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Abstract 

Sensitivity analysis provides information on the relative importance of model input parameters and 

assumptions. It is distinct from uncertainty analysis, which addresses the question ‘How uncertain is the 

prediction?’ Uncertainty analysis needs to map what a model does when selected input assumptions 

and parameters are left free to vary over their range of existence, and this is equally true of a sensitivity 

analysis. Despite this, many uncertainty and sensitivity analyses still explore the input space moving 

along one-dimensional corridors leaving space of the input factors mostly unexplored. Our extensive 

systematic literature review shows that many highly cited papers (42% in the present analysis) fail the 

elementary requirement to properly explore the space of the input factors. The results, while discipline-

dependent, point to a worrying lack of standards and recognized good practices.  We end by exploring 

possible reasons for this problem, and suggest some guidelines for proper use of the methods. 

 

 

1 Introduction 1 
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Mathematical models have become increasingly prominent tools in decision-making processes in 2 

engineering, science, economics and policy-making, among other applications. Driven by increasing 3 

computing power, coupled with the abundance of available data, models have also become increasingly 4 

complex—examples include large climate or economic models, which aim to include ever more 5 

processes at an ever-higher resolution. However, this increased complexity requires much more 6 

information to be specified as model inputs (parameters and other assumptions used in the model 7 

construction), and typically this information is not well-known. It is therefore essential to understand 8 

the impact of these uncertainties on the model output, if the model is to be used effectively and 9 

responsibly in any decision-making process. Sensitivity analysis (SA) and uncertainty analysis (UA) are 10 

the two main tools used in exploring the uncertainty of such models. 11 

One definition of sensitivity analysis is “the study of how the uncertainty in the output of a model 12 

(numerical or otherwise) can be apportioned to different sources of uncertainty in the model input” 13 

(Saltelli, 2002). As such it is very much related to – but distinct from – uncertainty analysis (UA), which, 14 

as we define it here, characterizes the uncertainty in model prediction, without identifying which 15 

assumptions are primarily responsible. Uncertainty analysis can include a broad range of applications 16 

relating to uncertainty—a very thorough reference can be found in (Ghanem, Higdon, & Owhadi, 2017). 17 

Ideally, an uncertainty analysis precedes a sensitivity analysis: before uncertainty can be apportioned it 18 

needs to be estimated. However, this is not necessarily the case, and applications involving model 19 

calibration/optimisation may not require the quantification of uncertainty. Other taxonomies are also 20 

possible relating UA to SA, see e.g. (Razavi, Sheikholeslami, Gupta, & Haghnegahdar, 2019), although for 21 

the purpose of the present work we remain with the definitions above. 22 

Before proceeding, let us clarify terminology. In building a model, a number of things must be specified, 23 

including the type and structure of model, parameters, resolution, calibration data and so forth (see 24 

Figure 1). Each of these has an associated uncertainty, and is therefore an assumption. In a quantitative 25 

analysis of uncertainty, we can only investigate (vary) a subset of these assumptions. This subset we call 26 

the input factors—note that this includes all items varied in a SA or UA, i.e. model parameters, as well as 27 

any other types of assumption that will be varied. In performing any uncertainty and sensitivity analysis, 28 

it is crucial to keep in mind that the uncertainty in the assumptions that are outside the set of input 29 

factors will not be explored (Nearing & Gupta, 2018; Saltelli, Stark, Becker, & Stano, 2015). The results of 30 

the model for any values of the input factors, we call the model output. 31 
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Focusing now on the uncertainty in the input factors alone, if the model is deterministic, then assessing 32 

the uncertainty in the output boils down to propagating the uncertainty from the input factors to the 33 

output, for example by repeatedly running the model using different values for the uncertain inputs 34 

within their plausible ranges. This can be done with a Monte Carlo simulation, or with some ad hoc 35 

design, to generate a distribution of possible model results (the grey area in Figure 1). 36 

  37 

Figure 1: Idealized uncertainty and sensitivity analysis. Uncertainty coming from heterogeneous sources is propagated 38 
through the model to generate an empirical distribution of the output of interest (grey curve). The uncertainty in the model 39 
output, captured e.g. by its variance, is then decomposed according to source, thus producing a sensitivity analysis. 40 

Characterising the output distribution – e.g. by constructing it empirically from the output data points, 41 

constitutes an uncertainty analysis. The UA may also involve extracting summary statistics, such as the 42 

mean, median, and variance, from this distribution and possibly by assigning confidence bounds, e.g. on 43 

the mean.   44 

Once this is done, the next step could be to use sensitivity analysis to assign this uncertainty to the input 45 

factors. Sensitivity analysis allows us to infer that, for example, “this factor alone is responsible for 70% 46 

of the uncertainty in the output”. 47 

Sensitivity analysis is used for many purposes. Primarily it is used as a tool to quantify the contributions 48 

of model inputs, or sub-groups of inputs, to the uncertainty in the model output—examples of such 49 

applications include (Eisenhower, O’Neill, Narayanan, Fonoberov, & Mezić, 2012) and (Becker et al., 50 

2012). This use of sensitivity analysis will be the focus of the present paper.  In this uncertainty setting, 51 

typical objectives are to identify which input factors contribute the most to model uncertainty (“factor 52 

prioritisation”) so that further information might be collected about these parameters to reduce model 53 
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uncertainty, or to identify factors which contribute very little and can potentially be fixed (“factor 54 

fixing”) (Saltelli & Tarantola, 2002). 55 

Other applications that are not necessarily related to uncertainty are for example in engineering design, 56 

where “design sensitivity analysis” is used as a tool for structural optimisation (Allaire, Jouve, & Toader, 57 

2004). Sensitivity analysis can also be used to better understand processes within models, and thereby, 58 

the natural systems on which they are based (Becker et al., 2011), or as a quality assurance tool: an 59 

unexpected strong dependence of the output upon an input deemed irrelevant might either illuminate 60 

the analyst on an unexpected feature of the system or reveal a conceptual or coding error. 61 

The importance of sensitivity analysis is widely acknowledged. Sensitivity analysis is prescribed in 62 

national and international guidelines in the context of impact assessment (e.g. (European Commission, 63 

2009; Office of Management and Budget, 2006; U.S. Environmental Protection Agency (EPA), 2009). 64 

