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Abstract

Many models in population genetics feature some form of convergence of the ge-

netic state of the population, typically onto a globally attracting invariant manifold.

This allows one to effectively reduce the dynamical system to a problem with fewer

dimensions, making it easier to investigate the stability of the steady states in the

model, as well as to predict the long-term evolution of the population. Moreover,

along this manifold, there is a balance between multiple processes, such as selection

and recombination.

For some models, restrictive assumptions such as small selection coefficients

or additivity of fertilities and mortalities has helped show global contraction of dy-

namics onto a manifold which is close to the well-known Hardy-Weinberg mani-

fold, and on this ‘quasiequilibrium’ manifold the dynamics can be written in terms

of allele frequencies (which is of more practical interest to geneticists than the geno-

type frequencies).

This thesis focuses on proving the existence of an invariant manifold for two

continuous-time models in population genetics: one is proposed by Nagylaki and

Crow and features fertilities and mortalities (death rates), while the other is the

selection-recombination model. Common themes in both proofs include a change

of coordinates such that the dynamical system is monotone with respect to a certain

cone. As a result, it is possible to construct an equicontinuous sequence of functions

which has a convergent subsequence. We show this limiting function is indeed

invariant. In fact, for the latter model, we show the manifold is globally attracting by

proving the phase volume is contracting. The conditions obtained from the proofs

are less restrictive than the use of parameters that are small or additive, hence our
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work is more widely applicable.

For the former model, numerical examples are also provided in which the man-

ifold need not be smooth, convex, unique or globally attracting.



Impact Statement

My research impacts both the Population Genetics and Invariant Manifolds com-

munities. Many Population Genetics models, including the two investigated in this

thesis, feature some sort of convergence onto a curve, surface or a similar object

with fewer dimensions than the original system. Existence of these so-called in-

variant manifolds has been previously proven for both models, but with very re-

strictive assumptions such as additivity of fertilities or small selection coefficients.

My new existence conditions for the Nagylaki-Crow model covers a broader range

of the parameters, hence is more widely applicable. Meanwhile, for the Selection-

Recombination model, I derive easily testable conditions for the existence of the

quasi-linkage equilibrium (QLE) manifold.

My work will also be of interest to those studying Monotone Systems Theory

or applying it in models from biology, chemical reactions, economics, etc. My ex-

istence proof for a nonmonotone invariant manifold in the Nagylaki-Crow model

does not require the system to be strongly competitive in either set of coordinates.

In addition, I proved a lemma about the intimate connection between a cone be-

ing invariant under normal dynamics, and the system being competitive with re-

spect to the dual of said cone. Although I only applied the result on the Selection-

Recombination model, it should also be applicable to other dynamical systems.

Moreover I investigated the special case of the Selection-Recombination model

with zero recombination. By converting the system to Lotka-Volterra dynamics and

mapping its carrying simplex back, I deduced the existence of a new invariant man-

ifold, distinct from the QLE manifold. The equations of motion for this case are

identical to replicator dynamics with a symmetric fitness matrix, hence the results
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will be useful for evolutionary game theorists. I also predicted that similar results

will hold for different-dimensional replicator systems; furthermore, the fitness ma-

trix need not be symmetric.

One paper has been published so far, and one more is currently under review. I

am now working towards one or two further publications loosely based on Chapters

6 and 7. In addition, two different talks and two conference posters were presented

at various conferences.
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Chapter 1

Summary

Many models in population genetics feature some form of convergence of the ge-

netic state of the population, typically a steady state, limit cycle, invariant manifold,

etc. This allows geneticists to effectively reduce the dynamical system to a problem

with fewer dimensions, making it easier to investigate the stability of steady states

in the model, as well as to predict the long-term evolution of the population.

In some models, the existence of an invariant manifold has only been proven

in the presence of some very restrictive assumptions. For example, the existence

of a manifold for the Selection-Recombination model in Chapter 6 can be proven

if weak selection is assumed. None of the existence proofs in this thesis make

use of small or additive parameters. Moreover, we explore the connection between

the new results and whether the model is competitive with respect to some cone.

A common trick used in the thesis is changing coordinates to make the analysis

simpler. The new existence conditions obtained for one of the models, the Nagylaki-

Crow model in Chapter 5, are more widely applicable. A gallery of numerical

examples is also provided showing that the invariant manifold need not be smooth,

decreasing, convex or unique.

Although the object of interest in each model is an invariant manifold, another

branch of dynamical systems is used throughout this thesis: monotone systems the-

ory. A mixture of techniques from analysis, geometry and topology is also applied.

This thesis is written with the general mathematician in mind. No prior knowl-

edge of genetics or dynamical systems is assumed, although a background in func-
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tional analysis is helpful; a good reference can be found in [3]. The required back-

ground for population genetics, invariant manifolds and monotone systems is given

in Chapters 2, 3 and 4. However, those who are already familiar with all the content

can start reading from Chapter 5.

Also, the equations for the continuous-time selection model are identical to

replicator dynamics, which in turns out to be topologically equivalent to the Lotka-

Volterra system. Any readers with a penchant for game theory or ecology are wel-

come to turn to Chapter 7 first (if they already know the background).



Chapter 2

Background on Population Genetics

The aim of this chapter is to introduce a mathematician to the concepts of genetics

required to understand the models studied in this thesis. Basic ideas from genet-

ics are given in Section 2.1, then Mendel’s pea plants are used as an example to

illustrate these ideas and to introduce Mendel’s Laws of inheritance in Section 2.2.

Section 2.3 goes into the Hardy-Weinberg Law. Finally, genetic recombination is

discussed in Section 2.4. Much of the content in this chapter can also be found in

[4, 2, 5].

2.1 Basic genetics
We have come a long way since Gregor Mendel discovered genes in 1886 [6]. By

tracking the inheritance pattern in pea plants, he found that traits are inherited in

discrete units called genes, and they come in different variants, or alleles. In ev-

eryday language, people might talk of someone "having a gene", such as a gene

for brown eyes, a curly hair gene, or even a memory gene! What they are actually

referring to is someone having the specific allele for that trait.

Genetic material is stored as DNA coiled up in long, threadlike structures

called chromosomes. The location of a particular gene on a chromosome is called

its locus. In 1902 Sutton and Boveri correctly predicted that genes are arranged

linearly on chromosomes [7, 8, 9]. Different species have different numbers of

chromosomes. For example, humans have 46 chromosomes; as these are arranged

in pairs, we say that humans are a diploid species. The last pair of chromosomes,
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the sex chromosomes, determine the sex of the individual (XX for female, XY for

male). Meanwhile, the other 22 pairs of chromosomes are called autosomes. Two

chromosomes that belong to the same pair are said to be homologous. Other mam-

mals, birds and reptiles and Mendel’s pea plants are diploid too, but some fish,

amphibia and many plants have more than two sets of chromosomes. The Uganda

clawed frog has one of the highest numbers of sets of chromosomes in the animal

kingdom [10]: twelve! In this thesis, we will only consider diploid organisms.

Reproduction of an organism can be sexual or asexual. An organism that re-

produces asexually basically clones itself - the offspring are genetically identical to

their single parent (except for rare mutations). Meanwhile, for sexual reproduction

in diploids, there is a type of cell division called meiosis in which the chromosomes

of a diploid cell duplicate before the cell splits into four haploid daughter cells, i.e.

each with only one set of chromosomes (Figure 2.1). The haploid cells are called

gametes; these are sperm and eggs in animals, or pollen and ova in plants. During

mating, fertilisation occurs in which a sperm and an egg fuse together into a zygote,

restoring the full number of chromosomes. A new individual develops from the

zygote.

Suppose we consider just one locus with n alleles A1,A2,. . . An. Then the geno-

type for a diploid organism is determined by the pair of alleles Ai/A j it possesses

at that locus. The convention of listing the paternal allele first is taken from [2].

Meanwhile, the phenotype of the organism is the observable expression of his or

her genotype. If both alleles at that locus are identical, i.e. has genotype Ai/Ai for

some i, we say the individual is homozygous; otherwise the alleles are different, so

the individual is heterozygous instead and the genotype can be expressed as Ai/A j

with i , j. Note that the heterozygotes Ai/A j and A j/Ai are treated as the same

genotype, since the order of the alleles has no effect on the individual.

Geneticists are interested in tracking the frequencies of genotypes and alleles;

we will let freq(Ai/A j) and freq(Ai) represent the frequencies of the genotype Ai/A j

and the allele Ai respectively. The genetic state of the population can be represented

using a vector x whose ith component is xi = freq(Ai). As allelic frequencies should
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Figure 2.1: The process of meiosis, which involves two divisions, thus creating a total of
four daughter cells (gametes). For simplicity, only one pair of homologous
chromosomes is shown. There is a chance of the duplicated chromosomes
crossing over and exchanging material before the first division; this is called
recombination which will be discussed in Section 2.4.

be non-negative and sum up to one, the state vector x will belong to the following

set

∆n =

x ∈ Rn : xi ≥ 0,
n∑

i=1

xi = 1


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which is called the n-simplex [2]. Similarly, genotype or gamete frequencies are

also represented by state vectors in simplices.

One difficulty is that the number of genotypes in a population is much larger

than the number of alleles and quickly becomes gigantic [4]. A diploid population

consisting of 100 loci, even with only two alleles per locus would have 3100 distinct

genotypes, which is a bigger number than any realistic population size! Even the

two-locus two-allele models in this thesis have nine distinct genotypes, which is

already a lot of dynamical variables to track - often it is much simpler to focus on

the gametic frequencies only.

All the models discussed in this thesis are continuous-time, hence they share

some common assumptions. First, the population of sexually reproducing diploids

is taken to be infinite. Also, generations are not discrete and overlap, the allele

frequencies are assumed to be the same in each sex, and there is no mutation or

migration. In the selection-recombination and continuous-time selection models,

mating is assumed to occur without regard to ancestry or genotype, hence is said

to be random [5]. A randomly mating population is sometimes called panmictic

instead.

2.2 Mendel’s Laws

In his experiments, Mendel tracked the inheritance patterns for seven different char-

acteristics in pea plants: seed shape, seed colour, pod shape, pod colour, flower

colour, flower position and height [6]. For simplicity, let us consider flower colour

only, which is governed by a single locus. There are two phenotypes: red and white;

we will denote the respective alleles by R and r respectively. Then the genotype for

an individual plant consists of the pair of alleles at that locus, e.g. R/R.

First, Mendel established "pure" lines of plants, which produced offspring with

the same trait when self-fertilised. He bred one line for red flowers and another for

white; their genotypes were R/R and r/r respectively. Next, Mendel crossed the red

line plant with the white one. All the offspring in the new generation, labelled as

F1, have the same genotype R/r and bore red flowers - the white allele r did not
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express itself at all. However, when he self-pollinated the F1 plants to produce the

next generation (F2), the ratio of plants with red to white flowers was 3 : 1.

At the time, biologists believed in a "blending" theory of inheritance, i.e. an

individual would inherit an average of its parents’ traits. However, Mendel’s results

defied the blending theory: had it been correct, all F1 plants would bear pink flowers

instead, which would subsequently produce more pink flower plants for generation

F2 (Figure 2.2).

Figure 2.2: The inheritance of flower colours had the blending theory been correct. Varia-
tion is already lost by generation F1.

Rather, Mendel’s reasoning was as follows: when self-fertilised, each homozy-

gote R/R and r/r always gives R/R and r/r offspring respectively, hence these must

be the genotypes for the red and white pure-bred lines respectively. Meanwhile,

the pairing R/R× r/r always leads to R/r offspring (which corresponds to cross-

fertilising the pure-bred lines to produce generation F1). Because all F1 plants had

red flowers, he deduced that the red allele R was masking the effect of the white

allele r, so R is said to be a dominant allele, while r is the recessive one. As shown

in Table 2.1, the four (equally likely) outcomes for the pairing R/r×R/r are R/R,

R/r, r/R, r/r. With R being dominant, only plants with genotype r/r will possess

white flowers. The other three outcomes all lead to red flowers, hence the 3 : 1 ratio

in the F2 generation. A summary of all this is given in Figure 2.3.
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R r
R R/R R/r
r r/R r/r

Table 2.1: The Punnett square showing all the possible outcomes for the R/r×R/r pairing.
Each outcome is assumed to be equally likely to occur, i.e. with probability 1

4 .
Note that R/r and r/R are treated as the same (unordered) genotype.

Figure 2.3: Mendelian inheritance of flower colour in pea plants.

In addition, Mendel deduced the following laws, which apply for diploid or-

ganisms:

Law of segregation: During meiosis, the two alleles at the given locus will

segregate into gametes. The segregated alleles are reunited when gametes fuse to-

gether at fertilisation

Law of Independent Assortment: Alleles for different (non-interacting) loci

are distributed to offspring independently.

Law of dominance: Some alleles are dominant, while others are recessive. If

at least one dominant allele is present in the genotype, then the trait displayed will

match the dominant allele.

2.3 The Hardy-Weinberg Law
To explain this principle, we present perhaps the simplest (discrete-time) model in

population genetics:
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Take an (infinitely) large population of diploid organisms that reproduce sex-

ually, and consider just one locus α on an autosome with n alleles A1,A2, . . .An.

There are no evolutionary forces acting on the population, e.g. selection, recombi-

nation, mutation, migration. Furthermore, suppose that generations are discrete and

non-overlapping, as is the case for annual plants and many insects. We also assume

the genotype frequencies are the same in each sex, although it is demonstrated in

[5] that the same results are reached even if the frequencies initially differ between

the sexes, delayed by only one generation.

Let Pi j denote the frequency of genotype Ai/A j. Then by Mendel’s Law of

Segregation [2]

pi =
1
2

∑
j

(
Pi j + P ji

)
,

is the frequency of allele Ai in the gamete pool of the population. If mating occurs

randomly, i.e. without regard to the genotype at α, random union of gametes gives

the genotype frequencies

P′i j = pi p j (2.3.1)

for the next generation. Hence the allelic frequencies remain unchanged,

p′i =
1
2

∑
j

(
P′i j + P′ji

)
= ��2

�
�
�1

2

∑
j

pi p j = pi,

which implies Hardy-Weinberg proportions,

P′i j = p′i p′j (2.3.2)

is obtained in only one generation. All this implies the Hardy-Weinberg Law, which

states that the allelic frequencies stay constant from generation to generation, and

from the second generation onwards, the proportion of homozygous genotypes

Ai/Ai is given by p2
i , while those for (unordered) heterozygous genotypes Ai/A j

(i , j) are 2pi p j.

The principle was first reported for the two-allele case (n = 2) with p1 = p2 =

0.5 in [11, 12], and for other values in [13]. Then Weinberg obtained the result for
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general p1, p2 assuming absence of heterozygotes in the first generation [14], while

Hardy independently analysed the most general situation for two alleles [15]. Later,

Weinberg extended the principle to multiple alleles [16]. The set

ΣH = {(P11,P12,P21,P22) ∈ ∆4 : Pi j = pi p j, Pi j = P ji}

is called the Hardy-Weinberg manifold.

2.3.1 Linkage between loci

Now take two loci α and β, each with two alleles: A, a for the locus α and B, b for

the locus β.

Then there are four possible gametes ab, Ab, aB and AB; these haploid geno-

types will be denoted by G1, G2, G3, G4, whose frequencies at the zygote stage (i.e.

immediately after fertilisation) are freq(ab) = x1, freq(Ab) = x2, freq(aB) = x3 and

freq(AB) = x4 respectively [2].

The linkage of disequilibrium coefficient D = x1x4 − x2x3 is a measure of the

statistical dependence between the two loci. Let freq(a) denotes the frequency of

allele a in the gamete pool, freq(ab) be the frequency of genotype ab, and so on.

Then [2]

D = freq(ab)− freq(a)freq(b),

hence D = 0 if and only if

freq(ab) = freq(a)freq(b),

with similar results also holding for each of Ab, aB and AB. In this scenario, the

population is said to be in linkage equilibrium, and the biological interpretation is

that the frequency of gamete genotypes is simply the product of the frequencies of

the alleles contributing to that genotype. The set corresponding to D = 0, i.e.

ΣW = {x ∈ ∆4 : x1x4 = x2x3},
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is known as the Wright Manifold.

At first it is easy to confuse the Wright manifold with the n = 2 case of Hardy-

Weinberg proportions, because both are described by genotype proportions being

given as products of their component alleles. However, linkage equilibrium focuses

on gamete genotypes for two or more loci. As each allele in the gamete belongs to a

different locus, there are no symmetries imposed on gamete genotypes. Meanwhile,

for the Hardy-Weinberg proportions described in 2.3, we concentrate on the full

diploid genotype at a single locus. Moreover, there is a symmetry constraint on the

full genotypes because A1/A2 and A2/A1 are treated as identical.

2.4 Genetic recombination
Towards the end of the nineteenth century Rückert predicted exchanges of genetic

material between the (duplicated) maternal and paternal chromosomes during meio-

sis [17]. Boveri drew the same conclusion in 1904 after his experiments with sea

urchins [9], before Janssens discovered that the exchanges happen when the mater-

nal and paternal chromosomes cross over [18], see Figure 2.4.

Figure 2.4: The paternal chromosome (black) crosses over with the maternal (grey) one
during recombination, leading to genetic material being swapped.

This phenomenon is called recombination, and it leads to genetic variation
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among the resulting offspring [2, 18]. In this thesis we assume recombination does

not create new genes, but produces new combinations of genes [2]. The maximum

rate of crossovers with recombination, r, is a half, which occurs when the two loci

belong to two different chromosomes. On the other hand, if the two loci are on

the same chromosome, then r ∈ (0, 1
2 ). This rate increases with physical distance

between loci; Haldane’s reasoning for this range of values of r is given in [19].

There has been much discussion on the evolutionary benefits of recombination,

and many hypotheses were put forward [4, 20]. Two main ideas are the Fisher-

Muller theory [21, 22] and the notion that recombination allows the population to

adapt more readily to an ever-changing environment.

Fisher and Muller considered a population with new mutants bearing bene-

ficial alleles at multiple different loci. Their theory is that if recombination does

occur within the population, favourable alleles that occur in different individuals

can ultimately combine into a single lineage, preventing future competition be-

tween multiple beneficial alleles. Such competition would slow the spread of, or

even eliminate, some of the advantageous alleles [23]. Equivalently, recombina-

tion prevents the build-up of deleterious alleles in an individual. Other population

geneticists investigated the theory; those whose models consisted of a finite popu-

lation size saw advantages of recombination [24], while those assuming an infinite

population found no benefit [25, 26, 27, 28, 29, 30, 31, 32].

The effect of selection is to continually produces linkage disequilibrium. The

average effect of these disequilibria is to retard the response to selection. Recom-

bination speeds the response to selection by breaking down this linkage disequilib-

rium [24]. In fact, in the absence of selection, recombination causes the linkage

disequilibrium to approach zero in the long-run.



Chapter 3

Background on invariant manifolds

Invariant manifold theory is fundamental to the study of dynamical systems. The

overall goal in the theory is to look for (sub)manifolds of the phase space that are in-

variant under the flow, i.e. orbits that start on the manifold stay in it for all time. The

advantage is that restriction to the invariant manifold reduces the original system to

a lower-dimensional problem or even a steady state; for a population geneticist it

becomes much easier to predict the long-term evolution of the genetic state of the

population.

The first rigorous results for invariant manifolds emerged at the beginning of

the twentieth century [33, 34, 35, 36]. Hadamard’s existence proof for stable and

unstable manifolds of dynamical systems in 1901 took a different method from

that of Cotton, Lyapunov and Perron. The latter technique is now known as the

Lyapunov-Perron method, although Cotton’s proof emerged in 1911, before Perron

expanded on Cotton’s ideas by 1929 to cover cases with complex eigenvalues.

We start by introducing the reader to basic ideas in dynamical systems theory

in Section 3.1. Some fundamental concepts from topology and the notion of topo-

logical equivalence are also provided in Section 3.2. The stable, unstable and centre

subspaces of a steady state in the system are introduced in Section 3.3, which are

related to some of the types of invariant manifold reviewed in Section 3.4. Finally,

four different methods of proving existence of an invariant manifold are discussed

in Section 3.5. Most of the material in this chapter is based on [37, 38, 39].
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3.1 Introducing dynamical systems
We begin by defining a dynamical system as given in [37, 40]:

Definition 3.1.1. A dynamical system on a set E is a C1-map

Φ : R×E→ E,

where E is an open subset of Rn and if Φt(x) = Φ(t,x), then Φt satisfies

(i) Φ0(x) = x ∀x ∈ E.

(ii) Φt ◦Φs(x) = Φt+s(x) ∀s, t ∈ R and ∀x ∈ E.

Then the family of transformations Φt makes a semi-group under composition,

and is called the semi-flow of the system. If

Φ−t(Φt(x)) = Φt(Φ−t(x)) = x ∀t ∈ R ∀x ∈ E

also holds, the transformations become a group, and Φt is called the flow instead.

The trajectory of a point x is the map Φ(·,x) : R→ E, t→ Φt(x); its image

O(x) = {Φt(x) : t ≥ 0}

is called the semi-orbit of the point x. When O(x) = x, the point x is a steady state

[41].

A straightforward example has Φ(t,x) = exp(At)x, where A is an n×n matrix.

The flow defines a dynamical system on Rn and for each x0 ∈ R
n, Φ(t,x0) is the

solution of the initial value problem

ẋ = Ax, x(0) = x0. (3.1.1)

A set S ⊆ E is said to be positively invariant if ΦtS ⊂ S for all t ≥ 0. A set S ⊆ E is

said to be invariant if ΦtS = S for all t ≥ 0.
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An orbit O(x) is said to be a T -periodic orbit for some T > 0 if ΦT (x) = x; the

smallest such T is called the period of x. In that case, Φt+T (x) = Φt(x) for all t ≥ 0,

so O(x) = {Φt(x) : 0 ≤ t ≤ T }. A periodic orbit is nontrivial if it is not an steady state.

