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Abstract 20 

Population genetics model based Bayesian methods have been proposed and widely applied 21 

to making unsupervised inference of population structure from a sample of multilocus 22 

genotypes. Usually they provide good estimates of the ancestry (or population membership) 23 

of sampled individuals by clustering them probabilistically or proportionally into (anonymous) 24 

populations. However, they have difficulties in accurately estimating the number of 25 

populations (K) represented by the sampled individuals. This study proposed a new ad hoc 26 

estimator of K, calculable from the output of a population clustering program such as 27 

STRUCTURE or ADMIXTURE. The new criterion, called parsimony index (PI), aims to 28 

identify the number of populations (K) which yields consistently the minimal admixture 29 

estimates of sampled individuals. Extensive simulated and empirical data were used to 30 

compare the accuracy of PI and two popular K estimators based on Pr[X|K] (i.e. the 31 

probability of genotype data X given K) and ΔK (i.e. the rate of change of the probability of 32 

data as a function of K) calculated from STRUCTURE outputs, and the accuracy of PI and 33 

the cross-validation method calculated from ADMIXTURE outputs. It was shown that PI was 34 

more accurate than the other methods consistently in various population structure (e.g. 35 

hierarchical island model, different extents of differentiation) and sampling (e.g. unbalanced 36 

sample sizes, different marker information contents) scenarios. The ΔK method was more 37 

accurate than the Pr[X|K] method only for hierarchically structured or highly inbred 38 

populations, and the opposite was true in the other scenarios. The PI method was 39 

implemented in a computer program, KFinder, which can be run on all major computer 40 

platforms.  41 

 42 

Introduction 43 

Traditional population structure analysis uses Wright’s (1951) F statistics to describe and 44 

understand the patterns of genetic variation in populations. These statistics, FIS, FST and FIT, 45 

can be estimated from genetic marker data collected from several populations (e.g. Weir and 46 

Cockerham 1984), and offer a convenient and elegant means of summarising population 47 

structures. However, the analysis of F statistics relies on information of known predefined 48 

(e.g. by geographic locations) source populations of sampled individuals. In reality, however, 49 

the information might be unavailable, incomplete, or unreliable for sorting individuals into 50 

populations. A typical example is mixed stock analysis (Smouse et al. 1990), where 51 
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individuals coming from different source populations to mix in the same feeding/breeding 52 

ground are sampled to determine the genetic structure. Another typical example is a batch of 53 

seized illegally traded animals or animal parts (e.g. tusks). In both examples, the source 54 

populations of the sampled individuals are unknown and are the primary interest of analysis 55 

(Hsieh et al. 2003; Velo-Anton et al. 2007). 56 

 Pritchard et al. (2000) proposed a Bayesian method, based on a population genetics 57 

model, to identify populations represented by a sample of individuals and to assign the 58 

individuals (or their genomes) probabilistically to the identified source populations using 59 

individual genotypic data. This is possible because population genetics theory tells us that 60 

individuals from the same source population share the same gene pool, and thus have similar 61 

multilocus genotypes that are roughly in Hardy-Weinberg equilibrium and linkage 62 

equilibrium. The method, implemented in the computer program STRUCTURE, has largely 63 

solved the problem challenging the traditional population structure analysis, and has 64 

revolutionized our ability to conduct unsupervised population structure analysis using marker 65 

genotypes only. Following Pritchard et al. (2000), many similar methods (e.g. Dawson and 66 

Belkhir 2001; Dupanloup et al. 2002; Corander et al. 2003; Guillot et al. 2005; Tang et al. 67 

2005; François et al. 2006; Gao et al. 2007; Huelsenbeck and Andolfatto 2007; Alexander et 68 

al. 2009; Jombart et al. 2010; Raj et al. 2014) have been developed to infer population 69 

structure with higher computational efficiency and with extended models (e.g. inbreeding 70 

models to accommodate inbred individuals and spatial models to use geographic as well as 71 

genetic data). The most popular method remains that of Pritchard et al. (2000), because of its 72 

accurate, robust and versatile models thanks to Pritchard and coworker’s original and 73 

continued work (e.g. Falush et al. 2003; 2007; Hubisz et al. 2009). The dominance of 74 

STRUCTURE over other programs in marker-based population structure/admixture analyses, 75 

even in this genomics era, is readily confirmed by a survey of studies published in the most 76 

recent issues of peer-reviewed journals such as Molecular Ecology.  77 

 STRUCTURE and related methods work well in assigning individuals to their source 78 

populations for a given number of populations, K. When population differentiation is 79 

substantial or/and marker information is sufficient, they give accurate individual ancestry (or 80 

population membership) inferences. However, they have difficulties in identifying source 81 

populations and inferring the optimal number of populations, K, represented by the sampled 82 

individuals. Pritchard et al. (2000) proposed an ad hoc procedure to estimate the marginal 83 

likelihood Pr[X|K], the probability of obtaining the genotype data X given K. The K value that 84 
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maximizes Pr[X|K] is the best estimate of the number of populations. They demonstrated, 85 

using a couple of simple empirical datasets, that the method works well. Evanno et al. (2005) 86 

found by simulations that the Pr[X|K] method gives poor estimates of K for hierarchically 87 

structured populations, and proposed another ad hoc statistic, ΔK (i.e. the rate of change of 88 

the probability of data as a function of K), to estimate the number of populations at the 89 

uppermost hierarchical level of structure. Alexander and Lange (2011) employed a cross-90 

validation method, implemented in ADMIXTURE software, to identify the best K value as 91 

judged by the prediction of systematically withheld data points. Gao et al. (2007) and Durand 92 

et al. (2009) used the deviance information criterion (DIC) for inferring K in InStruct and 93 

TESS programs, respectively. Dawson and Belkhir (2001), Pella and Masuda (2006), and 94 

Huelsenbeck and Andolfatto (2007) took both K and individual assignments to populations as 95 

random variables and used joint priors, such as a Dirichlet process prior, to estimate both in 96 

programs PARTITION and STRUCTURAMA. Corander et al. (2003, 2004) implemented a 97 

split-and-merge algorithm in their program BAPS to estimate K. Patterson et al. (2006) 98 

proposed an eigenanalysis method, implemented in SmartPCA software, to estimate K as 1 99 

plus the number of significant eigenvalues explaining the variation of genotype data. Jombart 100 

et al. (2010) and Beugin et al. (2018) used Akaike information criterion (AIC, Akaike 1998), 101 

Bayesian Information Criterion (BIC, Schwarz 1978), Kullback Information Criterion (KIC, 102 