When the output of a model feeds into policy prescription and planning, a sensitivity analysis would 65 

appear as an essential element of due diligence. 66 

Despite the clear importance of sensitivity analysis, there are a number of problems observed in 67 

practical sensitivity analysis and uncertainty analysis, which can be found in all fields of research. These 68 

problems range from confusions in terminology to statistically inaccurate techniques which can (perhaps 69 

dangerously) underestimate model uncertainty. Specifically: 70 

• While most practitioners of SA distinguish it from UA, modellers overall tend to conflate the two 71 

terms, e.g. performing an uncertainty analysis and calling it a sensitivity analysis. 72 

• The sensitivity analysis methodology often relies on so-called local techniques which are invalid 73 

for nonlinear models. 74 

One of the main aims of this paper is to back up these assertions with evidence. Demonstrating that 75 

there is a systematic problem in practical sensitivity analysis might be a first step towards improving the 76 

situation. Some reviews of sensitivity analysis practice do already exist: in (Ferretti, Saltelli, & Tarantola, 77 

2016), an assessment of the state of sensitivity analysis was performed using a bibliometric approach. 78 

(Shin, Guillaume, Croke, & Jakeman, 2013) review the state of sensitivity analysis (or lack thereof) in 79 

hydrological modelling. However, to the authors’ knowledge, there is no detailed cross-disciplinary 80 

assessment of the state of sensitivity analysis, as practised by modellers. 81 

Accordingly, this paper has the following objectives: 82 
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• To assess the “state” of sensitivity analysis across a range of academic disciplines. We do this by 83 

a systematic review of a large number of highly cited papers in which sensitivity analysis is the 84 

focus in some respect.  85 

• To discuss – based on this review - known problems and misinterpretations of sensitivity 86 

analysis, why these might occur, and propose some ideas for how these problems might be 87 

addressed. 88 

Following these objectives, in Section 2 we outline in more detail what we consider to be the basic 89 

requirements of a valid sensitivity analysis, as well as explaining commonly-observed problems. In 90 

Section 3 we outline a procedure for systematically selecting highly cited sensitivity analysis papers 91 

across a range of disciplines, and criteria for review. The results of this systematic review are presented 92 

in Section 4, which is followed by a discussion on the root of the problems observed, with some 93 

suggestions to improve the situation. Section 6 reports our main conclusions. 94 

2 Common pitfalls of sensitivity analysis 95 

There are a range of practical problems and methodological difficulties associated with sensitivity 96 

analysis. Here, we highlight two particular issues which we believe are particularly prevalent and could 97 

be addressed. 98 

The first is a simple issue of terminology—many scientists conflate the meaning of SA and UA. In a large 99 

class of instances (e.g. in economics) SA is understood as an analysis of the robustness of the prediction 100 

(UA). This is perhaps due to an influential econometric paper (Leamer, 1985), entitled “Sensitivity 101 

analysis would help”, whose problem setting and motivation were to ensure the robustness of a 102 

regression analysis with respect to various modelling choices, e.g. in the selection of regressors. As a 103 

result, in economics and finance, it is common to see the expression ‘sensitivity analysis’ used to mean 104 

what we have defined here as uncertainty analysis. Clearly, this can have an impact on the quality of an 105 

uncertainty and sensitivity analysis, if the objectives are not even clear. 106 

The second issue is that modellers tend to change factors one at a time (instead of globally), possibly as 107 

a result of their training and methodological disposition to think in terms of derivatives. Here we explore 108 

this technical issue in more depth. 109 
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Many practitioners accept a taxonomy of sensitivity analysis based on distinguishing between local and 110 

global methods (Saltelli et al., 2008). Let � be a generic black-box representation of a model, which has 111 

input factors � = {��, ��, … , �
} and a scalar output �, such that � = �(�). A local method in its 112 

simplest form yields the partial derivative of the model with respect to one of its input factors, i.e. 113 

�� ���⁄ . Two notable deficiencies of this definition of sensitivity are that first, if � is nonlinear with 114 

respect to ��, then its partial derivative will change depending on where in the range of ��  you choose to 115 

measure. Second, and more generally, if there are interactions between model inputs, then �� ���⁄  will 116 

change depending on the values of the remaining input factors as well. In short, first partial derivatives 117 

are only a valid measure of sensitivity when the model is linear, in which case �� ���⁄  will remain 118 

constant for any �.  119 

A common variation of the first partial derivative is usually referred to as the one at a time (OAT) 120 

approach. Let ��∗  be the nominal value of the ith input factor. Now define 121 

����� = �(��∗, ��∗, … , �����, … , �
∗) as the model output where all input factors are at nominal values 122 

except the ith, which is set to its maximum. An OAT sensitivity measure is e.g.  Δ� = (����� −123 

�����)/(����� − �����), where ����� follows a similar definition. 124 

The OAT approach, and partial derivatives (which are a type of OAT approach), keep all other input 125 

factors fixed except the one that is being perturbed. From here on, we use the term “OAT” to refer to 126 

both local sensitivity analysis approaches and OAT of the type discussed in the preceding paragraph. 127 

A global sensitivity analysis method, at the other extreme, could be an analysis of variance (ANOVA) as 128 

usually taught in experimental design, which informs the analyst about factors’ global influence in terms 129 

of their contribution to the variance of the model output, including the effect of interactions among 130 

factors (Box, Hunter, & Hunter, 2005). Perhaps the most prevalent example of a global measure is the 131 

first-order sensitivity index (Sobol’, 1993), 132 

�� =
��� � �~�(�|��)#

�(�)  

where �(�) is the unconditional variance of �, obtained when all factors �� are allowed to vary, and 133 

 �~�(�|��) is the mean of � when one factor is fixed. Incidentally, this measure was originally proposed 134 

by Karl Pearson to measure nonlinear dependence between random variables (Pearson, 1905).  The 135 

first-order sensitivity index is part of a class of sensitivity measures which are called ‘variance-based’. Its 136 

meaning (under the assumption of independence between input factors) can be expressed in plain 137 
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English:  �� is the expected fractional reduction in the variance of � that would be achieved if factor �� 138 

could be fixed. �� = 1 implies that all of the variance of � is driven by ��, and hence that fixing it also 139 

uniquely determines �. 140 

Other global approaches to sensitivity analysis include the elementary effects approach (Morris, 1991), 141 

global derivative-based measures (Sobol’ & Kucherenko, 2009), moment-independent methods (Da 142 

Veiga, 2015), variogram-based approaches (Razavi et al., 2019), and many others. A further discussion of 143 

the theory of sensitivity indices is beyond the scope of this paper and the reader is referred e.g. to 144 

