assume there is a model M and an assignment σ on M such that
vMσ (Γ) > 1

2
and vMσ (∆) = 0. Either vMσ (ϕ) = 0 or vMσ (ϕ) > 1

2
. If vMσ (ϕ) = 0, then

Γ 2LP ϕ,∆. If vMσ (ϕ) > 1
2
, then Γ, ϕ 2LP ∆.

For (Repl), note that for every literal ϕ, modelM and assignment σ onM in which
vMσ ({s = t, ϕ[s/v]}) > 1

2
, it is also the case that vMσ ({s = t, ϕ[s/v], ϕ[t, v]}) > 1

2
. For

if vMσ (s = t) > 1
2
, 〈σ(s), σ(t)〉 ∈ =+, so σ(s) = σ(t).

For (¬R), assume Γ, ϕ �LP ∆ ∪ {¬ϕ}, and let M and σ on M be such that
vMσ (Γ) > 1

2
. If vMσ (ϕ) > 1

2
, by assumption there must be a ψ ∈ ∆ ∪ {¬ϕ} such that

vMσ (ψ) > 1
2
. If vMσ (ϕ) = 0, then vMσ (¬ϕ) = 1.

Proposition 38 (Soundness of LP◦). If Γ⇒ ∆ is derivable in LP◦, then Γ �LP◦ ∆.

Proof. We extend the proof of Proposition 37, showing that rules of LP◦ that govern
the consistency operator also preserve soundness.

For (◦L), assume Γ, ◦ϕ 2LP◦ ∆. Then, there is a model M and an assignment σ
on M such that vMσ (Γ) > 1

2
, vMσ (◦ϕ) > 1

2
, and vMσ (∆) = 0. Thus, vMσ (◦ϕ) = 1, so

either vMσ (ϕ) = 1 or vMσ (ϕ) = 0. In the former case, vMσ (¬ϕ) = 0, so Γ 2LP◦ ¬ϕ,∆.
If vMσ (ϕ) = 0, Γ 2LP◦ ϕ,∆. In each case, one of the premises of the rule is unsound.

For (◦R), assume there is a model M and an assignment σ on M such that
vMσ (Γ) > 1

2
, vMσ (◦ϕ) = 0, and vMσ (∆) = 0. Thus, vMσ (ϕ) = vMσ (¬ϕ) = 1

2
. As a

consequence, Γ, ϕ,¬ϕ 2LP◦ ∆.

The proofs for the remaining cases are analogous.

Let’s now turn to completeness. These results are established via a cut-elimination
theorem for LP◦. Let L be any first-order language with ¬,∨, ∃, and = as its only
primitive logical symbols, and L◦ extend L with ◦, as before.
Definition 39. The complexity of a formula of L◦ is defined inductively just as in
Definition 6, with the addition of the following clause:

c(◦ϕ) = c(ϕ) + 2.

Note that the consistency operator ◦ adds more complexity to a formula than the
other logical operators in the language. This will become important in the proof of
Proposition 44.
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Definition 40. The height of a derivation is the number of rules that have been
applied in it. The height of the application of a rule in a derivation is the number of
rules that have been applied before in the derivation increased by 1.

We write `nLP◦ Γ ⇒ ∆ to indicate there is a derivation in LP◦ of Γ ⇒ ∆ of
at most hight n. If t is free for v in all members ϕ1, . . . , ϕn of Γ, Γ[t/v] is the set
{ϕ1[t/v], . . . , ϕn[t/v]}. It is easily shown by a standard argument that if `nLP◦ Γ⇒ ∆,
then `nLP◦ Γ,Γ′ ⇒ ∆,∆′ for every finite Γ′,∆′ ⊆ L◦. Also, if t is free for v in Γ,∆,
then `nLP◦ Γ[t/v]⇒ ∆[t/v].15 If D is a derivation of Γ⇒ ∆, let D[t/v] be a derivation
of Γ[t/v]⇒ ∆[t/v] and Γ′|D|∆′ a derivation of Γ,Γ′ ⇒ ∆,∆′, both of the same height
as D.
Lemma 41. If there is a derivation D in LP◦ of a sequent Γ⇒ ∆ ending with a cut
of height n, then there is a derivation D′ of the same sequent without cuts or in which
all cuts are of height less than n.

