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Abstract

Over time, the increasing popularity of the Android operating system (OS) has resulted in

its user-base surging past 1 billion unique devices. As a result, cybercriminals and other

non-criminal actors are attracted to the OS due to the amount of user information they

can access. Aiming to investigate security and privacy issues on the Android ecosystem,

previous work has shown that it is possible for malevolent actors to steal users’ sensitive

personal information over the network, via malicious applications, or vulnerability exploits

etc., presenting proof of concepts or evidences of exploits. Due to the ever-changing nature

of the Android ecosystem and the arms race involved in detecting and mitigating malicious

applications, it is important to continuously examine the ecosystem for security and privacy

issues.

This thesis presents research contributions in this space, and it is divided into two parts.

The first part focuses on measuring and mitigating vulnerabilities in applications due to

poor implementation of security and privacy protocols. In particular, we investigate the

implementation of the SSL/TLS protocol validation logic, and properties such as ephemer-

ality, anonymity, and end-to-end encryption. We show that, despite increased awareness of

vulnerabilities in SSL/TLS implementation by application developers, these vulnerabilities

are still present in popular applications, allowing malicious actors steal users’ information.

To help developers mitigate them, we provide useful recommendations such as enabling

SSL/TLS pinning and using the same certificate validation logic in their test and develop-

ment environments. The second part of this thesis focuses on the detection of malicious

applications that compromise users’ security and privacy, the detection performance of the

different program analysis approach, and the influence of different input generators dur-

ing dynamic analysis on detection performance. We present a novel method for detecting

malicious applications, which is less susceptible to the evolution of the Android ecosystem
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(i.e., changes in the Android framework as a result of the addition/removal of API calls

in new releases) and malware (i.e., changes in techniques to evade detection) compared to

previous methods.

Overall, this thesis contributes to knowledge around Android apps with respect to,

vulnerability discovery that leads to loss of users’ security and privacy, and the design of

robust Android malware detection tools. It highlights the need for continual evaluation

of apps as the ecosystem changes to detect and prevent vulnerabilities and malware that

results in a compromise of users’ security and privacy.
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Impact Statement

The problems we address in this thesis as well as the analysis, results, and tools we present

herein, contribute to the advancement of research in the Android appified world and business

processes. Specifically, the problem of vulnerabilities in applications (apps) as well as the

dissemination of malware masked as legitimate apps impacts our daily lives due to the

increasing number of always-on, always-connected devices that these apps run on. Finding

solutions or ways to mitigate these problems is at the center of the antivirus industry and

research dedicated to systems security. To address these problems, we conduct experiments,

develop novel techniques which we implement in easy-to-use tools, and present the results

in peer-reviewed publications. Thus, the work in this thesis contributes to knowledge in

the research community and industry.

One of our findings is that previously known security vulnerabilities around the imple-

mentation of SSL certificate validation are still prevalent in popular apps. We believe this is

as a result of developers misunderstanding the security risks behind their decisions. For ex-

ample, developers who do not want to pay for certificates signed by a recognized certificate

authority (CA), use self-signed certificates on their app’s endpoint. When they encounter

errors during test due to the Android operating system (OS) not accepting self-signed cer-

tificates, they often copy vulnerable code from online forums such as Stack Overflow. To

help developers mitigate this problem, we provide publicly available code sample that does

certificate validation correctly with both self-signed and CA-signed certificates.

Furthermore, the process of detecting malicious apps has developed into a cat-and-

mouse game. When antivirus engines begin to detect malicious apps, the malware authors

are forced to evolve their technique so as to evade detection. This, in turn, requires antivir-

uses to update their database (in cases where detection is based on signatures) or retrain

their detection model (in cases where the detection applies machine learning). If malware
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authors modify their evasion technique frequently, then antivirus engines may also need to

be updated frequently – which might be costly. In this thesis, we present a novel technique

for detecting malicious apps that does not require frequent update or retraining to still be

effective. For example, we achieve relatively high detection performance when predicting

samples one or two years newer/older than the samples used for training. Our technique

which we implement as a tool called MaMaDroid, is publicly available for free and can

be leveraged by antivirus developers or individuals in detecting malicious apps.