(Saltelli et al., 2008) and (Ghanem et al., 2017).      145 

Global approaches are requisite to performing a valid sensitivity analysis when models feature 146 

nonlinearities and interactions. To understand the issue, it is helpful to think of the set of all possible 147 

combinations of input factors as an “input space”. For example, with two model inputs, any combination 148 

of values could be marked as a point on a two-dimensional plane, with the range of factor 1 on one axis, 149 

and the range of factor 2 on the other.  In the case of three input factors the input space would be a 150 

cube, and for higher numbers, a hypercube. Figure 2 (left) illustrates an OAT design with two input 151 

factors, and a corresponding global design (right) that might be used to estimate the global measures 152 

discussed in the previous section.  153 

Evidently, OAT designs cannot effectively explore a multidimensional space. We can further illustrate 154 

this with a simple example, taken from (Saltelli & Annoni, 2010). Imagine that the input space is a three-155 

dimensional cube of side one. Moving one factor at a time by a distance of ½ away from the centre of 156 

the cube generates points on the faces of the cube, but never on its corners. All these points are in fact 157 

on the surface of a sphere internal and tangent to the cube, as illustrated in Figure 3. The volume of the 158 

sphere divided by the volume of the cube is about ½. If we increase the number of dimensions this ratio 159 

x 
2 

Max x 2 

Nominal point  

x 1 

x

2 

x 1 Max x 1 Min x 1 

Min x 2

Figure 1 OAT design (left) contrasted against global design (right) 
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goes towards zero very quickly. In ten dimensions, the volume of the hypersphere divided by the volume 160 

of the hypercube is 0.0025, one-fourth of one percent. In practice, it is even more restrictive than that 161 

because the OAT design does not even explore inside the hypersphere, and is limited to a “hypercross”. 162 

In other words, moving factors OAT in ten dimensions leaves over 99.75% of the input space totally 163 

unexplored. This under-exploration of the input space directly translates into a deficient sensitivity 164 

analysis, and is but one of the many incarnations of the so-called “curse of dimensionality”, and the 165 

reason why an OAT SA is perfunctory, unless the model is proven to be linear.   166 

 167 

Figure 3: A sphere included in a cube (three-dimensional case) and tangent to its faces. The volume of the sphere divided 168 
that of the cube is roughly 1/2. If the dimension were ten instead of three the same ratio would be 0.0025. 169 

Statisticians are well acquainted with this problem. This is why, in the theory of experimental design 170 

(Box et al., 2005) factors are moved in groups, rather than OAT, to optimize the exploration of the space 171 

of the factors. In sensitivity analysis, global designs are either based on random, quasi-random or space-172 

filling designs (see Figure 2, right); or on OAT designs that are repeated in multiple locations of the input 173 

space—the latter are used for e.g. global derivative based measures, Monte Carlo estimation of 174 

variance-based sensitivity indices, and elementary effects, among others. 175 

3 Meta-analysis 176 

In order to understand the prevalence and type of sensitivity analysis across different fields, and to 177 

understand the extent of the issues discussed in the previous section, an extensive literature review (a 178 

meta-study) was carried out.  The review was based on highly cited articles that have a focus on 179 
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sensitivity analysis. The reasoning here was that the most highly cited articles should represent, on 180 

average, “commonest practice” relative to that field. Therefore, by analysing these papers, we should be 181 

able to conclude, with reasonable confidence, that the rigour of sensitivity analysis in a given field is at, 182 

or below, the level of its top-cited papers. 183 

3.1 Selection procedure 184 

The literature search was conducted on the Scopus database. In order to identify relevant papers, the 185 

following search criteria were used (after a few iterations of analysis and refinement)c . First, the strings 186 

“sensitivity analysis” and “model/modelling”, and “uncertainty” were required to be present in the title, 187 

abstract or keywords. This ensures that the paper has a significant focus on sensitivity analysis, that it is 188 

related to mathematical models, and concerns uncertainty (as opposed to e.g. design sensitivity analysis 189 

and optimisation, which is a separate topic). Second, the papers were restricted to the years 2012-2017, 190 

in order to provide a sample of recent research. Finally, the results were required to be journal articles, 191 

and in English (the latter for ease of reviewing).  192 

This search resulted in around 6000 articles. The search query is deliberately restrictive, in that 193 

sensitivity analysis articles exist that do not mention “model” in the abstract, title or keywords, for 194 

example. However, it was considered to be an unbiased way of automatically selecting sensitivity 195 

analysis papers across fields. Preliminary attempts indicated that simply mentioning “sensitivity 196 

analysis” yielded far too many irrelevant articles (around 47,000). The sample here, therefore, can be 197 

considered as representative, but the numbers of papers returned are significantly below the true 198 

number of sensitivity analysis papers in the literature. 199 

Each paper returned by the search is tagged using one or more subject identifiers. Subject areas with 200 

less than 100 articles meeting the search criteria (of which there were eight) were not examined in this 201 

study. The resulting 19 subject areas are as follows:   202 

• AgrBioSci (Agricultural and Biological Sciences) 203 

• BiochemGenMBio (Biochemistry, Genetics and Molecular Biology) 204 

• BusManAcc (Business, Management and Accounting) 205 

• Chemi (Chemistry) 206 

• ChemEng (Chemical Engineering) 207 

• CompSci (Computer Science) 208 

                                                           
c Exact query specifications available in the Additional Online Material. Retrieved from https://www.scopus.com between 
March and May 2017 
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• DecSci (Decisional Science) 209 

• EarthSci (Earth and Planetary Sciences) 210 

• EconFin (Economy and Finance) 211 

• Energy (Energy) 212 

• Engineering (Engineering) 213 

• EnvSci (Environmental Science) 214 

• ImmunMicrobio (Immunology and Microbiology) 215 

• MatSci (Material Science) 216 

• Math (Math) 217 

• Medicine (Medicine) 218 

• PharTox (Pharmacology and Toxicology) 219 

• PhysAstro (Physics and Astronomy) 220 

• SocSci (Social Science) 221 

In order to provide a manageable sample of articles for review, the top twenty most-cited papers from 222 

each field were selected. Since most papers include more than one subject identifier, some papers 223 

featured in more than one of the top-twenty lists. The reviewing was distributed between the authors of 224 

the present article. Even though the initial search criteria had been refined to focus on model-related 225 

sensitivity analysis, a total of 44 papers had to be discarded as not including a sensitivity analysis, nor an 226 

uncertainty analysis, or because they reported an analysis of the dependence of the output upon just 227 

one factor (which does not constitute a sensitivity analysis). A total of 280 papers were finally retained 228 

for the analysis, though in total 324 papers were reviewed. 229 

A limitation of this selection procedure is that older papers are more likely to be well-cited, see e.g. 230 