Cavanaugh 1999) and their variants to assess the best supported model, and therefore the 103 

most likely number of populations. These and other methods were demonstrated to yield 104 

good estimates of K in some simple scenarios (e.g. Gao et al. 2011), but can be highly 105 

inaccurate in difficult situations such as many source populations (say, K>10), unbalanced 106 

sample sizes (Wang 2017), hierarchical population structures (Evanno et al. 2005), weak 107 

differentiation or low marker information (Gao et al. 2011), and high admixture.  108 

 Except for the cross-validation method (Alexander and Lange 2011) and the 109 

significant eigenvalue method (Patterson et al. 2006), all K estimators described above are 110 

based (in one form or another) on the estimated marginal likelihood of the model or the 111 

probability of data. This is, in theory, a natural choice for measuring model fit. In practice, 112 

however, several problems arise. First, this quantity is difficult to calculate accurately, and as 113 

a result, some ad hoc approximation is adopted (Pritchard et al. 2000). It is unclear how well 114 

the approximation works, especially when marker information is insufficient or the inference 115 

is difficult (e.g. with many populations, unbalanced sampling, and low differentiation). 116 

Second, the likelihood maximization procedures (e.g. expectation maximization algorithm, 117 
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EM) or the Bayesian Markov Chain Monte Carlo (MCMC) procedures may not converge for 118 

this high dimensional optimization problem. The number of parameters to be estimated are 119 

roughly N(K–1)+LK(A–1), where N, K, A, and L are the number of sampled individuals, 120 

number of populations, average number of alleles at a locus, and the number of loci. The 121 

estimated likelihood or probability of data could vary substantially among replicate runs of 122 

the same data, especially in difficult situations (above). Third, the criteria of these ad hoc 123 

methods in selecting the best K value may not be appropriate. For example, AIC, BIC, and 124 

KIC are all based on the same principle, assessing model quality by considering its likelihood 125 

against its complexity. Apparently, the penalty for model complexity is different among these 126 

criteria, and it is unclear which (if any) is the most suitable for this clustering problem. It is 127 

possible that none applies in general, and some modified forms of these criteria (e.g. Chen 128 

and Chen 2008; Gao and Song 2010) might be more appropriate for this high dimensional 129 

clustering problem. 130 

  In this paper, I propose another ad hoc criterion to estimate K, and use extensive 131 

simulations and empirical data to show that it is in general more accurate than previous 132 

methods. The criterion is based mainly on the quality of individual ancestry estimates from 133 

STRUCTURE-like programs, and the best K is the one that consistently yields the minimal 134 

mean admixture of sampled individuals. This principle, called minimal admixture or 135 

parsimony for simplicity hereafter, is derived from the observation that suboptimal K (i.e. 136 

values higher or lower than the true K) usually leads to inconsistent and inflated admixture 137 

(mixed ancestry) estimates from Bayesian (e.g. Pritchard et al. 2000) or likelihood (e.g. Tang 138 

et al. 2005; Alexander et al. 2009) population clustering analyses. The method is 139 

implemented in a computer program, KFinder (https://www.zsl.org/science/software/KFinder), to 140 

yield the best K given the outputs for a range of K values from a STRUCTURE-like program. 141 

Extensive simulations, considering many population scenarios (e.g. differentiation levels, 142 

subdivision models) and sampling scenarios (e.g. sample sizes per subpopulation, numbers of 143 

markers), were conducted to compare the performances of the parsimony method, the Pr[X|K] 144 

method (Pritchard et al. 2000) and the ΔK method (Evanno et al. 2005) in estimating K from 145 

STRUCTURE outputs, and of the parsimony method and the cross-validation method 146 

(Alexander and Lange 2011) in estimating K from ADMIXTURE outputs. I showed that the 147 

parsimony method improves K estimates consistently and sometimes dramatically over other 148 

methods calculated from both programs STRUCTURE and ADMIXTURE.   149 

Methods 150 



7 
 

The parsimony method 151 

I assume a dataset was analysed by STRUCTURE (or related methods such as ADMIXTURE) 152 

under the same set of model parameters (e.g. admixture and correlated allele frequency 153 

models) except for different K values, from a low bound KL to a high bound KH. For each K 154 

value (K = KL, KL+1, …, KH –1, KH), a number of nr =20 replicate runs were conducted, 155 

following Evanno et al. (2005). Therefore, the total number of runs (and output files) for a 156 

single dataset is NR = (KH –KL +1) nr. Parameter options for STRUCTURE and 157 

ADMIXTURE runs are detailed below. 158 

 A parsimony index was calculated for each K in the range KL to KH, using the 159 

information in the nr replicate-run output files. First, the mean estimate of the log probability 160 

of data, Pr[X|K], was calculated from the nr output files, and the replicate runs with Pr[X|K] 161 

values smaller than the mean were discarded from further analyses. This is because the 162 

clustering algorithms may not converge, and different runs may end up with highly different 163 

Pr[X|K] values and individual ancestry estimates. Replicate runs with low Pr[X|K] values are 164 

expected to give poor estimates of individual ancestries and are thus abandoned. Note in the 165 

best scenario where all nr replicate runs converge, no runs are abandoned, such that the 166 

number of retained runs, 𝑛𝑟
′  = nr.  167 

Second, an assignment quality score is calculated for each of the 𝑛𝑟
′  retained replicate 168 

runs. The (main) source population of an individual is determined as the one that has the 169 

largest ancestry coefficient estimate for the individual. The average co-assignment score 170 

within populations is calculated as 171 

𝐴𝐶𝑆𝑤 =
1

𝑛𝑤
∑ ∑ ∑ 𝑞𝑙

(𝑖)𝑘
𝑙=1

𝑖
𝑗=1,𝑖𝑗∈Φ

𝑁
𝑖=1 𝑞𝑙

(𝑗)
,       (1) 172 

where 𝑞𝑙
(𝑖)

 and 𝑞𝑙
(𝑗)

 are the estimated proportions of individual i’s and individual j’s genomes 173 

that originate from population l (=1, 2, …, k), respectively, 𝑖𝑗 ∈ Φ signifies that individuals i 174 

and j are inferred to come from the same (main) source population, 𝑛𝑤 is the number of pairs 175 

of individuals (including an individual with itself) that share the same inferred source 176 

population, and N is the number of sampled individuals. The quantity calculated by (1) is 177 

similar to Dawson and Belkhir’s (2001) probability of co-assignment. Both measure the 178 

probability that a set of individuals belong to the same population, independent of the 179 

arbitrary labelling of source populations. 180 
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The average co-assignment score between populations, 𝐴𝐶𝑆𝑏, is calculated similarly 181 

by (1), except 𝑛𝑤 is replaced by 𝑛𝑏, the number of pairs of individuals that have different 182 

source populations, and 𝑖𝑗 ∈ Φ is replaced by 𝑖𝑗 ∈ ∅ which signifies that individuals i and j 183 

are inferred to belong to different source populations.  184 

` The strength of population structure is characterized by a high value of 𝐴𝐶𝑆𝑤 close to 185 