Finally, the different works that form this thesis have been published in international

conference proceedings and online repositories; thus, other researchers working in this field

of research can access and use them as references for their work.
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Chapter 1

Introduction

In this chapter, we present the research questions this thesis addresses and summarize the research

approaches we used to address them. We present a summary of our contributions, outline the thesis

structure and finally, highlight the contributions of the author of this thesis to the publications that

form this thesis.

In June 2015, there were 2.6 billion active smartphones worldwide, with each smart-

phone generating an average monthly data traffic of 1 GB [78]. By June 2016, these numbers

had increased to 3.2 billion and 1.4 GB, respectively [79]. Moreover, IDC estimates that

87% of all smartphones worldwide run Android [120]. With these numbers, it is not sur-

prising that attackers target the Android ecosystem, as exploiting possible vulnerabilities

would lead to a compromise of a large user base.

As of January 2018, there were more than 3.5 million applications (apps) on the Google

Play Store (the main market for Android apps) [24]. These apps are designed to meet

diverse user needs that include banking, communication, social networking, gaming etc.

and thus, handle both sensitive and non-sensitive user information. Cybercriminals target

the mobile ecosystem on the basis of the information it handles, and they usually do so by

exploiting vulnerabilities in apps developed by other developers or by designing their own

apps to steal user information. For example, as of August 2016, there are 20 apps with

over one billion downloads (on unique devices) [22] implying that an attacker that is able

to exploit a vulnerability in any one of these apps, will have access to information they

can sell at a very high price on the black market. Other non-criminal actors also target

the ecosystem by using user information to serve them advertisements. They usually do
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so by collecting information about users that allow them profile the users for effective ad

targeting. These security and privacy issues i.e., information exfiltration and user profiling

motivate the need to examine the Android ecosystem to ensure these issues are mitigated.

Overall, developments in the Android ecosystem have attracted the attention of the

research community, with several research studies highlighting vulnerabilities that lead to

security and privacy violations or usability issues. The security and privacy issues brought

to light include: transmitting sensitive information in the clear [121], accepting invalid

SSL certificates [82], permissions abuse [41], malware masked as legitimate apps [226],

memory corruption [72], privilege escalation [39] etc. and they usually have varying impact

depending on their severity, version of the OS and the corresponding user base, ease of

implementation, and type of devices affected. In Chapter 3, we review research efforts on

the Android ecosystem.

One area which has attracted the attention of the research community is the continuous

increase in the number of Android malware.1 As smartphones have become ubiquitous,

they are used to carry out sensitive operations, e.g., financial transaction, or to control

home appliances or medical devices. Thus, it has become profitable for malicious actors

to write malware cloaked as legitimate apps that steal information from devices or hold

their users to ransom. As a result, several research works have designed tools to classify

an app as either malicious or benign using, e.g., the use of dangerous permissions [25, 47],

sequence of calls [42], fingerprinting [43,66], and frequency analysis to determine API calls

used mostly by malware [14]. These tools are based on a program analysis type (i.e.,

static, dynamic, or hybrid analysis), which along with the techniques used, effects the

detection performance of the tools. For example, Chen et al. [55] show that “known best-

performing” malware classifier tools perform badly when tested on new malware datasets.

This is moreso because, as both Android malware and the operating system itself evolve,

it is very challenging to design robust malware detection tools that can operate for long

1https://www.av-test.org/en/statistics/malware
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periods of time at an acceptable high detection rate without the need for modifications or

costly retraining. Thus, more research work is needed to design better malware classifiers

that are robust to these changes.

Another line of work focuses on the secure transfer of information over the network.

Unlike web browsers, which provide visual feedback to users on the application layer transfer

protocol being used, non-browser apps do not. The absence of visual feedback on non-

browser apps means usage of such apps is based on trust that developers are sending

confidential data securely, i.e., over SSL and in a way that is not susceptible to Man-in-the-

Middle (MiTM) attacks. Thus, users are not aware that sending sensitive data via some of

these apps is not secure and as a result, they do not take any step to protect themselves.

