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ABSTRACT: The accurate prediction of the binding affinity
changes of drugs caused by protein mutations is a major goal
in clinical personalized medicine. We have developed an
ensemble-based free energy approach called thermodynamic
integration with enhanced sampling (TIES), which yields
accurate, precise, and reproducible binding affinities. TIES has
been shown to perform well for predictions of free energy
differences of congeneric ligands to a wide range of target
proteins. We have recently introduced variants of TIES, which
incorporate the enhanced sampling technique REST2 (replica
exchange with solute tempering) and the free energy estimator MBAR (Bennett acceptance ratio). Here we further extend the
TIES methodology to study relative binding affinities caused by protein mutations when bound to a ligand, a variant which we
call TIES-PM. We apply TIES-PM to fibroblast growth factor receptor 3 (FGFR3) to investigate binding free energy changes
upon protein mutations. The results show that TIES-PM with REST2 successfully captures a large conformational change and
generates correct free energy differences caused by a gatekeeper mutation located in the binding pocket. Simulations without
REST2 fail to overcome the energy barrier between the conformations, and hence the results are highly sensitive to the initial
structures. We also discuss situations where REST2 does not improve the accuracy of predictions.

1. INTRODUCTION

Mutations enable proteins to tailor molecular recognition with
small-molecule ligands and other macromolecules, and can
have a major impact on drug efficacy. Rapid and accurate
prediction of drug responses to protein mutations is vital for
accomplishing the promise of personalized medicine. The use
of targeted therapeutics will benefit cancer patients by
matching their genetic profile to the most effective drugs
available. Examples of such drugs are gefitinib and erlotinib
which belong to a class of targeted cancer drugs called tyrosine
kinase inhibitors. A subgroup of patients with nonsmall-cell
lung cancer (NSCLC) have specific point mutations and
deletions in the kinase domain of epidermal growth factor
receptor (EGFR), which are associated with gefitinib and
erlotinib sensitivity. Screening for these mutations may identify
patients who will have a better response to certain inhibitors.
In silico free energy calculation is one of the most powerful

tools to predict the binding affinity of a drug to its target
proteins. It employs all-atom molecular dynamics (MD)
simulation, a physics-based approach for calculating the
thermodynamic properties. The accurate prediction of the
binding affinities of ligands to proteins is a major goal in drug
discovery and personalized medicine.1 The use of in silico
methods to predict binding affinities has been largely confined
to academic research until recently, primarily due to the lack of
their reproducibility, as well as lack of accuracy, time to
solution, and computational cost.

Recent progress in free energy calculations, marked to some
extent by the advent of Schrödinger’s FEP+,2 has initiated
major interest in their potential utility for pharmaceutical drug
discovery. The improvements include new sampling protocols
in order to accelerate phase space sampling,3,4 such as
Hamiltonian-replica exchange (H-REMD)5 and its variants,
including replica exchange with solute tempering (REST2)6

and FEP/REST.7 The replica exchange methods run multiple
concurrent (parallel) simulations and occasionally swap
information between replicas to improve sampling. For a
given set of simulation samples, different free energy
estimators8 can be applied with varying accuracy and precision,
of which the multistate Bennett acceptance ratio (MBAR)9 has
become increasingly popular. MBAR makes use of all
microscopic states from all of the replica simulations, by
reweighting them to the target Hamiltonian. The implementa-
tion of an enhanced sampling protocol such as REST26 and
the use of the free energy estimator MBAR9 has been shown to
improve the accuracy of the free energy calculations. The rapid
growth of computing power and automated workflow tools has
also contributed significantly in the wider application of free
energy approaches in real world problems.
We have recently developed an approach called thermody-

namic integration with enhanced sampling (TIES)10 which
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utilizes the concept of ensemble simulation to yield accurate,
precise, and reproducible binding affinities. TIES is based on
one of the alchemical free energy methods, thermodynamic
integration (TI), employing ensemble averages and quantifi-
cation of statistical uncertainties associated with the results.11

TIES has already been shown to perform well for a wide range
of target proteins and ligands.10−13 TIES provides a route to
reliable predictions of free energy differences meeting the
requirements of speed, accuracy, precision, and reliability. The
results are in very good agreement with experimental data
while the methods are reproducible by construction. Variants
of TIES incorporate enhanced sampling techniques REST2
and the free energy estimator MBAR.11 TIES has been shown
to have a positive impact in the drug design process in the
pharmaceutical domain.12,13

Some protein mutations may fortuitously bring therapeutic
benefit to some patients who use a specific drug treatment,
while others may impair the ability of a drug to bind with the
protein, one of the reasons for the target proteins developing
drug resistance. Studying the effect of protein mutations on
binding affinity is important for both drug development and for
personalized medicine. The purpose of the present paper is to
apply the ensemble-based TIES approach10 to study point
mutations in proteins, a variant which we name TIES-PM.
TIES-PM employs the TIES methodology to yield rapid,
accurate, precise, and reproducible relative binding affinities
caused by the protein variants when bound to a ligand.
Here we apply TIES-PM to fibroblast growth factor receptor

3 (FGFR3), one of the four members of the human FGFR
family. FGFRs play a critical role in many physiological
processes and are recognized therapeutic targets in cancer.14

Point mutations in FGFRs are among the main genomic
alterations, along with fusions and amplifications, contributing
to tumor generation and progression. Considerable effort has
been dedicated to the development of effective FGFR
inhibitors for cancer therapy, some of which are at various
phases within clinical trials.14 In a previous study,15 we
calculated binding free energy differences of inhibitors upon
mutations in FGFR1. That study was a critical first step in
initiating the TIES protocol.10 We have also used FGFR1 as
one of the molecular systems with which to establish
uncertainty quantification within ensemble approaches.11 In
the current study, we consider four FGFR tyrosine kinase
inhibitors (TKIs): AZD4547, BGJ-398, JNJ42756493, and
TKI258 (see Figure 1), of which the first three are selective
and highly potent.16 Some activating mutations result in
distinct changes in drug efficacy. Three single amino acid
residue mutations in the kinase domain of FGFR3V555M,
I538V, and N540Sare considered here, of which V555M is
the most common gatekeeper mutation.17 They are among the
most frequently observed FGFR3 variants, and confer
resistance to these inhibitors in most cases (see the
experimental binding affinity changes in Table 1).16

2. METHODS
In this study, ensemble-based λ-REST2 simulations (TIES-λ-
REST2)11 are performed for four TKIs binding to wild-type
and mutant FGFR3s (Figure 1). The free energy differences
upon mutations are predicted with their associated uncertain-
ties, and compared with experimental data. There are a range
of issues and artifacts which affect the reliability and accuracy
of MD results.18 Here we use the latest Amber force fields (see
the Simulation Setup section) which are known to be reliable

for the present systems, and the same procedures to setup the
protein−ligand systems as we recently reported and
validated.10−13

2.1. Hybrid Topology. A dual topology scheme is used in
the current study, similar to that used in our previous studies
for the alchemical transmutation of one ligand to another10 but
adapted to handle the transmutation of amino acids in the
current study. The reason for this choice is dictated by our use
of NAMD.19 A hybrid residue is introduced, which consists of
both the disappearing and appearing amino acids (Figure 2),
exclusively belonging to the initial and the final states,
respectively. The hybrid potential energy function is set in
such a way that the disappearing and appearing parts do not
interact with each other. For an alchemical transformation
from one amino acid to another, the hybrid structure file is
prepared by aligning the mainchain and the common side
chain atoms of the appearing residue to those of the
disappearing residue.