1, and a small value of 𝐴𝐶𝑆𝑏 close to 0. When there is no hybridization (admixture) and 186 

individual ancestry inference is perfect, 𝐴𝐶𝑆𝑤 reaches its maximal value of 1 and 𝐴𝐶𝑆𝑏 187 

reaches its minimal value of 0. An overall measure of the strength of population structure is 188 

𝑆𝑃𝑆 = 𝐴𝐶𝑆𝑤 − 𝐴𝐶𝑆𝑏.         (2) 189 

 Third, the harmonic mean of the sizes of well-defined clusters is calculated. For each 190 

individual i (=1, 2, …, N), its main source population is determined to be l (=1, 2, …, k) if 191 

𝑞𝑙
(𝑖)

 is the largest and 𝑞𝑙
(𝑖)

≥Qmin, where Qmin is a chosen threshold value (say, 0.8). Its main 192 

source population is undetermined if 𝑞𝑙
(𝑖)

< Qmin. The proportion of the N sampled 193 

individuals whose main source population can be determined is then calculated. If this 194 

proportion is not smaller than Qmin, then main cluster structure of the sample is obtained. 195 

Otherwise, the value of Qmin is halved and used to repeat the above process until the main 196 

cluster structure of the sample is attained. The size of the lth (for l=1, 2, …, k) cluster, Sl, is 197 

calculated as the number of individuals whose main source populations are determined to be l.  198 

The harmonic mean of the cluster sizes that are larger than 5, HMCS, is then calculated, 199 

𝐻𝑀𝐶𝑆 = 𝑛5+/ ∑ 𝑆𝑙
−1𝑘

𝑙=1,𝑆𝑙>5 ,         (3) 200 

where 𝑛5+ is the number of clusters with each containing 5 or more individuals. The 201 

threshold cluster size, 5, is more or less arbitrary. However, it is chosen to reduce the 202 

population splitting errors and the population merging errors.   203 

 Fourth, the overall strength of the inferred population structure for a given run is 204 

calculated as 205 

𝑆𝑃𝑆′ =
𝑆𝑃𝑆

𝐻𝑀𝐶𝑆
.           (4) 206 

Among the 𝑛𝑟
′  runs retained after Pr[X|K] screening in step 1, the largest value of 𝑆𝑃𝑆′, 𝑆𝑃𝑆∗, 207 

is obtained. 208 
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 Fifth, the total number of clusters whose sizes are not larger than 5 (as determined in 209 

step 3) across the 𝑛𝑟
′  retained runs, 𝑛5−, is calculated. 210 

 Sixth, the consistency of ancestry assignments cross runs is calculated as 211 

𝐶𝐴𝐴 =
1

𝑁(𝑁−1)/2
∑ ∑ (𝛿0,𝑚

(𝑖𝑗)
+ 𝛿

𝑛𝑟
′ ,𝑚

(𝑖𝑗)
)𝑖−1

𝑗=1
𝑁
𝑖=1 ,        (5) 212 

where m is the number of runs among a total number of 𝑛𝑟
′  retained ones in which individuals 213 

i and j are assigned to the same cluster,  𝛿0,𝑚
(𝑖𝑗)

= 1 and 0 if m=0 and m > 0 respectively, 214 

𝛿
𝑛𝑟

′ ,𝑚

(𝑖𝑗)
= 1 and 0 if m=𝑛𝑟

′  and m < 𝑛𝑟
′  respectively. CAA measures the consistency in main 215 

cluster assignments among replicate runs. Its maximal and minimal values are 1 and 0, 216 

respectively. 217 

 Seventh, the overall assignment quality for an assumed number of k populations is 218 

measured by the parsimony index 219 

𝑃𝐼 = 𝑆𝑃𝑆∗ + 𝐶𝐴𝐴 −
2𝑛5−

𝑘𝑛𝑟
−

1

2𝑘
.        (6) 220 

The last term in (6) is a penalty against small k because both SPS and 𝐶𝐴𝐴 tend to increase 221 

with a decreasing k value. In the extreme case of k=1, 𝑆𝑃𝑆∗ ≡ 1 and 𝐶𝐴𝐴 ≡ 1 because all N 222 

individuals must be inferred to come from the same source population (i.e. 𝐴𝐶𝑆𝑤 ≡ 1 and 223 

𝐴𝐶𝑆𝑏 ≡ 0 in (2) and 𝛿0,𝑚
(𝑖𝑗)

≡ 0 and 𝛿
𝑛𝑟

′ ,𝑚

(𝑖𝑗)
≡ 1 in (5)). 224 

 For each k in the range KL to KH, a corresponding value of PI is calculated. The k 225 

value that yields the largest PI value is inferred to be the most likely number of populations 226 

represented by the sample, K. 227 

Simulations 228 

Simulated data were generated under different population models and sampling intensities, 229 

and used to evaluate the accuracy of the above described parsimony index (PI) and two 230 

popular methods, Pr[X|K] (Pritchard et al. 2000) and ΔK (Evanno et al. 2005), in estimating K 231 

from STRUCTURE. Because increasingly large SNP datasets are produced and analysed by 232 

ADMIXTURE and other programs faster than STRUCTURE, I also simulated data with 233 

many SNPs and estimated K using PI and the cross-validation method (Alexander and Lange 234 

2011) calculated from ADMIXTURE outputs.  235 



10 
 

I assumed Wright’s (1931) island (IS) model or a two-level hierarchical island (HI) 236 

model (Evanno et al. 2005) for population structure in simulating genotype data. A number of 237 

Nk individuals were drawn at random from population k (k = 1, 2, . . ., K), and each sampled 238 

individual was genotyped at a number of L loci, each having A codominant alleles. 239 

The ancestral allele frequencies at a marker locus l (l=1, 2, …, L), p0l = {p0l1, p0l2, …, 240 

p0lA}, were drawn from a uniform Dirichlet distribution, 𝒟(1,1, … ,1). The corresponding 241 

allele frequencies of population i under IS model, pil ={pil1, pil2, …, pilA}, were drawn from 242 

p0l following the Dirichlet distribution 𝒟(𝑓𝑝0𝑙1, 𝑓𝑝0𝑙2, … , 𝑓𝑝0𝑙𝐴), where 𝑓 = 1/𝐹𝑆𝑇 − 1 243 