(Davis & Cochran, 2015), therefore the distribution of papers reviewed will be biased towards older 231 

articles (our results confirm this bias). However, our reasoning is that first, it is only after a few years 232 

that it is possible to reliably identify “influential” (well-cited) papers from less influential ones, so it 233 

would be very difficult to identify influential papers only from 2017, for example. Moreover, we believe 234 

that highly cited older papers will be used as a benchmark by many researchers to guide their 235 

methodology. So highly cited papers, even if a few years old, can still be used as an indicator of the state 236 

of sensitivity analysis in a given field. 237 

3.2 Review criteria 238 
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Each paper was reviewed against a set of simple criteria, as follows. 239 

1. Was an uncertainty analysis performed? If so, was a global or local approach used? 240 

2. Was a sensitivity analysis performed? If so, was a global or local approach used? 241 

3. Was the paper primarily focused on the method of sensitivity analysis, or on the model 242 

(application)? 243 

4. Was the model used linear, nonlinear, or was it unclear? 244 

These criteria are explained in more detail below. Additional to these criteria, some general notes on 245 

each paper were taken. 246 

3.2.1 OAT/global uncertainty and sensitivity analysis 247 

The identification of OAT and global sensitivity analyses is one of the focal points of this study. In 248 

reviewing each paper, we noted whether an uncertainty analysis or sensitivity analysis had been 249 

performed, or both. For both the uncertainty and sensitivity analysis, we checked to see if the results 250 

had been generated using global or OAT methods, as discussed in Section 3.2. 251 

As discussed, we define OAT methods as all approaches where factors are moved only one at a time, 252 

even when derivatives are computed efficiently, such as when using the adjoint method (Cacuci, 2005). 253 

Note that some methods, such as that in (Sobol’ & Kucherenko, 2009) or in (Morris, 1991)  are based on 254 

derivatives but are classified as global methods because they sample partial derivatives or incremental 255 

ratios at multiple locations in the input space. 256 

We have defined as global any approach that is based on moving factors together, such as in Design of 257 

Experiment (DoE). A Monte Carlo analysis followed by an analysis of the scatterplots of � versus the 258 

various input factors �� is also classified as global (albeit qualitative), as well as approaches based on 259 

regression coefficients of � versus the ��, the use of Sobol’ sensitivity indices - independently of the way 260 

these are computed, screening methods such as the method of Morris, Monte Carlo filtering, various 261 

methods known as ‘moment-independent’ and so on, see (Saltelli et al., 2008) for a description, and the 262 

additional online material for the methods met in the papers reviewed. Useful recent reviews are 263 

(Norton, 2015)(Pianosi et al., 2016). 264 

One might wonder what an OAT uncertainty analysis looks like. In fact, some papers quantify 265 

uncertainty by observing ����� and ����� for each input factor during an OAT experiment, and assign the 266 

range of uncertainty on � as [����, ����], where ���� = min�(�����), and similarly for �����. Clearly, 267 
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this ignores the additional uncertainty in � when more than one factor at a time is set to its maximum or 268 

minimum values. 269 

3.2.2 Method/model 270 

It is useful to make a distinction between method and model-focused papers. 271 

Model-focused papers are defined as those which focus on a model, and use sensitivity analysis as a tool 272 

to investigate uncertainty or other aspects of the model. The primary conclusions of the paper are 273 

therefore related to the model. These types of paper will often have a greater impact on the application 274 

(which is ultimately the outcome of concern), for example in assessing the uncertainty/sensitivity of 275 

climate models or other models used in decision-making. 276 

Method-focused papers are those that introduce sensitivity analysis methodology, and use a model as a 277 

case study to demonstrate the new approach. Conclusions are therefore focused on the performance of 278 

the method, and results relating to the model are of secondary interest. Typically, the authors are 279 

familiar with sensitivity analysis techniques, which allows them to propose new approaches. These 280 

papers are more likely to feature high-quality sensitivity analysis techniques. 281 

 282 

3.2.3 Model linearity 283 

Finally, since OAT approaches are only valid in the case of a linear model, each paper was assessed to 284 

see if the application model was demonstrably linear or not. In many cases this was unclear, but where 285 

it was possible to ascertain linearity, this was recorded. 286 

4 Results 287 

The full results of this study, including the scoring matrix, as well as the authors’ review notes, are given 288 

in the Additional Online Material, and a summary table is given in the Appendix. 289 

4.1 Prevalence across disciplines 290 

Figure 4 shows the distribution of sensitivity analysis papers across research fields, by density (number 291 

of SA papers divided by the total number in the search period) and by number. Given that model use is 292 

pervasive in the disciplines investigated these densities are very low, even accounting for the fact that 293 

not all sensitivity analysis papers will have been picked up by the search. This observation is indeed 294 
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supported in investigations focusing on one discipline, such as hydrology (Shin et al., 2013). The greatest 295 

density of papers is found in decision science, as well as model-intensive subjects such as earth sciences, 296 

environmental science and energy. The greatest raw numbers are found in environmental science, 297 

engineering, and medicine, although the latter does not have a high density due to the very large overall 298 

research output. Note that articles can be tagged with more than one subject identifier. 299 

 300 

Figure 4: Density and number of sensitivity analysis articles returned by search criteria, by subject 301 

4.2 Uncertainty analysis 302 

Paper focus 
Method 10% 

Model 90% 

Model linearity Linear 7% 
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Nonlinear 61% 

Unclear 32% 

Uncertainty analysis type 

One at a time 7% 

Global 21% 

Unclear/absent 72% 

Sensitivity analysis type 

One at a time 34% 

Global 41% 

Unclear/absent 25% 

Table 1: Percentages of reviewed papers based on focus, model linearity, uncertainty and sensitivity analysis type. 303 

Although, as discussed, uncertainty analysis and sensitivity analysis are distinct (but related) disciplines, 304 

in the literature the term “sensitivity analysis” is sometimes used to describe both terms. As a result, the 305 

set of papers reviewed also included number of papers that were concerned with pure UA. Indeed, of 306 

the 280 papers reviewed, 24 did not contain any kind of sensitivity analysis and instead only concerned 307 

uncertainty analysis: these represent clear conflations of sensitivity and uncertainty analysis.  308 

Table 1 reports the occurrence of UA found in the literature review. In about ¾ of papers, there was 309 

either no UA present, or the methodology was not clearly specified. The former is due to the fact that 310 

our search query specifically targeted sensitivity analysis papers, so it is unsurprising that there are a 311 

large proportion of papers with little attention given to the UA part. On the other hand, about ¾ of the 312 