The following definition is taken from [41]:

Definition 3.1.2. A set A ⊂ Rn is said to attract a set S if for every neighbourhood

U of A there exists t0 ≥ 0 such that

t > t0 ⇒ Φt(S ) ⊂ U.

When S = {x}, we say that A attracts x. An attractor A is a nonempty invariant

set that attracts a neighbourhood of itself. The basin of attraction of A is the union

of all such neighbourhoods. If the basin of an attractor A is all of E then A is called

a global attractor.

The omega limit set, ω(x), of x ∈ E is defined by [40]:

ω(x) = ∩t≥0∪s≥tΦs(x).

If O(x) is compact then ω(x) is nonempty, compact, connected, invariant and at-

tracts Φt(x), i.e. d(ω(x),Φt(x)) → 0 as t → ∞ [40]. Here we define d(x,A) =

infy∈A(d(x,y))

In this thesis, we will concentrate on the autonomous system of ODEs

ẋ = f(x), x(0) ∈ E, (3.1.2)

where f : E→ Rn is a C1 function. We will assume Φt exists for all t ∈ R. As shown

in [37], we can rescale time in any C1-system (3.1.2) so that for any x ∈ E, Φt exists

for all t ∈ R. Hence we will assume, without loss of generality, that Φt exists for all

t ∈ R.

If f(x∗) = 0, then x∗ is a steady state for the system (3.1.2), whose linearised

system about x∗ ∈ E is

ẋ = Df(x∗)x. (3.1.3)
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3.2 Topological equivalence of systems

3.2.1 Introducing topology

Dynamical systems theory is closely connected with almost all other branches of

mathematics [42]. In particular, the author would like to highlight the overlap with

topology - this arises from the emphasis on studying the long-term, qualitative be-

haviour of a dynamical system, rather than computing exact individual solutions.

Also, it is useful to set up a mathematical framework for determining which dynam-

ical systems have qualitatively similar behaviour. Moreover, a rigorous definition

of a manifold is required before we can even start studying invariant ones.

We begin by defining the most fundamental type of mapping in topology [37]:

Definition 3.2.1. Let (X,d) be a metric space and let A,B ⊂ X. A homeomorphism

of A onto B is a continuous, one-to-one map of A onto B, h : A→ B, such that its

inverse h−1 : B→ A is continuous. Then the sets A and B are said to be home-

omorphic or topologically equivalent if there exists a homeomorphism of A onto

B.

Saying two spaces are homeomorphic is saying that they look the same topo-

logically - a topologist will treat them as identical [43]. Figure 3.1 depicts two

homeomorphic spaces: a mug and a doughnut [39]. There are some special exam-

Figure 3.1: A mug (left) and a doughnut (right) are topologically equivalent. There is an
old joke saying that topologists cannot tell the difference between the two.

ples of homeomorphisms: for diffeomorphisms, we require h and h−1 to be differen-

tiable instead [37]. Moreover, there are two more types of homeomorphisms based

on the following classes of functions [37, 44, 45]:
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Definition 3.2.2. Let (X,d) be a metric space and take A,B ⊂ X. Then a function

f : A→ B is said to be Lipschitz continuous (or simply Lipschitz) if there exists γ > 0

such that

d(f(x), f(y)) ≤ γd(x,y) ∀x,y ∈ A,

and γ is said to be a Lipschitz constant of f. If every x ∈ A has a neighbourhood

U such that the restriction of f to U is Lipschitz continuous with some Lipschitz

constant γ, we say that f is locally Lipschitz.

A graphical example of a Lipschitz continuous function is depicted in Figure

3.2. In this thesis, (X,d) is taken to be Rn equipped with the standard Euclidean

norm. Let Cγ(Rn) denote the space of functions that are Lipschitz on Rn with Lips-

chitz constant γ, as done in [42]. Similarly we will define Cγ(A) to denote the space

of Lipschitz functions on A. If a homeomorphism h and its inverse h−1 are both

Figure 3.2: A sketch of a Lipschitz function. Informally speaking, you could translate the
vertical double-cone to another point on the graph, and the double-cone will
still only intersect the function at the new chosen point. The Lipschitz constant
γ determines the steepness of the cones.

Lipschitz, then h is said to be bi-Lipschitz. On the other hand, if h and h−1 are lo-

cally Lipschitz instead, then the homeomorphism h is called a Lipschtizeomorphism

[45].

Also, we provide a definition of a (differentiable) manifold [37, 42]:

Definition 3.2.3. An n-dimensional differentiable manifold, M is a connected met-

ric space with an open covering {Ui}, i.e. M = ∪iUi, such that
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(i) For all i, Ui is homeomorphic to the open unit ball B = {x ∈ Rn : |x| < 1}. A

pair {(Ui,hi)} of such an open set and homeomorphism hi : Ui→ B is called

a chart.

(ii) If Ui∩U j , ∅ and hi : Ui→ B, hj : U j→ B are homeomorphisms, then hi(Ui∩

U j) and hj(Ui∩U j) are subsets of Rn and the map

h = hi ◦h−1
j : hj(Ui∩U j)→ hi(Ui∩U j)

is differentiable and for all x ∈ hj(Ui ∩ U j), the Jacobian determinant

detDh(x) , 0.

Figure 3.3: A homeomorphism hi maps Ui onto the open ball B⊂Rn providing coordinates
to a point in Ui. If Ui ∩U j , ∅, the transition from one coordinate system to
another, h, is smooth.

Here, differentiable is taken to mean Ck or analytic. If instead of differentiable,

h is required to be a Lipschitzeomorphism, M is said to be a Lipschitz manifold

[45]. A manifold M which is invariant under the flow of the system is called an

invariant manifold. The simplest examples of invariant manifolds include steady

states and semi-orbits; other types are discussed in Section 3.4.

Let M be an m-dimensional manifold with M ⊂Rm+k. A smooth curve through

a point p ∈ M is a C1-map c : (−a,a)→ M for some a > 0 with c(0) = p. Then the
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velocity vector v tangent to c at the point p = c(0) ∈ M is

v = Dc(0),

At each point p ∈M, the set of all velocity vectors tangent to smooth curves passing

through p forms an m-dimensional vector space known as the tangent space to M

at p and denoted by TpM. Furthermore, we can take the union of tangent spaces for

all points on M:

T M =
⋃
p∈M

TpM,

which defines the tangent bundle of M. Similarly, differential geometers also define

a normal space to M at p and denoted by NpM [46].

NpM = {n ∈ Rm+k : n ·v = 0 ∀v ∈ TpM},

from which we construct the normal bundle of M by taking the union of tangent

spaces for all points on M:

NM =
⋃
p∈M

NpM,

Let M be an m-dimensional manifold and let N be an n-dimensional subman-

ifold contained in M. Then the codimension of N is defined to be m− n [39]. In-

formally speaking, the codimension of an invariant (sub)manifold is the number of

dimensions a mathematical model is reduced by.

3.2.2 Classifying dynamical systems

The following definitions formalise the notion of two dynamical systems having the

same qualitative structure near their corresponding steady states:

Definition 3.2.4. Suppose f ∈ C1(E1,R
n) and g ∈ C1(E2,R

n) where E1 and E2 are

open subsets of Rn. Then the two autonomous systems of differential equations

(3.1.2) and

ẋ = g(x). (3.2.1)

are said to be topologically equivalent if there exists a homeomorphism h : E1→ E2
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which maps trajectories of (3.1.2) to (3.2.1) and preserves their time orientation,

i.e. there is a continuously differentiable function t(x, τ) defined for all τ ∈ R such

that ∂t
∂τ > 0 and

h◦Φt(x,τ)(x) = Ψτ ◦h(x) ∀x ∈ E1 ∀τ ∈ R,

where Φt and Ψt are the flows. In this case the vector fields f and g are said to be

topologically equivalent. If E = E1 = E2, then the systems (3.1.2) and (3.2.1) are

said to be topologically equivalent on E and the vector fields f and g are said to be

topologically equivalent on E.

The required relationship between h and the flows Φt and Ψt can be represented

using the following commutative diagram:

E1 E1

E2 E2

h

Φt(x,τ)

h
Ψτ

Note that although h is required to preserve their time orientation, it need not pre-

serve the parametrisation by time along trajectories. The special case where time

parametrisation is indeed preserved, i.e. t(x, τ) = τ, is addressed in the following

definition:

Definition 3.2.5. Suppose f ∈ C1(E1,R
n) and g ∈ C1(E2,R

n) where E1 and E2 are

open subsets of Rn. Then the two autonomous systems of differential equations

(3.1.2) and (3.2.1) are said to be topologically conjugate if there exists a homeo-

morphism h : E1 → E2 which maps trajectories of (3.1.2) to (3.2.1) and preserves

their time parametrisation, i.e. if Φt and Ψt are the flows then

h◦Φt(x) = Ψt ◦h(x) ∀x ∈ E1 ∀t ∈ R.

Then the vector fields f and g are said to be topologically conjugate. If E = E1 = E2,

then the systems (3.1.2) and (3.2.1) are said to be topologically conjugate on E and
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the vector fields f and g are said to be topologically conjugate on E.

There are two particular cases of topological equivalence between (3.1.2) and

(3.2.1) which have a simple analytical relation between f and g. The first case is

given in the following definition [38]:

Definition 3.2.6. Suppose systems (3.1.2) and (3.2.1) satisfy

f(x) = (Dh(x))−1g(h(x)),

for some diffeomorphism h : E1→ E2, where Dh(x) is the Jacobian matrix of h(x)

evaluated at the point x. Then the two systems are called smoothly equivalent (or

diffeomorphic).

Remark. If h and h−1 are Ck-smooth, then (3.1.2) and (3.2.1) are said to be Ck-

diffeomorphic.

Diffeomorphic systems are treated as equivalent and can be interpreted as the

same system written in new coordinates; for example, the eigenvalues of the respec-

tive steady states are identical. Moreover, diffeomorphic limit cycles have the same

multiplicity and time period.

The latter property calls for a thorough analysis of different time parametriza-

tions, motivating the other form of topological equivalence considers two systems

that have identical-looking orbits, which are followed at differing velocities.

Definition 3.2.7. Two systems (3.1.2) and (3.2.1) satisfying

f(x) = µ(x)g(x)

for a smooth scalar positive function µ : E→ R are said to be orbitally equivalent.

Here the homeomorphism h is the identity map h(x) = x. Furthermore E1 =

E2 = E. Two orbitally equivalent systems need not be diffeomorphic, e.g. orbitally

equivalent systems containing identically shaped periodic orbits with different time

periods are not diffeomorphic [38].
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The next definition can be viewed as a combination of smooth and orbital

equivalence:

Definition 3.2.8. Two systems (3.1.2) and (3.2.1) are called smoothly orbitally

equivalent if (3.2.1) is smoothly equivalent to a system that is orbitally equivalent

to (3.1.2).

By this definition, two systems are equivalent in Rn or an open subset if we

can transform one of them into the other by a (C1-)smooth invertible change of

coordinates and then a multiplication by a positive smooth function of the coordi-

nates. Two smoothly orbitally equivalent systems are topologically equivalent, but

the converse is not true [38].

The next theorem, known as the Hartman-Grobman Theorem, is relevant for

the following type of steady state:

Definition 3.2.9. A steady state x∗ of (3.1.2) is said to be hyperbolic if none of the

eigenvalues of Df(x∗) have zero real part.

If a steady state has pure imaginary eigenvalues, it is said to be nonhyperbolic.

The Hartman-Grobman Theorem gives a rigorous justification to perform lin-

ear stability analysis near a (hyperbolic) steady state [37].

Theorem 3.2.10. Let E be an open subset of Rn containing x∗, let f ∈C1(E) and let

Φt be the flow of the nonlinear system (3.1.2). Suppose that f(x∗) = 0 and the matrix

A = Df(x∗) has no eigenvalues with zero real part. Then there exists a homeomor-

phism h of an open set U containing x∗ onto an open set V containing the origin

such that for all x0 ∈ U, there is an open interval I0 ⊂ R containing 0 such that

∀x0 ∈ U, t ∈ I0, h◦Φt(x0) = exp(At)h(x0), (3.2.2)

i.e. h maps trajectories of (3.1.2) near x∗ onto trajectories of (3.1.3) near the origin

and preserves the time parametrisation.
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Statement (3.2.2) is represented using the following commutative diagram:

U U

V V

h

Φt

h
exp(At)

3.3 Stable, unstable and centre subspaces

Consider a linear system

ẋ = Ax, (3.3.1)

where x ∈ Rn and A is a real-valued n×n matrix.

The following definition applies for repeated eigenvalues of a given matrix

[37]. If an eigenvalue λ of matrix A is repeated m times, we call m the multiplicity

of λ.

Definition 3.3.1. Let λ be an eigenvalue of the n×n matrix A of multiplicity m ≤ n.

Then for k = 1,2, . . . ,m, any non-zero solution v of

(A−λI)kv = 0,

where I denotes the identity matrix, is called a generalised eigenvector of A.

Now we are in a position to define the stable, unstable and centre subspaces of

the linearised system (3.3.1).

Definition 3.3.2. Let wj = uj + ivj be a (generalised) eigenvector of the real matrix

A with corresponding eigenvalue λ j = a j + ib j. Note that if b j = 0 for some j, then

vj = 0. Also, let

B = {u1,u2, . . . ,uk,uk+1,vk+1,uk+2,vk+2, . . . ,um,vm}

be a basis of Rn (with n = 2m− k).
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Then the stable, centre and unstable subspaces of the system are defined as

Es = Span
{
uj,vj : a j < 0

}
,

Ec = Span
{
uj,vj : a j = 0

}
,

Eu = Span
{
uj,vj : a j > 0

}
,

respectively.

The following theorem states that Rn can be decomposed into the stable, un-

stable and centre subspaces, each of which is invariant with respect to the flow of

the linear system

Theorem 3.3.3. Let A be a real n×n matrix. Then

Rn = Es⊕Eu⊕Ec,

where Es, Eu and Ec denote the stable, unstable and centre subspaces respectively.

Furthermore, Es, Eu and Ec are all invariant with respect to the flow exp(At) of

(3.3.1) respectively.

3.4 Invariant manifold theorems
We start with one of the most important results in the local qualitative theory of

ODEs, the Stable Manifold Theorem [37]:

Theorem 3.4.1. Let E be an open subset of Rn containing a hyperbolic steady state

x∗, let f ∈ C1(E), and let Φt be the flow of the nonlinear system (3.1.2). Suppose

Df(x∗) has k eigenvalues with negative real part and n−k eigenvalues with positive

real part. Then there exists a k dimensional differentiable manifold W s
loc(x∗) tangent

to the stable subspace Es of (3.1.3) at x∗ such that for all t ≥ 0, Φt(W s
loc(x∗)) ⊂

W s
loc(x∗) and

∀x0 ∈W s
loc(x∗) lim

t→∞
Φt(x0) = x∗;

and there exists an n−k dimensional differentiable manifold Wu
loc(x∗) tangent to the

unstable subspace Eu of (3.1.3) at x∗ such that for all t ≤ 0, Φt(Wu
loc(x∗)) ⊂Wu

loc(x∗)
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and

∀x0 ∈Wu
loc(x∗) lim

t→−∞
Φt(x0) = x∗.

We call W s
loc(x∗) and Wu

loc(x∗) the local stable and unstable manifolds at x∗

respectively; these are only defined within a neighbourhood of the steady state.

These can be extended to global stable and unstable manifolds respectively by trac-

ing points in W s
loc(x∗) backwards in time and those in Wu

loc(x∗) forwards in time, as

done in the following definition:

Definition 3.4.2. Let Φt be the flow of the (nonlinear) system (3.1.2). Then the

global stable and unstable manifolds at x∗ are defined by

W s(x∗) = ∪t≤0Φt(W s
loc(x∗))

and

Wu(x∗) = ∪t≥0Φt(Wu
loc(x∗))

A nonhyperbolic steady state also has a centre subspace Ec, from which em-

anates yet another kind of invariant manifold: the (global) centre manifold. This

leads to the Centre Manifold Theorem [37]:

Theorem 3.4.3. Let f ∈ Cr(E), where E is an open subset of Rn containing x∗, and

r ≥ 1. Suppose f(x∗) = 0 and Df(x∗) has

• k eigenvalues with negative real part,

• j eigenvalues with positive real part, and

• m = n− k− j eigenvalues with zero real part.

Then there exists:

• a k-dimensional stable manifold W s(x∗) of class Cr tangent to the stable sub-

space Es of (3.1.3) at x∗.

• a j-dimensional unstable manifold Wu(x∗) of class Cr tangent to the unstable

subspace Eu of (3.1.3) at x∗, and
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• an m-dimensional centre manifold Wc(x∗) of class Cr tangent to the centre

subspace Ec of (3.1.3) at x∗.

Furthermore W s(x∗), Wu(x∗) and Wc(x∗) are invariant under the flow Φt of (3.1.2).

Note that stable, unstable and centre manifolds are defined relative to a steady

state. In addition, a stable manifold can be an unstable manifold, too! For example,

consider the following type of orbit:

Definition 3.4.4. An orbit O(x) starting at a point x ∈ Rn is called heteroclinic to

the steady states x∗1 and x∗2 of the system (3.1.2) if

Φt(x)→ x∗1 as t→∞

and

Φt(x)→ x∗2 as t→−∞.

Figure 3.4 shows that a heteroclinic orbit to the steady states x∗1 and x∗2 is a

subset of W s(x∗1)∩Wu(x∗2). Hence is a subset of both the stable and unstable man-

ifold, albeit for distinct fixed points [38]. There are similar definitions for stable,

Figure 3.4: An example of a heteroclinic orbit to the steady states x∗1 and x∗2

unstable and centre manifolds relative to periodic orbits, but are irrelevant for this

thesis where we restrict to hyperbolic steady states, hence are omitted.

Rather, we move on to discuss another type of invariant manifold related to

centre manifolds which was first considered in [47]. Known as a normally hyper-

bolic invariant manifold, it is also regarded as a generalisation of hyperbolic steady

states:
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Definition 3.4.5. Let M be a compact smooth manifold, Φt : M → M be the flow

generated by the vector field f and DΦt : T M → T M be the differential of Φt.

An invariant (sub)manifold Λ of M is said to be a normally hyperbolic invariant

manifold if the restriction to Λ of the tangent bundle of M admits a splitting into a

sum of three invariant subbundles:

TΛM = TΛ⊕Es⊕Eu,

with respect to some Riemannian metric on M, there exists constants λ < 0 < µ,

c > 0 such that µ < |λ| and

‖DΦ−t(v)‖ ≤ ceλt‖v‖ ∀v ∈ Eu, ∀t ≥ 0

‖DΦt(v)‖ ≤ ceλt‖v‖ ∀v ∈ Es, ∀t ≥ 0

‖DΦt(v)‖ ≤ ceµ|t|‖v‖ ∀v ∈ TΛ, ∀t ∈ R

So the component of the flow normal to Λ of Df is hyperbolic and dominates

the tangent behaviour [48].

One type of invariant manifold which frequently occurs in biological models

is the inertial manifold [49, 50]:

Definition 3.4.6. A finite-dimensional Lipschitz manifold Σ is called an inertial

manifold if

• Σ is positively invariant under the flow Φt:

∀x ∈ Σ, ∀t ≥ 0, Φt(x) ∈ Σ.

• For each point x not on the manifold, the distance between Σ and the flow

starting at x decreases exponentially:

∀x < Σ, ∃C > 0, ∃α > 0 s.t. ∀t ≥ 0 d(Φt(x),Σ) <Ce−αt,

where α is a constant independent of x and C is a constant depending on ‖x‖.
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3.5 Four main means of proving existence
There are four main methods that can be used to prove an invariant manifold exists

in a dynamical system:

• Hadamard’s graph transform method, which our proofs are based on.

• Cauchy’s geometric method.

• The elliptic method.

• Lyapunov-Perron method.

Hadamard and Cauchy’s methods take on a more geometric approach, whereas

the others are more analytical. Both Hadamard and Lyapunov-Perron methods

rely on constructing an operator acting on a (Banach) space of Lipschitz functions,

which is a contraction mapping. As a consequence we can look for a (unique) fixed

point of the operator, which will be the desired invariant manifold.

These are not the only methods available. An example of a non-standard but

equally valid approach is taken in [51].

3.5.1 Hadamard (graph transform) method

The idea of using a graph transform traces back to [33]. The main idea of this

method is to start with an initial guess for the manifold M0 = graph(φ0(·)) for some

Lipschitz function φ0, and track its evolution according to the flow Φt of the dy-

namical system. Hence we can construct a sequence of manifolds {Mt} where

Mt = Φt(M0) and t ≥ 0. The aim is to show that the sequence converges uniformly to

a unique invariant surface Σ, usually by proving that Mt = graph(φt(·)) is (uniformly)

Lipschitz for all t > 0. A sketch of this method is given in Figure 3.5 Suppose (3.1.2)

can be decomposed into the following form

ẋ = f(x,y) (3.5.1)

ẏ = g(x,y). (3.5.2)
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Figure 3.5: At time t = 0 we take M0 (black, dashed) as the initial guess for Σ (black,
solid), and start the clock. As t increases, the dashed line will deform into Mt

according to the flow of the system (grey arrows), which should converge to Σ.

where x ∈ Rn−k, y ∈ Rk and f : Rn→ Rn−k, g : Rn→ Rk are vector fields. Often this

is done for computing centre manifolds, as done in [37], for which x ∈ Ec, while

y ∈ Es ⊕Eu. Next, assume each Mt = graph(φt(x)), i.e. y(t) = φt(x(t)). If we write

φt(·) = φ(·, t) and differentiate with respect to t, the Chain Rule gives

ẏ(t) = Dφ(x(t), t)ẋ(t) +
∂φ

∂t
(x(t), t)

where Dφ(x(t), t) is the Jacobian of φ with respect to x. Substituting in (3.5.1) and

(3.5.2) gives

g(x(t),φ(x(t), t)) = Dφ(x(t), t)f(x(t),φ(x(t), t)) +
∂φ

∂t
(x(t), t), (3.5.3)

which is the PDE governing the time evolution of Mt. Then suppose that φ(x(t), t)

converges uniformly to φ∗(x) as t→∞, and that Σ can be represented by the graph

y = φ∗(x), which has no time dependence. Hence substitution into (3.5.3) leads to

the tangency condition [38, 39]:

g(x,φ∗(x)) = Dφ∗(x)f(x,φ∗(x)), (3.5.4)
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The graph-transform method is used in [42] for their proof of the Stable Manifold

Theorem.