(Nicholson et al. 2002; Falush et al. 2003) and FST was the genetic differentiation among 244 

populations. For HI model, the allele frequencies of an archipelago a, 𝒑𝒂𝒍={pal1, pal2, …, 245 

palA}, were sampled from p0l using 𝒟(𝑓𝑝0𝑙1, 𝑓𝑝0𝑙2, … , 𝑓𝑝0𝑙𝐴), where 𝑓 = 1/𝐹𝑆𝑇1 − 1 and 246 

𝐹𝑆𝑇1 was the genetic differentiation among archipelagos. The allele frequencies of an island i 247 

within an archipelago a were sampled from 𝒑𝒂𝒍 using 𝒟(𝑓𝑝𝑎𝑙1, 𝑓𝑝𝑎𝑙2, … , 𝑓𝑝𝑎𝑙𝐴), where 𝑓 =248 

1/𝐹𝑆𝑇2 − 1 and 𝐹𝑆𝑇2 was the genetic differentiation between islands within the archipelago.  249 

Given the allele frequencies of a population (or island) i, the genotype of an 250 

individual sampled at random from the population at L loci were generated, assuming Hardy–251 

Weinberg equilibrium and linkage equilibrium. The data, a number of Nk (k=1, 2, …, K) 252 

multilocus genotypes sampled from population k, were then pooled across populations and 253 

were subjected to STRUCTURE or/and ADMIXTURE analysis. Data simulated with a few 254 

loci and many alleles per locus were analysed by STRUCTURE only, while data simulated 255 

with many SNPs (A=2) were analysed by both STRUCTURE and ADMIXTURE, or by the 256 

latter only. 257 

Simulation 1, differentiation FST: The accuracy of a population structure analysis relies on the 258 

strength, measured by FST, of the true structure. Populations of low FST values (close to 0) are 259 

difficult to identify and thus the number of populations represented by a sample of 260 

individuals is difficult to estimate from a STRUCTURE-like analysis. This simulation 261 

investigated the impact of FST in an IS model of K=6 populations on different K estimators.  262 

The 6 populations were assumed to differentiate from the ancestor population to the same 263 

extent of FST =0.02, 0.04, 0.08 or 0.16, or to different extents of FST =0.02 for populations 1 264 

and 2, FST =0.04 for populations 3 and 4, and FST =0.08 for populations 5 and 6. Thirty 265 

individuals from each population were genotyped at 20 (equal FST) or 50 (unequal FST) loci, 266 

each having A=10 alleles. 267 
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Simulation 2, number of loci L: More markers provide more information and thus should 268 

yield more accurate inferences of population structure and K. This simulation considered an 269 

IS model of 6 populations differentiated to the same level of FST =0.1. Thirty individuals 270 

were sampled from each population and genotyped at a varying number of loci (each having 271 

A=10 alleles), L=4, 6, 8, 10, 12, 14, 16, 18, 20.  272 

Simulation 3, number of populations K: It becomes increasingly challenging to estimate K 273 

accurately with an increasing number of populations represented by a sample of individuals. 274 

This simulation generated data from an IS model of K (=1, 2, …, 20) populations 275 

differentiated to the same level of FST =0.1, and compared the accuracy of different K 276 

estimators. Thirty individuals were sampled from each population and genotyped at L=10 and 277 

L=20 loci, each having A=10 alleles. 278 

Simulation 4, unbalanced sampling: Population structure is difficult to infer from a sample 279 

containing many individuals from one population but few individuals from another. Heavily 280 

represented populations tend to split while lightly represented populations tend to merge in 281 

reconstructing the population structure from such an unbalanced sample of individuals. This 282 

simulation considered K=3 populations in an IS model with FST =0.1. The sample size was 283 

fixed at 300 individuals, with a number of X individuals sampled from population 1 and the 284 

remaining 300 – X individuals sampled equally from populations 2 and 3. X took values of 285 

100, 120, 140, …, 280, resulting in a perfectly balanced sample when X=100, and a highly 286 

unbalanced sample when X=280. Each sampled individual was genotyped at L=20 loci, each 287 

having A=10 alleles. 288 

Simulation 5, hierarchical structure: The HI model has two true K values, the number of 289 

archipelagos (Ka) and the number of islands (Ki). While the ΔK method (Evanno et al. 2005) 290 

was shown to estimate Ka, it is unclear what the Pr[X|K] method (Pritchard et al. 2000) 291 

estimates. Is it Ka, Ki, or neither? The PI method estimates Ki, because the islands have a 292 

much smaller harmonic mean cluster size than archipelagos. This simulation considered a HI 293 

model of Ka archipelagos, each containing Ka islands (such that Ki = 𝐾𝑎
2), where Ka =2, 3 and 294 

4. Both FST1 and FST2 were assumed 0.1, and 30 individuals were sampled from each island 295 

(total sample size N= 30𝐾𝑎
2). Each sampled individual was genotyped at L=20 loci, each 296 

having A=10 alleles.  297 

Simulation 6, hybridization: PI index was partially based on minimizing the estimated 298 

admixture, and its accuracy might be compromised for a sample containing many hybrid 299 
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individuals. This simulation considered an IS model of K=3 populations with FST =0.1 and 300 

different degrees of hybridization. A sample contained 50 individuals from each population, 301 

among which a proportion H were either F1 or F2 hybrids (at equal probabilities) between the 302 

resident population and any of the other populations (with an equal probability). Each 303 

sampled individual was genotyped at L =20 loci, each having A=10 alleles. 304 

Simulation 7, inbreeding: Inbreeding causes correlation between the homologous genes at a 305 

locus within an individual, and thus a loss of information in inferring population structures. 306 

This simulation considered different degrees of inbreeding (due to selfing) in an IS model of 307 

K=5 populations with FST =0.1. A sample contained 30 individuals from each population, 308 

each individual being produced by self-reproduction at a rate s (s=0, 0.05, 0.1, 0.2, 0.4, 0.8) 309 

or by outbreeding at a rate 1-s. Each sampled individual was genotyped at L =10 or 20 loci, 310 

each having A=10 alleles. 311 

Simulation 8, many SNPs and low FST: With genomic data of many SNPs, it is now possible 312 

to infer population structure even when it is rather weak (i.e. FST small). This simulation 313 

considered an IS model of K=5 populations with FST =0.01. A sample of 20 individuals were 314 

drawn from each population, and each sampled individual was genotyped at L =100, 200, 400, 315 