This visual difference between browsers and non-browser apps that may result in different

user behavior, motivates a number of research projects. These projects examined the

implementation of SSL by non-browser apps and the SSL libraries these apps use, finding

a number of vulnerabilities that allowed them conduct successful MiTM attacks [82, 101,

189]. Vulnerabilities exposed include trusting all certificates, accepting all hostnames for

a certificate, accepting self-signed certificates, or using customized libraries that skip one

or two of the certificate validation process. As it is important to transmit confidential

or sensitive data such as: login credentials, files, bank details, IMEI number, geolocation

etc., securely, it is crucial that researchers continuously investigate the implementation of

SSL by developers and to also help them solve difficult challenges relating to implementing

security protocols. Also, in an attempt to outdo competitors providing similar services,

some developers advertise that their apps enhance users’ security or privacy due to the

protocols they implement in these apps. Thus, it is also important to analyze whether such

claims match the reality of what a user experiences and whether the implementation of the

protocols are void of vulnerabilities.

Although several studies have investigated the security and privacy concerns associated

with Android, discovering vulnerabilities, and providing detection and mitigation tools etc.,
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as time passes, new concerns arise, malicious actors evolve their techniques, old vulnerab-

ilities are not fixed etc. These concerns thus motivate the need to continuously investigate

the Android ecosystem to ensure they are measured and mitigated. Therefore, this thesis

presents research efforts in this area.

1.1 Thesis Objectives

The main objective of this thesis is to measure and mitigate security and privacy issues on

Android apps. To do so, this section first highlights the research problems we investigate,

and then presents a summary of the methodology we employ to address them.

This thesis is divided into two parts. In the first part, we measure and mitigate security

and privacy issues in apps that pose risks to users unintentionally due to vulnerabilities.

Whereas in the second part, we measure and mitigate security issues in apps that are

designed to intentionally put users at risk. Overall, this thesis aims to address the following

research questions:

RQ1 Are vulnerabilities in SSL implementations that enable successful man-in-the-middle

attacks of network connections prevalent in Android apps? If so, can we provide

better recommendations that help address these problems?

RQ2 Do apps that claim to provide security and privacy properties that protect user in-

formation actually do?

RQ3 Can we design new malware detection tools that are more robust to malware and

Android framework evolution than the state-of-the-art?

RQ4 Does having humans test apps during dynamic analysis improve malware detection

compared to pseudorandom input generators such as Monkey [107]?

RQ5 How do different analysis methods (i.e., static, dynamic, and hybrid analysis) compare
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to each other in terms of malware detection performance when the same technique is

used to build the detection models?

To address these research questions, we carry out a set of experiments which we sum-

marize following, and describe in more details in Chapter 4 – 7.

With respect to RQ1, we statically and dynamically investigate the SSL implementa-

tions of popular apps (i.e., apps that have been downloaded at least 10 million times on

Play Store). During dynamic analysis, we define three attack scenarios that allow us to test

for different vulnerabilities (Chapter 4). To address RQ2, we investigate apps that claim to

provide three specific security and privacy properties (that is, anonymity, end-to-end en-

cryption, and ephemerality). We then compare our observation of the operations of these

apps in the presence of an adversary that aims to violate these properties, to the expected

behaviors when the security and privacy properties are implemented properly (Chapter 5).

With respect to RQ3, we design and implement a system called MaMaDroid, which

employs a novel approach in the detection of malware by abstracting API calls to fine-

grained levels and then, modeling the behavior of the apps from the sequence of abstracted

calls as Markov chains. We evaluate it using datasets spanning several years and compare

it to a state-of-the-art detection system (Chapter 6). To address RQ4, we modify a virtual

device that is designed to crowdsource human inputs for testing Android apps by integrating

the detection technique used by MaMaDroid into it. We then instantiate the modified

virtual device by using both pseudorandom (Monkey) and user-generated inputs. Finally, to

address RQ5, we evaluate each analysis method (i.e., static, dynamic, and hybrid analysis),

using the same modeling approach (i.e., a behavioral model relying on Markov chains built

from the sequences of abstracted API calls), the same features, and the same machine

learning classifier (Chapter 7).
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1.2 Summary of Contributions

This thesis investigates the security and privacy issues in Android apps that are con-

sequences of vulnerabilities and malicious intent. In measuring and mitigating these issues,

we make the following contributions.

1. We show that despite increased awareness of SSL vulnerabilities, many popular apps

still have these vulnerabilities; as a result, they leak users’ private information. We

provide recommendations and tested code sample that can help address the problem

of poor SSL implementation by Android app developers and finally, we investigate

why static and dynamic analysis yield slightly different results.