3.5.2 Cauchy (geometric) method

This method is commonly used when seeking inertial manifolds from ODEs of the

form [52]

u̇ + Au = f(u),

where u̇ ∈ H for some Hilbert space H that can be divided into two orthogonal

subspaces P and Q, where P is finite-dimensional, with the same dimension as the

inertial manifold being sought. We will denote the denote the projection of H onto

P by PN . Start by defining a ball of radius ρ, say Σρ, and truncating f such that

it equals zero outside the ball. Then take the boundary of the projection of Σρ,

Γ = ∂PNΣρ, and let

Σ = ∪t≥0Φt(Γ).

By definition, Σ is positively invariant. We still need to show Σ is Lipschitz using a

cone condition. We then define the manifold

M = Σ∪{u : u ∈ PN , |u| ≥ ρ}.

which is also invariant. Moreover, Σ is Lipschitz, therefore M is Lipschitz also.

Those who are seeking an inertial manifold would go on to show that M is expo-

nentially attracting.

3.5.3 Elliptic regularisation method

Introduced by [53], the elliptic regularisation starts with exactly the same PDE as

in the graph transform method, i.e. (3.5.4), which is then modified by introducing

another term on the right hand side:

g(x,φε(x)) = Dφε(x)f(x,φε(x))−ε∆φε, (3.5.5)
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where ε > 0 and ∆ denotes the Laplacian operator. Then φ∗ is constructed by taking

the limit of φε as ε→ 0+. There are theorems on the differentiability of solutions

of elliptic equations which ensure that (3.5.5) has a unique, sufficiently regular so-

lution.

3.5.4 Lyapunov-Perron method

For simplicity, we will illustrate this method in the context of the stable manifold

of a hyperbolic steady state as done in [37], but the method is similar for centre and

inertial manifolds.

Suppose we can decompose (3.1.2) into,

ẋ = Px + F(x,y)

ẏ = Qy + G(x,y).

where the matrices P and Q contain all the eigenvalues of the Jacobian Df(x∗) that

have negative and positive real part respectively, while F and G are nonlinear, Lip-

schitz functions. Then the growth/decay of exp(Pt) and exp(Qt) are bounded by

suitable constants; the bound applies for all t ≥ 0 for the stable subspace, and for all

t ≤ 0 for the unstable subspace. Define

U(t) =

 exp(Pt) 0

0 0

 , V(t) =

 0 0

0 exp(Qt)


where each 0 denotes a zero matrix and define an integral operator

T (φ(t,x0)) = U(t)x0 +

∫ t

0

(
exp(P(t− s))F(x0,φ(s,x0))

)
ds (3.5.6)

−

∫ ∞

t

 0

exp(Q(t− s))G(x0,φ(s,x0))

ds

then the invariant manifold is a fixed point φ∗ of T , i.e. T (φ∗) = φ∗. To find the

fixed point, we construct a sequence of functions {φ j}
∞
j=0 with φ0(t,x0) = 0 and

φ j+1(t,x0) = Tφ j(t,x0), which is a Cauchy sequence of functions in the (Banach)
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space of uniformly bounded Lipschitz functions, hence {φ j}
∞
j=0 converges to a limit.

A more general version of this method for centre manifolds in a Banach space

is given in the preprint [54].



Chapter 4

Background on monotone systems

In this chapter we survey a useful class of dynamical systems, known as monotone

systems, also called order-preserving or increasing. We will introduce some useful

definitions from cone theory and the concept of a partially ordered space first be-

fore defining a monotone system. Then we consider the quasimonotone condition,

which turns out to be an alternative characterisation of the usual monotonicity. We

also discuss cooperative and competitive systems, and address a special class of sys-

tems (Kolmogorov) which is known to bear invariant manifold(s) under conditions

similar to those for competitiveness.

The earliest results for monotone systems date back to 1926 [55, 56]. Much of

the theory was developed by Hirsch [57, 58, 59, 60, 61] and Smith in the context of

ordinary differential equations [62, 63]. In this thesis the focus is on finite dimen-

sional systems; a large portion of this chapter is based on their handbook chapter

[41] and Smith’s monograph [40].

Monotonicity is a very powerful property. Much is known about the long-

term evolution of monotone systems; some typical conclusions are given in the

introduction of [41]. Moreover, monotone systems appear in various biological,

chemical, physical and economic models.
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4.1 Some basic concepts

4.1.1 Cone theory

Monotone systems theory relies heavily on cone theory, hence has an overlap with

geometry and linear algebra. The following concepts from cone theory are based

on [64]:

A set K ⊆Rn is called a cone if µK ⊆ K for all µ > 0. A cone is said to be proper

if it is closed, convex (or equivalently K + K ⊂ K [65]), has a non-empty interior

and is pointed (K ∩ (−K) = {0}). A closed cone is polyhedral provided that it is the

intersection of finitely many closed half spaces; one example is the orthant. Another

common choice for a cone is the ice cream cone Kice = {x ∈ Rn : |xn| ≥

√∑n−1
i=1 x2

i }.

(a) (b)

Figure 4.1: (a) The standard orthant Rn
+. (b) An ice cream cone.

The dual of K, denoted by K∗, is the convex cone [64]

K∗ =
{
` ∈

(
Rn)∗ : x · ` ≥ 0 ∀x ∈ K

}
.

If K and F ⊆ K are pointed closed cones, we call F a face of K if [64]

∀x ∈ F 0 ≤K y ≤K x ⇒ y ∈ F.

The face F is non-trivial if F , {0} and F , K.

4.1.2 Assigning order in spaces

We would like to be able to assign a (partial) order to distinct points in the state

space. The following definition gives the mathematical framework for doing so:

Definition 4.1.1. A partially ordered space is some metric space X and a partial
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order relation R ⊂ X ×X. We write x ≤ y to mean (x,y) ∈ R, and the order relation

is: ∀x,y,z ∈ X,

(i) x ≤ x

(ii) x ≤ y and y ≤ z ⇒ x ≤ z,

(iii) x ≤ y and y ≤ x ⇒ x = y.

In addition, [41] also imposes that if limn→∞ xn = x, limn→∞ yn = y and xn ≤ yn for

all n, then x ≤ y. In other words, R is a closed subset of X×X.

We call X an ordered subspace of an ordered space X′ if X ⊂ X′ and the order

and topology on X identical to that on X′.

For simplicity, concepts will be presented in Euclidean space X = Rn for the

rest of this chapter, although most of what is discussed can be realised in a general

Banach space (see, for example, [65, 41]). Given a convex, pointed cone K, we can

define a partial order relation ≤K via x ≤K y if and only if y− x ∈ K. Similarly we

say x <K y if and only if x ≤K y and x , y and also x� y if and only if y−x ∈ intK,

where intK is the interior of K. We write x ≥K y to mean y ≤K x, and similarly for

x>K y, x�K y. Two points x,y ∈Rn are order related if x<K y or y<K x, otherwise

they are said to be unrelated [41].

Now we are in a position to define a monotone system:

Definition 4.1.2. A (semi-)flow Φ in a (partially) ordered metric space that pre-

serves the weak order relation

x ≤K y ⇒ Φt(x) ≤K Φt(y) ∀t > 0.

is called monotone.

Figure 4.2 shows a visual example of a monotone system
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Figure 4.2: A monotone system visualised.

4.2 Quasimonontone, cooperative and competitive

systems
As done in Chapter 3, we restrict our attention to the autonomous C1-system of

ODEs (3.1.2). Then we introduce the quasimonotone condition:

Definition 4.2.1. The vector field f is said to be quasimonotone if for all x,y ∈ E

and φ ∈ K∗ we have

x ≤K y and φ(x) = φ(y) ⇒ φ(f(x)) ≤K φ(f(y)) (4.2.1)

It turns out that quasimonotone systems are equivalent to normal monotonicity

for certain domains [41, 40]:

Theorem 4.2.2. Assume f is quasimonotone on an open set E and x0,y0 ∈ E. Let ≺

denote any one of the relations <K , ≤K ,�K . If x0 ≺ y0, t > 0 and Φt(x0) and Φt(y0)

are both defined, then Φt(x0) ≺ Φt(y0), thus the system of differential equations

(3.1.2) generates a monotone flow. Conversely, if (3.1.2) generates a monotone

flow, then it is also quasimonotone.

The theorem also holds if E is a closed set; a justification is given in [40].

4.2.1 K-cooperative and K-competitive systems

A necessary and sufficient condition for the cone K being an invariant set of (3.1.2)

which is based on Proposition 3.3 in [41] is given here:
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Proposition 4.2.3. The cone K is positively invariant under (3.1.2) if and only if

K ⊂ E and

` ∈ K∗, x ∈ ∂K, x · ` = 0 ⇒ f(x) · ` ≥ 0 (4.2.2)

where 〈·, ·〉 : K∗×K→ R denotes the inner product.

It will be convenient to refer to (4.2.2) when applying on systems other than

(3.1.2) by saying that it holds for f : E→ Rn where K ⊂ E.

For a general cone K, (3.1.2) is said to be K-cooperative if K is invariant under

the forward flow of the linear system

ẋ = Df(y)x. (4.2.3)

Applying Proposition 4.2.3 reveals that K-cooperativeness is equivalent to checking

that (4.2.3) satisfies (4.2.2) for all x∗ ∈ E, i.e.

∀` ∈ K∗, x ∈ ∂K such that x · ` = 0, (Df(y)x) · ` ≥ 0, (4.2.4)

which also implies that Df(y)K ⊆ K for all x ∈ E.

Similarly we say that (3.1.2) is K-competitive if ẋ = −f(x) is K−cooperative

with flow Φ−t. Results in this section can also be applied for K-competitive dynam-

ical systems through time-reversal.

The next theorem from [41] shows that under certain conditions, a system

(3.1.2) being K-cooperative and quasimonotone are the same. Before declaring

it, we define a set E ⊂ Rn to be p-convex if whenever x,y ∈ E and x <K y then

[x,y] := {z ∈ Rn : x ≤K z ≤K y} ⊆ E.

Theorem 4.2.4. Let Df(x) be continuous on E. If f satisfies the quasimonotone

condition, then it is also K-cooperative. Conversely, if E is p-convex and f is K-

cooperative, then the quasimonotone condition holds.

Additionally, the same conditions are sufficient for a K-cooperative system

being monotone as well [41]:
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Theorem 4.2.5. Let f be a K-cooperative vector field in an open set E ⊂ Rn, gener-

ating a local (semi-)flow Φ. Then Φ is locally monotone. Moreover if E is p-convex,

Φ is also monotone.

(A map is locally monotone if each point in its domain E has a neighbourhood

on which the map is monotone.)

Theorem 4.2.5 states that when (3.1.2) is K−cooperative and E is p-convex,

(4.1.2) holds. Therefore the time-reversed flow of a K-competitive system (3.1.2),

when it exists, is monotone, i.e.

x ≤K y ⇒ Φt(x) ≤K Φt(y) ∀t < 0.

In fact, if x,y are unrelated, then Φt(x),Φ(y) are unrelated for all t > 0 (because

Φt(x) and Φt(y) being related would imply x,y are related; this can be seen through

applying Φ−t).

We now provide results about the limit sets of K-cooperative or K-competitive

systems, starting with Theorem 3.2 from [40].

Theorem 4.2.6. A compact limit set of a K-cooperative or K-competitive system

cannot contain two points related by�K .

Theorem 3.4 from [40] states that a compact limit set of a K-cooperative or

K-competitive system is no more complicated than an invariant set for a general

system in one less dimension.

Theorem 4.2.7. The flow on a compact limit set of a K-cooperative or K-

competitive system inRn is topologically equivalent to a flow on a compact invariant

set of a Lipschitz system of differential equations in Rn−1.

4.2.2 Standard competitive and cooperative systems

For the special case K = Rn
+, the standard orthant, we can identify K∗ with K using

the standard inner product. Moreover, taking φ(x) = ei · x, where ei corresponds to

the unit vector in the xi-direction, leads to the Kamke-Müller condition [55, 56]:

x ≤ y and ∃ i s.t. xi = yi ⇒ fi(x) ≤ fi(y).
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For differentiable f, this condition reduces to

∂ fi
∂x j

(x) ≥ 0, ∀x ∈ E, i , j. (4.2.5)

If E is p-convex, then (4.2.5) implies the Kamke-Müller condition; furthermore, the

system (3.1.2) is said to be cooperative.

If instead the partial derivatives satisfy

∂ fi
∂x j

(x) ≤ 0, ∀x ∈ E, i , j. (4.2.6)

then (3.1.2) is competitive on a p-convex domain E.

4.3 A special class of competitive systems
In [66], Smale considered Kolmogorov systems which have the form

ẋi = xiNi(x), i = 1,2, . . . ,n (4.3.1)

where N : Rn
+→ R

n is a C1-smooth function. The system is called strongly compet-

itive if [67]

∂Ni

∂x j
(x) < 0, ∀x ∈ Rn

+, ∀i, j = 1,2, . . . ,n, i , j,

in which case the system (4.3.1) also satisfies (4.2.6), thus is competitive in the

standard sense as well. If a strongly competitive Kolmogorov system also satisfies
∂Ni
∂xi

(x) < 0 for all i = 1,2, . . . ,n, then it is said to be totally competitive [68].

Smale proved that an arbitrary smooth flow in the simplex ∆n can be embed-

ded as an attracting invariant manifold in a Kolmogorov system [66]. His intention

behind this was to warn population biologists that systems designed to model com-

petition could have complicated dynamics.

However, Hirsch showed that strongly competitive systems possess a count-

ably infinite or finite sequence of nonmonotone manifolds that divide the phase

space into regions, and that these manifolds are attracting [59]. Each manifold
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played the role of Smale’s attracting simplex ∆n, suggesting that Smale’s construc-

tion was not as special as it seemed. A set S is said to be balanced if any two points

x,y on S are unrelated with respect to�, and is nonmonotone or strongly balanced

if x,y are unrelated with respect to >. A steady state x∗ called a weak source if

|Φ−t(x)− x∗| converges uniformly to 0 as t→∞ for all x ∈ U for some non-empty

set U.

Hirsch’s theory is captured in the following theorem:

Theorem 4.3.1 (Adapted from Theorem 1.1 in [59]). Let Phit denote the flow in

Rn
+ of a strongly competitive Kolmogorov system (4.3.1). Then there is a countable

disjoint family F = {Mi} of invariant Lipschitz manifolds in Rn
+ having the following

properties:

(a) Suppose the trajectory of x is non-convergent and ω(x) ⊂ Mi∩ int(Rn
+). Then

if x < Mi, there exists y ∈ Mi such that

|Φt(x)−Φt(y)| → 0 as t→∞.

In other words, the trajectory of x is asymptotic to a trajectory in Mi.

(b) Homeomorphic to Rn−1.

(c) Each Mi is balanced, while Mi∩ int(Rn
+) is strongly balanced

(d) The cardinality of F is at most one plus the number of weak sources in

int(Rn
+).

Furthermore, Hirsch obtained a set of conditions for totally competitive system

possessing a unique invariant manifold called the carrying simplex [59, 68]:

Theorem 4.3.2. In a Kolmogorov system (4.3.1) with, for all i, j = 1,2, . . . ,n,

Ni(0) > 0 and
∂Ni

∂x j
(x) < 0

there is a unique Lipschitz invariant manifold Σ that attracts Rn
+ \ {0} and every

trajectory in Rn
+ \{0} is asymptotic to one in Σ. The submanifold Σ is homeomorphic
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to ∆n under radial projection. Moreover, Σ is balanced, while its interior, intΣ is

strongly balanced.

The geometry, smoothness and dynamics of carrying simplices have been stud-

ied in [69, 70, 67, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80]. However, to the best of

the author’s knowledge the smoothness of a carrying simplex on its interior remains

an open problem. Meanwhile, an alternative method of proving existence of the

carrying simplex for the cases n = 2,3 is to apply the Hadamard transform on the

simplex ∆n, as done in [81, 68].



Chapter 5

The Nagylaki-Crow Model

This chapter, based on the paper [82], focuses on a continuous-time model proposed

in [83] called the Nagylaki-Crow model. Many models in population genetics, in-

cluding those discussed later in this thesis, assume random mating (or a random

union of gametes) resulting in Hardy-Weinberg proportions at the zygote stage.

The other common assumption is selection by means of viability differences in the

genotypes.

In reality though, natural selection is more complicated. Random mating does

not occur in nature (for example, tall women prefer tall men). Furthermore some

pairings may be more fertile than others. The Nagylaki-Crow model takes nonran-

dom mating into account by assuming different fertilities for mating pairs, as well

as different death rates of genotypes, which is why it is sometimes referred to as the

fertility-mortality model [2].

By fertility, we mean the average number of offspring produced per unit time

by parents with specified genotypes. Meanwhile, mortality refers to the death rate

for a given (parental) genotype. These are all assumed to be constant in time.

5.1 What is already known about the model?
One of the earliest attempts at considering different fertilities for mating pairs was

made by Penrose in [84]. He showed that his basic discrete-time model with addi-

tive fertilities gave essentially the same results as the usual discrete selection model.

For the next few decades, most investigations into differential fertility were only
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made for the discrete model [85].

Then in 1961 Rucknagel and Neel produced experimental evidence of fertility

differences among mating pairs for the locus corresponding to sickle cell anaemia

[86], a single-locus genetic disorder affecting humans. This revived interest in dif-

ferential fertility models.

Over a decade later, Nagylaki and Crow provided a derivation for a continuous-

time model [83, 5], now known as the Nagylaki-Crow model. However, they re-

stricted their attention to the case of additive fertilities when analysing the model.

Another special case of this model is analysed in [87, 88] with symmetric fertili-

ties and no deaths. Hadeler and Glas showed that all orbits for the Nagylaki-Crow

model with no deaths converge to some steady state [89]. They also proposed a

change of variables, which was later used in [90] to demonstrate that the model

can have periodic orbits. In 1988, Hofbauer and Sigmund proved the existence of

an invariant manifold connecting the two homozygotic fixation states in a two al-

lele fertility-selection model where the fertilities were additive in Section 26.5 of

[91]. They also showed that with the assumption of additivity of mortalities this in-

variant manifold coincided with the Hardy-Weinberg manifold where the genotypic

frequencies are the product of allele frequencies, and that the Hardy-Weinberg man-

ifold is invariant; this was also shown in [92]. Then Szucs and Akin commented on

conditions on the relative sizes of fertilities and differences in mortalities required

for attractiveness of the Hardy-Weinberg manifold [93].

Our aim here is to extend this work by showing that the Nagylaki-Crow model

possesses at least one nonmonotone invariant manifold without assuming additivity

of fertilities or mortalities, which will make our result more widely applicable than

Akin and Szucs. In the context of our planar model, a nonmonotone manifold is

a manifold which is the graph of a decreasing continuous function. We also find

conditions that ensures that the invariant manifold is the graph of a convex function,

as is the case for the Hardy-Weinberg manifold.

Section 5.2 introduces the n−allele model, while Section 5.5 discusses the two-

allele case of the model and shows how to rewrite the Nagylaki-Crow model as a
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competitive system using a change of coordinates, although later we will drop one of

the two inequalities that render the model competitive, so that we obtain results for

not-necessarily competitive models. It turns out that the model always has steady

states on two corners of the triangular phase plane (axial steady states), and our

numerical evidence suggests the existence of at least one nonmonotone invariant

manifold Σ connecting the two steady states in the phase plot. We analyse both axial

steady states in Section 5.6, and investigate their relationship with the condition for

the system being competitive in the new coordinates. Finally, for Section 5.7, we

prove that a nonmonotone invariant manifold Σ does indeed exist for a certain case

of the Nagylaki-Crow model, and that it is the graph of a convex function.

5.2 The model

A derivation of the panmictic Nagylaki-Crow model for diploid populations can be

found in [83], where the authors consider a single locus with n alleles A1, . . .An,

and the dynamical variables of their system are the frequencies Pi j for the ordered

genotype Ai/A j.

The Nagylaki-Crow model also features the fertilities aik,l j that are defined as

the product of the average number of matings of an arbitrary individual per unit time

and the average number of progeny per Ai/Ak×Al/A j union. With this definition in

mind, we expect the fertilities to be non-negative, hence we assume

aik,l j ≥ 0 ∀i, j,k, l.

Moreover, it will be assumed that these fertilities are also time-independent for all

i, j,k, l.

In addition, the model contains the mortalities di j, the death rate for genotype

Ai/A j. These are also taken to be non-negative and constant for all time.

The governing equations for the genotype frequencies Pi j

Ṗi j =

∑
kl

aik,l jPikPl j−di jPi j

−Pi j

∑
uv

∑
kl

auk,lvPukPlv−duvPuv

 , (5.2.1)
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Figure 5.1: A case of the Nagylaki-Crow model with five interior steady states, three
of which occur on the line y = x with y = 0.04, 0.12 and 0.36 respectively.
There are three different nonmonotone invariant manifolds, one of which passes
through three interior steady states. Here, the fertilities are F11 = 6, F12 = 1/2,
F13 = 1, F22 = 1/14, F23 = 1/2, F33 = 6, while the mortalities are D1 = 2,
D2 = 1, D3 = 2, making this system competitive in (w, t) coordinates. The no-
tation for the fertilities and mortalities are as given in (5.3.2) and (5.3.3)

form a system of n2 nonlinear first order ordinary differential equations (see [83] or

[5]). Note that if Pi j(0) ≥ 0 then Pi j(t) ≥ 0 for all t ≥ 0. Moreover
∑n

i, j=1 Pi j(t) = 1

for all t ≥ 0. The marginal
∑n

j=1 Pi j(t) =
∑n

j=1 P ji(t) = pi(t) is the frequency of allele

Ai at time t ≥ 0.