2.2. Free Energy Schemes. Thermodynamic integration
with enhanced sampling (TIES)10 is used to calculate the free
energy differences (ΔΔGbinding) of ligands binding to wild-type
and mutant proteins. An alchemical pathway is defined, which
corresponds to the transformation of a residue at one end into
another at the other end of the pathway. An alchemical
coupling parameter, λ, is introduced to define intermediate
states with a hybrid potential function V(λ,x), where λ ranges
between 0 and 1 corresponding to the initial and final states,
respectively. In thermodynamic integration, the alchemical free
energy change ΔGalch is given by the following equation:

G
V x( , )

dalch
0

1
∫ λ

λ
λΔ = ∂

∂ λ (1)

where ⟨∂V(λ,x)/∂λ⟩λ denotes an ensemble average of the
potential energy derivative in state λ. Ensemble MD
simulations are run at each λ window for both apo protein
and ligand−protein complex. Equation 1 is evaluated using a
stochastic integration method since the integrand is generated
from a Gaussian random process,20 and the associated
uncertainty is calculated accordingly.10 The free energy
difference ΔΔGbinding is then calculated as the difference of
the alchemical free energy changes ΔGalch of apoprotein and

Figure 1. Structures of FGFR3 and inhibitors studied in this work:
(a) the binding site of tyrosine kinase domain for FGFR3 in complex
with ACP, an ATP-analogue (PDB ID: 4K33). FGFR3 is depicted in
cartoon and ACP in bond representation. Mutations of three residues,
V555, I538, and N540 (ball-and-stick representation), are among the
most common genetic variants in FGFR3. The chemical structures of
four ATP competitive inhibitors are shown in panels b−e: (b)
AZD4547, (c) BGJ-398, (d) TKI258, and (e) JNJ4275649.
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complex, and the uncertainty as the propagation of the errors.
Three schemes11 are used in the current study, as (i) the
standard TIES,10 (ii) an ensemble of λ-REST2 simulations
termed as TIES-λ-REST2 (λR2), and (iii) TIES-λ-REST2 with
MBAR estimator termed TIES-λ-REST2-M (λR2-M).11 All of

the three schemes use ensemble-based simulations.10,11 In
standard TIES, simulations are run indepedently at each
predefined λ value and at a constant temperature (300 K). In
TIES-λ-REST2 simulations, a predefined number of parallel
REST2 replicas are run with regular exchange attempted
between neighboring replicas of which both the alchemical
parameters λ and the effective temperatures Teff differ. The
calculated binding free energy differences from these schemes
are denoted as ΔΔGcalc

TIES, ΔΔGcalc
λR2 and ΔΔGcalc

λR2−M, respectively,
which all are obtained from eq 1 but differ in the ways of
deriving the integrands. In standard TIES (i), the potential
energy in the integrand is a function of λ (the temperature is a
constant), and the average includes samples from a specific λ
window. In λ-REST2 (ii), the potential energy is a function of
(λ, Teff), and the average includes samples from a specific λ
window. In λ-REST2-M (iii), the potential energy is a function
of (λ, Teff), and the average includes samples from multiple λ
windows using MBAR.

2.3. REST2 Region. As described in Bhati et al.,10 a small
region of the molecular system is designated as the so-called
“hot” region for all λ-REST2 simulations (Figure 2). This
region is usually referred to as the REST2 region. It is critical
to properly define the region for the REST2 simulations in
order to improve the sampling of conformations relevant to
binding. If the region is too small, the overall impact of
applying REST2 may be insufficient to prevent the molecule
from getting trapped in one or more local energy minima. It
has been shown21 that using the default FEP+ protocol,2 in
which only perturbed ligand groups are included in the REST2
region, is not sufficient for some cases to obtain proper
sampling. Another study22 shows that choosing only a mutant
residue as the hot region has no effect on binding free energy
prediction in most cases. On the other hand, when the region
is too big, a large number of replicas within the replica

Table 1. Relative Binding Free Energies Calculated Using TIES, Incorporating Schemes λR2 and λR2-M as Well as
Determined from Experimental Ki Values for All the Inhibitor-Mutant Complexes Studieda

ΔΔGcalc

mutant drug TIES λR2b λR2-Mb ΔΔGexp

V555M AZD4547-linear −3.56(0.31) −2.76(0.12) −2.70(0.12) −1.75(0.33)
AZD4547-bent 0.55(0.41) −2.07(0.11) −1.98(0.12)
BGJ-398 −3.02(0.44) −3.66(0.12) −3.60(0.12) −1.19(0.08)
TKI258 0.26(0.25) −1.17(0.13) −1.11(0.13) 0.97(0.22)
JNJ42756493 −5.19(0.38) −3.99(0.16) −3.92(0.15) −3.08(0.17)
MAE 1.75 1.37 1.30
RMSE 1.84 1.59 1.54

I538V AZD4547-linear 0.25(0.33) 0.09(0.11) 0.05(0.11) −2.11(0.32)
BGJ-398 0.44(0.35) 0.46(0.11) 0.45(0.11) −0.74(0.21)
TKI258 −0.65(0.38) 0.47(0.13) 0.38(0.12) −1.91(0.13)
JNJ42756493 0.62(0.34) 0.30(0.12) 0.28(0.12) −2.18(0.10)
MAE 1.90 2.06 2.02
RMSE 2.02 2.13 2.08

N540S AZD4547-linear −0.43(0.43) 0.91(0.14) 0.95(0.14) −0.76(0.33)
BGJ-398 −1.00(0.52) 1.13(0.14) 1.16(0.13) 0.25(0.19)
TKI258 −1.77(0.60) 1.02(0.14) 1.11(0.14) −0.90(0.15)
JNJ42756493 −0.87(0.45) 1.06(0.14) 1.11(0.14) −1.75(0.21)
MAE 0.83 1.82 1.87
RMSE 0.89 1.94 2.00

aThe mean absolute error (MAE) and root mean square error (RMSE) are also shown for all complexes of each mutant using each free energy
scheme. Production runs are 4 ns in all cases. All values are in kcal/mol. The statistical uncertainties associated with each value are shown in
brackets. bHighest Teff for λ-REST2 simulations is 800 K for receptor and 1500 K for complexes in case of mutants I538V and N540S. In the case
of mutant V555M, it is 1500 K for the AZD4547 complexes and 600 K for all other complexes; 600 K is used for the receptor.