Proof. Assume D is a derivation of Γ⇒ ∆ ending with an application of cut of height
n on ϕ. The proof is by cases.

1. One of the premisses is an axiom. If Γ, ϕ⇒ ∆ is an axiom, then either there is
a literal common to Γ and ∆ or ϕ ∈ ∆. In the former case, Γ⇒ ∆ is an axiom
as well, so let D′ be Γ⇒ ∆. If ϕ ∈ ∆, then the premiss on the right is Γ⇒ ∆,
so we can obtain D′ by erasing the premiss on the left and the last cut in D.
The case where Γ⇒ ϕ,∆ is an axiom is symmetrical.

2. No premiss is an axiom. There are three possibilities:
(a) ϕ is not principal in the derivation of Γ, ϕ ⇒ ∆. No matter which rule

has been applied to obtain this sequent, we can reduce the height of the
cuts by 1. We show it for (Ref), (¬R), (∨L), and (◦R). The other cases
are similar. Assume D is of the form:

D1

Γ, t = t, ϕ ⇒ ∆
(Ref)

Γ, ϕ ⇒ ∆

D2

Γ ⇒ ϕ,∆
(Cut)

Γ ⇒ ∆

Then, let D′ be:

D1

Γ, t = t, ϕ ⇒ ∆

t = t|D2

Γ, t = t ⇒ ϕ,∆
(Cut)

Γ, t = t ⇒ ∆
(Ref)

Γ ⇒ ∆

Assume D is of the form:
D1

Γ, ϕ, ψ ⇒ ¬ψ,∆′
(¬R)

Γ, ϕ ⇒ ¬ψ,∆′
D2

Γ ⇒ ϕ,¬ψ,∆′
(Cut)

Γ ⇒ ¬ψ,∆′

where ∆ = ∆′ ∪ {¬ψ}. Then, let D′ be:

D1

Γ, ϕ, ψ ⇒ ¬ψ,∆′
ψ|D2

Γ, ψ ⇒ ϕ,¬ψ,∆′
(Cut)

Γ, ψ ⇒ ¬ψ,∆′
(¬R)

Γ ⇒ ¬ψ,∆′

Assume now D is of the form:
15See, for instance, Negri & von Plato [22].

24



D1

Γ′, ϕ, ψ ⇒ ∆

D2

Γ′, ϕ, χ ⇒ ∆
(∨L)

Γ′, ϕ, ψ ∨ χ ⇒ ∆

D3

Γ′, ψ ∨ χ ⇒ ϕ,∆
(Cut)

Γ′, ψ ∨ χ ⇒ ∆

where Γ = Γ′ ∪ {ψ ∨ χ}. Let D′ be the result of replacing in D the branch
ending with the left premiss of (Cut) with:

ψ ∨ χ|D1

Γ′, ϕ, ψ, ψ ∨ χ ⇒ ∆

ψ|D3

Γ′, ψ, ψ ∨ χ ⇒ ϕ,∆
(Cut)

Γ′, ψ, ψ ∨ χ ⇒ ∆

and the branch ending with the right premiss with:
ψ ∨ χ|D2

Γ′, ϕ, χ, ψ ∨ χ ⇒ ∆

χ|D3

Γ′, χ, ψ ∨ χ ⇒ ϕ,∆
(Cut)

Γ′, χ, ψ ∨ χ ⇒ ∆

and then applying (∨L) to obtain Γ′, ψ ∨ χ⇒ ∆.
Assume now D is of the form:

D1

Γ, ψ,¬ψ,ϕ ⇒ ∆′
(◦R)

Γ, ϕ ⇒ ◦ψ,∆′
D2

Γ ⇒ ϕ, ◦ψ,∆′
(Cut)

Γ ⇒ ◦ψ,∆′

where ∆ = ∆′ ∪ {◦ψ}. Then, let D′ be:
D1|◦ψ

Γ, ψ,¬ψ,ϕ ⇒ ◦ψ,∆′
ψ,¬ψ|D2

Γ, ψ,¬ψ ⇒ ϕ, ◦ψ,∆′
(Cut)

Γ, ψ,¬ψ ⇒ ◦ψ,∆′
(◦R)

Γ ⇒ ◦ψ,∆′

(b) ϕ is not principal in the derivation of Γ ⇒ ϕ,∆. Cases are analogous to
those in 2.(a).