Figure 5.1 shows an example of the phase portrait for the Nagylaki-Crow

model. In this example, there are five interior steady states, which is the maxi-

mum number that the two-allele model can possess (Exercise 21.2.6 in [2]). In

the figure there are three different nonmonotone invariant manifolds, one of which

passes through three interior steady states.

Even for this simple model it is not possible to obtain self-contained evolution

equations for the allele frequencies, which often are the variables of most interest

to the geneticist. First, note that the genotypes Ai/A j and A j/Ai are effectively the

same, hence we have

Pi j = P ji.
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With this symmetry law in mind, let

P11 = x, P12 = P21 = z/2, P22 = y. (5.2.2)

hence the allellic frequencies satisfy

p1 = P11 + P12 = x +
1
2

z

p2 = P21 + P22 =
1
2

z + y.

Eliminating for z yields

p1 = x +
1
2

(1− x− y) =
1
2

(1 + x− y) (5.2.3)

p2 = y +
1
2

(1− x− y) + P22 =
1
2

(1− x + y), (5.2.4)

which is not invertible. However, the presence of an attracting manifold means

that differential equations can be obtained for the allele frequencies when restricted

to that manifold. Suppose the invariant manifold Σ can be expressed as the graph

y = ϕ(x), and substitute into (5.2.3). We obtain

p1 =
1
2

(1 + x−ϕ(x)) (5.2.5)

Moreover, we can claim x = X(p1) for some function X, because x is the frequency

of the homozygote A1A1, which contains the allele A1 only. So we can rearrange

(5.2.5) as follows:

p1 =
1
2

(1 + X(p1)−ϕ(X(p1)))

⇒ ϕ(X(p1)) = 1 + X(p1)−2p1,

i.e. ϕ can be expressed completely in terms of p1 (or alternatively p2 = 1− p1.)

If an initial point is attracted to the manifold rapidly then after a short transient

the equations for the allele frequencies on the manifold will be a good approxi-
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mation of the true allele frequencies. Note that if there is at least one attracting

manifold, which manifold is approached will depend upon the initial conditions.

The special case where the fertilities and mortalities are additive means that

aik,l j = αik + βl j and di j = µi + κ j, where αik,βl j,µi, κ j ≥ 0. In this special case all

trajectories converge to the Hardy-Weinberg manifold connecting the axial steady

states [93], which is obtained by solving the simultaneous equations

(P11 =)x = p2
1

(P22 =)ϕHW(x) = p2
2

p2 = 1− p1

giving the graph of the strictly convex function ϕHW : [0,1]→ [0,1] defined by

ϕHW(x) = 1 + x−2
√

x. (5.2.6)

For comparison, the Hardy-Weinberg manifold is shown in Figure 5.2. Our results

Figure 5.2: An example where the fertilities are additive, leading to the Hardy-Weinberg
manifold which is the graph of the function ϕHW in Equation (5.2.6). Here, the
fertilities are F11 = 0.6, F12 = 0.9, F13 = 1.3, F22 = 1.2, F23 = 1.6, F33 = 1.3,
while the mortalities are D1 = 0.3, D2 = 0.25, D3 = 0.2, making this system
competitive in (w, t) coordinates. Again, the notation for the fertilities and mor-
talities are as given in (5.3.2) and (5.3.3).
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show that under mild conditions, when the condition of additivity of fertilities and

mortalities is relaxed, there is at least one such nonmonotone manifold, and we

give conditions that ensure that any such nonmonotone manifold is the graph of a

convex function. A detailed analysis of concerning uniqueness or nonuniqueness of

this manifold has not yet been done.

5.3 Some relabelling required

Even for n = 2 the Nagylaki-Crow is not a straightforward model to analyse and to

the best of the author’s knowledge there is currently no understanding of this model

for three or more alleles [2]. In the sequel we will always assume n = 2 and ignore

the order of the genotypes, i.e. treat Ai/A j and A j/Ai as identical.

Many of the original parameter names are cumbersome, so we will start by

relabelling them in the notation of [90]. The first step is to assume, as is done in [5],

that the fertilities aik,l j possess the symmetries

ai j,kl = akl,i j, ai j,kl = a ji,kl. (5.3.1)

The first equation in (5.3.1) means that swapping the genotypes of the parents does

not affect the fertility of the pairing. The order of the genotype has no effect, too,

hence the second symmetry rule in (5.3.1) holds. These bring the number of (in-

dependent) fertility parameters down to six. Using the notation of [90] these are

relabelled as follows:

F11 = a11,11, F33 = a22,22,

F12 = a11,12, F23 = a12,22,

F22 = a12,12, F13 = a22,11.

(5.3.2)

Meanwhile, as d12 = d21, there are only three independent mortality parameters.

They are rewritten as

D1 = d11, D2 = d12, D3 = d22. (5.3.3)
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Thus the Nagylaki-Crow model (5.2.1) reduces to [90]

ẋ = F11x2 + F12xz +
1
4

F22z2−D1x− xm̄, (5.3.4)

ż = F12xz + 2F13xy + F23yz +
1
2

F22z2−D2z− zm̄, (5.3.5)

ẏ = F33y2 + F23yz +
1
4

F22z2−D3y− ym̄, (5.3.6)

with mean fitness

m̄ =
∑
uv

∑
kl

auk,lvPukPlv−duvPuv


= F11x2 + 2F12xz + F22z2 + 2F23yz + 2F13xy + F33y2

−D1x−D2z−D3y.

However, we also have the condition

∑
i j

Pi j = 1 or x + y + z = 1, x,y,z ≥ 0 (5.3.7)

thus, by eliminating z = 1− x− y, the two-allele Nagylaki-Crow model can be ex-

pressed using just two ordinary differential equations of the form

ẋ = f (x,y), ẏ = g(x,y), (5.3.8)

on the phase space given by the triangle

T = {(x,y) ∈ R2
+ : x + y ≤ 1}. (5.3.9)

The full equations for x, y are (A.0.1) and (A.0.2).

5.4 An early attempt at rewriting the model
The explicit equations for the Nagylaki-Crow model are still complicated to anal-

yse: they are cubic and many of the coefficients consist of (lengthy!) combinations

of the fertilities and mortalities. Hence it would be helpful to rewrite the already



5.4. An early attempt at rewriting the model 68

relabelled model in a simpler form; an early attempt at doing so is outlined in this

section. The approach taken here is to propose a new set of parameters, all expressed

in terms of the fertilities and death rates. Although it ultimately does not help with

proving Σ exists in the model, constructing a numerical example containing three

interior steady states along the line y = x becomes simpler. In Equations (A.0.1)

and (A.0.2), the mortalities always appear in multiples of (D1−D2), (D3−D2) and

(D1 −D3) = (D1 −D2)− (D3 −D1), suggesting that we rename the death rates as

follows:

D11 = D1−D2, D22 = D3−D2, (5.4.1)

Then define the following parameters

α = 2F23−F33−F22, β = F12 + F23−F22−F13,

γ = 2F12−F11−F22, δ = F23−
3
2

F22−D22,

θ = F12−
3
2

F22−D11, E =
1
4

F22.

F = F13,

(5.4.2)

and substitute into (A.0.1) and (A.0.2) to obtain

ẋ = E(y−1)2 + x
[
−(β+δ+ F)y +αy2 + θ

]
+ x2 [

2yβ− (γ+ θ+ E)
]
+γx3,

ẏ = E(x−1)2 + y
[
−(β+ θ+ F)x +γx2 +δ

]
+ y2 [

2xβ− (α+δ+ E)
]
+αy3,

which can be rearranged as follows

ẋ = αxy2 +βxy(2x−1) +γx2(x−1)−δxy + θx(1− x)

+ E
[
(y−1)2− x2

]
−Fxy, (5.4.3)

ẏ = αy2(y−1) +βxy(2y−1) +γx2y +δy(1− y)− θxy

+ E
[
(x−1)2− y2

]
−Fxy. (5.4.4)



5.5. Rewriting the Nagylaki-Crow model 69

The last two equations appear to have a duality between them. More precisely,

swapping x with y, α with γ, δ with θ and doing the vice versa of each everywhere

in (5.4.3) gives (5.4.4). Conversely, repeating the procedure on (5.4.4) yields (5.4.3)

again. In light of this, suppose α = γ and δ = θ, which is equivalent to

F11−F33 = 2(F12−F23) = 2(D1−D3). (5.4.5)

In this case, Equations (5.4.3) and (5.4.4) become

ẋ = αx
[
x(x−1) + y2

]
+βxy(2x−1) +δx(1− x− y)

+ E
[
(y−1)2− x2

]
−Fxy,

ẏ = αy
[
y(y−1) + x2

]
+βxy(2y−1) +δy(1− x− y)

+ E
[
(x−1)2− y2

]
−Fxy.

We now consider the behaviour of the Nagylaki-Crow model when the proportions

of the two homozygotes A1A1 and A2A2 are equal, i.e. when x = y. In that case,

ẋ = ẏ = E + y(δ−2E)− y2(F +α+β+ 2δ) + 2y3(α+β) (5.4.6)

As this is a cubic polynomial, a maximum of three steady states can be found on

the line y = x, an example attaining this maximum is portrayed in Figure 5.3.

5.5 Rewriting the Nagylaki-Crow model

As an alternative, we use the following coordinate change introduced in [89, 90]

(x,y) 7→ (w, t) = Φ(x,y) :=
(

2x
1− x− y

,
2y

1− x− y

)
. (5.5.1)

The map Φ is a diffeomorphism from int(T ) to int(R2
+) with inverse

Φ−1(w, t) =

( w
2 + w + t

,
t

2 + w + t

)
(5.5.2)
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Figure 5.3: A case of the Nagylaki-Crow model with three interior steady states, all of
which occur on the y = x line. In this example, the three points occur on y = 1/8,
1/4, and 3/8.
Here, the fertilities are

F11 =
249
160

, F33 =
4
5
,

F12 =
63
160

, F23 =
1

64
,

F22 =
3
64
, F13 =

3
64
,

while the mortalities are

D1 =
151
320

, D2 = 0 D3 =
3

32
,

making this system competitive in (w, t) coordinates.

and the Jacobian J of Φ on the interior of T is given by

J =

 −
2(y−1)

(x+y−1)2
2x

(x+y−1)2

2y
(x+y−1)2 −

2(x−1)
(x+y−1)2

 , det J =
4

(1− x− y)3 . (5.5.3)

In the new coordinates, the system (5.3.8) reduces to

ẇ = p(w, t), ṫ = q(w, t), (5.5.4)
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where

p(w, t) = (F11−F12 + D2−D1)w2 + (2(F12 + D2−D1)−F22)w

+ F22−wt(F23−D2 + D1 + F13w), (5.5.5)

q(w, t) = (F33−F23 + D2−D3)t2 + (2(F23 + D2−D3)−F22)t

+ F22−wt(F12−D2 + D3 + F13t). (5.5.6)

Here by ẇ, ṫ we mean differentiation with respect to time; the time variable will be

denoted by s in the rest of this chapter.

In this set of coordinates, the phase space is the whole (non-compact) first

quadrant w ≥ 0, t ≥ 0. For the boundary w = 0, we have ẇ = F22 ≥ 0, which shows

that w < 0 can never occur. Likewise, we have ṫ = F22 ≥ 0 for the boundary at t = 0,

therefore it is impossible to attain t < 0. As a result, the phase space R2
+ is forward

invariant.

Necessary and sufficient condition for Equations (5.5.4) being competitive on

R2
+ = {(w, t) ∈ R2 : w ≥ 0, t ≥ 0} are derived in [90]. By (4.2.6), this is equivalent to

the all off-diagonal entries of the Jacobian

J′ =

 pw pt

qw qt

 ,
being nonnegative for all w, t ≥ 0, i.e. pt,qw ≤ 0 [90, 89]. This simplifies to checking

that

pt = (−F23 + D2−D1)w−F13w2

qw = (−F12 + D2−D3) t−F13t2,

are both non-positive, which occurs if and only if

D2 ≤min(D1 + F23,D3 + F12). (5.5.7)

Hence (5.5.7) is a necessary and sufficient condition for Equations (5.5.4) to be
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competitive on R2. It is known that an orbit of a planar competitive system is either

unbounded or converges to a steady state in increasing time [2, 89]. For this system,

if an orbit Γ in (w, t) is unbounded, then z→ 0, i.e. (x + y)→ 1. This shows that the

corresponding ω-limit set for Γ in (x,y) coordinates is a subset of the bounding line

x + y = 1.

Examples of nonmonotone manifolds in the model are the three solid curves

in Figure 5.1. Although our model is competitive, it does not satisfy the setting of

Hirsch’s Theorem 4.3.1 since ∂R2
+ is not invariant. However, we found numerical

evidence of similar sequences of nonmonotone manifolds. For example, Figure

5.1 shows three nonmonotone manifolds (solid curves) that all connect the axial

steady states. These are the only nonmonotone invariant manifolds in the figure. A

monotone invariant manifold passes through 3 interior steady states along the line

x = y. Two of the nonmonotone manifolds pass through a single interior steady

state, and the third passes through 3 interior steady states. A detailed analysis of the

stability of each nonmonotone manifold in our model has not been done yet. The

focus in this thesis is to prove the existence of at least one nonmonotone invariant

manifold and to establish conditions that the manifold is the graph of a convex

function. It turns out that to do this it is much easier to carry out some calculations

in the (w, t) coordinates where the phase space is not compact, mapping back results

to the system in (x,y) coordinates, and some calculations in (x,y) coordinates where

the phase space is compact, but there is no obvious ordering in (x,y) coordinates for

which the system is monotone or competitive. Our key observation is that manifolds

that are nonmonotone and graphs of convex functions in (w, t) coordinates are also

nonmonotone and graphs of convex functions in (x,y) coordinates.

The first step is to prove the following lemma:

Lemma 5.5.1. Suppose Γ ⊂ R2
+ is the graph of a twice-continuously differentiable

function ψ : (a,b) ⊂ R+→ R+ (0 < a < b) such that

ψ′(w) < 0, ψ′′(w) > 0, ∀w ∈ (a,b).
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Then Γ′ = Φ−1 ◦ Γ is the graph of a twice-continuously differentiable convex and

decreasing function φ : (A,B)→R+ where A = a
2+a+ψ(a) ,B = b

2+b+ψ(b) , and ψ= φ◦Φ:

φ′(x) < 0, φ′′(x) > 0, ∀x ∈ (A,B).

Proof. This is a simple calculation using that (w,ψ(w)) = Φ(x,φ(x))

φ′(x) =
(2 + w)ψ′(w)−ψ(w)
(2 +ψ(w))−wψ′(w)

.

However, recall that w, t = ψ(w) > 0, therefore

ψ′(w) < 0 ⇒ φ′(x) < 0. (5.5.8)

Furthermore,

φ′′(x) =
2(2 + w +ψ(w))3

(2 +ψ(w)−wψ′(w))3 ψ
′′(w). (5.5.9)

Again, using w, t = ψ(w) > 0 we deduce

ψ′(w) < 0, ψ′′(w) > 0 ⇒ φ′′(x) > 0. (5.5.10)

�

Remark. It is known that linear-fractional transformations such as Φ map convex

sets to convex sets (see, for example, [94]). Hence graphs of convex functions in

(w, t) coordinates map to graphs of convex functions in (x,y) coordinates.

Regarding interior steady states,

Lemma 5.5.2. A steady state in the interior of T in (x,y) coordinates corresponds

to a steady state in the interior of R2
+ in (w, t) coordinates.

Proof. Since (w, t) = Φ(x,y) we have (ẇ, ṫ) = J(ẋ, ẏ), where J is given by (5.5.3). As

J is invertible when 0 < x+y < 1, and Φ maps the interior of T to the interior of R2
+,

steady states in 0 < x + y < 1 correspond to interior steady states in R2
+. �
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5.6 Steady states and stability
The two points (1,0) and (0,1) in T represent the cases where all members of the

population are homozygotes A1A1 and A2A2 respectively, both of these are homozy-

gotic fixation. They are always steady states for the model (5.3.8) regardless of the

parameter values, and their local invariant manifolds are investigated via spectral

analysis of the Jacobian

J =

 fx fy

gx gy


for both points.

Evaluating the Jacobian at (0,1) gives

J(0,1) =

 D3−D1−F33 0

D1−D2−2F13 + F23 D3−D2 + F23−F33

 ,
with eigenvalues λ(0,1)

1 = D3−D1−F33, λ
(0,1)
2 = D3−D2 + F23−F33.

For simplicity, we only consider the generic case where (0,1) is a hyperbolic

steady state and λ(0,1)
1 , λ(0,1)

2 .

If D1−D2−2F13 + F23 , 0, suitable respective eigenvectors for λ(0,1)
1 ,λ(0,1)

2 are

v(0,1)
1 =

(
−

D1−D2 + F23

D1−D2−2F13 + F23
,1

)T

, v(0,1)
2 = (0,1)T , (5.6.1)

which indicates that the tangent space for one of the local invariant manifolds at

(0,1) is then vertical. The positioning relative to T of the local invariant manifold

tangent to v(0,1)
1 is not immediately obvious. On closer inspection, it turns out that

the local invariant manifold will lie locally in the triangular region T if and only

if the gradient of its tangent line, spanned by, v(0,1)
1 , is strictly less than −1, which

occurs when F23 < D2 −D1. Notice that this condition is satisfied if and only if

λ(0,1)
2 < λ(0,1)

1 . In the case that D1 −D2 + F23 − 2F13 = 0, so that J(0,1) is diagonal,

and since we are assuming that λ(0,1)
1 , λ(0,1)

2 , not a multiple of the identity, then

(1,0) and (0,1) are suitable respective eigenvectors, and only (0,1) lies in T . Note

that for general Fi j and Dk the signs of the eigenvalues remain unspecified, hence it
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is unclear whether each local manifold is stable, unstable or centre.

Meanwhile, the Jacobian at (1,0) is

J(1,0) =

 D1−D2 + F12−F11 D3−D2 + F12−2F13

0 D1−D3−F11

 ,
which has eigenvalues

λ(1,0)
1 = D1−D3−F11, λ(1,0)

2 = D1−D2 + F12−F11, (5.6.2)

Similarly to above we assume that (1,0) is hyperbolic and λ(1,0)
1 , λ(1,0)

2 .

When D3−D2 + F12−2F13 , 0, J(1,0) has suitable respective eigenvectors for

λ(0,1)
1 ,λ(0,1)

2 given by

v(1,0)
1 =

(
−

D3−D2 + F12−2F13

D3−D2 + F12
,1

)T

, v(1,0)
2 = (1,0)T .

Hence the tangent space for one local manifold at the point is guaranteed to be

horizontal at (1,0). A necessary condition for the respective tangent space of the

other local invariant manifold being inside the triangle T is that the gradient of

v(1,0)
1 should be strictly bounded by the values −1 and 0, or equivalently,

F13

D3−D2 + F12
< 0.

This is satisfied if F12 < (D2 −D3), which is equivalent to λ(1,0)
2 < λ(1,0)

1 . Again,

the two eigenvalues can be generally either positive, negative or zero, hence the

respective tangent spaces corresponding with the local invariant manifolds could be

stable, unstable or centre manifolds.

Note that since all fertilities and death rates are taken to be real numbers, the

triangular Jacobian for both steady states must always have real eigenvalues. There-

fore, when hyperbolic, these steady states cannot have spirals or centres in their

vicinity.

The system is strongly competitive in (w, t) coordinates if and only if strict in-
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equality in (5.5.7) holds, which is equivalent to the following inequalities combined

F23 > (D2−D1) ⇔ λ(0,1)
2 > λ(0,1)

1 ,

F12 > (D2−D3) ⇔ λ(1,0)
2 > λ(1,0)

1 .

As noted above, however, this means that the tangent spaces of the local manifolds

corresponding to the eigenvector v1 for both (0,1) and (1,0) lie outside the (x,y)

phase space T . Thus strong competitiveness in the (w, t) phase space is equivalent

to the local invariant manifolds at (0,1) being always vertical at that steady state,

and similarly, any local manifolds at (1,0) are always horizontal at that point.

All this is summarised by the following result:

Proposition 5.6.1. The following are equivalent:

1. Both λ(0,1)
2 > λ(0,1)

1 and λ(1,0)
2 > λ(1,0)

1 hold.

2. The Nagylaki-Crow model is strongly competitive in (w, t) coordinates.

3. The tangent spaces of the local manifolds corresponding to v(0,1)
1 and v(1,0)

1

lie outside the (x,y) phase space T .

5.7 Existence of a nonmonotone invariant manifold
The aim of this section is to prove that at least one nonmonotone invariant manifold

Σ does indeed exist when

F12 > D2−D3,

which is also the graph of a convex function if in addition

F11 > D1−D3 > −F33.

Here the first inequality is similar to the condition (5.5.7) for competition, except

that D2 ≤ D1 + F23 is not required and the inequalities are now strict.

We recall that the time variable is denoted by s, so as to avoid confusion with

the vertical coordinate t from Section 5.5.
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5.7.1 In the original (x,y) coordinates

In the style of [81], we consider the temporal evolution of a function ϕ : [0,1]×

[0, τ0)→ R+ satisfying ϕ(x,0) = ϕ0(x) and

ϕ(1, s) = 0, ϕ(0, s) = 1 ∀s ∈ [0, τ0). (5.7.1)

Here τ0 > 0 is the maximal time of existence of ϕ as a solution of the first order

partial differential equation

dϕ
ds

= ϕs + fϕx = g, (5.7.2)

where f and g are defined as in Equations (5.3.8), and ϕs =
∂ϕ
∂s , subject to boundary

and initial conditions explained below.