UAs that were observed were global in nature. This is most likely because a Monte Carlo analysis 313 

(randomly sampling from input distributions) is fairly intuitive and accessible to most researchers, 314 

whereas an “OAT uncertainty analysis” is arguably less intuitive. 315 

The same analysis can be applied by subject area: see Figure 5. Here we see that uncertainty analysis 316 

was found much more commonly in Pharmacology and Toxicology and Medicine (within the papers that 317 

we reviewed) than Social Sciences and Computer Science, for example. This should not be taken as an 318 

overall indication of the quantity of uncertainty analysis, because our sample has overwhelmingly 319 

targeted sensitivity analysis papers. However, it indicates that in Pharmacology and Toxicology and 320 

Medicine, either it is particularly common to perform UA simultaneously with SA, or the terms are 321 

confused. Taking the case of Pharmacology and Toxicology, we find that of the papers reviewed, only 322 

four had a sensitivity analysis, whereas ten had an uncertainty analysis. This flags that sensitivity analysis 323 

may often refer to uncertainty analysis within this field. 324 

On the other hand, a quite prevalent trend in some fields is the practice of performing a global UA (i.e. 325 

via a Monte Carlo analysis) side by side with an OAT SA: this was observed in particular, in Medicine, and 326 

in Economics & Finance. In Medicine, for example, it seems to be common to perform an OAT sensitivity 327 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

analysis, presenting the results in a tornado plot (a bar chart which shows the effect on the output of 328 

varying each assumption by a fixed amount in either direction). We speculate that the authors involved 329 

were unaware of the chance to use elementary scatterplots of the output versus the input to rank the 330 

factors by importance – or simply they did not find this kind of analysis relevant or useful. In any case, 331 

once a certain practice becomes established within a given field (i.e. found in highly cited papers), it sets 332 

a strong precedent which is difficult to supersede. Researchers and reviewers (not unreasonably) 333 

assume that if a method is found in influential articles then it must be correct. 334 

 335 

Figure 5: Classification of uncertainty analysis by subject identifier, sorted by proportion of global methods 336 

4.3 Global vs local SA 337 
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Turning now to sensitivity analysis, Table 1 shows that 41% of sensitivity analyses use global methods, 338 

with 34% using OAT methods, and 25% having an unclear method type or no sensitivity analysis present. 339 

This is encouraging, in that nearly half of studies use global methods. Still, at least one-third of highly 340 

cited papers, matching our search criteria, use deficient OAT methods.  341 

Figure 6 shows that the distribution of global methods varies widely across disciplines. Immunology and 342 

Microbiology show more than 70% of papers featuring global methods. This is followed by disciplines 343 

that are fairly model-intensive, such as Material Science, Biochemistry, Computer Science, and 344 

Engineering. At the other end of the spectrum, Pharmacology and Toxicology; and Business, 345 

Management and Accounting have very low proportions of global SA—about 10% and 20% respectively. 346 

Perhaps surprisingly, some disciplines that tend to rely heavily on large computer models, such as Earth 347 

Science and Environmental Science, still feature quite low rates of global sensitivity analysis. This is a 348 

concern, particularly when large-budget models are used for making significant decisions, such as 349 

climate models in policy-making—see a discussion in (Saltelli et al., 2015). On the other hand, other 350 

model-heavy subjects such as Engineering and Materials Science have higher ratios. Yet it is worth 351 

recalling that even Engineering has only around a half of confirmed global approaches, and these are the 352 

most highly cited articles. 353 
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 354 

Figure 6: Classification of sensitivity analysis by subject identifier, sorted by proportion of global methods. 355 

As a complement to the manual literature review, we also investigated the prevalence of UA and SA 356 

methods based purely on text mining, by identifying at least one known global sensitivity analysis 357 

technique (i.e. variance-based, metamodeling, elementary effects etc.), in keeping with the 358 

methodology of a previous paper from some of the present authors (Ferretti et al., 2016). Figure 7 359 

shows the results of that paper as extended to 2015 and 2016 (the original analysis stopped at 2014). 360 

This is a rougher approach but allows the inclusion of a much larger number of papers. Here it would 361 

seem that an even smaller fraction of papers that feature sensitivity analysis adopts a global SA 362 

approach.  363 
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At least three reasons explain the difference with the results in the present paper. First, as has been 364 

well-established here, “sensitivity analysis” is often also used to indicate uncertainty analysis, so that the 365 

upper curve in Figure 7 shows a mixture of UA and SA, as well as an inevitable share of papers not 366 

pertaining to mathematical modelling. Secondly, the estimation of the number of global SA papers is 367 

likely an underestimate because papers may apply simpler global methods, e.g. a scatterplot-based 368 

analysis, but not necessarily refer to the articles or techniques listed. Finally, in the manual literature 369 

review we focus only on highly cited papers, which should (ideally) be of a higher standard than the 370 

average in a given field. 371 

 372 

Figure  7: Results from Ferretti et al., extended to 2016 (present paper) 373 

4.4 Method and model focus 374 

Table 1 shows that most papers are unsurprisingly focused on the application, i.e. on the model at hand, 375 

and not on the methods. Of the total of 280 papers, 35 were methodological, i.e. having SA/UA methods 376 

as their subject. Of these, 24 advocate the use of global methods. On the one hand, this is encouraging 377 

because it shows that global methods are being promoted. On the other hand, a small but significant 378 

fraction of methodological papers are still advising statistically-incorrect OAT methods. 379 

We note among the method papers a marked preference for variance-based measures of sensitivity – 380 

such as the sensitivity indices of which the Pearson correlation ratio discussed previously is a special 381 

case. We also see an active line of research in moment-independent methods (Borgonovo, Castaings, & 382 

Tarantola, 2012). 383 
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4.5 Model linearity 384 

As discussed, if a model is linear, an OAT or derivative based approach is adequate. However, the 385 

linearity or nonlinearity of the model is rarely evident, at least from the manuscripts. Table 1 shows the 386 

proportions of linear and nonlinear models. Only in 8% of the cases were we able to conclude that the 387 

model was definitely linear, whereas over half of papers included clearly nonlinear models, with the 388 

remainder being unclear. This demonstrates that first, researchers tend to work with nonlinear models. 389 