Figure 2. Different regions in the λ-REST2 simulations. The
AZD4547-V555M complex is shown here as an example. The hybrid
residue, denoted as the alchemical region, is depicted as a ball-and-
stick model. It consists of disappearing (red) and appearing (blue)
groups which are slightly separated for reasons of clarity. They can
fully or partially overlap in the simulation as there are no interactions
between them. The REST2 region, including the alchemical region
(red and blue ball-and-stick), part of the ligand (orange bond), and
surrounding protein residues (orange stick), is designated as the “hot”
region. The selection of the REST2 region is described in the main
text (section 2.3 REST2 region).
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exchange process may be required to cover a given range in
effective temperatures, while the sampled conformations may
not be relevant to stable binding of the inhibitor at all. It has
been suggested to include key protein residues within the
REST2 regions, which are identified either by visual
inspection21 or by analyses of preliminary simulations
performed prior to FEP+ runs.23

In this study, the REST2 region for all mutations is defined
as follows: for unbound protein calculations, it includes the
mutant residue and all protein residues within 3 Å distance of
the former; for bound protein calculations, it comprises the
mutant residue, all protein residues within 3 Å of the mutant
residue and 4 Å of the ligand, and all ligand atoms within 4 Å
of the mutant residue. The nonbonded interactions of the
atoms in the “hot” region are reduced by a scaling factor based
on an effective temperature (Teff). The alchemical region
(Figure 2), which is part of the “hot” region, is also scaled by
the alchemical coupling parameter, λ. The λ value increases
linearly from 0 to 1 with replicas, whereas Teff varies such that
it attains its maximum at the midpoint and decreases to 300 K
at the end-points. Samples from a specific REST2 replica are
used to calculate ∂V/∂λ at that state for each λ-REST2
simulation followed by standard TIES analysis to yield ΔGalch
and its associated uncertainty.10

2.4. Simulation Setup. The structure of FGFR3 was taken
from the protein data bank (PDB ID: 4K33, Figure 1). The
missing residues in the file were built by ModLoop,24 and the
mutant/engineered residues were restored to their wild-type
forms. The inhibitors were manually positioned into the
binding site on the basis of their existing X-ray structures as
follows: BGJ-398 from PDB ID 3TT0, JNJ42756493 from
PDB ID 5EW8, TKI258 from PDB ID 5AM7, and AZD4547
from PDB IDs 4V05 and 4RWK as there are two distinct
conformations for it, denoted as “linear” and “bent” in the
current study.25 The crystal water molecules of 4K33 were
retained unless they overlapped with the aligned inhibitors.
The inhibitors were optimized at the Hartree−Fock level with
the 6-31G* basis (HF/6-31G*) in Gaussian 0326 and
parametrized using Antechamber and restrained electrostatic
potential (RESP) modules in AmberTools 1727 with the
general AMBER force field (GAFF).28 The Amber ff14SB
force field29 was used for the protein. All systems were solvated
in orthorhombic water boxes with a minimum extension from
the protein of 14 Å. The TIP3P water model was used. The
molecular systems were neutralized with Na+ or Cl− ions.
2.5. Simulations. The customized version of the NAMD

2.11 package,19 with implementation of REST2 for alchemical
simulations,30 was used for all the TIES-PM simulations. The
systems were maintained at a temperature of 300 K and a
pressure of 1 bar in an NPT ensemble. A time step of 2 fs was
used. We used the protocol established in our previous
publications10,11 in which an ensemble of five replicas was
used; 2 ns of equilibration and 4 ns of production were
conducted for each replica. To check the convergence of the
calculated free energies, some simulations were extended up to
20 ns. A soft core potential was used for the van der Waals
interactions which were scaled up/down linearly across the full
λ range (0 to 1) for the appearing/disappearing atoms,
respectively. The electrostatic interactions of the disappearing
atoms were linearly decoupled from the simulations between λ
values of 0 and 0.55 and completely turned off beyond that,
while those of the appearing atoms were not turned on until λ
= 0.45, and then linearly coupled to the simulations from λ

value 0.45 to 1. An exchange of configurations between two
neighboring λ replicas was attempted every 1 ps, and
conformations were saved every 10 ps.

2.6. Computational Resources. The TIES-λ-REST2
simulations require a large number of MD runs to be
performed. On modern large scale high performance
computers, all simulations can be run in parallel and completed
in the same wall clock time as needed for a single MD
simulation. All simulations were run on the BlueWaters
supercomputer at the National Center for Supercomputing
Applications of the University of Illinois at Urbana−
Champaign (https://bluewaters.ncsa.illinois.edu) and Titan
at Oak Ridge National Laboratory (https://www.olcf.ornl.gov/
olcf-resources/compute-systems/titan/). For a 2 ns equilibra-
tion and 4 ns production MD simulation, it took 14.6 h on 4
nodes (128 cores) of BlueWaters, and 8.7 h on 15 nodes (240
cores) of Titan. Collectively about 27.8 million core hours
were consumed in the course of this study.

3. RESULTS
Table 1 contains the calculated as well as experimental relative
binding affinities (ΔΔG) for all the mutant-inhibitor
complexes studied. ΔΔGcalc values from three free energy
schemes, namely TIES,10 TIES-λ-REST2, and TIES-λ-REST2-
M,11 are reported. Some significant improvements are
observed from TIES-λ-REST2 simulations, while the inclusion
of MBAR only slightly improves the accuracy and precision
(Table 1). In the following analyses, we mainly focus on the
comparisons of TIES and TIES-λ-REST2. The experimental
values are determined using the Ki values reported by Patani et
al.16 Mean absolute error (MAE) and root-mean-square error
(RMSE) values for all complexes of every mutant using each
free energy scheme are included as a measure of the accuracy
of the simulation results. The inhibitor AZD4547 has been
reported to bind with the FGFR kinase gatekeeper mutant in
two distinct conformationslinear and bentexperimen-
tally.25 Results for both are shown in Table 1. It should be
noted that the FGFR3 gatekeeper mutation V555M occurs
inside the binding pocket (“local”), while the other two
mutations (I538V and N540S) occur away from the binding
pocket (“remote”). The effect of local mutations on the
binding of inhibitors can be attributed to the changes in the
local environment of the binding pocket altering the direct
interaction between protein and inhibitor. On the other hand,
remote mutations do not have any direct interaction with the
inhibitor and hence can be expected to affect the inhibitor
binding through indirect means such as large scale conforma-
tional changes in the protein. Such events may occur on a time
scale of the order of μs to ms. Below, we discuss the results
from these two categories of mutations separately.