We let Σs be the graph of ϕ(·, s) for s ∈ [0, τ0) (we will later show that τ0 = +∞).

The boundary conditions (5.7.1) force the endpoints of Σs to remain fixed for all

time. We let

ϕ0(x) = (1− x)(1−εx), where 0 < ε� 1. (5.7.3)

When ε = 0, ϕ0(x) = 1− x and the image of the graph of ϕ0 under Φ is not defined.

But by choosing ε > 0 small the graph G0 of ϕ0 is close to x + y = 1 and is mapped

by Φ to the graph of a continuous function ψ0 :
(2
ε ,∞

)
→ R+ given by

ψ0(w) =
2(εw−2−w)

2− εw
. (5.7.4)

The aim is to show that Σs converges (in the Hausdorff metric) to some manifold Σ

as s→∞.

Using d/ds to denote the time derivative which follows trajectories in the phase

plane, differentiating Equation (5.7.2) gives Lemma 2.1 from [81], which is

dϕx

ds
= gx + (gy− fx− fyϕx)ϕx, (5.7.5)

In fact, this is (3.5.3) applied to the Nagylaki-Crow model.
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It is possible to investigate the right and left-sided limits of ϕx as x → 0,1

respectively, i.e. ϕx(0+, s) and ϕx(1−, s). These can be evaluated by substituting the

expressions for fx, fy, gx and gy for (x,y) = (0,1) into Equation (5.7.5) to obtain the

following ordinary differential equation for ϕx(0, s):

dϕx

ds
(0, s) = (λ(0,1)

2 −λ(0,1)
1 )(ϕx(0, s) + 1)−2F13. (5.7.6)

whose initial condition is

ϕx(0,0) = −1−ε < −1.

Although this equation is separable, we will not calculate the explicit solution for

ϕx(0, s), although we do note that since (5.7.6) is linear ϕx(0, s) is bounded for all

finite forward and backward time. If F13 > 0 we conclude that ϕx(0, s) < −1 for all

s ≥ 0, which follows from the fact that when ϕx(0, s) = −1,

dϕx

ds
(0, s) < 0.

Meanwhile, if F13 = 0 we observe that ϕ(·, s) = −1− ε is the unique solution of

(5.7.6) satisfying ϕ(·,0) = −1−ε. Thus for all F13 ≥ 0 we have

ϕx(0, s) < −1, ∀s ≥ 0. (5.7.7)

Now we repeat the procedure for (x,y) = (1,0). This time we obtain a differential

equation for ϕx(1, s):

dϕx

ds
(1, s) = −ϕx[(λ(1,0)

2 −λ(1,0)
1 )(ϕx + 1)−2F13ϕx], (5.7.8)

with

ϕx(1,0) = −1 +ε ∈ (−1,0).
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Therefore if F13 > 0, then ϕx(1, s) = −1 leads to

dϕx

ds
(0, s) > 0,

while if F13 = 0, ϕx(·, s) = −1 + ε is the unique solution of (5.7.8) satisfying

ϕ(·,0) = −1− ε. Finally, regardless of whether F13 is positive or zero, there is an-

other solution corresponding to the function constantly equal to zero. Therefore, as

the solution is bounded, we can conclude that

−1 < ϕx(1, s) < 0, ∀s ≥ 0. (5.7.9)

Note, however, that there may be no lower bound for ϕx(0, s).

To obtain information on ϕx(x, s) for x ∈ (0,1) and s ∈ [0, τ0) using (5.7.5) and

Lemma 2.1 in [81] is not so easy due to the complicated form of gx = 1
2 F22(x−1)+

2y2(F12−F22 + F23−F13)+y(D1−D2 + 5
2 F22−2F12−F23 +2xy(2F12−F11−F22),

whose sign on T is not obvious.

Equation (5.7.5) can be differentiated to obtain an equivalent version of Lemma

3.1 in [81]. This governs the evolution of the convexity of ϕ through the value of

ϕxx. However, this approach will not be pursued in this thesis, since we have found

it too involved to track the sign of ϕxx. Since an approach in (x,y) coordinates does

not easily lead to establishing that ϕx < 0, ϕxx > 0, we revert to (w, t) coordinates

where establishing convexity is simpler via Lemma 5.5.1.

5.7.2 In the new (w, t) coordinates

5.7.2.1 The set-up

We seek to map the graph of ϕ in T to the graph of a new function ψ in R2
+. The

function ψ(·, s) satisfies the first order quasilinear partial differential equation

ψs + p(w,ψ(w, s))ψw = q(w,ψ(w, s)) (5.7.10)
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for suitably defined w ∈ R+. For s ∈ [0, τ0), ψ(·, s) is known to exist since it is

obtained from ϕ(·, s) : [0,1]→ R via

(w(x, s),ψ(w(x, s), s)) =

(
2x

1− x−ϕ(x, s)
,

2ϕ(x, s)
1− x−ϕ(x, s)

)
, x ∈ (0,1), s ∈ [0, τ0).

(5.7.11)

Also needed is an initial condition ψ(w,0) = ψ0(w), where ψ0 is a function to

be determined from ϕ0.

Unfortunately the straight line y = 1− x does not have a well-defined counter-

part in (w, t) coordinates, and so is an inappropriate choice for an initial data curve

to map onto ψ0. Instead, we construct ψ0 by defining ϕ0 as given in (5.7.3), and

transforming that into (w, t) coordinates (see Figure 5.4). By substituting y = ϕ0(x)

and z = 1− x− y in Equations (5.5.1), we obtain

w =
2

(1− x)ε
, t =

2(1− xε)
xε

, x ∈ (0,1).

Then by eliminating x and letting t = ψ0(w), where ψ0 : (2
ε ,∞)→ R+ we obtain the

hyperbola

ψ0(w) =
−2(2 + w−wε)

2−wε
.

The graph of ψ0(w) lies in the open first quadrant with vertical and horizontal

asymptotes w = 2/ε and t = 2(1−ε)/ε respectively. In addition,

(ψ0)w =
−4

(wε−2)2 < 0 (ψ0)ww =
8ε

(wε−2)3 > 0. (5.7.12)

5.7.2.2 Equivalent boundary conditions

Boundary conditions for the partial differential equation (5.7.10) are needed, and

should be equivalent to the boundary conditions in (5.7.1). It turns out that the

equivalent condition is that ψ must have a horizontal and vertical asymptote at all

times, even if the positions of these asymptotes vary in time. For now, these asymp-

totes will be said to occur at t∗ and w∗ respectively (both functions of s).

Let us determine the boundary condition for (5.7.10) corresponding to the
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(a) A plot of the initial data curve, the
graph of ϕ0, in (x,y) coordinates.

(b) A plot of the initial data curve, the
graph of ψ0, in (w, t) coordinates.

Figure 5.4: The initial data curve for the two coordinate systems (dashed line), which de-
forms in time according to the flow, converging to the invariant manifold Σ

(solid line). For these plots, we take ε = 1/2.

point (0,1) using the transformation (5.5.1). Recall that ϕ(·, s) : [0,1]→ R is de-

fined and smooth for each s ∈ [0, τ0). Then by l’Hôpital’s rule, for all s ∈ [0, τ0)

we have limx→0+ w(x, s) = 2
−1−ϕx(0,s) , whereas limx→1−w(x, s) = +∞. Similarly,

limx→0+ t(x, s) = +∞, whereas limx→1− t(x, s) =
2ϕs(1,s)
−1−ϕx(1,s) . The graph of ψ(·, s)

has a vertical asymptote at w = w∗(s) := 2
−1−m0(s) and a horizontal asymptote at

t = t∗(s) := 2m1(s)
−1−m1(s) , where m0(s) = ϕx(0, s) and m1(s) = ϕx(0, s). Since from (5.7.7)

and (5.7.9) we have, m0 < −1 and −1 < m1 < 0, we find that w∗(s), t∗(s) are well-

defined and positive for s ∈ [0, τ0). Hence the image of each ϕ(·, s) under Φ is a

continuous curve that is the graph of a function ψ(·, s) : (w∗(s),+∞) → R. This

indicates that both asymptotes will lie in the interior of R2
+.

5.7.2.3 Investigating the gradient and convexity

Differentiating Equation (5.7.10) gives Lemma 2.1 from [81], which is

dψw

ds
= qw + (qt − pw− ptψw)ψw, s ∈ [0, τ0). (5.7.13)
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Furthermore, we can repeat the procedure to obtain an equivalent version of Lemma

3.1 [81], which states that for all s ∈ [0, τ0)

dψww

ds
= qww +ψw(2qwt − pww) +ψ2

w(qtt −2pwt)− pttψ
3
w +ψww(qt −2pw−3ptψw).

(5.7.14)

However, as the equations of motion are already simpler in (w, t), the partial deriva-

tives of p and q are also easier to compute. In fact, we find that

ptt = qww = 0,

which simplifies Equation (5.7.14) to

dψww

ds
= ψw[(2qwt − pww) +ψw(qtt −2pwt)] +ψww(qt −2pw−3ptψw). (5.7.15)

Also,

pww = 2(D2−D1 + F11−F12−F13t),

qtt = 2(D2−D3 + F33−F23−F13w),

pwt = D2−D1−F23−2F13w,

qwt = D2−D3−F12−2F13t,

and so

2qwt − pww = 2(D1−D3−F11−F13t),

qtt −2pwt = 2(D1−D3 + F33 + F13w),

which are negative and positive when F11 >D1−D3 and F33 >D3−D1 respectively.

Combining these two conditions gives the constraint

F11 > D1−D3 > −F33, (5.7.16)
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which is equivalent to having both λ(1,0)
1 < 0 and λ(0,1)

1 < 0. Meanwhile, a sufficient

condition for qw < 0 is t > 0 and D2 < D3 + F12 (i.e. λ(1,0)
2 > λ(1,0)

1 ). Then, assuming

(5.7.16) and D2 < D3 + F12, let α = ψw and β = ψww and rewrite Equations (5.7.13)

and (5.7.15) as two coupled ordinary differential equations:

dα
ds

= Aα2 + Bα+C (5.7.17)

dβ
ds

= α(D + Eα) +β(F +Gα), (5.7.18)

where

A = −pt E = qtt −2pwt > 0

B = qt − pw F = qt −2pw

C = qw < 0 G = −3qt

D = 2qwt − pww < 0

are all continuous (in fact, polynomial) functions of w and ψ (which replaces t).

We already found that ψ0 is strictly decreasing and convex, with α0 < 0 and β0 > 0,

where α0 = α(w,0) and β0 = β(w,0). Now the aim is to prove

α < 0, β > 0 ∀s ∈ [0, τ0), (5.7.19)

for all values of w for which ψ(w, s) is defined. In other words, if the initial data

curve is both strictly decreasing and convex in (w, t) coordinates, then it will remain

that way as s increases in [0, τ0).

The following lemma is based on Corollary 2.2 of [81], whose proof makes

use of the fact that C = qw < 0:

Lemma 5.7.1. If the smooth initial curve ψ0 satisfies both ψ0 > 0 and (ψ0)w < 0,

then for all s ∈ [0, τ0), ψ(·, s) is defined and smooth for all w > w∗(s) (where w∗(s) is

the vertical asymptote of ψ(·, s) mentioned in the previous remark), with ψ(·, s) > 0,

ψw(·, s) < 0 and ψww(·, s) > 0.
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Proof. We already know that ϕ(·, s) : [0,1]→R exists for s ∈ [0, τ0) for some τ0 > 0,

and hence via the coordinate change Φ, ψ(·, s) : (w∗(s),∞)→ R satisfying (5.7.10)

exists for all s ∈ [0, τ0). The function ψ(·, s) : (w∗(s),∞)→R also satisfies Equations

(5.7.13) and (5.7.15) for s ∈ [0, τ0).

As the vertical asymptote w∗(s) is changing in time, it is convenient to rescale

the asymptote to unity by a change of variables, taking

v =
w

w∗(s)
. (5.7.20)

Note that w∗(s) > 0 for s ∈ [0, τ0) so that this transformation is defined for at least

s ∈ [0, τ0).

We define ψ̃(·, s) : [1,∞)→ R+ via

ψ̃(v, s) = ψ(w, s) = ψ(vw∗(s), s), s ∈ [0, τ0).

Now compute  ψw

ψs

 =

 vw 0

vs 1


 ψ̃v

ψ̃s

 ,
so that via (5.7.20)  ψw

ψs

 =

 1
w∗(s) 0
−ww∗′(s)
(w∗(s))2 1


 ψ̃v

ψ̃s

 . (5.7.21)

Next, using a similar argument to that used to obtain (5.7.13) and the Chain Rule,

we have ψ̃v = w∗(s)ψw along with

dψ̃v

ds
= w∗qw + (qt − pw + (lnw∗)′−

pt

w∗
ψ̃v)ψ̃v, v ≥ 1, s ∈ [0, τ0), (5.7.22)

and (ψ̃0)v < 0. Note that in Equation (5.7.22) we find that

(lnw∗)′(s) = −
dϕx(0, s)/ds
1 +ϕx(0, s)

,

which by (5.7.7) is bounded for s ∈ [0, τ0).

Following Corollary 2.2 in [81], but with strict inequalities, we note that in
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(5.7.22) the term w∗qw < 0 so that if ψ̃v = 0 for some value of v ≥ 1 and s ∈ [0, τ0),

then from (5.7.22) we have dψ̃v
ds < 0, and so we deduce that ψ̃(v, s) is strictly decreas-

ing for v ≥ 1 and s ∈ [0, τ0). In turn this implies from ψw =
dψ̃v
ds /w

∗ that

α = ψw(w, s) < 0, ∀w > w∗(s), s ∈ [0, τ0). (5.7.23)

Now we turn to the sign of β = ψww. If we let θ = α(D + Eα) and σ = (F + Gα),

(5.7.18) may be written as
dβ
ds

= σβ+ θ, (5.7.24)

and D< 0, E > 0 which, combined with α< 0, yields θ > 0. But β0 > 0, so by Lemma

4.1 from [81], β > 0 whenever s ∈ [0, τ0). Thus (5.7.19) holds, which indicates that

ψww > 0 ∀w > w∗(s), ∀s ∈ [0, τ0). (5.7.25)

In particular, (5.7.25) together with (5.7.23) implies from Lemma 5.5.1 that

ϕx(x, s) < 0, ϕxx(x, s) > 0, ∀x ∈ (0,1), s ∈ [0, τ0). (5.7.26)

Now we show that we may take τ0 = +∞.

Since ϕxx(·, s) > 0, ϕx(x, s) is increasing with x ∈ (0,1), and hence finite, for

each s ∈ [0, τ0). Let us suppose that ϕx(x̄, si) becomes unbounded as i → ∞ for

some sequence si → τ0, and some x̄ ∈ (0,1). Since ϕxx(x, s) > 0 for s ∈ [0, τ0) and

x ∈ (0,1) we have that ϕx(x, s) ≤ ϕx(x̄, s) for all x ∈ [0, x̄] and s ∈ [0, τ0). In particular

ϕx(0, s) ≤ ϕx(x̄, s) for all s ∈ [0, τ0) and so ϕx(0, si) ≤ ϕx(x̄, si). Letting i→∞ shows

that ϕx(0, si) is unbounded below which contradicts that solutions to the ordinary

differential equation (5.7.6) remain bounded in finite time. This contradiction shows

that τ0 =∞.

We have thus shown that ϕx(0, s) exists and is finite for all s ∈ R+ and that

ϕ(0, s) = 1, ϕ(1, s) = 0 for all s ∈ [0, τ0), and hence ϕ(·, s) : [0,1]→ R is a strictly

decreasing smooth convex function for all s ≥ 0. �

By Lemma 2.7 from [81], the graph of each ϕ(·, s) is a nonmonotone Lips-
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chitz manifold Σs with Lipschitz constant unity. By the Arzelà-Ascoli Theorem, the

space of Lipschitz functions in a compact space is itself compact. Hence a sequence

of Lipschitz manifolds, such as the one constructed from ϕ, will always have a con-

vergent subsequence whose limit is in turn also a nonmonotone Lipschitz manifold

which we call Σ. It is not immediate that Σ is invariant. However, as we now show,

we do not need to select a subsequence as the sequence of manifolds Σs is actually

monotone decreasing in s ≥ 0, from which it follows that the limit Σ is invariant.

We rewrite (5.7.2) in the form

ϕs = N · f, (5.7.27)

where f = ( f ,g) and N = (−ϕx,1) is the upward normal which normalises to n.

As done in [81], we track the time evolution of b = n · f, the component of the

flow normal to the curve. Suppose that ϕ0(x) = 1− x. Then at s = 0, n = 1√
2
(1,1)

and

b = 2F13x(x−1),

which is negative for x ∈ (0,1), as long as F13 > 0. Moreover, if ε is sufficiently

small, we still have the same sign for b at s = 0 for all x ∈ (0,1) when ϕ0(x) =

(1− x)(1−εx), since this initial data curve is a perturbation of y = 1− x.

Next, we invoke Lemma 2.6 from [81], i.e.

ḃ = (n · ∇f ·n)b,

which shows that b, and in turn ϕs, stays negative for all s > 0. So the graphs Σs of

ϕ(·, s) always move downwards with increasing s under the flow of the system for

all positive time, hence the limiting manifold Σ is indeed invariant.

Hence we can summarise our results in the following theorem:

Theorem 5.7.2. In the Nagylaki-Crow model (5.3.4) - (5.3.6) suppose that

D2 < D3 + F12, F13 > 0. (5.7.28)
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Then the model has at least one nonmonotone invariant manifold that connects the

steady states (0,1) and (1,0) in T = {(x,y) ∈ R2
+ : 0 ≤ x + y ≤ 1}.

If in addition

F11 > D1−D3 > −F33 (5.7.29)

holds, this nonmonotone manifold is the graph of a convex function.

Observe that all of (5.5.7) is not needed, so existence works for not necessarily

competitive models that satisfy (5.7.28) only. A similar result applies by inter-

changing w and t leading to a version of Theorem 5.7.2 with (5.7.28) replaced by

D2 < D1 + F23 and (5.7.29).

The nonmonotone invariant manifold of Theorem 5.7.2 is a connecting orbit

that connects the two axial steady states (possibly via other steady states) in T .

When both inequalities in (5.5.7) hold, so that the system is competitive, it is also

monotone with the order ≥. In this case, existence of a connecting orbit (even

with additional steady states ordered by ≥) follows from [95]; a similar result for

discrete-time systems is the subject of [96]. Jiang showed that for cooperative sys-

tems, this connecting orbit is unique if the Jacobian is irreducible at the two steady

states. Even if Jiang’s result on irreducibility can be modified for planar competi-

tive systems, in our model the Jacobian at the axial steady states is reducible and so

an alternative approach is needed to determine when the nonmonotone manifold is

unique. In any case our existence result does not require a competitive model for

existence, and so conditions for uniqueness of the manifold are not at all clear and

will be dealt with elsewhere.

5.8 Discussion
We have shown the existence of a nonmonotone invariant manifold for a continuous-

time differential fertility model in Population Genetics without requiring additivity

of fertilities or mortalities, nor competitive dynamics. Note that the additive case

generally does not satisfy the new conditions, i.e. (5.7.28) (or its alternative in

(5.5.7)) and (5.7.29).
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To do this, we set up an invertible mapping between an evolving curve ϕ in

(x,y) space and an evolving (unbounded) curve ψ in (w, t) space. Through our lem-

mata it then suffices to check the signs of the first and second derivatives of ψ (as

it then follows that the graph of ϕ is decreasing and convex). Then convergence is

established in (x,y) space using Lipschitz and bounded sequences of the graph of ϕ.

Thus the crucial part is setting up the map between ϕ and ψ by a change of dynam-

ical variables. A similar technique is remarked on in [68] which involves applying

the transformation yi = log xi (i = 1,2,3) on the Lotka-Volterra equations. This co-

ordinate change maps the invariant surface from something which is not necessarily

concave to a concave surface.

There was no need to assume that the system was competitive in either coor-

dinate system; nonetheless, the existence proof given in this thesis for a decreasing

manifold only applies when the inequality (5.7.28) (or its alternative in (5.5.7)) ap-

plies. We also showed that when the Nagylaki-Crow model satisfies the inequalities

(5.7.29), the invariant manifold is the graph of a convex function. In Figure 5.5

we show that when (5.7.29) is not satisfied the invariant manifold, which still ex-

ists as two heteroclinic connections of axial and interior steady states, may be non

smooth and not the graph of a continuous decreasing convex function. How far the

conditions for convexity can be weakened is an open problem.

Meanwhile, it is also unknown what conditions are required for the constructed

invariant manifold to be smooth. Even when the model is competitive or strongly

competitive, results such as in [97] are not immediately applicable as ∂R2
+ is not

invariant for our system. Since f and g are bivariate polynomials each heteroclinic

connection (orbit) along Σ is an analytic invariant manifold [37], hence only the

interior steady states on Σ need to be checked for C1-smoothness. In addition, the

Stable Manifold Theorem also indicates that the stable and unstable subspaces for

any saddle point in the dynamical system are both one-dimensional. Moreover Σ,

which is itself one-dimensional, must be tangential to one of the aforementioned

subspaces, as well as C1-smooth, even at the saddle point. Hence all that remains is

to find conditions for Σ to be also C1-smooth at interior steady states of the model
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that are not saddles.

Recall that in Figure 5.1 the invariant manifold Σ is not unique. In fact, numer-

ics suggest that the model has at most finitely countably many nonmonotone invari-

ant manifolds; these are analogous to the family of manifolds described by Hirsch

in Theorem ??. Our model, however, is not immediately covered by Hirsch’s results

because the boundary of the phase space in Hirsch’s system is invariant whereas in

our case, the flow on the boundary points towards the interior of T . Nevertheless

we believe that the difference is not problematic, as long as we have a repelling

boundary for the phase space.