Second, in the large majority of cases, global methods are essential to perform a methodologically-390 

sound sensitivity analysis. 391 

5 Discussion 392 

5.1 Reasons for bad practice 393 

The results of this study clearly show that there are serious methodological deficiencies in highly cited 394 

papers in most if not all disciplines. Why is this so often the case? We speculate that this is due to at 395 

least five reasons, which we outline here. 396 

• First, sensitivity analysis is intrinsically attached to modelling, which itself is not a unified 397 

subject. Indeed, modelling typically requires a set of skills learned through experience and hence 398 

includes elements of craft as much as of science (Rosen, 1991); as such every discipline goes 399 

about modelling following local disciplinary standards and practices (Padilla, Diallo, Lynch, & 400 

Gore, 2018). Similarly, sensitivity analysis practice is found in largely isolated pockets attached 401 

to each modelling discipline. This fragmentation hinders development of the subject and 402 

spreading of good practice, while simultaneously allowing malpractice to survive relatively 403 

unchallenged. This issue is discussed in more depth in the following section. 404 

• A second point is that most scientists conflate the meaning of SA and UA. If the meaning of 405 

sensitivity analysis is not even understood, it is unsurprising that the quality of sensitivity 406 

analysis is sometimes lacking. 407 

• Third, global sensitivity analysis unavoidably requires a good background in statistics to 408 

implement and to interpret results. Some researchers simply haven’t enough knowledge and 409 

training in statistics and consequently, the cost in time and money required to learn and 410 

understand the necessary techniques may be considered prohibitive. More generally, 411 

researchers may not even be aware that global sensitivity analysis techniques exist. Under these 412 
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circumstances, it seems that researchers often revert to the more intuitive OAT approach. 413 

Among other things, it offers an ease of interpretation: in moving just one input factor, the 414 

change observed in the model output must come from that input alone. Moreover, global 415 

methods may be discouraging in that the more factors that are moved, the higher the chance 416 

that the model will crash or misbehave. Note that this is precisely the reason why a global SA is 417 

a good instrument of model verification: it is unusual to run a global SA without detecting model 418 

errors – modellers call this jokingly Lubarsky's Law of Cybernetic Entomology, according to 419 

which ‘there is always one more bug’. 420 

• Fourth, although mature global sensitivity analysis methods have been around for more than 25 421 

years, this still may not be enough time for established good practice to filter down into the 422 

many research fields in which modelling is used.  This may be partly due to a lack of comparative 423 

examples across a range of fields. Moreover, researchers tend to emulate methods found in 424 

highly cited papers (assuming that they are best practice), which as this study has 425 

demonstrated, are often methodologically deficient. 426 

• Finally, as noted in (Leamer, 2010), the reluctance to take up these methods may be due to their 427 

candour. A proper method, by honestly propagating all of the input uncertainty, may lead to an 428 

inconveniently wide distribution of the output of interest. For example, a cost-benefit analysis 429 

reporting a distribution encompassing possible large losses as well as large gains may not be 430 

what the owner of the problem wishes to hear. This is the same as to say that the volatility of 431 

the inference is exposed, and thus is the insufficiency of the evidence. According to (Leamer, 432 

2010), as well as to (Funtowicz & Ravetz, 1990), this situation may induce modellers to 433 

‘massage’ the uncertainty in the input factors so that the output falls in a more desirable zone. 434 

For cases where a considerable asymmetry exists between model developers and users 435 

(Jakeman, Letcher, & Norton, 2006) it  might be advisable to resort to sensitivity auditing, an 436 

extension of sensitivity analysis beyond parametric analysis to include an assessment of the 437 

entire knowledge- and model-generating process for policy-related cases, (Saltelli, Guimaraes 438 

Pereira, van der Sluijs, & Funtowicz, 2013), to assess the credibility of degree of uncertainty 439 

attributed to each input factor, and to make sure that the uncertainty has been neither inflated 440 

nor deflated to achieve a desired end. Inflation and deflation of uncertainty are quite common 441 

in e.g. regulatory controversies; typically, the ‘regulated’ tend to inflate uncertainty so as to 442 

deter regulation, while the opposite is the case for regulators (Michaels, 2008).  Sensitivity 443 
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auditing’s seven point checklist is recommended by the European Commission guidelines for 444 

impact assessment (European Commission, 2009), p.393. 445 

5.2 Isolated communities 446 

The scattered state of sensitivity analysis practice merits some further discussion. If modelling is a non-447 

standardised discipline (Padilla et al., 2018), the same holds a fortiori for uncertainty and sensitivity 448 

analysis, hence the difficulty for good practices to establish themselves. Researchers from different 449 

fields have difficulties to communicate with one another in a transversal topic, such as SA, that is 450 

practised across a wide range of scientific and modelling disciplines) . 451 

Robert Rosen, a system ecologist, tackles the specificities of modelling in the scientific method in his 452 

work ‘Life Itself’(Rosen, 1991). Here he suggests that when a model is built to represent a natural 453 

system, we should look at the play of causality. The argument is that the natural system is kept together 454 

– Rosen uses the word ‘entailed’ - by material, efficient and final causality. In contrast, the formal 455 

system, i.e. the model, is only internally entailed by formal causality. Rosen uses here the four causality 456 

categories of Aristotle, on which we will not dwell here, to highlight that no arrow of causality flows 457 

from the natural system to the formal one. In other words, the act of encoding (Figure 8) is not driven by 458 

causality, which would fix the model specification, but is driven by the needs and the craft of the 459 

modeller. The implication is that different modelling teams, given the same data, can produce 460 

altogether different models and inference (Refsgaard, van der Sluijs, Brown, & van der Keur, 2006).  461 

Thus, the success of the modelling operation is judged by the usefulness – or otherwise - of the insights 462 

made possible by the operation of decoding, which is another way of saying that all models are wrong 463 

but some are useful – according to an aphorism attributed to George Box.   464 

 465 

Figure 8: The modelling relation following Rosen (1991). For a discussion see (Saltelli et al., 2008). 466 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Models thus depend crucially upon craftmanship of the modellers. This, together with the diversity of 467 

modelling applications, motives, and constraints, explain why modelling never became an independent 468 

discipline. In our opinion this contributes to explaining why modelling is so discipline-specific, as noted 469 

by (Padilla et al., 2018).  The spread in modelling practices and cultures may be one of the reasons why 470 

methodologies which are ancillary to modelling, such as uncertainty and sensitivity analysis, are not part 471 

of a standardized syllabus being taught across disciplines, and are at times ignored even in communities 472 

proficient in modelling, such as for example hydrology (Shin et al., 2013). 473 

Despite the fragmentation of sensitivity and uncertainty analysis, some cross-disciplinary networks exist. 474 