800, 1600, 3200, 6400, 12800, and 204800 loci, each having A=2 alleles. The data were 316 

analysed by both STRUCTURE (except for L=204800) and ADMIXTURE, and K was 317 

inferred by PI, Pr[X|K], ΔK and cross-validation methods. 318 

Simulation 9, many SNPs and variable FST: Simulation 8 showed that the cross-validation 319 

method always inferred K=1, while the truth is K=5, even when L=204800 loci were used in 320 

ADMIXTURE analysis which yielded almost perfect population assignments under K=5. 321 

Simulation 9 was conducted to investigate whether the extremely poor performance of 322 

ADMIXTURE’s cross-validation method was due to the low FST (0.01) or not. For this 323 

purpose, K=5 populations in the island model with variable FST values (0.01, 0.02, 0.03, 0.04, 324 

0.05, 0.06, 0.07, 0.08, 0.09, 0.10) were simulated. A sample of 20 individuals were drawn 325 

from each population, and each sampled individual was genotyped at L =1000 loci, each 326 

having A=2 alleles. The data were analysed by ADMIXTURE, and K was inferred by the PI 327 

and cross-validation methods. 328 

Structure analysis 329 
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The simulated data were analysed by STRUCTURE program (version 2.3.4, Pritchard et al. 330 

2000), and the analysis results were further analysed by the Pr[X|K] method (Pritchard et al. 331 

2000), the ΔK method (Evanno et al. 2005) and the new PI method for the most likely 332 

number of populations, K. The model and parameter settings adopted in the analyses were 333 

admixture model and correlated allele frequency model, INFERALPHA=1, ALPHA=1.0, 334 

POPALPHAS=1, UNIFPRIORALPHA=1, ALPHAMAX=10.0, ALPHAPROPSD=0.025. 335 

The alternative prior for individual ancestry was adopted, because it gave much more 336 

accurate STRUCTURE analysis results than the default prior when sampling was highly 337 

unbalanced (Wang 2017). The burn-in length was 104, 105 and 106 iterations in analysing data 338 

simulated with K < 6, 6≤ K <10, and K ≥10 populations, respectively. More populations lead 339 

to more parameters for STRUCTURE to estimate and therefore pose more challenges for the 340 

MCMC algorithm to converge. These burn-in lengths were obtained by experimenting with 341 

many pilot analyses of data with different simulated K values. The run length was 104 342 

iterations. For all other parameters not mentioned above, their default values were used. 343 

 For a dataset simulated with a given K, STRUCTURE analyses were conducted for 344 

each assumed number of populations in the range [KL, KH], where KL =Max[K-3, 1] and KH 345 

=K+3. This narrow range was adopted to reduce the computational burden, and because the 346 

primary interest was whether the true simulated K value was recovered or not. For each 347 

assumed K value k, a number of nr =20 replicate runs were conducted.  348 

 The simulated data with many SNPs were also analysed by ADMIXTURE program 349 

(version 1.3.0, Alexander and Lange 2011). The SNP data were first reformatted by PLINK 350 

(version 1.9.0, Purcell et al. 2007), and then analysed by ADMIXTURE using the program’s 351 

default settings. For each dataset and each assumed K in the range [KL, KH] where KL 352 

=Max[K-3, 1] and KH =K+3, a number of 10 independent replicate runs of ADMIXTURE 353 

were conducted. The most likely K was inferred from ADMIXTURE outputs using its default 354 

cross-validation method and the PI method. 355 

 All simulations and data analyses described above were conducted on a large Linux 356 

cluster, using many cores in parallel by MPI. 357 

Accuracy assessment 358 

For each simulation (i.e. set of parameters), a number of 50 replicate datasets were generated. 359 

Each replicate dataset was analysed by STRUCTURE or/and ADMIXTURE assuming k in 360 
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the range [KL, KH], and was replicated with nr =20 for each assumed K value. The total 361 

number of STRUCTURE-like analyses for a single dataset was thus (KH –  KL +1)×20, which 362 

was 80, 100, 120, 140 when the simulated K value was 1, 2, 3, and ≥4, respectively. The 363 

results in STRUCTURE’s output files were analysed by the ΔK method as described by 364 

Evanno et al. (2005), the Pr[X|K] method (Pritchard et al. 2000) as described by Wang (2017), 365 

and the PI method as described above to obtain the estimates of K, denoted by 𝐾̂𝐸𝑣, 𝐾̂𝑃𝑟, and 366 

𝐾̂𝑃𝐼 respectively. The ADMIXTURE program outputs were used to yield the K estimates 367 

from both PI method and the cross-validation method (Alexander and Lange 2011), denoted 368 

by 𝐾̂𝐴𝐿.  369 

The accuracy of an estimator was measured by the proportion of replicate datasets in 370 

which the estimator was equal to the simulated true K. These accuracy measurements were 371 

denoted as Pr (𝐾̂𝐸𝑣 = 𝐾), Pr (𝐾̂𝑃𝑟 = 𝐾), Pr (𝐾̂𝑃𝐼 = 𝐾) and Pr (𝐾̂𝐴𝐿 = 𝐾) for estimators 𝐾̂𝐸𝑣, 372 

𝐾̂𝑃𝑟, 𝐾̂𝑃𝐼 and 𝐾̂𝐴𝐿, respectively. 373 

A human dataset 374 

The performance of the three K estimators, 𝐾̂𝐸𝑣, 𝐾̂𝑃𝑟, and 𝐾̂𝑃𝐼, was also compared by 375 

analysing a human dataset, published in Wang et al. (2007). The dataset contains 1484 376 

individuals sampled from 78 world-wide populations, each individual being genotyped at 678 377 

microsatellite loci. It proves to be difficult to reconstruct the population structure 378 

unambiguously from the 1484 sampled individuals, even using all of the 678 highly 379 

polymorphic microsatellites (Wang et al. 2007). For demonstration purpose and for reducing 380 

computational burden of a bootstrapping analysis, I choose to analyse a sub-dataset 381 

composing of 24 Basque individuals sampled from France, 19 Melanesian individuals from 382 

Bougainville, 21 Surui individuals from Brazil, 22 Mandenka individuals from Senegal, and 383 

29 Japanese individuals from Japan. These populations are well differentiated and have 384 

balanced sample sizes, and as a result can be distinguished using about 20 markers. A number 385 

of 100 replicate datasets were generated by bootstrapping over loci, for L = 10, 20, 40, 80 and 386 