Figure 5.5: A numerical example where the invariant manifold, which consists of a union
of two heteroclinic orbits, is not nonmonotone, smooth or the graph of a convex
function. The values of the fertilities are F11 = 2/5, F12 = 1/100, F13 = 1/81,
F22 = 98/100, F23 = 11/12, F33 = 1/97, while the mortalities are D1 = 93/100,
D2 = 9/10, D3 = 1/10, so that this example does not satisfy either of D2 ≤

D1 + F23 or D2 ≤ D3 + F12.



Chapter 6

The Selection-Recombination model

As mentioned in Chapter 2, a multi-locus model is needed in order to study genetic

recombination, and the resulting dynamical system is referred to as the selection-

recombination model. This chapter focuses on the simplest of these models, with

only two loci and two alleles. It was first proposed by Kimura in [98]; the derivation

is also given in [4]. More general versions of the model can be found in the literature

- a two-locus multiallelic model is given in [2], while [99] discusses a multi-locus

one.

Even just the two-locus two-allele (TLTA) model already has nine distinct

diploid genotypes! It is far simpler to focus on the state of the gamete pool using just

four dynamical variables, rather than keep track of all nine genotypes. Assuming

random union of gametes lets us recover the frequencies of the full genotypes at the

zygote stage; multiplying these by the corresponding fitness gives the proportions

at the adult stage [2].

6.1 What is already known about the model?
A QLE manifold is known to exist for weak selection [99]. Currently though, it is

unclear to what extent the manifold persists when selection is not weak.

Meanwhile, it is shown in [100, 101, 102] that stable limit cycles can be present

in the two loci two allele model. However, these do not occur for weak selection

if all the steady states in the model are hyperbolic [99]; what happens when the

hyperbolicity condition is not satisfied is an open problem.
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6.2 The two-locus two-allele (TLTA) model

Suppose both loci α and β come with two alleles: A, a for the locus α and B, b for

the locus β. Hence there are four possible gametes ab, Ab, aB and AB; these haploid

genotypes will be denoted by G1, G2, G3, G4, whose frequencies at the zygote stage

(i.e. immediately after fertilisation) are freq(ab) = x1, freq(Ab) = x2, freq(aB) = x3

and freq(AB) = x4 respectively [2].

Let Wi j denote the probability of survival from the zygote stage to adulthood

for an individual resulting from a Gi-sperm fertilising a G j-egg. If the genotypes

of the gametes from each parent are swapped, we expect the fitness to stay the

same, hence Wi j = W ji. Another assumption is the absence of position effect, i.e.

W14 = W23 = θ [5], since the full diploid genotype of an individual obtained by G1

and G4 gametes, (ab/AB) is identical to that of an individual resulting from G2 and

G3 gametes (Ab/aB) [2]. The fitness matrix is the following symmetric matrix:

W =



W11 W12 W13 θ

W12 W22 θ W24

W13 θ W33 W34

θ W24 W34 W44


, (6.2.1)

Then the governing equations for the selection-recombination model are

ẋi = xi(mi− m̄) +εirθD, i = 1,2,3,4. (6.2.2)

Here mi = (Wx)i represents the fitness of Gi, while m̄ = x>Wx is the mean fitness

in the gamete pool of the population. Also included are the recombination rate

0 < r ≤ 1
2 and εi = −1,1,1,−1.

The linkage disequilibrium coefficient D = x1x4 − x2x3 is a measure of the

statistical dependence between the two loci. Let freq(a) denote the frequency of

allele a, freq(ab) be the frequency of genotype ab, and so on. Then [2]

D = freq(ab)− freq(a)freq(b),
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hence D = 0 if and only if

freq(ab) = freq(a)freq(b),

with similar results also holding for each of Ab, aB and AB. In this scenario, the

population is said to be in linkage equilibrium. As already mentioned, the manifold

corresponding to D = 0 is known as the Wright Manifold.

It is possible to fix θ = 1 without loss of generality [4, 2, 5]. However, we will

not do so because later in this chapter we will consider a special case which uses

a different value of θ. A derivation of the model (6.2.2) is given in [4]. We will

sometimes represent this dynamical system by ẋ = f(x), where x = (x1, x2, x3, x4).

The phase space for this dynamical system is the simplex

∆4 = {(x1, x2, x3, x4) ∈ R4 : xi ≥ 0,
4∑

i=1

xi = 1}. (6.2.3)

We will denote the vertices of ∆4 by e1 = (1,0,0,0), e2 = (0,1,0,0), e3 = (0,0,1,0)

and e4 = (0,0,0,1). Moreover, each edge connecting vertex ei with ej will be de-

noted by Ei j.

The linchpin of this paper is the QLE manifold, a connected invariant manifold

of codimension one,which will be denoted as ΣM. The QLE manifold is close to

the Wright manifold and its (relative) boundary corresponds to the union of the four

edges E12, E13, E42 and E43. Moreover, all orbits are attracted to ΣM, except for

any steady states not in ΣM. Our numerical evidence so far suggests that ΣM exists

for a large range of values of the fitnesses and r. However, the existence of ΣM has

not previously been shown other than for weak selection (relative to r), or additive

fitnesses or strong recombination and it is unknown whether ΣM is always Lipschitz,

or whether it is of class C1.

To begin the study of (6.2.2), it is first convenient to follow other authors and

change dynamical variables via Φ : ∆4→ R
3
+

x 7→ u = Φ(x) := (x1 + x2, x1 + x3, x1 + x4) , (6.2.4)
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where u = (u,v,q). The mapping has inverse

Φ−1(u) =
1
2

(u + v + q−1,u− v−q + 1,−u + v−q + 1,−u− v + q + 1) . (6.2.5)

Φ maps ∆4 to the tetrahedron in R3
+:

∆ = Conv {ẽ1, ẽ2, ẽ3, ẽ4} , (6.2.6)

where ẽi = Φ(ei) with ẽ1 = (1,1,1), ẽ2 = (1,0,0), ẽ3 = (0,1,0), ẽ4 = (0,0,1) and

ConvS denotes the convex hull of a set S .

Remark. There is a biological interpretation for two of these new dynamical vari-

ables:

u = freq(ab) + freq(Ab) = freq(b), (6.2.7)

v = freq(ab) + freq(aB) = freq(a). (6.2.8)

Both allelic frequencies have been used in [103]. It is unclear if there is any bio-

logical meaning behind q.

Φ maps the system (6.2.2) to new equations of motion for u, v and q, which

have the following form:

u̇ = F(u) (6.2.9)

where u = (u,v,q) and F = (U,V,Q), are cubic multivariate polynomials of u, v and

q given explicitly in Appendix B.

Figure 1 shows the advantage of using the new coordinates u. The Wright

manifold is shown in (a) for simplex coordinates x and (b) the Wright manifold is

shown in the new tetrahedral coordinates u. Notice that in (b), the new coordinates

allow the manifold to be written as the graph of a function over [0,1]2. In (c), (d) we

also show an example of the TLTA model with positive recombination rate. Here

we see that the QLE manifold is a perturbation of the Wright manifold (see [99]

for an analysis of this perturbation for a n-allele model using the method of normal
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(a) (b)

(c) (d)

Figure 6.1: (a) The Wright manifold (neutral selection and r = 0.3) in x coordinates. (b)
The Wright manifold (neutral selection and r = 0.3) in (u,v,q) coordinates.
(c) The QLE manifold (r > 0) in x coordinates. (d) The QLE manifold (r >
0) in (u,v,q) coordinates. (Parameters chosen: W11 = 0.1,W12 = 0.3,W13 =

0.75,W22 = 0.9,W24 = 1.7,W33 = 3.0,W34 = 2.0,W44 = 0.3, θ = 1.0,r = 0.3)

hyperbolicity). Although the Wright manifold is depicted for neutral selection with

r > 0, it is also invariant for additive fitnesses regardless of r [104, 2].

Figure 6.2 depicts an example where the QLE manifold ΣM could not be com-

puted numerically - it may not even exist for this example! The author notes that

some of the fitnesses are much larger than the rate of recombination, e.g. W13 = 20,

while r = 1
19 .

6.3 Main result
Our objective is to establish explicit parameter value ranges in the TLTA model that

guarantee the existence of a globally attracting QLE manifold. Here we establish:
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Figure 6.2: The QLE manifold ΣM could not be computed numerically for this example.
The parameters chosen are W11 = 0.1,W12 = 0.3,W13 = 20.0,W22 = 0.9,W24 =

10.0,W33 = 1.3,W34 = 2.0,W44 = 0.5, θ = 1.0,r = 1
19

Theorem 6.3.1 (Existence of a globally attracting Quasi-linkage Equilibrium man-

ifold). Consider the TLTA model (6.2.2). If (6.4.30) and (6.6.11), then there exists

a Lipschitz invariant manifold that globally attracts all initial polymorphisms.

Our approach is to first establish conditions for the TLTA model (6.2.9) to

be a competitive system. This will be achieved by showing that, when consid-

ered backwards in time, (6.2.9) is a KM−monotone system with respect to a proper

(non-simplicial) polyhedral cone KM. In establishing this, it is particularly fortu-

itous that the boundary of the Wright manifold in (u,v,q) coordinates is invariant

under the TLTA dynamics. The invariant boundary then provides fixed Dirichlet

boundary conditions for a computation of the QLE manifold as the limit φ(·) of

a time-dependent solution φ(·, t) of a quasilinear partial differential equation (see

Equation (6.3.2) below). The global existence in time of φ(·, t) and convergence to a

Lipschitz limit is guaranteed by the confinement of the normal of the graph of φ(·, t)

to KM. Finally global convergence to the QLE manifold is established by showing

that phase space volume is strictly decreasing in time. The graph of the limit φ is

identified as the QLE manifold ΣM.

The space of Lipschitz continuous functions with Lipschitz constant γ is de-

noted by Cγ(R2) in [42]. In a similar manner, we will use Cγ([0,1]2) to denote the
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space of Lipschitz functions on [0,1]2, also with Lipschitz constant γ.

Then define the space of functions

B = {φ ∈C1([0,1]2) : graphφ ⊂ ∆, ∂graphφ = Ẽ12∪ Ẽ13∪ Ẽ42∪ Ẽ43}, (6.3.1)

where ∂S denotes the boundary of a surface S relative to the interior of S . Also,

Ẽi j = Φ(Ei j). All functions in B have the same Lipschitz constant one, and hence

B is an uniformly equicontinuous family of functions. The graph of any function

in B is always contained in ∆ which is a closed and bounded subset of R3, hence

B is bounded, as well as closed. Hence by the Arzelà-Ascoli Theorem, B is also

compact.

Let φt = Ltφ0, where Lt is the graph transform of φ0 according to the flow of

(6.2.9. Let φ(u,v, t) = φt(u,v); then similar to [68], we track the time evolution of

the function φ : [0,1]2 × [0, τ0)→ R+ = [0,∞) with an initial condition φ(u,v,0) =

φ0(u,v) ∈ B. Here, τ0 is the maximal time of existence of φ as a solution of the first

order partial differential equation

∂φ

∂t
= Q−U

∂φ

∂u
−V

∂φ

∂v
, (u,v) ∈ (0,1)2, t > 0. (6.3.2)

The initial condition is chosen as φ0(u,v) = 1−u−v+2uv so the graph of ψ initially

coincides with the Wright manifold in the new coordinate system.

Boundary conditions are also required that are consistent with the invariance

of the edges Ẽ42, Ẽ12, Ẽ13 and Ẽ43; these are:

φ(u,0, t) = 1−u, i.e. freq(B) = 0, (6.3.3)

φ(1,v, t) = v, i.e. freq(a) = 0, (6.3.4)

φ(u,1, t) = u, i.e. freq(b) = 0, (6.3.5)

φ(0,v, t) = 1− v, i.e. freq(A) = 0, (6.3.6)

respectively. The biological interpretation is that each of the four conditions (or

edges) corresponds to the scenario where one of the alleles A, a, B or b is absent in
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the population for all time.

Moreover, all four edges being invariant indicates that for all t > 0

∂graphφt = ∂graphφ0 = Ẽ12∪ Ẽ13∪ Ẽ42∪ Ẽ43 (6.3.7)

But ∆ is also forward invariant, hence, graphφ ⊂ ∆ for all t ≥ 0.

We now have a partial differential equation for the evolution of a surface S t :=

graph(φ(·, ·, t)). Since we wish to recover the QLE manifold as S t in the limit as

t→∞, we need that the solution φ(·, ·, t) :→ [0,1]2→ R exists globally in t > 0, and

that it remains suitably regular, say uniformly Lipschitz. We will achieve this goal

by showing that the normal bundle of S t, denoted is contained in a proper convex

cone for all t ≥ 0. As we show in the next section, it turns out that keeping the

normal bundle of S t is contained within a proper convex cone is intimately related

to monotonicity properties of the flow of (6.2.9).

6.4 Conditions for the TLTA model to be competitive

6.4.1 Competitive dynamics

Let us assume there is a proper convex cone K such that −DFK ⊂ K, i.e. that the

TLTA model (6.2.9) is competitive with respect to the cone K.

We will now relate the invariance of the cone K for DF to properties of surfaces

that evolve in [0,1]3 under the flow Φt generated by (6.2.9). Let S 0 be a compact

connected surface in [0,1]3, and S t = Φt(S 0) be S 0 translated by the flow Φt. As

stated in [68], the governing equation for the time evolution of a vector n in the

direction of the outward unit normal at u is

ṅ = −DF(u)>n + Tr(DF(u))n, (6.4.1)

where F = (U,V,Q). Note that n is not necessarily a unit vector.

The condition for the normal bundle of S t, NS t, to remain inside a convex cone

K for all time is that Y(t,n) = −DF(u)>n+Tr(DF(u))n satisfies Y(t,n) ·` ≥ 0 for all
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n ∈ ∂K,` ∈ K∗,n · ` = 0:

(
−DF(u)>n + Tr(DF(u))n

)
· ` ≥ 0 ∀n ∈ ∂K,` ∈ K∗,n · ` = 0,

that is

n · (−DF(u))` ≥ 0 ∀n ∈ ∂K,` ∈ K∗,n · ` = 0

⇔ n · (−DF(u))` ≥ 0 ∀n ∈ K,` ∈ K∗,n · ` = 0,

⇔ n · (−DF(u))` ≥ 0 ∀n ∈ K,` ∈ ∂K∗,n · ` = 0,

which is the condition that −DF(u)` ∈ K∗ for all ` ∈ K∗, i.e. that the original dy-

namics with vector field F is K∗−competitive.

Hence we have shown

Lemma 6.4.1. A cone K stays invariant under the flow of normal dynamics (6.4.1)

if and only if the original dynamical system (6.2.9) is K∗−competitive.

6.4.2 Application to the TLTA model

The respective normals to S t = φt(S 0) at the vertices ẽ1, ẽ2, ẽ3, ẽ4 at t = 0 are

p1 = (−1,−1,1) (6.4.2)

p2 = (1,−1,1) (6.4.3)

p3 = (−1,1,1) (6.4.4)

p4 = (1,1,1). (6.4.5)

However, if we set u = ẽ1 and n(0) = p1, it turns out that p1 is an eigenvector of

−DF(u)>+ Tr(DF(u))I. As a result, the right hand side of Equation (6.4.1) equals a

constant multiple of p1 for all t ≥ 0, indicating that the direction of n matches that

of p1 for all time at the vertex ẽ1. Similarly, for i = 2,3,4 also, n always shares the

same direction as pi at ẽi.

Thus let us generate a polyhedral cone KM from the four linearly independent
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vectors p1, p2, p3 and p4:

KM = R+p1 +R+p2 +R+p3 +R+p4.

Using the formulae for p1,p2,p3 and p4 given by (6.4.2) to (6.4.5), we have

K∗M = R+α1 +R+α2 +R+α3 +R+α4,

where

α1 = p1×p2 = 2(0,1,1) (6.4.6)

α2 = p2×p4 = 2(−1,0,1) (6.4.7)

α3 = p4×p3 = 2(0,−1,1) (6.4.8)

α4 = p3×p1 = 2(1,0,1), (6.4.9)

although in what follows we drop the factors of 2 without loss of generality.

The aim is to show that the normal bundle of graphφt stays a subset of KM for all

time t. As shown in subsection 6.4.1 the required condition is

− ` ·DF(u)T n ≥ 0 whenever ` ∈ K∗M,n ∈ ∂KM, ·n = 0. (6.4.10)

In fact, in (6.4.10) we may restrict to the generators αi for KM:

−αi ·DF(u)T n ≥ 0 whenever n ∈ ∂KM,αi ·n = 0, i = 1,2,3,4. (6.4.11)

Actually, noting for example that, α1 ·n = 0⇒ n = λ1p1 + λ2p2 for λ1 ≥ 0,λ2 ≥ 0

(and not both zero), and repeating for α j, j = 2,3,4 we find that we require

−αi ·DF(u)T pj ≥ 0 i, j = 1,2,3,4, with i , j, (6.4.12)

which gives eight sufficient conditions for the normal bundle of φt to remain within
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KM for all t > 0:

α1 ·DF(u)>p1 = (p1×p2) ·DF(u)>p1 ≤ 0 (6.4.13)

α1 ·DF(u)>p2 = (p1×p2) ·DF(u)>p2 ≤ 0 (6.4.14)

α2 ·DF(u)>p2 = (p2×p4) ·DF(u)>p2 ≤ 0 (6.4.15)

α2 ·DF(u)>p4 = (p2×p4) ·DF(u)>p4 ≤ 0 (6.4.16)

α3 ·DF(u)>p4 = (p4×p3) ·DF(u)>p4 ≤ 0 (6.4.17)

α3 ·DF(u)>p3 = (p4×p3) ·DF(u)>p3 ≤ 0 (6.4.18)

α4 ·DF(u)>p3 = (p3×p1) ·DF(u)>p3 ≤ 0 (6.4.19)

α4 ·DF(u)>p1 = (p3×p1) ·DF(u)>p1 ≤ 0. (6.4.20)

Our other key ingredient is DF(u)> which, in the original x = (x1, x2, x3, x4) coordi-

nates, takes on the following form

DF(u)> = r


0 0 2x1 + 2x2−1

0 0 2x1 + 2x3−1

0 0 −1

+ MS, (6.4.21)

where MS is a matrix whose entries are quadratic polynomials of x1, x2, x3 and x4.

Its explicit form is too complicated to be included. However, we can still derive

sufficient conditions for (6.4.13)-(6.4.20); (6.4.13) reduces to

2x4 [2x2 (W11−2W12 + W22) + 2x3 (W11−W12−W13 + θ)

+ 2x4 (W11−W12− θ+ W24)−2W11 + 2W12 + θ−W24]−2θr(x3 + x4) ≤ 0.

We divide throughout by 2 and define r̂ = rθ, which leads to

x4 [2x2 (W11−2W12 + W22) + 2x3 (W11−W12−W13 + θ)

+ 2x4 (W11−W12− θ+ W24)−2W11 + 2W12 + θ−W24]− r̂(x3 + x4) ≤ 0,
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or equivalently

r̂(x3 + x4) ≥ x4 [2x2 (W11−2W12 + W22) + 2x3 (W11−W12−W13 + θ)

+ 2x4 (W11−W12− θ+ W24)−2W11 + 2W12 + θ−W24] .

But r̂ ≥ 0, and so r̂(x3 + x4) ≥ r̂x4, hence it suffices to consider

r̂x4 ≥ x4 [2x2 (W11−2W12 + W22) + 2x3 (W11−W12−W13 + θ)

+ 2x4 (W11−W12− θ+ W24)−2W11 + 2W12 + θ−W24]

or

0 ≥ x4 [2x2 (W11−2W12 + W22) + 2x3 (W11−W12−W13 + θ)

+ 2x4 (W11−W12− θ+ W24)−2W11 + 2W12 + θ−W24− r̂]

which is obviously true for x4 = 0. Meanwhile, for x4 > 0 we can divide throughout

by x4, which yields

0 ≥ 2x2 (W11−2W12 + W22) + 2x3 (W11−W12−W13 + θ) + 2x4 (W11−W12− θ+ W24)

−2W11 + 2W12 + θ−W24− r̂

= 2x2 (W11−2W12 + W22) + 2x3 (W11−W12−W13 + θ) + 2x4 (W11−W12− θ+ W24)

+ (−2W11 + 2W12 + θ−W24− r̂) (x1 + x2 + x3 + x4),

where the constant terms have been multiplied by
∑4

i=1 xi = 1. Finally, we can

rearrange the previous inequality to obtain (6.4.22)

x1 (r̂ + 2W11−2W12− θ+ W24) + x2 (r̂ + 2W12− θ−2W22 + W24)

+x3 (r̂ + 2W13−3θ+ W24) + x4 (r̂ + θ−W24) ≥ 0, (6.4.22)

with
∑4

i=1 xi = 1. Repeating the entire procedure on each of (6.4.14) to (6.4.20)



6.4. Conditions for the TLTA model to be competitive 102

gives also

x1 (r̂−2W11 + 2W12 + W13− θ) + x2 (r̂−2W12 + W13− θ+ 2W22)

+x3 (r̂−W13 + θ) + x4 (r̂ + W13−3θ+ 2W24) ≥ 0 (6.4.23)

x1 (r̂ + 2W12−3θ+ W34) + x2 (r̂− θ+ 2W22−2W24 + W34)

+x3 (r̂ + θ−W34) + x4 (r̂− θ+ 2W24 + W34−2W44) ≥ 0 (6.4.24)

x1 (r̂−W12 + θ) + x2 (r̂ + W12− θ−2W22 + 2W24)

+x3 (r̂ + W12−3θ+ 2W34) + x4 (r̂ + W12− θ−2W24 + 2W44) ≥ 0 (6.4.25)

x1 (r̂−W13 + θ) + x2 (r̂ + W13−3θ+ 2W24)

+x3 (r̂ + W13− θ−2W33 + 2W34) + x4 (r̂ + W13− θ−2W34 + 2W44) ≥ 0 (6.4.26)

x1 (r̂ + 2W13−3θ+ W24) + x2 (r̂ + θ−W24)

+x3 (r̂− θ+ W24 + 2W33−2W34) + x4 (r̂− θ+ W24 + 2W34−2W44) ≥ 0 (6.4.27)

x1 (r̂−2W11 + W12 + 2W13− θ) + x2 (r̂−W12 + θ)

+x3 (r̂ + W12−2W13− θ+ 2W33) + x4 (r̂ + W12−3θ+ 2W34) ≥ 0 (6.4.28)

x1 (r̂ + 2W11−2W13− θ+ W34) + x2 (r̂ + 2W12−3θ+ W34)

+x3 (r̂ + 2W13− θ−2W33 + W34) + x4 (r̂ + θ−W34) ≥ 0, (6.4.29)

where r̂ = rθ.