3.1. Local Mutation. In the case of the V555M mutant,
ΔΔGcalc

TIES predicts the resistance behavior of all inhibitors
correctly except AZD4547 starting from the bent conforma-
tion; that is, the predicted ΔΔGcalc values have the same signs
as those of the corresponding experimental values ΔΔGexp
(Figure 3). In other words, the predictions agree directionally
with the experimental values. We find that, for standard TIES,
the accuracy of the predictions is not very good, most of the
complexes having an absolute error close to 2 kcal/mol with a
MAE and RMSE of 1.75 and 1.84 kcal/mol, respectively. In
addition, the predicted relative binding affinity of the
AZD4547−V555M complex is sensitive to its initial structure.
The ΔΔGcalc values for the linear and bent conformations of
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AZD4547 differ by about 4 kcal/mol. It has been shown
experimentally that AZD4547 coexists in its linear as well as

bent conformations only when binding to the gatekeeper
mutant.25 This means that, during an alchemical trans-
formation from valine to methionine (V555M), AZD4547
should exhibit only its linear conformation at the λ = 0 end-
point (V555), but have an increasingly mixed population of
both linear and bent conformations on approaching the λ = 1
end-point (M555). It appears that the energy barrier between
these two conformations is too high to be overcome using
standard MD simulations at 300 K. Thus, the inhibitor remains
trapped in its starting conformation throughout a standard
TIES calculation. This explains why the TIES prediction
ΔΔGcalc

TIES is so sensitive to its initial structure and does not
agree directionally with its experimental value in the case of the
bent conformation of AZD4547.
To overcome the large energy barrier between the two

conformations of AZD4547 and also to study the effect of the
accelerated sampling method, λ-REST2,7 on ΔΔG predictions
in general, we performed TIES-λ-REST2 simulations to get
ΔΔGcalc

λR2 and ΔΔGcalc
λR2−M (refer to Table 1 and Figure 3). On

comparing them with ΔΔGcalc
TIES, we find an overall improve-

ment in the relative binding affinity predictions, the MAE and
RMSE reducing by 0.38 and 0.25 kcal/mol with scheme λR2
and by 0.45 and 0.30 kcal/mol with scheme λR2-M,
respectively. The AZD4547, both for the linear and the bent
conformations, benefit from REST2 with their ΔΔGcalc
predictions improving drastically. However, it is clear from
Figure 3 that, out of the five complexes (including the two
conformations of AZD4547), ΔΔG predictions for only three
complexes improve using TIES-λ-REST2. The relative binding
affinity for the V555M-BGJ-398 complex remains the same as
in the case of standard TIES while that for the V555M−
TKI258 complex is less accurate than standard TIES using

Figure 3. Comparison of the predicted ΔΔGcalc values using TIES
(black circles), TIES-λ-REST2 (λR2, up/down triangles) with those
from experiments for V555M mutant complexes with the highest Teff
of the chosen REST2 region at 600 K for receptor and complexes
except those with AZD4547 which are at 1500 K (red triangles
pointing up), and at 1500 K for receptor and 3000 K for complexes
(blue triangles pointing down). Results of AZD4547 from the bent
conformation are represented using filled circles and triangles. The
dotted lines (x = 0 and y = 0) create four quadrants. Data points in
quadrants I (x > 0 and y > 0) and III (x < 0 and y < 0) indicate that
the calculated binding free energy differences agree directionally with
those from the experimental data. The results from TIES-λ-REST2-M
(λR2-M) are very close to those from λR2 (Table 1), and are not
shown for reasons of clarity.

Table 2. Relative Binding Free Energies Calculated Using Schemes λR2 and λR2-M with Different Highest Effective
Temperature (Teff) Compared with Corresponding Experimental Values for All the Inhibitor-Mutant Complexes Studieda

ΔΔGcalc

mutant drug λR2b λR2-Mb λR2c λR2-Mc ΔΔGexp

V555M AZD4547-linear −2.76(0.12) −2.70(0.12) −1.85(0.07) −1.82(0.06) −1.75(0.33)
AZD4547-bent −2.07(0.11) −1.98(0.12) −1.07(0.07) −1.11(0.06)
BGJ-398 −3.66(0.12) −3.60(0.12) −1.92(0.08) −1.96(0.06) −1.19(0.08)
TKI258 −1.17(0.13) −1.11(0.13) −1.41(0.08) −1.42(0.06) 0.97(0.22)
JNJ42756493 −3.99(0.16) −3.92(0.15) −2.88(0.12) −2.87(0.11) −3.08(0.17)
MAE 1.37 1.30 0.82 0.82
RMSE 1.59 1.54 1.16 1.16

I538V AZD4547-linear 0.09(0.11) 0.05(0.11) −0.12(0.08) −0.04(0.07) −2.11(0.32)
BGJ-398 0.46(0.11) 0.45(0.11) 0.01(0.08) 0.09(0.07) −0.74(0.21)
TKI258 0.47(0.13) 0.38(0.12) 0.01(0.08) 0.12(0.08) −1.91(0.13)
JNJ42756493 0.30(0.12) 0.28(0.12) −0.01(0.07) 0.11(0.07) −2.18(0.10)
MAE 2.06 2.02 1.71 1.80
RMSE 2.13 2.08 1.80 1.89

N540S AZD4547-linear 0.91(0.14) 0.95(0.14) 0.72(0.11) 0.74(0.11) −0.76(0.33)
BGJ-398 1.13(0.14) 1.16(0.13) 0.67(0.11) 0.67(0.11) 0.25(0.19)
TKI258 1.02(0.14) 1.11(0.14) 0.71(0.12) 0.72(0.12) −0.9(0.15)
JNJ42756493 1.06(0.14) 1.11(0.14) 0.72(0.12) 0.72(0.12) −1.75(0.21)
MAE 1.82 1.87 1.50 1.50
RMSE 1.94 2.00 1.66 1.67

aThe mean absolute error (MAE) and root mean square error (RMSE) for all complexes of each mutant using each free energy scheme are also
shown. Production runs are 4 ns in all cases. All values are in kcal/mol. Statistical uncertainties associated with each value are shown in the brackets.
bHighest Teff for λ-REST2 simulations is 800 K for receptor and 1500 K for complexes in case of mutants I538V and N540S. In the case of mutant
V555M, it is 1500 K for the AZD4547 complexes and 600 K for all other complexes; 600 K is used for the receptor. cHighest Teff for λ-REST2
simulations is 1500 K for receptor and 3000 K for complexes.
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TIES-λ-REST2. This is because some conformations are
sampled in the TIES-λ-REST2 simulations that are irrelevant
to stable ligand binding and lead to the deviations of the
predictions from the experimental values (see more details in
the Discussion section).
To investigate the effects of the highest REST2 temperature