One such community might be said to have formed around a series of SAMO conferences (for sensitivity 475 

analysis of model output, see http://samo2016.univ-reunion.fr/). SAMO has been held every three years 476 

since 1995. This community is active in training and dissemination. However, SAMO by no means 477 

captures the full spectrum of practitioners interested in uncertainty and sensitivity analysis. For 478 

example, in the United States, SA-related activities are under the heading of ‘Verification, Validation and 479 

Uncertainty Quantification’ (VVUQ), for which a journal of the American Society of Mechanical Engineers 480 

is available (http://verification.asmedigitalcollection.asme.org/journal.aspx). Other sensitivity analysis 481 

related gatherings include the Conference on Uncertainty Quantification organised by the Society for 482 

Industrial and Applied Mathematics, the International Conference on Uncertainty Quantification in 483 

Computational Sciences and Engineering organised by the European Community on Computational 484 

Methods in Applied Sciences, and  sessions in thematic conferences such as the Uncertainty in Structural 485 

Dynamics conference organised by Department of Mechanical Engineering of the KU Leuven, or the 486 

session on Advances in Diagnostics, Sensitivity, and Uncertainty Analysis of Earth and Environmental 487 

Systems Models organised annually at the European Geosciences Union conference in Vienna. 488 

Despite these communities, the majority of practitioners remain scattered in isolated pockets, and 489 

sensitivity analysis is hence not part of a recognized syllabus. Who or what scientific forum can then 490 

decide if a method is a good or a bad practice? To make an example, in (Nearing & Gupta, 2018; Stark & 491 

Saltelli, 2018), who can authoritatively discourage modellers from over interpreting the results from 492 

multi-model ensembles as if they were a random sample from a distribution? This question remains - for 493 

the time being, unanswered. A possible solution to this unsatisfactory state of affairs would be that 494 

statistics as a discipline takes responsibility for statistical methods for model validation and verification. 495 

This would not make modelling into a discipline but would go a long way toward improving modelling 496 

practice. Additionally, most if not all the tools of sensitivity analysis are statistical in nature. This thesis 497 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

has been suggested in a discussion paper entitled ‘Should statistics rescue mathematical modelling?’  498 

(Saltelli, 2018). 499 

5.3 Parallels with the p-value 500 

The systematic problems observed in sensitivity analysis share similarities with the recent crisis in 501 

statistics over the p-value.  A paper published in 2005 (Ioannidis, 2005) warned about the poor quality of 502 

most published research results. The paper was taken up by the media, and the periodical “The 503 

Economist” devoted its cover to the issue in 2013 (“How science goes wrong,” 2013), with a full article 504 

describing the subtleties of use and misuse of statistics in deciding about the significance of scientific 505 

results. The specific subject of concern was the use of the p-value, “the probability under a specified 506 

statistical model that a statistical summary of the data (e.g., the sample mean difference between two 507 

compared groups) would be equal to or more extreme than its observed value” (Wasserstein & Lazar, 508 

2016). The p-value is used as a fundamental tool by researchers to decide if a given result is just the 509 

result of chance or indeed an effect worth publishing.  510 

In 2016, the pressure surrounding the statistical community was so high that the American Statistical 511 

Association felt the need to intervene with a statement (Wasserstein & Lazar, 2016) to clarify how the 512 

test should be used. Useful reading on the topic are (Colquhoun, 2014; Gigerenzer & Marewski, 2014; 513 

Stark & Saltelli, 2018). These articles show a complex mix of causes – from poor training to bad 514 

incentives – which result in the generalized failure in the use of the p-value, evidenced by attempts to 515 

repeat published results, see e.g. (Shanks et al., 2015).  516 

The problem is seen as a combination of confirmation bias - authors looking for the effect they presume 517 

will be there (confirmation bias), or authors desperate to publish a positive result (publish or perish), of 518 

p-hacking – changing the setup of the study or the composition of the sample till an effect emerges, and 519 

HARKing, formulating the research Hypothesis After the Results are Known, (Kerr, 1998). The latter 520 

involves repeatedly running comparison tests between different combinations of variables until a 521 

“significant” result is found, which violates the conditions of applicability of the P-test.   522 

Overall, it is clear that the consequences of bad statistics can be dramatic – for example when wrong 523 

cures for cancer are identified at the pre-clinical stage of research, and are then passed on to the clinical 524 

trial phase (Begley & Ellis, 2012). Similarly, it is not difficult to imagine the consequences of a wrong or 525 

missing uncertainty and sensitivity analyses given the pervasive role of models. In risk analysis this can 526 

lead to ignoring dangerous operating conditions for a facility, in decision analysis, this can lead to wrong 527 
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investments or policies. A simple sensitivity analysis run on the formula used for the pricing of the 528 

complex derivative products at the root of the sub-prime mortgage crisis would have revealed the 529 

fragility of the formula (Salmon, 2009; Wilmott & Orrell, 2017). Whether the ‘quants’ – the experts in 530 

charge of these mathematical constructs – wanted to know this fragility is of course another story. 531 

Finally, a missing uncertainty analysis allows audacious risk or cost-benefit analysis to be run over 532 

centennial time scales while a proper UA would show clearly that the uncertainties are too big to 533 

conclude anything. An example discussed in (Saltelli et al., 2015) was the computing the increased crime 534 

rate due to increased temperature at the year 2100. 535 

5.4 Recommendations for best practice 536 

It is outside of the scope of this paper to give a detailed guide to sensitivity analysis—for thorough 537 

references, readers are referred to (Saltelli et al., 2008) or (Ghanem et al., 2017). Nevertheless, and 538 

although considerable differences exist in the use of sensitivity analysis among disciplines, all fields 539 

would benefit from the adoption of good practices.  Our personal list of preferences, which agrees with 540 

the methodological papers seen in this review, would include the following recommendations: 541 

• Both uncertainty and sensitivity analysis should be based on a global exploration of the space of 542 

input factors, be it using an experimental design, Monte Carlo or other ad-hoc designs. The 543 

discussion in this paper has demonstrated that local/OAT methods do not adequately represent 544 

models with nonlinearities. 545 

• With some exceptions, it is advisable to perform both uncertainty and sensitivity analysis. Once 546 

an analyst has performed an uncertainty analysis and is informed of the robustness of the 547 

inference, it would appear natural to ascertain where volatility/uncertainty is coming from. At 548 

the other extreme, a sensitivity analysis without uncertainty analysis is usually illogical – the 549 

relative importance of a factor on the model output has a different relevance depending on 550 

whether the output has a small or large variance. However, there are cases – for instance, 551 

studies to identify the dominant effects on the output for a subsequent model reduction or 552 

calibration analysis – where the analyst may be satisfied with a pure SA.  553 

• Sensitivity and uncertainty analysis should be focused on a question. Most models have many 554 

outputs, and these outputs can be used to answer a range of different questions. The 555 

relationship (sensitivity) between the input factors and each different model output can be very 556 

different. For this reason, it is essential to focus the sensitivity analysis on the question 557 

addressed by the model rather than more generally on the model. 558 
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• When sensitivity analysis is performed, it should allow the relative importance of input factors 559 

and combinations of factors, to be assessed, either visually (scatterplots) or quantitatively 560 