(c) ϕ is principal in the derivation of both Γ, ϕ⇒ ∆ and Γ⇒ ϕ,∆. We prove
this sub-case by induction on the complexity of ϕ. Since ϕ is principal, it
cannot be atomic or the negation of an atomic formula (in the latter case,
there is no rule that introduces the negation of an atomic formula to the
left).
Assume the height of the last cut of the derivation of a sequent can be
reduced for formulae of complexity smaller than n, and let c(ϕ) = n. If
ϕ := ψ ∨ χ, D is of the form

D1

Γ, ψ ⇒ ∆

D2

Γ, χ ⇒ ∆
(∨L)

Γ, ψ ∨ χ ⇒ ∆

D3

Γ ⇒ ψ, χ,∆
(∨R)

Γ ⇒ ψ ∨ χ,∆
(Cut)

Γ ⇒ ∆

Replace it with:
D1|χ

Γ, ψ ⇒ χ,∆

D3

Γ ⇒ ψ, χ,∆
(Cut)

Γ ⇒ χ,∆

D2

Γ, χ ⇒ ∆
(Cut)

Γ ⇒ ∆

If ϕ := ∃vψ, D is of the form:
D1

Γ, ψ[u/v] ⇒ ∆
(∃L)

Γ, ∃vψ ⇒ ∆

D2

Γ ⇒ ψ[t/v],∆
(∃R)

Γ ⇒ ∃vψ,∆
(Cut)

Γ ⇒ ∆
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Replace it with:

D1[t/u]

Γ, ψ[t/v] ⇒ ∆

D2

Γ ⇒ ψ[t/v],∆
(Cut)

Γ ⇒ ∆

D1[t/u] is a derivation of Γ, ψ[t/v]⇒ ∆, since u is not free in Γ,∆ or ψ.
If ϕ := ◦ψ, D is of the form

D1

Γ ⇒ ψ,∆

D2

Γ ⇒ ¬ψ,∆
(◦L)

Γ, ◦ψ ⇒ ∆

D3

Γ, ψ,¬ψ ⇒ ∆
(◦R)

Γ ⇒ ◦ψ,∆
(Cut)

Γ ⇒ ∆

Replace it with:

D1|¬ψ
Γ ⇒ ψ,¬ψ,∆

D3

Γ, ψ,¬ψ ⇒ ∆
(Cut)

Γ,¬ψ ⇒ ∆

D2

Γ ⇒ ¬ψ,∆
(Cut)

Γ ⇒ ∆

Now let ϕ be a negation. If ϕ := ¬¬ψ, D is of the form:
D1

Γ, ψ ⇒ ∆
(¬¬L)

Γ,¬¬ψ ⇒ ∆

D2

Γ ⇒ ψ,∆
(¬¬R)

Γ ⇒ ¬¬ψ,∆
(Cut)

Γ ⇒ ∆

Replace it with:
D1

Γ, ψ ⇒ ∆

D2

Γ ⇒ ψ,∆
(Cut)

Γ ⇒ ∆

If ϕ := ¬◦ψ, D is of the form:
D1

Γ, ψ,¬ψ ⇒ ∆
(¬◦L)

Γ,¬◦ψ ⇒ ∆

D2

Γ ⇒ ψ,∆

D3

Γ ⇒ ¬ψ,∆
(¬◦R)

Γ ⇒ ¬◦ψ∆
(Cut)

Γ ⇒ ∆

Replace it with:

D1

Γ, ψ,¬ψ ⇒ ∆

¬ψ|D2

Γ,¬ψ ⇒ ψ,∆
(Cut)

Γ,¬ψ ⇒ ∆

D3

Γ ⇒ ¬ψ,∆
(Cut)

Γ ⇒ ∆

Other cases are similar. We omit their proof.