Each of the inequalities (6.4.22) to (6.4.29) represents one row in a matrix

inequality of the form

Mx ≥ 0, (6.4.30)

where M is an 8× 4 matrix that depends on W and r. M ≥ 0 (i.e. all entries of M

are nonnegative) is a necessary and sufficient condition for (6.4.30) to hold, for all

x ∈ ∆4. Hence it suffices to have M ≥ 0 to ensure

n ∈ KM ∀u,v ∈ [0,1] ∀t ≥ 0.

But the ice cream cone Kice satisfies Kice ⊂ KM, therefore φt ∈ C1([0,1]2. Hence

M ≥ 0 is sufficient to have φt ∈ B. A special case of M will be considered in Section
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6.7; for example, the r = 0 case yields conditions required for the selection matrix

to preserve monotonicity.

But what about a condition for the general fitnesses Wi j? Each row of (6.4.30)

defines a half-space, so this matrix inequality is equivalent to finding the intersection

of eight half-spaces in R4. The following theorem from discrete geometry concerns

the intersection of finitely many convex sets [105]:

Theorem 6.4.2 (Helly’s theorem). Let X1,X2, . . . ,XN be a finite collection of convex

subsets of Rd, with n > d. If the intersection of every d +1 of these sets is non-empty,

then the whole collection has a non-empty intersection, i.e.

∩n
k=1Xk , ∅

If we intend to use Helly’s theorem to check that the intersection of all eight

half-spaces is non-empty (n=8, d=4), we would have to check the intersection of

every five of these half-planes. This leads to 56 different cases to consider, which is

not feasible. Moreover, even if we do find that the common intersection is indeed

non-empty this way, Helly’s theorem does not provide information on whether the

intersection intersects the simplex ∆4. If the values of each Ai j are known, the set

of inequalities can be checked, but a general condition cannot be derived.

6.5 Existence of an invariant manifold ΣM for the

TLTA model

As B is a compact space, any sequence of Lipschitz manifolds constructed from

φt, starting from any smooth initial manifold φ0 ∈ B, will have a convergent subse-

quence, whose limit will be denoted by φ∗. So far, we have assumed that M ≥ 0.

We now turn to the proof of Theorem 6.3.1. The problem now is to show that

(i) graphφ∗ is invariant under (2.9) and (ii) graphφ∗ globally attracts all points in

∆. In fact, in our approach (i) will follow from (ii).
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6.6 Global attraction to ΣM

We will use the limit φ∗ from the previous section (with the graph of φ0 as the

Wright Manifold), and return to general fitnesses W. Take an arbitrary smooth

function ψ0 ∈ B and, as done with φ0, define ψt =Ltψ0. Let

epi f = {(u,v,q) ∈ R3 : q ≥ f (u,v)}

denote the epigraph of a function f . Then define the set

Gt = (epiφ∗)4 (epiψt), (6.6.1)

where 4 denotes the symmetric difference between two sets. Informally speaking,

Gt is the set of all points trapped between the graphs of φ∗ and ψt.

The volume of this set is

vol(Gt) =

∫
Gt

dλ3, (6.6.2)

where λ3 denotes Lebesgue measure in R3. The Liouville formula states that [2]:

d
dt

[vol(Gt)] =

∫
Gt

∇u ·Fdλ3, (6.6.3)

where ∇u =
(
∂
∂u ,

∂
∂v ,

∂
∂q

)
. Hence ∇u · F < 0 would suffice to show that vol(Gt) is

decreasing in t. As the volume is also bounded below by zero, vol(Gt) will converge

to some limit; in fact, limt→0 vol(Gt) = 0.

First, we prove a remarkable result regarding the divergence of the vector field

for the model in both sets of coordinates:

Lemma 6.6.1. Let fi(x) denote the right hand side of (6.2.2). Then

∇u ·F = ∇x · f, (6.6.4)
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Proof. Let us set up two more mappings; the first one being the projection

(x1, x2, x3, x4) = x 7→ Π4(x) = (x1, x2, x3).

Let Π4|∆4 be Π4 restricted to ∆4. Then Π4 is a diffeomorphism with inverse

Π−1
4 (x′) = (x1, x2, x3,1− x1− x2− x3),

where x′ = (x1, x2, x3). Then define the second diffeomorphism from Π4(∆4) to ∆ as

follows:

x′ 7→ u = Ξ(x′) = (x1 + x2, x1 + x3,1− x2− x3),

which maps Π4(∆4) to ∆ and has inverse

Ξ−1(u) =
1
2

(u + v + q−1,u− v−q + 1,−u + v−q + 1).

Then Φ = Ξ◦Π4 (or Φ−1 = Π−1
4 ◦Ξ−1), which is depicted in the following commu-

tative diagram:

∆4 ∆

Π(∆4)

Π

Φ

Ξ

In (x1, x2, x3) coordinates, the equations of motion become

ẋi = gi(x1, x2, x3) = fi(x1, x2, x3,1− x1− x2− x3), i = 1,2,3. (6.6.5)

Thus the Chain Rule yields
∂gi

∂x j
=
∂ fi
∂x j
−
∂ fi
∂x4

, (6.6.6)
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and so

∇x′ ·g =

3∑
i=1

∂gi

∂xi

=

3∑
i=1

∂ fi
∂xi
−

3∑
i=1

∂ fi
∂x4

=

4∑
i=1

∂ fi
∂xi
−

4∑
i=1

∂ fi
∂x4

= ∇x · f −
∂

∂x4

 4∑
i=1

fi

 .
But

∑4
i=1 fi = 0, so that

∇x′ ·g = ∇x · f. (6.6.7)

Meanwhile,

g(x′) = (DΞ(x′))−1F(Ξ(x′)),

which is the definition of the systems (6.6.5) and u̇ = F(u) being smoothly equiva-

lent, with Ξ as the diffeomorphism [38]. However,

DΞ(x′) =


1 1 0

1 0 1

0 −1 −1

 ⇒ (DΞ(x′))−1 =
1
2


1 1 1

1 −1 −1

−1 1 −1


which are constant matrices, thus we will simply write DΞ from here on. Also,

Dg(x′) = (DΞ)−1D(F(Ξ(x′))),

and the Chain Rule yields

Dg(x′) = (DΞ)−1DF(Ξ(x′)))DΞ, (6.6.8)

but

∇x′ ·g = Tr(Dg(x′)).
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So by taking the trace on both sides of (6.6.8), we obtain

∇x′ ·g = Tr((DΞ)−1DF(Ξ(x′))DΞ)

= Tr(DF(u))

= ∇u ·F,

so

∇u ·F = ∇x′ ·g,

which, combined with (6.6.7), gives the desired result. �

We conclude that it suffices to seek conditions for the right hand side of (6.6.4)

to be negative to ensure the volume of Gt is decreasing. Thus we compute

∇x · f =

4∑
i=1

[(mi− m̄) + xi(Wii−2mi)]− rθ

=

4∑
i=1

(Wiixi + mi)−6m̄− rθ

≤

4∑
i, j=1

Wiixix j−

4∑
k=1

mk −6
4∑

i, j=1

Wi jxix j

=

4∑
i, j=1

(
Wii−6Wi j

)
xix j−

4∑
k=1

mk

=

4∑
i, j=1

(
Wii−6Wi j

)
xix j−

4∑
j,k=1

Wk jx j

=

4∑
i, j=1

(
Wii−6Wi j

)
xix j−

4∑
i, j,k=1

Wk jxix j

=

4∑
i, j=1

Wii−6Wi j−

4∑
k=1

Wk j

 xix j

=

4∑
i, j=1

W′i jxix j. (6.6.9)
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So we arrive at the requirement x>W′x < 0 for x > 0, where

W′i j = Wii−6Wi j−

4∑
k=1

Wk j. (6.6.10)

A matrix A is said to be strictly copositive if x>Ax > 0 for x > 0. If, for some cone

KM, this holds for all x ∈ K, we say A is strictly copositive with respect to KM. So

(6.6.9) is equivalent to the matrix −W′ being strictly copositive with respect to R4
+.

Remark. There are necessary and sufficient conditions for a 3× 3 matrix being

copositive [106], but no known counterpart for 4×4 matrices (which is beyond the

scope of this thesis anyway). For copositivity it would have to hold for at least each

3× 3 submatrix, but this would be a cumbersome task, and we will not pursue it

here.

Instead we will use a weaker sufficient condition: verify that all components

of W′ are negative, i.e.

Wii < 6Wi j +

4∑
k=1

Wk j ∀ i, j = 1,2,3,4. (6.6.11)

This automatically holds for i = j, so only the off-diagonal entries of W′ need to be

checked. Actually, it suffices to check only the largest off-diagonal component of

W′i j.

Lemma 6.6.2. Suppose limt→∞ vol(Gt) = 0. Then ψt converges pointwise to φ∗.

Proof. Suppose, for a contradiction that ψt does not converge pointwise to φ∗. Then

∃u,v ∈ [0,1] ∃ε > 0 ∀c ∃t > c |ψt(u,v)−φ∗(u,v)| ≥ 2ε.

We can fix c = 0 in the above definition. Moreover, ψt(u,v) = φ∗(u,v) for each of

u = 0,1 and v = 0,1, therefore

∃u,v ∈ (0,1) ∃ε > 0 ∃t > 0 |ψt(u,v)−φ∗(u,v)| ≥ 2ε. (6.6.12)
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Define pc = (u,v, 1
2 (ψt(u,v) +φ∗(u,v))) and p± = pc ± (0,0, l), where l = 1

2 |ψt(u,v)−

φ∗(u,v)|. Note that

1
2

(ψt(u,v) +φ∗(u,v))± l = ψt(u,v) or φ∗(u,v),

so in fact p± = (u,v,q±) where

q+ = max(ψt(u,v),φ∗(u,v))

q− = min(ψt(u,v),φ∗(u,v)).

We define

p−+ Kice = {p−+ v : v ∈ Kice}

p+−Kice = {p+−v : v ∈ Kice} .

Now we seek an open ball B(pc,ρ) such that

B(pc,ρ) ⊂ K̃ ⊂Gt, (6.6.13)

where K̃ = (p−+ Kice)∩ (p+−Kice) and

ρ = minv∈∂K̃‖v−pc‖2, (6.6.14)

or by symmetry of p−+ Kice and p+−Kice,

ρ = minv∈∂(p−+Kice)‖v−pc‖2, (6.6.15)

Translating these sets by (−p−) shifts p− to the origin, while pc and ∂(p−+ Kice) are

shifted to (0,0, l) and Kice respectively. Then

ρ = minv∈∂Kice‖v− (0,0, l)‖2. (6.6.16)
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Put v = (ũ, ṽ, q̃). Then (6.6.16) is solved by minimising

ũ2 + ṽ2 + (q̃− l)2, (6.6.17)

subject to the constraint q̃2 = ũ2 + ṽ2, which we use to rewrite (6.6.17) in terms of q̃

only:

q̃2 + (q̃− l)2,

whose minimum occurs where

d
dq̃

(
q̃2 + (q̃− l)2

)
= 0 ⇔ 4q̃−2l = 0,

which occurs iff q̃ = l
2 . Hence

ρ =

√(
l
2

)2

+

(
−

l
2

)2

=
l
√

2
,

but by (6.6.12), l ≥ ε, so choose ρ = ε√
2
.

Hence B(pc,ρ) ⊂Gt, and so for all t > 0:

vol(Gt) ≥ vol(B(p,r)) =
4π
3

r3 =
π
√

2
3

ε3 > 0,

hence

∃ε > 0 ∀t > 0 vol(Gt) ≥
π
√

2
3

ε3.

which contradicts our earlier assumption that vol(Gt) is decreasing and tends to 0

as t→∞. �

Since for all t > 0 ψt is a Lipschitz function on a compact set (namely [0,1]2),

pointwise convergence is sufficient to ensure uniform convergence to φ∗. Moreover,

ψ0 ∈ B is arbitrary. Furthermore for any initial point (u0,v0,q0) ∈ ∆ there exists

ψ0 ∈ B such that (u0,v0,q0) ∈ graphψ0, but then the sequence ψt converges uniformly

to φ∗. Therefore any orbit will converge to ΣM = graphφ∗, i.e. the QLE manifold is

globally attracting.
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To conclude, if we can find a suitable condition on r and W such that (6.6.9)

holds and M(W,r) ≥ 0, then there exists a globally attracting invariant manifold ΣM

with (relative) boundary corresponding to the union of the four edges E12, E13, E42

and E43. This completes the proof of Theorem 6.3.1.

6.7 The modifier gene case of the TLTA model
The two-locus two-allele (TLTA) model has often been used to investigate the ef-

fect of a modifier gene β on a primary locus α, in the context of Fisher’s theory

on the evolution of dominance [107]. Fisher believed that dominance was due to

selection of specific modifier genes which caused the fitness of the heterozygote

to approach that of the wild type homozygote, which would protect the population

from deleterious effects of mutant alleles. Fisher’s theory received swift criticism

in [108, 109, 110, 111]. Both Wright and Haldane argued that dominance may

be a property inherent in genes thus cannot evolve and thought the effect of selec-

tive pressure would be too small to make the process effective; rather, Wright sug-

gested a physiological origin behind dominance. Although Wright’s theory gained

more favour, it is still thought that Fisher’s theory may still apply in some scenarios

[112, 113].

The fitnesses for this case is:

W =



1− s 1−hs 1− s 1− ks

1−hs 1 1− ks 1

1− s 1− ks 1− s 1

1− ks 1 1 1


. (6.7.1)

Traditionally these fitnesses are denoted as follows: [114, 115, 116, 1, 103, 117]

AA Aa aa
BB 1 1 1− s
Bb 1 1− ks 1− s
bb 1 1−hs 1− s,

Table 6.1: Table of fitnesses for the nine different diploid genotypes. Here 0 < s ≤ 1, 0 ≤
k ≤ h ≤ 1

s and h , 0 [1].
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The parameter s is often called the "selection intensity" or "selection coeffi-

cient" [118, 103], while h and k are referred to as measures of "the influence of the

dominance relations between alleles" [119]. In [118] s is interpreted as the recessive

allele effect, while h (and k) is the heterozygote effect. The biological interpretation

for the different values of h is given in Table 6.2. Our given range of values for h

h = 0 A dominant, a recessive
h = 1 a dominant, A recessive

0 < h < 1 Incomplete dominance
h < 0 Overdominance
h > 1 Underdominance

Table 6.2: The different cases for the heterozygote effect h and their biological meanings.

excludes the case of overdominance (h < 0).

The idea of using s and h traces back to [108]; Wright’s third parameter h′ is

used similarly to k, except the fitness of the double heterozygotes AB/ab is 1− ks

instead of 1.

The case with k = 0 is considered in [107, 120, 108, 121]. Later, Ewens as-

sumed that modification depends on whether B occurs in a homozygote B/B or a

heterozygote B/b [115], which prompted him to include the third parameter k.

For this special case the matrix problem (6.4.30) becomes



r̂ + 2h + k−2 r̂−2h + k r̂ + 3k−2 r̂− k

r̂−2h + k + 1 r̂ + 2h + k−1 r̂− k + 1 r̂ + 3k−1

r̂−2h + 3k r̂ + k r̂− k r̂ + k

r̂ + h− k r̂−h + k r̂−h + 3k r̂−h + k

r̂− k + 1 r̂ + 3k−1 r̂ + k + 1 r̂ + k−1

r̂ + 3k−2 r̂− k r̂ + k−2 r̂ + k

r̂−h + k r̂ + h− k r̂−h + k r̂−h + 3k

r̂ + k r̂−2h + 3k r̂ + k r̂− k





x1

x2

x3

x4


≥ 0. (6.7.2)

It suffices to determine when the matrix is nonnegative, i.e. all of its components
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must be nonnegative, which is equivalent to

r̂ ≥max(k,−k,1− k,−1− k,h− k,k−h,h−3k,2h−3k,1−3k,2−3k,2− k, (6.7.3)

2h− k,2h− k−1,−2h− k + 1,2−2h− k).

As k > 0, we can obviously eliminate any non-positive entries in the right hand side

of (6.7.3), leading to

r̂ ≥max(k,1− k,h− k,h−3k,2h−3k,1−3k,2−3k,2− k,2h− k,2h− k−1,

−2h− k + 1,2−2h− k),

and, by inspection, we can narrow down the options to

r̂ ≥max(k,h− k,2− k,2h− k,2−2h− k)

= max(k,2− k,2h− k).

Moreover, since h ≥ k,

2h− k = 2(h− k) + k ≥ k,

leaving us with

r̂ ≥max(2− k,2h− k),

which can be summarised as

r̂ ≥ 2max(1,h)− k. (6.7.4)

Next, we use (6.6.11) to obtain the condition for decreasing phase volume.

Here, the largest component of W′ is i = 2, j = 1, which yields the condition −9 +

2s+7hs+ks < 0, which rearranges to 9 > s(2+7h+k). Combining this with (6.7.4),

we obtain the folowing result:

Theorem 6.7.1 (Existence of a globally attracting Quasilinkage Equilibrium mani-

fold). Consider the TLTA model (6.2.2) with W given by (6.7.1). Then if 0 ≤ s ≤ 1
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and 0 ≤ k ≤ h ≤ 1
s , h > 0, 9 > s(2 + 7h + k) and

r(1− ks) ≥ s (2max(1,h)− k) , (6.7.5)

there exists a Lipschitz invariant manifold that globally attracts all initial polymor-

phisms.

Hence we have sufficient conditions on r, s, h and k for existence of the invari-

ant manifold.

6.8 Discussion
We proved the existence of a globally attracting invariant manifold ΣM for the

continuous-time selection-recombination model and obtained a sufficient condition

on the parameters for a simplified case of the model. In previous attempts, it is sim-

ply declared that a value of s exists which ensures existence of the QLE manifold;

however, explicit conditions were never given [2, 99, 5].

We did this by eliminating one of the four variables, then applying a further

(invertible) coordinate transformation. Next, we investigated the time evolution

of the normal to graphφt, which aided in establishing convergence using bounded

Lipschitz sequences of graphφt and is closely related to monotonicity of the system.

Finally we showed the phase volume decreases in time. Although our algorithm

is a general result, we applied it to the modifier gene case, which requires just

four parameters rather than ten. Other examples where monotone systems theory is

applied to prove existence of an invariant manifold are found in [81, 68, 82].

Much is known for continuous or C1 two-dimensional systems on compact

sets, e.g. in [37], and these results, such as the Poincare-Bendixson Theorem, are

expected to apply to dynamics on ΣM also (which is homeomorphic to the unit

square [0,1]2). Thus we conclude that the only possible ω-limit sets on ΣM are

steady states or periodic orbits. Examples of periodic orbits for the model are men-

tioned in [100, 101, 102]. Perhaps we could seek conditions which, when satisfied,

guarantee periodic orbits for the selection-recombination model. One possible route

would be to use Smith’s work on Poincare-Bendixson theory for three-dimensional
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competitive systems, see Theorem 2.3 in [122]. See also [123] for a general cone.

This could give a new angle on Akin’s work.

Our numerical evidence depicts ΣM as a saddle surface, as with the example

in Figure 6.1. However, it is unknown whether this is always the case or what

conditions would be required. One possible approach would be to track the change

in the second fundamental form of graphφt, in the style of [68].

As r decreases, our method breaks down. We believe what happens is that the

polygonal cone KM is no longer invariant for small values of r. Nevertheless, for

r = 0 and (7.4.4), we have numerical evidence for an invariant QLE manifold ΣM in

some cases. This suggests there is an invariant solution to replicator dynamics with

a symmetric fitness matrix that is the graph of a function in (u,v,q)-coordinates,

which is the subject of the next chapter.



Chapter 7

The continuous-time selection model

In this chapter we consider the continuous-time selection equation. The work here

is not complete, but is in progress. We start by discussing the motivation behind

studying the model, then state the equations. Recall that when the fitnesses are

additive in the Selection-Recombination, all orbits tend to the Wright manifold re-

gardless for all r, including r = 0 [104]. Hence the QLE manifold does exist, at

least for this special case. The numerical evidence suggests that the QLE manifold

will not exist for all values of the fitnesses, though. The algorithm in Chapter 6 for

checking existence of the QLE manifold does not work on this model. Instead we

convert the model to a Lotka-Volterra one, which has an invariant manifold of its

own when competitive. We translate the condition in terms of the fitnesses, then

map back to the original coordinates. . . but does this give the QLE manifold? The

answer is revealed shortly before the discussion.

7.1 Background for the continuous time selection

equation
The inspiration behind studying this model was to investigate the QLE manifold ΣM

for the special case of the Selection-Recombination model (6.2.2) in the limiting

case r = 0, which turns out to be the continuous-time selection equation. This is a

classical model from population genetics, where the only evolutionary force present

is selection.