(Teff) on the predictions, we increased Teff value from 600 to
1500 K for the receptor and 600/1500 to 3000 K for the
complexes. As can be clearly seen from Figure 3, increasing the
temperature of the “hot” region improves the accuracy of the
results in most cases and reduces MAE and RMSE by up to 0.6
kcal/mol (Table 2). Three out of the five inhibitors bound to
the V555M mutant then generate predictions closer to
experiment by more than 0.7 kcal/mol (BGJ-398, by 1.74
kcal/mol; JNJ42756493, by 0.71 kcal/mol; AZD4547-linear,
by 0.91 kcal/mol). Although the absolute error (0.68 kcal/
mol) increases slightly for the AZD4547-bent using the higher
Teff, it is still well on the level of accuracy expected from such
alchemical approaches.11 Increasing the temperature allows
greater flexibility within the system being simulated and
facilitates access to key regions of phase space by allowing high
energy barriers in the potential energy surface to be crossed.
The inhibitor TKI258, when bound to the V555M mutant,
remains an exception as its predicted relative free energy is
displaced from the perfect correlation line on increasing the
temperature. This exceptional behavior of TKI258 is due to an
even higher population of irrelevant conformations sampled in
the simulations when a higher temperature is used (see the
Discussion section).
3.2. Remote Mutations. In the case of remote mutations,

the calculated relative free energies do not agree well with the
experimental values (Table 1 and Figure 4). This is not

surprising given that the predictions are made using 4 ns long
simulations. As mentioned earlier, the effect of remote mutants
on the binding of an inhibitor is not due to a change in the
direct interaction between the inhibitor and the protein. It
generally involves a change in the protein conformation which
indirectly affects the binding of the inhibitor. Such conforma-

tional changes are close to impossible to capture with
molecular dynamics simulations of short temporal duration.
This is further confirmed by the fact that the predicted
ΔΔGcalc

TIES values for all inhibitors (except TKI258 whose
unusual behavior is further discussed in the next section) using
standard TIES are very close to each other in the cases of both
the I538V as well as the N540S mutant. This essentially means
that short duration simulations are only able to capture the
changes in the immediate vicinity of the alchemical trans-
formation (i.e., the mutation in this case).
The predicted ΔΔGcalc values for complexes with the I538V

mutant using all three free energy schemes are statistically
close to zero. Among the three mutations investigated, I538V
is the most distant from the bound inhibitors. The I538V
mutation involves alchemically transforming isoleucine to
valine which are both nonpolar amino acids. Thus, this
transformation does not significantly affect the charge
distribution of the protein and hence also does not affect its
long-range interactions. The mutation does not directly affect
the two calculated ΔGalch values (eq 1) in the presence and
absence of an inhibitor, from which the free energy difference
ΔΔGcalc is calculated. The experimentally detected ΔΔGexp
must be generated from a mechanism which is not captured in
the simulations.
Although the ΔΔGcalc values are not close to zero for the

N540S mutation, the predictions are consistently positive. This
means that the two calculated ΔGalch values for the
alchemically transforming protein residue differ in the presence
and absence of an inhibitor. In the case of remote mutations,
the two ΔGalch values can differ when there is a considerable
change in long-range interactions of the mutant with the
inhibitor. The N540S mutation involves changing asparagine
to serine (effectively −CONH2 to −OH) which alters the
charge distribution of the protein as well as its long-range
interactions. Another reason for the nonzero ΔΔGcalc
predictions in this case is that the mutation is closer to the
inhibitors as compared to the I538V mutant. The shortest
distance between the hybrid N540S residue and the inhibitor is
6 Å while for the I538V mutation it is 9 Å. Thus, one would
expect that there would be a greater likelihood of standard
TIES being able to capture the effect of the N540S than the
I538V mutant. Indeed, it should be noted that the complexes
bound to the N540S mutant in Table 1 have the least MAE/
RMSE among all mutants with standard TIES predictions.
We also performed TIES-λ-REST2 simulations of duration

up to 4 ns for the remote mutations but they do not improve
the accuracy of results. This may be because the indirect
mechanisms which potentially affect the inhibitor binding in
such cases occur on time scales longer than can be computed
by the simulations performed in this study and hence the
“correct” region of the phase space is not sampled even using
TIES-λ-REST2 simulations. Remote mutations may modulate
the inhibitor−protein interactions via induced allosteric
conformational changes occurring over a wide range of space
and time scales. A number of computational methodologies
have been developed for modeling large-scale motions of
proteins, including coarse-grained molecular dynamics and
accelerated MD. The prediction of binding free energies may
be improved by taking into account all of the conformations,
with statistical reweighting techniques to optimally merge data
obtained from the enhanced approaches. It is interesting to
note in Figure 4 that the ΔΔGcalc

λR2/λR2−M values for all inhibitors
are close to each other for both the remote mutations unlike in

Figure 4. Comparison of the predicted ΔΔGcalc values using TIES
(black circles), TIES-λ-REST2 (λR2, up/down triangles) with those
from experiment for for all inhibitors bound to FGFR3: (a) I538V
mutant and (b) N540S mutant, when the highest Teff for the chosen
REST2 region is at 800 K for receptor and 1500 K for complexes (red
triangles pointing up) and at 1500 K for receptor and 3000 K for
complexes (blue triangles pointing down). The dotted lines (x = 0
and y = 0) create four quadrants. Data points in quadrants I (x > 0
and y > 0) and III (x < 0 and y < 0) indicate that the ΔΔGcalc values
agree directionally with ΔΔGexp. The results from TIES-λ-REST2-M
(λR2-M) are very close to those from λR2 (Table 1), and are not
shown for reasons of clarity.
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the case of standard TIES, for which TKI258 was an exception.
Thus, TIES-λ-REST2 brings all ΔΔGcalc values to the same
baseline irrespective of the inhibitor bound.
Increasing the temperature of the “hot” region, from 800 to

1500 K for the receptor and 1500 to 3000 K for the complexes,
improves the accuracy of the results and reduces MAE and
RMSE of predicted ΔΔGcalc for both of the remote mutants
(Table 2). However, the predictions do not agree with the
experimental values (Figure 4). In contrast with the
observation for the local mutation (section 3.1), the ΔΔG
calculations do not benefit from REST2 for the remote
mutants studied here.
3.3. Effect of Extending Simulation Time. As we

explained earlier, short duration simulations are usually unable
to correctly predict the relative binding free energies of remote
mutations. In this section, we present the outcome of our
attempts to extend the duration of simulations. Figure 5

displays the variation of cumulative average of ΔΔGcalc values
using standard TIES with the length of simulation extended up
to 20 ns for the complexes involving I538V mutant. Apart from
small variations, the predicted ΔΔGcalc values remain constant
and do not exhibit any signs of getting closer to the
corresponding experimental values for all inhibitors except
JNJ42756493. In the case of JNJ42756493, the ΔΔGcalc value
seems to be drifting toward the experimental value but is still
quite far from it after 20 ns. This suggests that 20 ns of
standard MD simulation is not sufficiently long to sample the
relevant conformations of the complexes involving remote
mutants.
We also extended the TIES-λ-REST2 simulations to see if