Proposition 42 (Cut elimination for LP◦). If a sequent Γ ⇒ ∆ is derivable in LP◦

then there is a derivation of this sequent without cuts.

Proof. By induction on the height of the last application of (Cut) and Lemma 41.

We can use the eliminability of (Cut) to provide a completeness proof for LP◦.
Following Schütte [29], we start with a sequent and construct a reduction tree for this
sequent, applying the rules of the calculus for LP◦ in all possible ways. Since proofs
need not contain cuts according to Proposition 42, this rule will not be considered in
the construction. If all branches of the tree reach the form of an axiom, the tree is a
proof of the given sequent. Otherwise, the construction does not terminate. Turning
to König’s Lemma, we define a refuting model for the sequent.
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Definition 43. The reduction tree of a sequent Γ⇒ ∆ in LP◦ is constructed in steps
as follows, starting with Γ⇒ ∆ as the root:

Step 1. Write on top of each topmost sequent of the form Γ′ ⇒ ∆′ the sequent

Γ′, t1 = t1, . . . , tn = tn ⇒ ∆′

where ti, 1 6 i 6 n, occurs in Γ′ or in ∆′. This restriction is necessary, for
if the language contains infinitely many terms and we added all instances of
t = t to the antecedent, we would get an infinite set, which cannot be part of
a sequent.

Step 2. Write on top of each topmost sequent of the form

Γ′, s = t, ϕ[s/v]⇒ ∆′

where ϕ is a literal, the sequent

Γ′, s = t, ϕ[s/v], ϕ[t/v]⇒ ∆′.

Step 3. For each topmost sequent of the form

Γ′ ⇒ ¬ϕ1, . . . ,¬ϕn,∆′

where ϕ1, . . . , ϕn are atomic formulae, write on top

Γ′, ϕ1, . . . , ϕn ⇒ ¬ϕ1, . . . ,¬ϕn,∆′.

Step 4. For each topmost sequent of the form

Γ′,¬¬ϕ1, . . . ,¬¬ϕn ⇒ ∆′

write on top the sequent

Γ′, ϕ1, . . . , ϕn ⇒ ∆′.

Step 5. For each topmost sequent of the form

Γ′ ⇒ ¬¬ϕ1, . . . ,¬¬ϕn,∆′

write on top the sequent

Γ′ ⇒ ϕ1, . . . , ϕn,∆
′.

Step 6. Write on top of each topmost sequent of the form

Γ′ ⇒ ϕ1 ∨ ψ1, . . . , ϕn ∨ ψn,∆′

the sequent
Γ′ ⇒ ϕ1, ψ1, . . . , ϕn, ψn,∆

′.

Step 7. For each topmost sequent of the form

Γ′, ϕ1 ∨ ψ1, . . . , ϕn ∨ ψn ⇒ ∆′

write the 2n sequents
Γ′, χ1, . . . , χn ⇒ ∆′

on top of it, where χi is either ϕi or ψi.
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Step 8. Write on top of each topmost sequent of the form

Γ′,¬(ϕ1 ∨ ψ1), . . . ,¬(ϕn ∨ ψn)⇒ ∆′

the sequent
Γ′,¬ϕ1,¬ψ1, . . . ,¬ϕn,¬ψn ⇒ ∆′.

Step 9. For each topmost sequent of the form

Γ′ ⇒ ¬(ϕ1 ∨ ψ1), . . . ,¬(ϕn ∨ ψn),∆′

write the 2n sequents
Γ′ ⇒ ¬χ1, . . . ,¬χn,∆′

on top of it, where χi is either ϕi or ψi.

Step 10. Consider each topmost sequent of the form

Γ′, ∃v1ϕ1, . . . , ∃vnϕn ⇒ ∆′

and let u1, . . . , un be variables not used yet in the reduction tree. Then write
on top the sequent

Γ′, ϕ1[u1/v1], . . . , ϕn[un/vn]⇒ ∆′.