160. Each dataset was analysed by 20 replicate STRUCTURE runs for each assumed K value 387 

from 1 to 10 (including the true value of K=5). The three K-estimators were then applied to 388 

the STRUCTURE outputs. Accuracy of the estimators was evaluated by calculating the 389 

proportions of the replicate datasets in which K<5, K=5, and K>5 were obtained.  390 

 391 
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Results 392 

Simulation 1, differentiation FST 393 

All three estimators become more accurate with an increasing FST (Figure 1). The accuracy of 394 

estimators 𝐾̂𝐸𝑣 and 𝐾̂𝑃𝑟 is similar, and is consistently lower than that of 𝐾̂𝑃𝐼. 395 

Estimator 𝐾̂𝑃𝐼 has an accuracy increasing rapidly with an increasing FST value (Figure 396 

1), and it recovers the simulated K value completely (i.e. accuracy = 100%) when FST ≥0.08. 397 

The low accuracy at a small FST value of 0.02 is due to the insufficient marker information. 398 

Keeping FST =0.02 and all the other parameters but increasing the number of loci to L=100 399 

increases the accuracy of 𝐾̂𝑃𝐼 to 100%, and that of 𝐾̂𝐸𝑣 and 𝐾̂𝑃𝑟 to 72% and 82% respectively. 400 

 Unequal FST among populations does not affect the accuracy order of the three K 401 

estimators. When FST ={0.02, 0.02, 0.04, 0.04, 0.08, 0.08}, L=50 and the other parameters 402 

have the same values as in Figure 1, the accuracy is Pr (𝐾̂𝐸𝑣 = 𝐾)=66%, Pr (𝐾̂𝑃𝑟 = 𝐾) =100% 403 

and Pr (𝐾̂𝑃𝐼 = 𝐾) =100%.  404 

Simulation 2, number of loci L 405 

𝐾̂𝐸𝑣 is less accurate than 𝐾̂𝑃𝑟 and  𝐾̂𝑃𝐼, especially when the number of loci L is small (Figure 406 

2).  407 

Simulation 3, number of populations K 408 

𝐾̂𝐸𝑣 cannot distinguish a panmictic population (K=1) from a structured or subdivided 409 

population (K > 1), because its statistic is undefined at K=1. When both K and L are small 410 

(Figure 3, left panel), 𝐾̂𝐸𝑣 is less accurate than the other two estimators. 𝐾̂𝑃𝑟 and 𝐾̂𝑃𝐼 have a 411 

similar accuracy when K>1. When K=1 (i.e. a single panmictic population), however, 𝐾̂𝑃𝑟 412 

and 𝐾̂𝑃𝐼 yield the correct estimate at a frequency of about 45% and 100%, respectively. When 413 

K>10, all three estimators become highly inaccurate (Figure 3, left panel), and require more 414 

markers to yield accurate population structure inferences (Figure 3, right panel).  415 

Simulation 4, unbalanced sampling 416 

𝐾̂𝑃𝑟 and 𝐾̂𝑃𝐼 are far more accurate than 𝐾̂𝐸𝑣 in the case of unbalanced sampling (Figure 4). 417 

𝐾̂𝐸𝑣 is very vulnerable to the unevenness of sample sizes. It gives poor estimates of K even 418 

when samples from different populations are only slightly different in size. 419 
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Simulation 5, hierarchical structure 420 

Figure 5 shows that 𝐾̂𝐸𝑣 estimates the number of archipelagos while 𝐾̂𝑃𝑟 and  𝐾̂𝑃𝐼 estimate 421 

the number of islands. It also shows that 𝐾̂𝑃𝑟 is less accurate than  𝐾̂𝐸𝑣 and 𝐾̂𝑃𝐼 for different K 422 

values. Although 𝐾̂𝐸𝑣 and 𝐾̂𝑃𝐼 estimate Ka and Ki respectively, they have a similar accuracy. 423 

Simulation 6, hybridization 424 

𝐾̂𝑃𝐼 is robust to the presence of hybrids (Figure 6). Perfect K estimates were obtained even 425 

when 32% of sampled individuals are either F1 or F2 hybrids. The other two methods also 426 

perform well, but relatively 𝐾̂𝐸𝑣 is the least accurate method even when hybrid frequencies 427 

are low. Both 𝐾̂𝐸𝑣 and 𝐾̂𝑃𝑟 show a dip in accuracy when hybrid rate is high. 428 

Simulation 7, inbreeding 429 

𝐾̂𝑃𝐼 is little affected by inbreeding (Figure 7). Almost perfect K estimates were obtained even 430 

when selfing rate is 80%. In contrast, 𝐾̂𝑃𝑟 works well only when inbreeding is absent or very 431 

low. Its accuracy decreases rapidly with an increasing selfing rate. It outperforms 𝐾̂𝐸𝑣 when 432 

selfing rate is negligibly small, but quickly becomes less accurate than 𝐾̂𝐸𝑣 with an increasing 433 

selfing rate. More markers do not help. Actually when selfing rate is substantial, L=20 loci 434 

leads to less accurate 𝐾̂𝑃𝑟 than L=10 (Figure 7). 435 

Simulation 8, many SNPs and low FST 436 

At a low differentiation of FST =0.01, all K estimators calculated from both STRUCTURE 437 

and ADMIXTURE outputs perform poorly when the number of SNPs (L) is small (L<3200) 438 

(Figure 8). With more SNPs, 𝐾̂𝑃𝐼 quickly reaches the maximal accuracy of 100%, no matter it 439 

is calculated from STRUCTURE or ADMIXTURE outputs. The other three estimators, 𝐾̂𝐸𝑣, 440 

𝐾̂𝑃𝑟 and 𝐾̂𝐶𝑉, still perform poorly even when a large number of SNPs (12800 and 204800 for 441 

STRUCTURE and ADMIXTURE, respectively) are used. The cross-validation estimator, 442 

𝐾̂𝐶𝑉, consistently yields an estimate of K=1 (i.e. no population structure), using 100-204800 443 