(regression coefficients, sensitivity measures or other). 561 

• Sensitivity and uncertainty analysis are themselves uncertain, because there is considerable 562 

uncertainty in quantifying the uncertainty in input factors, and modellers should be frank about 563 

how they arrived at the supposed uncertainties (Saltelli et al., 2013). This should be kept in mind 564 

and efforts made to capture the uncertainty of input assumptions as accurately as possible. 565 

• Even an apparently perfect uncertainty and sensitivity analysis is no assurance against error. As 566 

noted by (Pilkey & Pilkey-Jarvis, 2009) “It is important to recognize that the sensitivity of the 567 

parameter in the equation is what is being determined, not the sensitivity of the parameter in 568 

nature. […] If the model is wrong or if it is a poor representation of reality, determining the 569 

sensitivity of an individual parameter in the model is a meaningless pursuit.” 570 

As regards what method should be used, our preference is for methods which are exploratory, model-571 

independent, able to capture interactions and to treat a group of factors. A carefully performed 572 

uncertainty analysis, followed by sensitivity analysis, is an important ingredient of the quality assurance 573 

of a model as well as a necessary condition for any model-based analysis or inference.  574 

6 Conclusions 575 

The main message of the present work is that a carefully performed sensitivity analysis is an important 576 

ingredient of the quality assurance of a model as well as a necessary condition for any model-based 577 

analysis or inference. However, such analyses are not common enough and often inaccurate, indicating 578 

that action is urgent on the front of quality assurance procedures for mathematical models. In 579 

particular, a significant fraction of papers investigated use sensitivity analysis approaches which fail 580 

elementary considerations of experimental design and do not properly explore the space of the input 581 

factors, with the result that uncertainty is generally underestimated and sensitivity is wrongly estimated. 582 

Up to 65% of the reviewed (highly cited) papers are based on inadequate methods (i.e. varying one 583 

input factor at a time), although even in the most generous interpretation, where all models with 584 

unclear linearity are assumed linear, still over 20% of papers contain inadequate methodology. Further, 585 

a significant number of papers confuse sensitivity and uncertainty analysis, which is likely to exacerbate 586 

the problem with spreading good practice. 587 
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The fact that these figures concern highly cited papers has two implications: first, if we assume that 588 

highly cited papers represent the upper end of methodological rigour in a given field, then the overall 589 

problem may be even worse. Second, these are some of the most visible papers in their field, and are 590 

used as guides for best practice. Therefore, they can promote continued deficient methodology. 591 

In our opinion, the problem with sensitivity analysis is partly attributable to the fact that mathematical 592 

modelling is not a discipline in its own right, and every branch of science and technology approaches 593 

modelling following its own culture and practice. Uncertainty and sensitivity analyses are likewise 594 

orphans of a disciplinary home. One can also note that signals of distress as to the quality of 595 

mathematical modelling are heard from different disciplines: from economics (Reinert, 2000; Romer, 596 

2015) to natural sciences (Oreskes, 2000; Oreskes, Shrader-Frechette, & Belitz, 1994; Pilkey & Pilkey-597 

Jarvis, 2009). The situation has worrying analogies with what we have witnessed in data analysis, where 598 

misuse of the p-value (Colquhoun, 2014) has been singled out as one of the reasons of the present 599 

reproducibility crisis affecting science (Ioannidis, 2005; Saltelli & Funtowicz, 2017). The importance of 600 

this analogy is in the warning it sounds for the credibility of science if such pervasive weaknesses in 601 

methodology are not addressed.  The need to heed this warning in the case of sensitivity and 602 

uncertainty analysis is becoming increasingly urgent. 603 
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Annex 737 

Table 1 shows the results of the reviews in a condensed form. The meaning of the headings is given in 738 

Section 3. 739 

Category 

METHOD MODEL LINEARITY PAPER FOCUS Total 

reviewed Global SA OAT SA Global UA OAT UA Other/Unclear Linear Nonlinear Unclear Method Model 

AgrBioSci 15 11 6 0 6 1 22 4 3 24 27 

BiochemGenMBio 23 15 6 1 7 2 19 15 0 36 36 

BusManAcc 4 7 5 5 1 1 18 2 3 18 21 

Chemi 10 8 2 0 5 0 17 5 1 21 22 

ChemEng 12 12 4 0 5 0 16 12 1 27 28 

CompSci 21 9 1 1 2 8 16 6 11 22 33 

DecSci 9 7 3 4 0 2 20 1 7 15 22 

EarthSci 11 13 4 1 17 5 13 24 2 41 43 

EconFin 5 8 6 3 0 1 16 1 0 18 18 

Energy 14 15 3 4 2 3 17 16 0 36 36 

Engineering 38 16 5 5 5 3 51 11 3 62 65 

EnvSci 31 22 14 4 16 6 44 24 11 67 78 

ImmunMicrobio 19 7 3 0 5 2 6 13 0 21 21 

Math 21 15 3 2 6 4 24 13 11 29 40 

MatSci 13 4 1 1 0 0 16 2 0 18 18 

Medicine 26 30 25 4 13 2 24 37 2 62 64 

PharTox 2 2 9 1 3 1 11 5 1 18 19 

PhysAstro 13 9 4 0 0 1 20 2 2 21 23 

SocSci 10 5 0 4 2 1 14 5 6 15 21 

Table 2: Summary of results by subject identifier. 740 
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Highlights of “Why so many published sensitivity analyses are false: a systematic review of sensitivity 

analysis practices” 

• A systematic review of scientific papers mentioning sensitivity analysis has been performed 

• The analysis addresses the use of SA in the context of mathematical modelling, focusing on 

highly cited works.    

• In total 324 papers were reviewed. After cleaning the sample280 papers were retained for 

the analysis. 

• Many highly-cited papers (42% in the present analysis) present a SA of poor quality. 

• The results, while discipline-dependent, point to a worrying lack of standards and recognized 

good practices.  

• Some guidelines for proper use of the methods are suggested.  

 