Step 11. Consider each topmost sequent of the form

Γ′ ⇒ ∃v1ϕ1, . . . , ∃vnϕn,∆′

and let ti, 1 6 i 6 n, be the first term not used yet for a reduction of ∃viϕi.
Then write on top the sequent

Γ′ ⇒ ϕ1[t1/v1], . . . , ϕn[tn/vn],∃v1ϕ1, . . . , ∃vnϕn,∆′.

We have to keep the existential formulae in the succedent for a possible further
application of the reduction step, for we must consider all possible terms that
could help us derive these formulae. The same applies to negated existential
claims in the following reduction step.

Step 12. Consider each topmost sequent of the form

Γ′,¬∃v1ϕ1, . . . ,¬∃vnϕn ⇒ ∆′

and let ti, 1 6 i 6 n, be the first term not used yet for a reduction of ¬∃viϕi.
Then write on top the sequent

Γ′,¬ϕ1[t1/v1], . . . ,¬ϕn[tn/vn],¬∃v1ϕ1, . . . ,¬∃vnϕn ⇒ ∆′.

Step 13. Consider each topmost sequent of the form

Γ′ ⇒ ¬∃v1ϕ1, . . . ,¬∃vnϕn,∆′

and let u1, . . . , un be variables not used yet in the reduction tree. Then write
on top the sequent

Γ′ ⇒ ¬ϕ1[u1/v1], . . . ,¬ϕn[un/vn],∆′.

Step 14. For each topmost sequent of the form

Γ′, ◦ϕ1, . . . , ◦ϕn ⇒ ∆′

write the 2n sequents
Γ′ ⇒ ψ1, . . . , ψn,∆

′

on top of it, where ψi is either ϕi or ¬ϕi.
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Step 15. Write on top of each topmost sequent of the form

Γ′ ⇒ ◦ϕ1, . . . , ◦ϕn,∆′

the sequent
Γ′, ϕ1,¬ϕ1, . . . , ϕn,¬ϕn ⇒ ∆′.

Step 16. Write on top of each topmost sequent of the form

Γ′,¬◦ϕ1, . . . ,¬◦ϕn ⇒ ∆′

the sequent
Γ′, ϕ1,¬ϕ1, . . . , ϕn,¬ϕn ⇒ ∆′.

Step 17. For each topmost sequent of the form

Γ′ ⇒ ¬◦ϕ1, . . . ,¬◦ϕn,∆′

write the 2n sequents
Γ′ ⇒ ψ1, . . . , ψn,∆

′

on top of it, where ψi is either ϕi or ¬ϕi.

Steps 1-17 are repeated in order until every topmost sequent is an axiom, if that
happens. Then, the process terminates. When no step is applicable to a topmost
sequent that is not an axiom, the same sequent is repeated on top.

Each step in the construction of the reduction tree for a sequent corresponds to a
logical rule of LP◦ (except for repetition). As a consequence, if the process terminates,
we reach a proof of the starting sequent.
Proposition 44 (Completeness of LP◦). Let Γ,∆ ⊆ L◦ be finite sets. Either `LP◦

Γ⇒ ∆ or Γ 2LP◦ ∆.

Proof. Assume Γ⇒ ∆ is not derivable, and let D be its reduction tree. Thus, D is not
a proof of this sequent. If D were finite, then its topmost sequents would be axioms,
and read top-down every inference would correspond to a rule in LP◦. Thus, D would
be a proof of Γ⇒ ∆, contrary to our assumption. Therefore, D must be infinite. By
König’s lemma, since D is a finitely branching tree, it must have an infinite branch.
Let this branch consist of the sequents Γ0 ⇒ ∆0, . . . ,Γn ⇒ ∆n, . . . , where Γ0 ⇒ ∆0

is Γ ⇒ ∆. Let Γ = ∪i∈ωΓi and ∆ = ∪i∈ω∆i. I provide an LP◦-model M and an
assignment σ onM such that vMσ (Γ) > 1

2
and vMσ (∆) = 0, showing that Γ 2LP◦ ∆.