2. Our work shows that ephemeral messaging apps, i.e., apps with “disappearing” mes-

sages are not always ephemeral as we can recover “expired” messages. Similarly,

anonymous apps can identify their users across multiple sessions (even after unin-

stalling and re-installing the apps), while also not making it clear to whom a user is

anonymous.

3. We design and implement MaMaDroid, an Android malware detection tool that

employs a novel approach in the detection of malware by abstracting API calls to their

class, package, or family, and model the behavior of the apps through the sequences

of API calls as Markov chains. We show that MaMaDroid can detect unknown

malware samples from the same year as the training set with an F-measure of 0.99,

with the detection accuracy still considerably high years after (i.e., 0.75 after two

years), implying that MaMaDroid is robust to evolution in malware development

and changes in the Android API. We also demonstrate the effect of abstraction to

MaMaDroid’s detection performance by abstracting API calls and using frequency

analysis technique to model apps, showing that our approach performs better than

other frequency analysis techniques without abstraction like DroidApiMiner.
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4. We perform a comparative analysis of the different analytical methods i.e., static, dy-

namic, and hybrid in malware detection, showing that hybrid analysis performs best

and that static analysis is at least as effective as dynamic analysis depending on how

an app’s input is generated during dynamic analysis. To perform malware detection

that employs the same technique as MaMaDroid, we implement AuntieDroid, a

virtual device that extends Chimp and allows for the collection of the method traces

(from which features are extracted) produced by an app when executed. We find that

pseudorandom input generator outperforms human users largely due to better code

coverage. Our work also shows that dynamic code loading is prevalent in the wild,

which could in theory be used by malware developers to evade static analysis tools.

1.3 Thesis Structure

The rest of the thesis is organized as follows. Chapter 2 provides background information

on Android app components and the program analysis and machine learning algorithms

applied in this thesis. Chapter 3 reviews prior work on the security and privacy of the

Android ecosystem. Chapter 4 and 5 present work that measures vulnerabilities present in

apps that, when exploited by malevolent actors, would lead to security and privacy issues.

Chapter 6 and 7 discuss our efforts to mitigate security and privacy issues resulting from

maliciously crafted apps. In Chapter 8, we conclude and discuss possible future works.

1.4 Publications

The works that comprise this thesis have been published or are currently under submission

at various international journal and conference venues and have been done in collaboration

with other coauthors. This section reports where the work in each chapter have been

published and my contributions towards their completion.

• The work presented in Chapter 4 has been published and presented at the 2015 ACM
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Conference on Security & Privacy in Wireless and Mobile Networks (WiSec) [157]

in collaboration with Dr. Emiliano De Cristofaro. My contributions in this study

include: collecting the data, designing and implementing the methodology, analyzing

the results as well as writing a draft of the paper.

• The work presented in Chapter 5 has been published and presented at the 2016 NDSS

Workshop on Understanding & Enhancing Online Privacy [158] and as a poster at

the 2016 ACM Conference on Security & Privacy in Wireless and Mobile Networks

(WiSec) [159] in collaboration with Dr. Emiliano De Cristofaro. My contributions in

this study include: collecting the data, designing and implementing the methodology,

analyzing the results, and the write up.

• The work presented in Chapter 6 is currently under submission after revision at the

ACM Transactions on Privacy and Security (TOPS) [160] while a shorter version has

been published and presented at the 2017 Annual Symposium on Network and Dis-

tributed System Security (NDSS) [144] in collaboration with Enrico Mariconti, Dr.

Panagiotis Andriotis, Dr. Emiliano De Cristofaro, Dr. Gordon Ross, and Dr. Gian-

luca Stringhini. My contributions in this study include: collecting the data (the be-

nign sample used in our evaluation); implementing the module of MaMaDroid that

performs call graph extraction and call graph parsing into sequences; re-implementing

the API call abstraction (i.e., as presented in the extended version [160] and in this

thesis) module; implementing API call abstraction to classes in MaMaDroid and

evaluating it; implementing and evaluating the variant of MaMaDroid i.e., FAM;

re-implementing DroidApiMiner from the code provided by its authors as well as

evaluating it; investigating the detection performance of MaMaDroid in compar-

ison to FAM; investigating the detection performance of FAM in comparison to

DroidApiMiner; investigating the reasons for the false positives and false negatives

exhibited by MaMaDroid; analyzing the results of the evaluation I performed; and
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writing the sections of the paper that describe the tasks I performed.