“heating” a local portion of the complexes around the mutant
residue and/or the binding pocket has any impact on the
predicted free energies. Figure 6 displays the variation of
cumulative average of the calculated ΔΔGcalc values with the
simulation length up to 20 ns for all complexes of the three
mutants. In the case of complexes involving the V555M
mutant, the general trend is that the predicted ΔΔGcalc values
get closer to the experimental values. However, it should be
noted that, out of the five complexes, the largest difference
between the predicted values of ΔΔGcalc at 4 and 20 ns is 0.75

kcal/mol for the V555M−JNJ42756493 complex (see the
black line in Figure 6; from −4.18 kcal/mol at 4 ns to −3.43
kcal/mol at 20 ns). The corresponding values for the other
V555M complexes are less than or equal to 0.5 kcal/mol. This
is a marginal gain measured against the expense of the
computation leading to a very high cost−benefit ratio. This
observation is in line with our previous studies where we have
shown that “long” simulations furnish little to no advantage
when the alchemical transformation is local, that is, when it
occurs in the binding site.10,11

Unlike the V555M mutant, in the case of remote mutants,
we extended the λ-REST2 simulations with the highest Teff of
1500 K for receptor and 3000 K for complexes up to 20 ns.
The length of the simulation does not affect the predicted
ΔΔGcalc values in these cases either. The predictions remain
quite stable, consistently away from the experimental values
and close to each other for all complexes involving remote
mutations.

4. DISCUSSION
In this section, we discuss how the application of λ-REST2
may be useful in some cases while degrading the quality of
results in others. We provide details on the variation in the
predicted ΔΔG values for the V555M−AZD4547 complex
with the two conformations of the inhibitor AZD4547 using
the standard TIES and then how λ-REST2 simulations bring
them closer. We also explain the anomalous behavior of the
inhibitor TKI258 in detail and provide evidence for how
“heating” adversely affects the results in this case. On the basis
of the discussion in this section, we formulate some caveats and
recommendations concerning the application of the λ-REST2
technique in general for free energy predictions.

4.1. Improved Sampling of AZD4547 on “Heating”.
As noted earlier, the inhibitor AZD4547 has been found to
bind with the FGFR gatekeeper mutation in two distinct
conformationslinear and bentas shown in Figure 7.
However, in the case of the wildtype (WT) FGFR kinase
and its other mutants, AZD4547 occurs only in the linear
conformation. This suggests that while simulating an
alchemical transformation corresponding to the FGFR3 WT
to V555M mutant, the inhibitor AZD4547 should occur only
in the linear conformation at λ = 0 end-point (WT), while
adopting an increasingly mixed population of both con-
formations on approaching λ = 1 end-point (V555M). In this
section, we quantify the occurrence of both conformations of
AZD4547 among the MD trajectories of the V555M−
AZD4547 complex in the case of different free energy schemes
and discuss its impact on the predicted relative free energies.
In Figure 7, the three hydrogen bonds, which AZD4547

forms with the glutamic acid and alanine residues of the hinge
region of FGFR kinase, are marked with black dashed lines and
labeled as H1, H2, and H3. These hydrogen bonds keep the
middle portion of AZD4547 stable. Figure 8 displays the
normalized frequency distributions of these three hydrogen
bonds in the λ-REST2 trajectories at the λ = 1 end-point of
V555M−AZD4547 complexes with the linear as well as the
bent starting structures. H1 and H2 peak around 2 Å while H3
peaks around 2.5 Å. This makes it clear that AZD4547 remains
stably bonded to the hinge region of the FGFR3 V555M
mutant. The four carbon atoms which connect this stable
middle portion of AZD4547 with its free head portion are
highlighted in orange in Figure 7. It can be seen that the
dihedral angle between these four carbon atoms may be used

Figure 5. Variation of the cumulative average of ΔΔGcalc
TIES with

simulation length for all inhibitors bound to the FGFR3 I538V
mutant. The corresponding experimental value for each inhibitor is
shown by a dashed line of the same color.
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as a reliable indicator of the type of conformation AZD4547
exists in at a given point in the MD trajectory. Therefore, we
use this information to quantify the occurrence of the two
conformations of AZD4547.
Figure 9 displays the normalized frequency distributions of

the dihedral between the four carbon atoms highlighted in
orange in Figure 7 from the standard TIES as well as λ-REST2
trajectories at λ = 0, 0.5, and 1 for V555M−AZD4547
complexes with both the linear and the bent starting structures.
The peaks centered around +160° correspond to the linear

conformation whereas the peaks around −80° correspond to
the bent conformation. It is easy to recognize from Figure 9
that, in the case of standard TIES (shown in blue), the type of
conformations sampled is entirely dependent on the starting
structure of the complex and that there is absolutely no mixing
of the states during such simulations. Thus, there are negligible
peaks around −80° and +160° when starting with the linear
and the bent conformations, respectively. This explains why
the predicted ΔΔG values are sensitive to the starting structure
and are very different for the two different starting structures

Figure 6. Variation of the cumulative average of ΔΔG calculated using schemes λR2 and λR2-M with simulation length for all complexes. The
highest Teff for receptor and complex are 1500 and 3000 K, respectively, in the case of I538V and N540S mutants, while the corresponding values in
the case of V555M mutant are 600 and 600 K/1500 K. The corresponding experimental values for each inhibitor are shown by a dashed line of the
same color.
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using TIES. The plots in black and red denote the distributions
from the first and the last 4 ns of the 20 ns long λ-REST2
trajectories. It is evident that λ-REST2 allows sampling the
states from both conformations irrespective of the starting
structure. This is possible through regular exchanges of

conformations between the neighboring states and heating of
the REST2 region in the intermediate states. As becomes
obvious from Figure 9, the distributions at λ = 0.5 are relatively
smoother with non-negligible proportions of both the
conformations. However, the picture is not so simple in the
case of end-points as discussed next.
Ideally, the λ = 0 end-point should have samples

predominantly if not exclusively from the linear conformations
while the λ = 1 end-point should have samples from both the
conformations. However, we find that there is some mixing
during the first 4 ns of λ-REST2 simulations which is not
enough to reach the ideal situation and hence a dependence on
the starting structure persists. In the case of the linear starting
structure, there are predominantly linear conformations even at
the λ = 1 end-point during the first 4 ns. Similarly, in the case
of the bent starting structure, predominantly the bent
conformations persist even at the λ = 0 end-point. However,
during the last 4 ns of λ-REST2 simulations, there is a
noticeable improvement in both situations. In the case of the
linear starting structure, there is a visible peak around −80° at
λ = 1 end-point. In the case of the bent starting structure, there
is an almost equal proportion of both conformations at λ = 1
end-point. Moreover, the peak around −80° is much smaller as
compared to the first 4 ns at λ = 0 end-point. It is interesting to
note that the −80° peak is always lower for the λ = 0 end-point
as compared to the λ = 1 end-point in the case of λ-REST2
simulations. Indeed, the switching from bent to linear
conformation appears to be easier than the converse through
λ-REST2 simulations. This is because both of the end-points
accept the linear conformation, while only the λ = 1 end-point
tolerates the bent conformation. Through this selective
pressure, the linear conformation is more likely to spread
than the bent one during the replica exchange simulations.