Let ∼ be a relation between terms of L◦ such that s ∼ t iff s = t ∈ Γ or s and
t are the same term. Note that ∼ is an equivalence relation. Reflexivity is trivially
satisfied. For symmetry, let s ∼ t. If s and t are the same term, the result follows
trivially. If s = t ∈ Γ, by step 1 of Definition 43, we have a sequent on the branch of
the form

Γ′, s = t, s = s⇒ ∆′.

Taking ϕ to be v = s, so that s = s is ϕ[s/v] and ϕ[t/v] is t = s, by step 2 of Definition
43, the set {s = t, s = s, t = s} must be included in the antecedent of a sequent higher
up on the branch. As a consequence, t = s ∈ Γ, so t ∼ s. Finally, for transitivity
assume that s ∼ t and t ∼ r. If s and t or t and r are the same terms, the result is
trivial. Let s = t and t = r be in Γ. Then, there is a sequent of the form

Γ′, t = r, s = t⇒ ∆′.

on the branch. Taking ϕ to be s = v, so that s = t is ϕ[t/v] and ϕ[r/v] is s = r, by
step 2 of Definition 43, the set {t = r, s = t, s = r} must be included in the antecedent
of a sequent on the branch. As a consequence, s = r ∈ Γ, so s ∼ r.
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Let [t] be the equivalence class to which the term t belongs, and let members of
|M| consist of these equivalence classes. If R is an n-ary relation symbol, RM is such
that

• R+ = {〈[t1], . . . , [tn]〉 | Rt1 . . . tn /∈∆};
• R− = {〈[t1], . . . , [tn]〉 | ¬Rt1 . . . tn ∈ Γ or Rt1 . . . tn ∈∆},

unless R is =, in whose case R+, i.e. =+, is just the set of ordered pairs of the form
〈[t], [t]〉. Note that R+ and R− are exhaustive, that is, R+ ∪ R− = |M|. If c is an
individual constant and f an n-ary function symbol, let

• cM = [c];
• fM([t1], . . . , [tn]) = [f(t1, . . . , tn)].

Since [t] is an equivalence class, existence and uniqueness for fM are guaranteed.
Finally, let σ be the assignment inM in which σ(v) = [v], for every variable v.

I show that vMσ (ϕ) > 1
2
for every ϕ ∈ Γ and vMσ (ϕ) = 0 for every ϕ ∈ ∆ by

induction on the complexity of ϕ. Let ϕ := (s = t). If s = t ∈ Γ, then [s] = [t].
Thus, 〈[s], [t]〉 ∈ =+, which means that vMσ (s = t) > 1

2
. If s = t ∈ ∆, it cannot

be that s = t ∈ Γ, because the branch would have reached an axiom and be finite.
Thus, it cannot be that s and t are the same term either, because, by step 1 in the
construction of the reduction tree, s = t would be in Γ. So, [s] 6= [t], which means
that 〈[s], [t]〉 /∈ =+. Therefore, vMσ (s = t) = 0.

Let ϕ := Rt1 . . . tn, with R distinct from =. If Rt1 . . . tn ∈ Γ, Rt1 . . . tn /∈∆, or the
branch would have reached an axiom. Thus, 〈[t1], . . . , [tn]〉 ∈ R+, so vMσ (Rt1 . . . tn) >
1
2
. If Rt1 . . . tn ∈∆, 〈[t1], . . . , [tn]〉 /∈ R+, so vMσ (Rt1 . . . tn) = 0.

Let ϕ := ¬Rt1 . . . tn. If ¬Rt1 . . . tn ∈ Γ, by construction 〈[t1], . . . , [tn]〉 ∈ R−.
Then, vMσ (Rt1 . . . tn) 6 1

2
, which implies that vMσ (¬Rt1 . . . tn) > 1

2
. If ¬Rt1 . . . tn ∈∆,

then ¬Rt1 . . . tn /∈ Γ. But we also know that Rt1 . . . tn ∈ Γ, by step 3 of Defini-
tion 43. Thus, Rt1 . . . tn /∈ ∆. Therefore, we have that 〈[t1], . . . , [tn]〉 /∈ R−, i.e.
vMσ (Rt1 . . . tn) = 1, which entails that vMσ (¬Rt1 . . . tn) = 0.