SNPs. 444 

Simulation 9, many SNPs and variable FST 445 

The cross-validation estimator, 𝐾̂𝐶𝑉, is inaccurate when FST is small (Figure 9), as observed 446 

before (Figure 8). With FST ≤0.06, the cross-validation method always yields 𝐾̂𝐶𝑉 = 1, much 447 
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smaller than the truth of K=5. The accuracy of 𝐾̂𝐶𝑉 increases rapidly with increasing FST 448 

when it is larger than 0.06, and reaches the maximum 100% when FST =0.08. In contrast, 𝐾̂𝑃𝐼 449 

becomes perfect when FST ≥0.02. 450 

Human SSR data 451 

𝐾̂𝐸𝑣 consistently underestimates K, irrespective of the number of loci (Figure 10). The vast 452 

majority of estimates are 𝐾̂𝐸𝑣=2, with population Surui forming a cluster and the remaining 453 

four populations forming the other cluster. 𝐾̂𝑃𝑟 underestimates and overestimates K when L is 454 

low and high respectively, yielding a maximal accuracy (i.e. the frequency of estimates of 455 

K=5) of 60% at L=20. It is a bit bizarre that 𝐾̂𝑃𝑟 gives fewer estimates of K=5 with an 456 

increasing L when L>20. The accuracy of 𝐾̂𝑃𝐼 always increases with L. The estimator is 457 

(when L>10) or is close to (when L=10) the most accurate, and yields perfect K estimates 458 

when L>20. 459 

 460 

Discussion 461 

In this study I proposed an ad hoc estimator of the number of populations represented in a 462 

sample of individuals (K), which can be calculated from the results of a STRUCTURE-like 463 

analysis. While previous estimators (e.g. Pritchard et al. 2000; Evanno et al. 2005) rely on the 464 

estimated likelihood or probability of data, the new method, in contrast, evaluates and 465 

employs the individual ancestry assignment quality as the criterion in choosing the most 466 

likely K. It is based on the observation that, in a STRUCTURE-like analysis, assuming a 467 

higher and lower than true K value leads to the splitting and merging of source populations, 468 

respectively. In both cases, the individual ancestry assignment quality is usually undermined, 469 

as characterized by inflated admixture within each replicate run and increased inconstancy 470 

across replicate runs. Loosely speaking, the parsimony index method estimates the most 471 

likely K by identifying the number of populations which yields the most consistent and the 472 

minimal average admixture. 473 

 My extensive simulations under a variety of population structure and sampling 474 

scenarios show that the new estimator (𝐾̂𝑃𝐼) outperforms the current popular estimators 475 

overall. In some difficult situations such as unbalanced sampling (Figure 4), low population 476 

differentiation (Figures 8, 9, 1), low marker information (Figure 2), hierarchical structure 477 
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(Figure 5), and inbreeding (Figure 7), the new estimator improves K estimation substantially. 478 

I also show that the new estimator is accurate when hybridization is present (Figure 6), and is 479 

more accurate than other estimators when hybridization is high. This seems to be a bit of 480 

surprising, given that 𝐾̂𝑃𝐼 is partially based on minimizing average admixture. However, true 481 

admixture is different from false admixture. While the former is consistently inferred across 482 

different K values and across different replicate runs for a given K value, the latter is 483 

estimated only when the assumed K deviates from the truth and is estimated inconsistently 484 

across replicate runs. Therefore, minimizing average admixture still leads to the recovery of 485 

the actual population structure in the presence of true admixture. 486 

 My simulation confirms the conclusion that estimator 𝐾̂𝐸𝑣 is more accurate than 𝐾̂𝑃𝑟 487 

for populations in the hierarchical island model (Evanno et al. 2005). While 𝐾̂𝐸𝑣 estimates the 488 

number of archipelagos (Ka), 𝐾̂𝑃𝑟 tends to estimate the number of islands (Ki). 𝐾̂𝐸𝑣 estimates 489 

Ka with an accuracy consistently and considerably higher than 𝐾̂𝑃𝑟 estimates Ki (Figure 5). 490 

The simulations also show 𝐾̂𝐸𝑣 is more accurate than 𝐾̂𝑃𝑟 for highly inbred populations 491 

(Figure 7). Unfortunately, however, the accuracy advantage of 𝐾̂𝐸𝑣 is lost in other scenarios 492 

of population structure and sampling (Figures 1~4, 6). In several realistic scenarios (e.g. 493 

unbalanced sampling, Figure 4), 𝐾̂𝑃𝑟 is much more accurate than 𝐾̂𝐸𝑣. It is unfortunate that 494 

𝐾̂𝐸𝑣 is now widely favoured over 𝐾̂𝑃𝑟 in estimating K, even when there is no clear evidence 495 

that the populations are in a hierarchical structure or highly inbred. 496 

 The confusion as to which estimator gives a better K estimate arises because all 497 

estimators are ad hoc and their accuracies must be evaluated using simulated or empirical 498 

datasets. Due to the heavy computational burden, however, few studies (e.g. Evanno et al. 499 

2003; Gao et al. 2011) were conducted to compare the accuracy of different estimators under 500 

various population structure and sampling scenarios. Typically a simulation study (like the 501 

present one) considers many different sets of parameter combinations, and simulates and 502 

analyses a large number of replicate datasets for a given parameter combination. Each 503 

simulated dataset must be analysed with different assumed K values, and for each assumed K 504 

value, a number of replicate runs (say, 20) must be conducted. The total number of 505 

STRUCTURE runs for a single dataset is (KH –  KL +1)×20, which is 140 when the simulated 506 

K>3, KH = K+3, and KL = K-3. If a typical run takes about 0.5 hours, this means analysing a 507 

single dataset takes about 70 hours. Analysing 50 replicate datasets simulated under a given 508 

set of parameters would take about 3500 hours. A typical figure with 8 plotting points (values 509 
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on the x axis) would take about 28000 hours, and the 8 figures from STRUCTURE analyses 510 

shown in this study would take about 224000 hours. It is obviously impossible to conduct a 511 

simulation study like the present one on a desktop computer. My simulation was carried out 512 

on a Linux cluster using 512 cores in parallel. 513 

 This study focussed on applying different K estimators to STRUCTURE (Pritchard et 514 

al. 2000) analyses. Other methods for population structure inference (e.g. Corander et al. 515 

2003; Tang et al. 2005; Gao et al. 2007; Huelsenbeck and Andolfatto 2007; Alexander et al. 516 

2009) use the same genotype data and give similar outputs such as individual ancestry 517 

proportions. For the analysis of genomic SNP data with thousands to millions of loci, 518 

STRUCTURE  is too slow and much faster methods are increasingly used. Alexander et al. 519 

(2009) improved Tang et al.’s (2005) expectation maximization algorithm of a likelihood 520 

model, and implemented the algorithm in a computer program ADMIXTURE. The program 521 

runs several orders faster than STRUCTURE, and yet provides similarly good results of both 522 

ancestry assignments and K estimates (by the cross-validation method, 𝐾̂𝐶𝑉) in some tested 523 

situations (Alexander et al. 2009; Alexander and Lange 2011). This study simulated genomic 524 

data and compared the performances of the cross-validation method and other methods 525 