4.2. The Exceptional Case of TKI258: Limitations of λ-
REST2. The inhibitor TKI258 is an anomaly in this study. As is
clear from Figure 4 and Table 1, its ΔΔG prediction
consistently becomes less accurate on applying λ-REST2 as
compared to the standard TIES in case of all three mutants.
The absolute errors of the TKI258 complexes increase by 1.43,
1.12, and 1.05 kcal/mol when bound with V555M, I538V, and
N540S, respectively, on using λ-REST2. In addition, its relative

Figure 7. Two distinct conformations of inhibitor AZD4547 found
experimentally when bound to the FGFR gatekeeper mutant. The
three hydrogen bonds, marked with black dashed lines and labeled as
H1, H2, and H3, keep the middle portion of the inhibitor stable. The
value of the dihedral angle between the four carbon atoms highlighted
in orange can be used as an indicator of the occurrence of the two
conformations. The atoms displayed as balls lie in the REST2 region
while the ones displayed as lines reside outside it.

Figure 8. Normalized frequency distributions of the three hydrogen
bonds (H1, H2, and H3 from Figure 7) in λ-REST2 trajectories at the
λ = 1 end-point of the V555M−AZD4547 complexes when using the
linear as well as the bent starting structures.

Figure 9. Normalized frequency distributions of the dihedral angle between the four carbon atoms highlighted in orange in Figure 7 for different λ
states of V555M−AZD4547 complexes in standard TIES (in blue) as well as λ-REST2 simulations showing the relative populations of the two
conformations of AZD4547. In the case of λ-REST2 simulations, the distributions from the first (1−4 ns; in black) and the last 4 ns (17−20 ns; in
red) are shown separately.
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binding affinity predictions using λR2 as well as λR2-M
become less accurate on increasing the highest Teff to 3000 K
in the case of the V555M mutant. In this section, we provide
an explanation for such behavior of TKI258. Figure 10 displays

the binding pose of TKI258 found experimentally. It forms two
hydrogen bonds with glutamic acid and alanine residues of the
hinge region of the protein (labeled as H1 and H2 in Figure
10). Figures 11, 12, and 13 show the normalized frequency

distributions of H1 and H2 for λ = 0 and λ = 1 end-points of
TKI258 complexes in the case of the standard TIES as well as
λ-REST2 simulations. Below we discuss them in detail.
Figure 11 compares the normalized frequency distributions

of H1 and H2 in the ensemble of conformations for the two
end-points (λ = 0 and λ = 1) of the standard TIES calculation
as well as λ-REST2 calculation. Both H1 and H2 have peaks
around 2 Å with almost negligible frequencies between 3 and 4

Å and vanish for distances greater than 4 Å. This is true for
both the end-points which suggests that the inhibitor remains
quite stable and tightly bound to the protein via the two
hydrogen bonds throughout the simulations at both the end-
points. This explains why ΔΔGcalc

TIES for the V555M−TKI258
complex is close to zero.
On the other hand, in the case of λ-REST2 simulations, the

right-hand tails of the H1 and H2 distributions extend to 7 Å.
However, in the case of the λ = 0 end-point, they have
negligible frequencies beyond 3 Å unlike the λ = 1 end-point
where there are small peaks for both H1 and H2 around 4 and
5 Å, respectively. This happens because, due to the “heating”,
the inhibitor drifts away from the protein and hence binds only
weakly to it at one of the end-points as compared to the other
end-point. This explains the negative value of ΔΔGcalc

λR2(−M) for

Figure 10. Inhibitor TKI258 bound to V555M mutant. It forms two
hydrogen bonds with the hinge region of the protein which are
displayed with black dashed lines and labeled as H1 and H2. The
atoms shown as balls lie in the “hot” region. The atoms are shown in
the standard color code: carbon in green, oxygen in red, nitrogen in
blue, hydrogen in white, and fluorine in pink.

Figure 11. Normalized frequency distributions of H1 and H2 from
Figure 10 for the two end-points in the case of the standard TIES as
well as λ-REST2 simulations of the V555M−TKI258 complex. λ-
REST2 simulations sample a larger comformational space than TIES,
as evidenced by the lower and wider distributions of the distances,
and the second peaks in the λ = 1 end-point (V555M).

Figure 12. Normalized frequency distributions of H1 and H2 from
Figure 10 for the two end-points in the case of standard TIES as well
as λ-REST2 simulations of the I538V−TKI258 complex. The long
tails and additional peaks beyond 4 Å indicate that λ-REST2
simulations sample some conformations irrelevant to stable inhibitor
binding.

Figure 13. Normalized frequency distributions of H1 and H2 from
Figure 10 for the two end-points in the case of standard TIES as well
as λ-REST2 simulations of the N540S−TKI258 complex. The long
tails and additional peaks beyond 4 Å indicate that λ-REST2
simulations sample some conformations irrelevant to stable inhibitor
binding.
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the V555M−TKI258 complex. The important thing to note
here is that the “heating” in the intermediate λ-windows and
regular exchanges between the neighboring REST2-replicas
causes the complex to visit some “unwanted” high energy
conformations leading to degraded results. The smaller peaks
of the H1 and H2 distributions at λ = 1 end-point suggest that
the V555M−TKI258 complex has a higher energy minimum
which is not sampled by standard MD simulations and is
probably not observed experimentally to the extent realized by
the λ-REST2 simulations (X-ray structures show that all
reversible ATP-competitive inhibitors form one or more stable
H-bond(s) with the hinge region of the receptors). The more
heating there is, the greater is the population of this higher
energy minimum and hence the more negative is the ΔΔGcalc
prediction (refer to Figures 3, 4, and Table 2).
Comparing Figure 11 with Figure 8, it is clear that such a