Cases in which ϕ is of the form ¬¬ψ, ψ ∨ χ, ¬(ϕ ∨ χ), ∃vψ, ¬∃vψ, ◦ψ, and ¬◦ψ
follow directly from the inductive hypothesis. I consider the cases in which ϕ is of the
form ¬(ψ ∨ χ), ∃vψ, and ◦ψ by way of example.

Let ϕ := ¬(ψ ∨ χ). If ¬(ψ ∨ χ) ∈ Γ, by step 8 of Definition 43, both ¬ψ ∈ Γ
and ¬χ ∈ Γ. By inductive hypothesis, both vMσ (¬ψ) > 1

2
and vMσ (¬χ) > 1

2
. Thus,

vMσ (¬(ψ∨χ)) > 1
2
. If ¬(ψ∨χ) ∈∆, by step 9 of Definition 43, either ¬ψ or ¬χ is in ∆.

By inductive hypothesis, either vMσ (¬ψ) = 0 or vMσ (¬χ) = 0. Thus, either vMσ (ψ) = 1
or vMσ (χ) = 1, which means that vMσ (ψ ∨ χ) = 1. Therefore, vMσ (¬(ψ ∨ χ)) = 0.

Let ϕ := ∃vψ. If ∃vψ ∈ Γ, by step 10 of Definition 43, ψ[u/v] ∈ Γ for some
variable u. By inductive hypothesis, vMσ (ψ[u/v]) > 1

2
. Thus, vMσ (∃vψ) > 1

2
as well. If

∃vψ ∈ ∆, by step 11 of Definition 43, we have that ψ[t/v] ∈ ∆ for every term t. By
inductive hypothesis, vMσ (ψ[t/v]) = 0 for every term t. Since all members of |M| are
denoted by some term, vMσ (∃vψ) = 0.

Let ϕ := ◦ψ. If ◦ψ ∈ Γ, by step 14 of Definition 43, either ψ ∈∆ or ¬ψ ∈∆. By
inductive hypothesis, either vMσ (ψ) = 0 or vMσ (¬ψ) = 0, that is, either vMσ (ψ) = 0 or
vMσ (ψ) = 1. Thus, vMσ (◦ψ) = 1. If ◦ψ ∈∆, by step 15 of Definition 43, we have that
ψ,¬ψ ∈ Γ. By inductive hypothesis, vMσ (ψ) > 1

2
and vMσ (¬ψ) > 1

2
, which implies that

vMσ (ϕ) = 1
2
. Thus, vMσ (◦ψ) = 0.

The completeness of LP is a corollary of Proposition 44 and the following conser-
vativity result.
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Lemma 45. Let Γ,∆ ⊆ L be finite sets. If `LP◦ Γ⇒ ∆, then `LP Γ⇒ ∆.

Proof. Assume `LP◦ Γ ⇒ ∆. By the cut-elimination result for LP◦ (Proposition 42),
there is a derivation of Γ ⇒ ∆ in LP◦ without cuts. Note that in this derivation no
rules for ◦ have been applied. Otherwise, ◦ would occur either in Γ or in ∆, for no rule
of LP◦ besides (Cut) allows for the elimination of a formula containing this operator.
Therefore, only LP-rules were employed in the derivation of Γ⇒ ∆.

Proposition 46 (Completeness of LP). Let Γ,∆ ⊆ L be finite sets. Either `LP Γ⇒ ∆
or Γ 2LP ∆.

Proof. Assume Γ ⇒ ∆ is not derivable in LP. By the previous lemma, it is also not
derivable in LP◦. By Proposition 44, Γ ⇒ ∆ is not sound with respect to the class
of LP◦-models. But LP◦-models are just LP-models (recall that ◦ doesn’t occur in
Γ⇒ ∆). Therefore, Γ 2LP ∆.