(Figure 8). It is clear that 𝐾̂𝐶𝑉 calculated from ADMIXTURE outputs behaves similarly to 526 

𝐾̂𝑃𝑟 and 𝐾̂𝐸𝑣 calculated from STRUCTURE outputs, when populations are little differentiated 527 

and many SNPs are used. The accuracy of the three estimators is rather poor, compared with 528 

that of the parsimony estimator 𝐾̂𝑃𝐼 calculated from the outputs of both programs. It seems 529 

𝐾̂𝐶𝑉 is very sensitive to the FST, and becomes accurate only for highly differentiated 530 

populations (Figure 9). At low differentiation, it is conservative and always falsely infers a 531 

single (𝐾̂𝐶𝑉 = 1) panmictic population even when many markers are used (Figures 8 and 9).  532 

 The parsimony K estimator described in this study was implemented in a computer 533 

program, KFinder, freely downloadable from https://www.zsl.org/science/software/KFinder. 534 

 535 

 536 
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 636 

Figure 1: Accuracy of three K estimators (calculated from STRUCTURE outputs) as a 637 

function of FST. A number of K=6 populations in the island model with FST =0.02, 0.04, 0.08 638 

or 0.16 (x axis) were simulated. Thirty individuals from each population were sampled and 639 

genotyped at 20 loci, each having A=10 alleles. 640 
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 644 

Figure 2: Accuracy of three K estimators (calculated from STRUCTURE outputs) as a 645 

function of the number of loci L. A number of K=6 populations in the island model with FST 646 

=0.1 were simulated. Thirty individuals from each population were sampled and genotyped at 647 

L=8, 10, 12, 14, 16, 18 and 20 loci, each having A=10 alleles. 648 

  649 

8 10 12 14 16 18 20

0.7

0.8

0.9

1

 L 

 A
cc

u
ra

cy
 

○: 𝐾𝐸𝑣  

 ■: 𝐾𝑃𝑟 

 ●:  𝐾𝑃𝐼 



26 
 

   650 

 651 

 652 

Figure 3: Accuracy of three K estimators (calculated from STRUCTURE outputs) as a 653 

function of the simulated (true) number of populations (K). A number of K (x axis) 654 

populations in the island model was simulated, assuming FST =0.1. A number of 30 655 

individuals were sampled from each population, and each individual was genotyped at either 656 

L=10 (left panel) or L=20 (right panel) loci, each having 10 alleles. 657 

  658 

0 1 2 3 4 5 6 7 8 9 10 12

0.4

0.5

0.6

0.7

0.8

0.9

1

10 12 14 16 18 20

0.5

0.6

0.7

0.8

0.9

1

○: 𝐾𝐸𝑣  

 ■: 𝐾𝑃𝑟 

 ●:  𝐾𝑃𝐼 

 K 

 A
cc

u
ra

cy
 

 K 

L=10 L=20 



27 
 

 659 

   660 
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 662 

Figure 4: Accuracy of three K estimators (calculated from STRUCTURE outputs) as a 663 

function of the smaller sample size N. Three populations in the island model was simulated, 664 

assuming FST =0.1. A number of 300-2N, N, and N individuals were sampled from 665 

populations 1, 2, and 3, respectively. The individuals were genotyped at L=20 loci, each 666 

having 10 alleles.  667 
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 670 

 671 

 672 

Figure 5: Accuracy of three K estimators (calculated from STRUCTURE outputs) as a 673 

function of the number of archipelagos Ka or the number of islands Ki in a HI model. Note, 674 

the HI model has two true K values, the number of archipelagos (Ka) and the number of 675 

islands (Ki), the latter being equal to the square of the former in the simulations. Accuracy 676 

Pr (𝐾̂𝐸𝑣 = 𝐾), Pr (𝐾̂𝑃𝑟 = 𝐾) and Pr (𝐾̂𝑃𝐼 = 𝐾) is calculated with K being Ka for 𝐾̂𝐸𝑣, and 677 

being Ki for 𝐾̂𝑃𝑟 and 𝐾̂𝑃𝐼. The FST values among archipelagos and among islands within an 678 

archipelago are both 0.1. Thirty individuals were sampled from each island, and were 679 

genotyped at L=20 loci, each having 10 alleles.  680 
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 686 

Figure 6: Accuracy of three K estimators (calculated from STRUCTURE outputs) as a 687 

function of the frequency of hybrids (F1 and F2) in a sample of individuals. Three 688 

populations in the island model with FST =0.1 were simulated, and 30 individuals were 689 

sampled from each population and were genotyped at L=20 loci, each having 10 alleles. 690 
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 695 

 696 

Figure 7: Accuracy of three K estimators (calculated from STRUCTURE outputs) as a 697 

function of the selfing rate of sampled individuals. Five populations in the island model with 698 

FST =0.1 were simulated, and 30 individuals were sampled from each population and were 699 

genotyped at L=10 (upper panel) or 20 (lower panel) loci, each having 10 alleles. 700 
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 705 

Figure 8: Accuracy of estimators 𝐾𝐸𝑣 , 𝐾𝑃𝑟, 𝐾𝑃𝐼 calculated from STRUCTURE outputs and 𝐾𝐶𝑉 706 

and 𝐾̂𝑃𝐼 calculated from ADMIXTURE outputs as a function of the number of SNPs used in 707 

population structure analyses. Five populations in the island model with FST =0.01 were 708 

simulated, and 20 individuals were sampled from each population and were genotyped at 709 

L=100 - 204800 (x axis) loci, each having 2 alleles. 710 
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 716 

Figure 9: Accuracy of estimators 𝐾𝐶𝑉 and 𝐾𝑃𝐼 calculated from ADMIXTURE outputs as a 717 

function of FST. Five populations in the island model with FST  varying (x axis) in the range 718 

[0.01, 0.10]  were simulated, and 20 individuals were sampled from each population and were 719 

genotyped at L=1000 loci, each having 2 alleles. 720 
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 725 

Figure 10: Accuracy of three K estimators as a function of the number of loci, L. A number of 726 

100 replicate datasets were obtained by bootstrapping (over loci) for each number of loci (x 727 

axis) from a human SSR dataset, and were analysed by STRUCTURE for estimating K. The 728 

original dataset has 117 individuals sampled from 5 (true K=5) populations. 729 
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