drifting of the inhibitor does not occur in the case of V555M−
AZD4547 complex even though the highest Teff for the latter is
1500 K against 600 K in the case of the former. To find out if a
similar process arises in other complexes, we performed a
hydrogen-bond analysis for all complexes whereby we
determined the occupancies of all the hydrogen bonds formed
between glutamic acid and alanine residues of the hinge region
of the protein and the inhibitor (refer to Table S7 of the
Supporting Information; the bond and angle cut-offs used to
determine the occurrence of the hydrogen bonds were 3 Å and
135°). We found that, except for JNJ42756493, all inhibitors
form one or more hydrogen bonds with at least one of the two
residues such that their occupancies are greater than 50%. The
occupancies of the strongest hydrogen bond (the one with the
largest occupancy) do not change much for all such inhibitors
except TKI258. This can be attributed to the absence of the
2,4-dimethoxy phenyl group in TKI258 unlike other inhibitors
(refer to Figure 1) which provides enough empty space in the
binding pocket for it to drift away from the protein.
The ΔΔG predictions for the complexes of TKI258 in case

of remote mutants also become less accurate on “heating” as
compared to standard TIES. In order to understand this, we
accumulated the normalized frequency distributions of H1 and
H2 for these complexes too as shown in Figures 12 and 13. It is
interesting to note that, in the case of both remote mutants,
the distributions are different at the two end-points of the
standard TIES calculations such that there are additional small
peaks in H1 and/or H2 distributions around 4 Å at the λ = 1
end-point. This may be related to the negative ΔΔGcalc

TIES

predictions for both complexes of TKI258 (refer to Table 1
and Figure 4). However, in the case of λ-REST2 simulations,
the situation appears to be even worse than the V555M−
TKI258 complex with H1/H2 values reaching as high as 12
and 18 Å for I538V−TKI258 and N540S−TKI258 complexes,
respectively. Both these complexes have peaks centered around
8 Å in the case of λ-REST2 simulations which correspond to
the flipped conformation of the inhibitor when the fluorine
atom of the TKI258 faces the hinge region of the protein while
the H and O atoms involved in H1 and H2 point toward the
opposite side (refer to Figure 10). This is further confirmed by
the hydrogen bond analysis where the starred occupancies
correspond to the hydrogen bonds formed by the inhibitor
atoms facing opposite to the H and O involved in H1 and H2
(refer to Table S7 in the Supporting Information). Such
flipped conformations correspond to a higher energy minimum
which is inaccessible using standard MD simulations (and
probably unobserved in experiments) but, due to the “heating”

and exchanging of conformations between neighboring
REST2-replicas, are observed in λ-REST2 simulations. This
explains why the ΔΔG predictions using λ-REST2 become less
accurate as compared to standard TIES. It should be noted
that no such flipped conformations are observed in other
inhibitors. This is partly due to the absence of the 2,4-
dimethoxy phenyl group in the case of TKI258, which leaves
an empty space in the binding pocket, and partly to relatively
weaker interactions between TKI258 and the hinge region of
the protein as compared to other inhibitors due to inclusion of
an extra residue in the “hot” region (refer to Table S7 of the
Supporting Information).
From the above discussion, it can be concluded that blind

application of the λ-REST2 technique with the hope to
improve sampling is not wise and may lead to potentially
“unwanted” conformations. This can be further understood by
considering a hypothetical situation where there are two
potential energy minima separated by a barrier such that the
lower energy minimum corresponds to the “wanted”
conformation while the higher energy minimum corresponds
to the “unwanted” conformation. During a λ-REST2
simulation, the intermediate λ-windows are “hot” and will
sample both minima as well as the peak of the energy barrier.
Although enhanced sampling is preferred in many cases,
correctly predicting a physical observable of interest requires
not only sufficient representative conformational states but the
corresponding weights that describe the likelihoods of
individual states. The latter are usually calculated based on
the total energy of a system while the energy distributions of
different states can be highly overlapping. It is therefore
difficult to assess the relative likelihood of a state and its
contribution to the prediction of the observable. Thus, while λ-
REST2 can be a valuable technique, it should be used with
care. Constraints from experiments, wherever available, should
be used to infer the relevance of conformational space sampled
by an enhanced MD simulation. In cases where there are no
experimental data at all, many binding poses may need to be
generated and evaluated, by methods such as docking and
enhanced MD simulation, and the most plausible poses should
be chosen based on their ranking scores. There are also data
driven approaches such as random forests31 and state-of-the-art
neural network methods32 which show some promise in this
respect. As opposed to theory-led approaches, these data-
driven machine learning approaches have a general limitation
in biomedical research,33 and their accuracies usually depend
on the size and quality of training sets.

5. CONCLUSIONS
In this article, we describe the applications of ensemble-based
approaches, with or without enhanced sampling protocols, to
predict relative binding free energies of inhibitors to wild-type
and mutant proteins. These approaches have been shown to be
accurate and precise with effective control of errors for a range
of target proteins and ligands.11 Two challenging cases are
investigated in the current study: one is a protein mutation
within the binding site, which induces a large conformational
change within one of the inhibitors;25 another is the protein
mutations remote from the binding site which do not have
significant impact on the stability of the protein yet have an
influence on inhibitor binding.16

The calculation of free energy changes caused by local
mutations can benefit from enhanced sampling techniques
such as REST2. The correct conformations are sampled in
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TIES-λ-REST2 simulations for the inhibitor AZD4547: while
only one comformation is sampled for the inhibitor complexed
with wild-type FGFR3, two conformations emerge when the
gatekeeper residue is mutated from valine to methionine
(V555M). Without enhanced sampling, the inhibitor remains
trapped in its initial conformations, making the predicted free
energy changes either overestimated or underestimated. TIES-
λ-REST2, on the other hand, correctly predicts the free energy
changes regardless of what initial conformation is used. As in
our previous work,11 the free energy estimator, MBAR, only
offers a marginal improvement in the precisions of predictions
but does not affect their accuracy.
For local mutations, the choice of a “hot” region is important

in determining the efficiency and convergence of the free-
energy calculations in simulations with REST2 approach. If the
region is too small, the functionally relevant conformational
space may not be explored sufficiently; while if it is too large,
the system may drift away from those conformations leading to
deteriorated predictions. Therefore, one requires some
preliminary knowledge of the topological and physical
properties of the protein−ligand systems for selection of an
appropriate REST2 region. We do not question the utility of
classical atomistic MD as a predictive tool for biomolecular
systems, as many studies have proven the predictive ability of
the method, including our two collaborative studies with
pharmaceutical companies,12,13 which were performed, initially
blind, to investigate the binding affinities of compounds to
protein targets. Our current study serves as a caution against
the blind application of enhanced sampling approaches.
For remote mutations, however, the TIES-λ-REST2

approach does not generally improve the binding free-energy
predictions. This is not surprising given that the mutations are
far away from the bound inhibitors and affect the binding
through an allosteric mechanism. Allostery involves conforma-
tional changes on length and/or time scales that are greater
than standard atomistic molecular simulations can access. They
only sample local conformational changes on a nanosecond
time scale, which are not affected by remote mutations.
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