The equations of motion are identical to those for replicator dynamics from
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evolutionary game theory [124], with symmetric fitnesses; thus the mean fitness

increases [2] and all orbits converge. In evolutionary game theory, such systems are

known as partnership games [2].

A derivation of the replicator model is given in [4]. However, it is claimed

in [2] that its derivation us rather shaky. In particular, Crow and Kimura make the

unrealistic assumption of Hardy-Weinberg proportions; as a result, some popula-

tion geneticists are reluctant to use this model. An alternative derivation of this

model starts with the discrete-time model and assigning the fitnesses as follows:

Wi j = 1 + hmi j, where h is the generation length, and obtaining the continuous-time

counterpart by letting h→ 0.

The replicator model is topologically equivalent to the Lotka-Volterra system

[2]. More precisely, the two models are smoothly orbitally equivalent. This will be

exploited later in the chapter.

7.2 Replicator dynamics

The continuous-time selection equation for two loci with two alleles is as follows

ẋi = xi(mi− m̄), i = 1,2,3,4. (7.2.1)

Again, x ∈ ∆4 represents the gametic frequencies. As we are interested from the

perspective of population genetics, we will make the same assumptions on the fit-

nesses as those made for the selection-recombination model. However, we can still

reach the same results without this assumption.

We have numerical evidence suggesting that the QLE manifold ΣM still exists

for some, but not all, values of the fitnesses. Figure 7.1 shows an example in which

ΣM could not be computed using our current numerical method. This raises the

question of when ΣM appears in the continuous-time selection model - can condi-

tions for existence be derived?
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Figure 7.1: The QLE manifold ΣM could not be computed numerically for this example.
The parameters chosen are W11 = 0.6,W12 = 5.1,W13 = 4.532,W22 = 3.1,W24 =

9.1,W33 = 0.1,W34 = 3.2,W44 = 2.9, θ = 0.2

7.3 Applying the cone algorithm

When we attempt to use our algorithm from Chapter 6 for this model, the only

matrix W that works is

W = θ



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


,

which is neutral selection. For this case, the equations of motion (7.2.1) is nothing

more than ẋi = 0, hence there is no reason to even consider (6.6.11).

Hence we need to use a different method to find the QLE manifold.

7.4 Converting to the Lotka-Volterra model

We apply the coordinate change [2]

x 7→ y = Ψ(x) :=
(

x1

x4
,

x2

x4
,

x3

x4

)
, (7.4.1)
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which is a diffeomorphism from the interior of ∆4 to the interior of R3
+ with inverse

[2]

Ψ−1(y) =

(
y1

1 + y1 + y2 + y3
,

y2

1 + y1 + y2 + y3
,

y3

1 + y1 + y2 + y3
,

1
1 + y1 + y2 + y3

)
.

(7.4.2)

The map Ψ converts replicator dynamics to the three-species Lotka-Volterra system:

ẏi = yi(bi−

3∑
j=1

ai jy j), i = 1,2,3, (7.4.3)

with bi = Wi4−W44 and ai j = W4 j−Wi j [2].

7.4.1 Another invariant manifold

Note that the Lotka-Volterra system is totally competitive whenever bi > 0 and ai j >

0, which is equivalent to

Wi4 > W44, Wi j < W4 j, ∀i, j = 1,2,3. (7.4.4)

So for each column of the fitness matrix we would like the 4th entry to be the largest,

except in the last column. However, for the final column, the 4th entry needs to be

the smallest instead (up to a relabelling of the indices).

Then for this case, we use Theorem 4.3.2 to conclude that the system has a

carrying simplex in the yi coordinates. When we switch back to using xi this maps

onto an invariant manifold, which will be denoted by ΣC . Our original intention

was to obtain the QLE manifold ΣM this way. . . but, assuming ΣM does exist, does

it coincide with ΣC?

Remark. By inspection of (7.4.2), we can locate êi = Ψ(ei) for each vertex ei (i =

1,2,3,4). For example, we would like Ψ−1(ê1) = (1,0,0,0), which is established by

letting y1→∞, (y2, y3 need not grow unbounded). Similarly, the remaining vertices

e2 and e3 both correspond to the limiting cases of y2→∞ and y3→∞ respectively.

Meanwhile, Ψ−1(ê4)→ (0,0,0,1) and (7.4.2) imply that e4, maps to the origin yi = 0

in the y-space.



7.4. Converting to the Lotka-Volterra model 120

(a) The carrying simplex Ψ−1(ΣC) for the
Lotka-Volterra system (7.4.3). (b) The invariant manifold ΣC for (6.2.9).

Figure 7.2: The carrying simplex Ψ−1(ΣC) transforms back to an invariant manifold ΣC ,
which is distinct from the QLE manifold. The parameter values are W11 =

0.2,W12 = 0.3,W13 = 0.75,W22 = 0.9,W33 = 1.5,W42 = 1.7,W43 = 1.8,W44 =

0.3, θ = 1,r = 0, and the system is competitive in yi-coordinates.

Figure 7.3: A numerical example of the continuous-time selection model with the limit of
the QLE ΣM as r→ 0 and ΣC in the same system; the two manifolds are clearly
distinct. The parameter values are identical to those in Figure 7.2

Now we look back at the PDE (6.3.2). As part of the boundary conditions,

the manifold ΣM is supposed to always contain all four vertices êi. However, the

vertices ê1, ê2 and ê3 are located at infinity. That can only mean one thing - when

plotted in the yi coordinates, we should expect ΣM to be an unbounded surface in

the y-space! Hence it cannot possibly correspond to the carrying simplex, which

is compact; i.e. ΣM and ΣC are distinct invariant manifolds, as shown in 7.3. So,
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what does the carrying simplex look like in (u,v,q) coordinates? We know it is

bounded in the Lotka-Volterra coordinates. In addition, the carrying simplex is the

attractor of all orbits in R3
+\{0}, as well as homeomorphic to the closed unit simplex

satisfying y1 + y2 + y3 = 1 [68, 59]. If we attempt to translate all these facts into

corresponding ones in (u,v,q) coordinates, we have the following result:

Theorem 7.4.1. Let r = 0 in the selection-recombination model (6.2.2), and suppose

that the fitnesses Wi j satisfy (7.4.4). Then there exists a two-dimensional, compact

invariant manifold ΣC which satisfies the following properties:

1. Its graph never intersects the face q = u + v−1, which corresponds to x4 = 0.

2. Attracts the entire phase space, excluding the steady states at (0,0,1) and on

any steady states lying within the face q = u + v−1.

3. Homeomorphic to the plane u + v = q.

Note that the edges Ẽ42, Ẽ12, Ẽ13, Ẽ43 * ∂ΣC , indicating that this invariant man-

ifold is distinct from the QLE manifold ΣM.

7.5 Discussion
As r decreases towards 0, the method from Chapter 6 breaks down. We believe

what happens is that the polygonal cone is no longer invariant for small values of

r. Nevertheless, for r = 0 and (7.4.4), we have numerical evidence for an invari-

ant QLE manifold ΣM in some cases, and we know it exists for additive fitnesses.

This suggests there is an invariant solution to replicator dynamics with a symmetric

fitness matrix that is the graph of a Lipschitz function in (u,v,q)-coordinates.

In addition, also for pure selection, the existence of another invariant manifold

diffeomorphic to the carrying simplex, ΣC , has been established for the competitive

case, which is distinct from ΣM. Although we took W to be symmetric, the assump-

tion was not used while proving existence of ΣC , hence it will still exist for general

W. Also, Theorem 4.3.2 implies that a carrying simplex exists in a general (n−1)-

dimensional Lotka-Volterra model (n ≥ 2), implying that a different-dimensional

analogue of ΣC should exist in general replicator systems (when competitive).
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On closer inspection of Figure 7.3, it appears that all the orbits converge to-

wards a one-dimensional subset of ΣM when r = 0 and (7.4.4) both hold. ΣC is an

attractor for the system, and our numerical examples suggest this should also be

true for ΣM, so we ask the following question (based upon numerical explorations):

Question. Suppose the fitnesses satisfy (7.4.4) and r = 0. Is there a heteroclinic

orbit connecting the steady states on the interior of the edges Ẽ12 and Ẽ13 that

attracts almost all orbits (excluding steady states) and coincides with ΣM ∩ΣC?

In other words, ΣM ∩ΣC is an attracting invariant manifold with codimension

2.

Moreover, it appears that ΣM is continuous but non-differentiable on ΣM ∩ΣC

only, which would have measure zero relative to ΣM. This is consistent with a

result stating that a Lipschitz manifold is differentiable almost everywhere. Often

for inertial manifolds, if there is an invariant cone, we can expect the manifold

to be smooth everywhere [125]. However, any general results for other invariant

manifolds, including ΣM, are unknown. For this case, we cannot interpret ΣM as

a stable or unstable manifold of a steady state, nor as the boundary of the basin of

repulsion of a repelling steady state; it seems to be more complicated than a carrying

simplex. A possible strategy for establishing existence of ΣM is to split it up into two

separate manifolds, on either side of ΣM ∩ΣC , then find an invariant cone for each

piece. The author suspects that one piece of ΣM will be a flat manifold contained in

the convex hull of e4 and the two steady states on Ẽ42 and Ẽ43 respectively; Figure

7.4 portrays a sketch of this idea.

We expect that ΣC can emerge in the selection-recombination model for small

non-zero values of r, although this is currently an open problem. Also, we have

evidence that ΣC can exist outside of its current existence conditions, which maps

to a non-competitive Lotka-Volterra system. It is already known that the carrying

simplex can exist in the non-competitive case [68], although the origin still needs

to be unstable (i.e. Wi4 > W44). However, if the parameters stray too far from a

competitive system, ΣC may disappear.
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Figure 7.4: A sketch to illustrate the QLE manifold in the continuous-time selection model.
Here, the invariant manifold (green) is Lipschitz, but it would be more straight-
forward to treat the two pieces separately.



Chapter 8

Concluding remarks

The aim of this thesis was to investigate invariant manifolds for two different

continuous-time models in Population Genetics, plus a special case of the Selection-

Recombination model. For each model, the manifold was previously known to exist

for small or additive parameters. In particular, the requirements for the Selection-

Recombination model possessing a QLE manifold, even with the assumption of

small selection relative to recombination, are not explicit. With this in mind, the

original intention was to simply avoid assuming small or additive parameters with

the hope of gaining new, less restrictive conditions for existence of the invariant

manifold.

This is indeed achieved for the Nagylaki-Crow model in Chapter 5. We choose

a change of coordinates which blows up the interior of a triangular set T to the open

first quadrant, sending one edge of T away to infinity. We switch between the two

sets of dynamical variables as needed: we start by setting up the graph transform

in the original coordinates where T is compact, then change to the new coordinates

where it is far easier to derive conditions for which the evolving curve is both non-

monotone and convex, and then translate the findings back into the original system.

Outside of those parameter values, the manifold need not be smooth, convex, non-

monotone, unique or globally attracting. To the best of the author’s knowledge, this

is the first attempt to prove existence of a nonmonotone invariant manifold for a

system that is not strongly competitive. Also remarkable is that the new conditions

do not require additivity of fertilities or mortalities, unlike previous studies.
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In Chapter 6, we discover that if the dynamics of the normal to the transforming

surface remains within a specific cone for all time, then the system is competitive

with respect to the dual of said cone. We produce a new proof for existence of

the QLE manifold in the Selection-Recombination model by combining this result

with the requirement for a decreasing phase volume. Unlike previous approaches

described in the literature, our method gives testable conditions on the model param-

eters for existence of the QLE manifold, which determine when the TLTA model

is competitive for a polyhedral cone. When the model is competitive, there exists

a Lipschitz invariant manifold of codimension one which is unordered by points

in the polyhedral cone. We apply our conditions on the modifier gene case, which

yields explicit conditions for the QLE manifold existing in the system.

Chapter 7 concerns the the continuous-time selection model, whose QLE man-

ifold is already known to exist for additive fitnesses; numerical evidence suggests

it will not exist for all parameter values. The model is essentially four-strategy

replicator dynamics with a symmetric fitness matrix. Similar to the one used on

the Nagylaki-Crow model, the chosen change of variables maps the interior of a

4-simplex to a 3-dimensional orthant. The new variables satisfy the Lotka-Volterra

model, which already has a carrying simplex when totally competitive. When con-

verted back to the original coordinates, the carrying simplex does not transform to

the QLE manifold - rather we have a new invariant manifold.

For all the models covered in the thesis, a change of dynamical variables is

utilised to make the analysis simpler. Three different diffeomorphisms are applied

on the Selection-Recombination model in Chapter 6. One of them basically rotates,

translates and stretches the simplex into a tetrahedron in which the QLE manifold is

the limit of a sequence of surfaces which are graphs of functions over [0,1]2. One

further diffeomorphism, Ψ, is used in Chapter 6 for the r = 0 case of the Selection-

Recombination model (i.e. the continuous-time selection model). These four dif-
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feomorphisms are summarised in the following commutative diagram:

R3
+ ∆4 ∆

Π(∆4)

Π

Φ

Ψ
Ξ

Note that although we know the invariant manifold is Lipschitz in each model, it

is still unclear if and when the manifold is differentiable. A similar question was

asked by Hirsch in the context of carrying simplices [59]. To the best of the au-

thor’s knowledge the smoothness of a carrying simplex on its interior is currently

an open problem, hence the same can be said for ΣC from the continuous-time Se-

lection model. One possible approach to partially answer the problem, at least for

the Selection-Recombination model, might be to investigate when the manifold is

actually an inertial one, and employ the theory of Chow et. al. [125].

Moreover, the methods used in this thesis do not show that the invariant mani-

fold is asymptotically complete (i.e. in the context of the Selection-Recombination

model, we have not shown that for each (u0,v0,q0) ∈ ∆ there exists an orbit in ΣM

which ‘shadows’ the orbit through (u0,v0,q0)). If ΣM were an inertial manifold

which is also normally hyperbolic, it would be asymptotically complete [126]. In

the absence of selection, the Wright manifold is an inertial manifold, and so is

asymptotically complete (as can be shown using explicit solutions when Wi j = 1 for

all i, j.)

There are many possible areas for future research. One such avenue would

be to investigate higher-dimensional analogues for the models discussed earlier.

For example, there is a multilocus version of the Selection-Recombination model,

whose Wright manifold is diffeomorphic to ∆m1 ×∆m2 × . . .×∆mn , where n denotes

the number of loci and each mi is the number of alleles at the locus labelled i [99].

The multilocus model is also known to possess a QLE manifold when selection is

much weaker than recombination. Unfortunately, the codimension of the QLE man-

ifold for this scenario is typically more than one, making the normal dynamics more

complicated. Instead, we would track the time evolution of the second fundamental
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form of graphφt(·) and aim to show that it is bounded, which is the approach taken

in [68]. Perhaps this strategy would also be useful for a three-allele Nagylaki-Crow

model. Meanwhile, for the continuous-time Selection model, the author believes

that the carrying simplex-like manifold will still exist in dimensions other than four.

The wonder of studying invariant manifolds in population genetics (or other

models) is that it lies at the intersection of many different branches of mathemat-

ics. Tools from Geometry, Topology, Functional Analysis and Dynamical Systems

Theory are applied to unearth the long-term evolution of the genetic state of the pop-

ulation. Notably, the results yielded includes a contribution to Monotone Systems

Theory, namely Lemma 6.4.1, which concerns the intimate connection between the

normal dynamics of an evolving surface and monotonicity under time-reversed flow.

Perhaps the most fundamental conclusion one can draw from this thesis is that Pure

and Applied Mathematics are not separate from one another; they share a symbiotic

relationship with one another. Also, Pure versus Applied is not a clear-cut bound-

ary, but a spectrum, and this project lies somewhere in the middle of that spectrum.



Appendix A

The explicit equations for the

Nagylaki-Crow model

This appendix provides the governing equations for the three genotype frequencies,

and demonstrates that only two of the three equations are required.

Substituting (5.2.2) into Equation (5.2.1) gives the following three equations

of motion:

ẋ =
1
4

z2F22 + x
[
y (D3−2zF23) + z (F12 + D2)− y2F33− z2F22−D1

]
+ x2 (−2yF13−2zF12 + F11 + D1)− x3F11

ẏ =
1
4

z2F22 + y
[
x (D1−2zF12) + z (F23 + D2)− x2F11− z2F22−D3

]
+ y2 (−2xF13−2zF23 + F33 + D3)− y3F33

ż = 2xy F13 + z
[
y(F23 + D3−2xF13) + x(F12 + D1)− x2F11− y2F33−D2

]
+ z2

(
−2yF23−2xF12 +

1
2

F22 + D2

)
− z3F22

As x + y + z = 1 (and hence ẋ + ẏ + ż = 0), the variable z can be eliminated and
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the system can be rewritten as just two ODEs

ẋ =
1
4

y2F22−
1
2

yF22 +
1
4

F22 (A.0.1)

+ x
(
y
(
−F12 +

5
2

F22−2F23−D2 + D3

)
+ y2(−F22 + 2F23−F33)

+F12−
3
2

F22−D1 + D2

)
+ x2

(
y(2F12−2F22 + 2F23−2F13) + F11−3F12 +

9
4

F22 + D1−D2

)
+ x3 (−F11 + 2F12−F22)

ẏ =
1
4

x2F22−
1
2

xF22 +
1
4

F22 (A.0.2)

+ y
(
x
(
−2F12 +

5
2

F22−F23 + D1−D2

)
+ x2(−F11 + 2F12−F22)

−
3
2

F22 + F23 + D2−D3

)
+ y2

(
x (2F12−2F22 + 2F23−2F13) +

9
4

F22−3F23 + F33−D2 + D3

)
+ y3 (−F22 + 2F23−F33)



Appendix B

The Selection-Recombination model

The equations of motion for u̇, v̇, and q̇ are:

u̇ =
1
4
{W11−2W12−W13 + W22 + W42

+ v(2q(W11−2W12 + W22)−2(W11−2W12 + W22 + W42− θ))

+ v2(W11−2W12 + W13 + W22 + W42−2θ)−2q(W11−2W12−W13 + W22 + θ)

+ q2(W11−2W12−W13 + W22−W42 + 2θ)

+ u [−3W11 + 2W12 + 4W13 + W22−W33−2W42−2W43−W44 + 2θ

+ v(−2q(W11−2W12 + W22−W33 + 2W43−W44)

+ 2(2W11−2W12−W33 + 2W42 + W44−2θ))

+ q2(−W11 + 2W12 + 2W13−W22−W33 + 2w42 + 2W43−W44−4θ)

+ 2q(2W11−2W12−3W13 + W33 + W42−W44 + 2θ)

+ v2(−W11 + 2W12−2W13−W22−W33−2W42 + 2W43−W44 + 4θ)
]

+ u2 [3W11 + 2W12−5W13−W22 + 2W33−W42 + 4W43 + 2W44−6θ

− 2(W11−2W13−W22 + W33 + 2W42−W44)q−2v (W11−W22−W33 + W44)
]

+ u3(−W11−2W12 + 2W13−W22−W33 + 2W42−2W43−W44 + 4θ)},
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v̇ =
1
4
{W11−W12−2W13 + W33 + W43

+ u(2(−W11 + 2W13−W33−W43 + θ) + 2q (W11−2W13 + W33))

+ u2(W11 + W12−2W13 + W33 + W43−2θ)

−2q(W11−W12−2W13 + W33 + θ) + q2(W11−W12−2W13 + W33−W43 + 2θ)

+ v [−3W11 + 4W12 + 2W13−W22 + W33−2W42−2W43−W44 + 2θ

+ u(−2q (W11−2W13−W22 + W33 + 2W42−W44)

+ 2(2W11−2W13−W22 + 2W43 + W44−2θ))

+ q2(−W11 + 2W12 + 2W13−W22−W33 + 2W42 + 2W43−W44−4θ)

+ 2q(2W11−3W12−2W13 + W22 + W43−W44 + 2θ)

+ u2 (−W11−2W12 + 2W13−W22−W33 + 2W42−2W43−W44 + 4θ)]

+ v2 [3W11−5W12 + 2W13 + 2W22−W33 + 4W42−W43 + 2W44−6θ

−2q(W11−2W12 + W22−W33 + 2W43−W44)−2u(W11−W22−W33 + W44)
]

+ v3(−W11 + 2W12−2W13−W22−W33−2W42 + 2W43−W44 + 4θ)},
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q̇ =
1
4
{W11−W12−W13 + W42 + W43 + W44−2θ

+ u(−2(W11−W13 + W43 + W44−2θ) + 2v(W11 + W44−2θ))

+ u2(W11 + W12−W13−W42 + W43 + W44−2θ)

−2v(W11−W12 + W42 + W44−2θ) + v2(W11−W12 + W13 + W42−W43 + W44−2θ)

+ q [−3W11 + 4W12 + 4W13−W22−W33−2W42−2W43 + W44

+ u(−2v(W11−W22−W33 + W44)

+ 2(2W11−3W13−W22 + W33 + W42 + 2W43−2θ))

+ u2(−W11−2W12 + 2W13−W22−W33 + 2W42−2W43−W44 + 4θ)

+ 2v(2W11−3W12 + W22−W33 + 2W42 + W43−2θ)

+ v2(−W11 + 2W12−2W13−W22−W33−2W42 + 2W43−W44 + 4θ)
]

+ q2 [3W11−5W12−5W13 + 2W22 + 2W33−W42−W43−W44 + 6θ

−2u(W11−2W13−W22 + W33 + 2W42−W44)

− 2v(W11−2W12 + W22−W33 + 2W43−W44)]

+ q3(−W11 + 2W12 + 2W13−W22−W33 + 2W42 + 2W43−W44−4θ)}

+ r(1−q−u− v + 2uv).
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[71] J. Mierczyński. A remark on m. w. hirsch’s paper: “chain transitive sets for

smooth strongly monotone dynamical systems”. Dynamics of Continuous,

Discrete and Impulsive systems. Series A, Mathematical Analysis, 7(3):455–

461, 2000.
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