Finally, I provide a strong completeness result for LP◦. Let ϕ ◦→ ψ abbreviate
¬(ϕ∨¬◦ϕ)∨ψ ∨¬◦ψ in L◦. Thus, in every LP◦-modelM relative to any assignment
σ we have that

vMσ (ϕ ◦→ ψ) =

{
1, if vMσ (ϕ) = 0 or vMσ (ψ) > 1

2

0, otherwise

In other words, ϕ ◦→ ψ is true in a modelM relative to an assignment σ iff ϕ⇒ ψ is
sound with respect toM and σ. Therefore, we can prove the following lemma for the
strong completeness of LP◦.
Lemma 47. If the sequent Γ ⇒ ∆ is sound with respect to every LP◦-model and
assignment the sequents Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n are all sound with respect to, then∧

Γ1 ◦→
∨

∆1, . . . ,
∧

Γn ◦→
∨

∆n,Γ �LP◦ ∆.

Proof. Assume for contradiction that there is an LP◦-model M and an assignment
σ on M such that vMσ (

∧
Γi ◦→

∨
∆i) > 1

2
, 1 6 i 6 n, vMσ (Γ) > 1

2
, and vMσ (∆) =

0. Thus, for 1 6 i 6 n, vMσ (
∧

Γi ◦→
∨

∆i) = 1, which means that the sequents
Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n are all sound with respect to M and σ. Therefore, Γ ⇒ ∆
is so too. But then we should have that vMσ (∆) > 1

2
, which contradicts our initial

assumption.

We need one last lemma to establish our completeness result.
Lemma 48. For every finite Γ,∆ ⊆ L◦, the sequent ⇒

∧
Γ ◦→

∨
∆ is derivable in

LP◦ from Γ⇒ ∆.

Proof. Let Γ = {γ1, . . . , γm}. Recall that
∧

Γ is (a permutation of) ¬(¬γ1∨· · ·∨¬γm).
Thus, the following is a derivation of

∧
Γ ◦→

∨
∆ from Γ⇒ ∆:

γ1, . . . , γm ⇒ ∆
(¬¬L)¬¬γ1, . . . ,¬¬γm ⇒ ∆
(¬∨L)∧

Γ ⇒ ∆
(∨R)∧

Γ ⇒
∨

∆
(¬R)

⇒ ¬
∧

Γ,
∨

∆

∧
Γ ⇒

∨
∆

(W)∧
Γ,¬

∧
Γ ⇒

∨
∆

(◦R)
⇒ ◦

∧
Γ,

∨
∆

(¬¬R)
⇒ ¬¬◦

∧
Γ,

∨
∆

(¬∨R)
⇒ ¬(

∧
Γ ∨ ¬◦

∧
Γ),

∨
∆

(W)
⇒ ¬(

∧
Γ ∨ ¬◦

∧
Γ),

∨
∆,¬◦

∨
∆

(∨R)
⇒ ¬(

∧
Γ ∨ ¬◦

∧
Γ) ∨

∨
∆ ∨ ¬◦

∨
∆
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Proposition 49 (Strong completeness of LP◦). Every sequent Γ⇒ ∆ is either deriv-
able in LP◦ from the sequents Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n or not sound with respect to
the class of LP◦-models and assignments Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n are all sound with
respect to.

Proof. Assume Γ ⇒ ∆ is sound with respect to the class of LP◦-models and as-
signments Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n are all sound with respect to. By Lemma 47,∧

Γ1 ◦→
∨

∆1, . . . ,
∧

Γn ◦→
∨

∆n,Γ ⇒ ∆ is sound in LP◦. By the completeness
of LP◦ (Proposition 44), this sequent is derivable in LP◦. By Lemma 48, for each
1 6 i 6 n, ⇒

∧
Γi ◦→

∨
∆i is derivable from Γi ⇒ ∆i. Thus, by n successive

applications of (Cut), we can derive Γ⇒ ∆ from Γ1 ⇒ ∆1, . . . ,Γn ⇒ ∆n.
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