• The work presented in Chapter 7 has been published and presented at the 2018 An-

nual Conference on Privacy, Security, and Trust (PST) [156] in collaboration with

Mario Almeida, Enrico Mariconti, Dr. Jeremy Blackburn, Dr. Gianluca Stringhini,

and Dr. Emiliano De Cristofaro. My contributions in this study include: collecting

the data (i.e., the dataset we use for evaluation) and data preprocessing; evaluat-

ing the static analysis using MaMaDroid’s code; implementing the trace parsing,

feature extraction, and classification in AuntieDroid; evaluating AuntieDroid;

implementing and evaluating the hybrid analysis version of MaMaDroid; performing

a comparative analysis of the detection methods w.r.t. detection performance and

misclassifications within each analysis method; analyzing the results; and writing the

sections of the paper that describe the tasks I performed.
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Chapter 2

Background

In this chapter, we present background information of the key components of an Android app,

program analysis, SSL/TLS protocol, and machine learning; which are the building blocks of the work

in this thesis.

2.1 Android App Components

2.1.1 The Primary App Components

Android app components are the building blocks that comprise an Android app and they

serve as the entry points via which a user or the Android OS can interact with an app.

There are four types of app components, namely:

Activity. An activity is a user interface that serves as the entry point for a user into an

app. That is, the visual information an app wishes to display to a user is contained in an

activity of the app. Similarly, if an app wishes to collect user input, the forms are placed

in an activity and displayed to a user.

Service. A service is an app component that runs in the background and is used to perform

long-running tasks or tasks for a remote process. For example, a service can be used to

sync data in an app with a remote server (e.g., syncing emails by an email app) without

disrupting the use of the app or to play music in the background while another app is in

the foreground. A service does not provide an interface via which users can interact with

it.

Broadcast Receiver. A broadcast receiver is an app component that allows an app respond
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to system or app-defined event announcements. Because a broadcast receiver can be used

to respond to system-wide events, it allows an app define operational flows different from

user flows. That is, an app can perform a sequence of operations without user intervention.

For example, an email app can be designed to start a service that starts syncing emails

whenever it receives a broadcast that the device is connected to the Internet. Similarly,

apps can also initiate broadcasts; for example, a contact app can let other apps know via

a broadcast when a new contact is added. Because broadcast receivers are “another well-

defined entry into the app, the system can deliver broadcasts even to apps that aren’t

currently running.”1

Content Provider. A content provider is an app component that is used to manage data

that is either private to an app or that is shared with other apps. Typically, the con-

tent/data is stored in a persistent storage location such as the file system, SQLite database,

web, or shared preferences. Multiple apps can query or modify the data on a content pro-

vider if it permits it and the apps have permission to do so. For example, Android provides

a content provider that manages the contact information in an address book, allowing apps

with permission to access it, to query the content provider, e.g., to read contact details

about a particular contact.

2.1.2 Other App Components and Definitions

Manifest. The Manifest is a file that declares all the components (i.e., activity, service,

broadcast receiver, and content provider), that comprises an Android app. It also con-

tains information about permissions, minimum API level, external libraries, and hardware

features that the app requires to function correctly.

Android Package (apk). apk is an Android archive file format that contains the compiled

source code, manifest, resources, assets, and libraries of an app.

1https://developer.android.com/guide/components/fundamentals
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API Call. It is a request made to an Application Program Interface (API) to perform a

task. In the Android appified world, an API call is a request to the Android framework.

Permission. Permissions are access control mechanisms defined and enforced by Android

to protect resources and assets such as: files, sensors, hardware properties etc. An app will

only have access to these protected assets if they have been granted permission to them by

a user. Because access to assets are done via API calls, permissions are mapped to API

calls i.e., the OS will only execute certain API calls if and only if the app has the necessary

permission.

2.2 SSL/TLS Protocol

The SSL/TLS (written as SSL from now on) protocol is a security protocol that is used to

encrypt data between two communicating parties. This section presents an introduction

of the handshake protocol that begins the setting up of SSL between two parties, man-

in-the-middle (MiTM) attacks that target parties employing SSL, and how the protocol is

implemented by Android app developers.

SSL Handshake. To establish a secure connection between two parties – denoted as client

(or app) and server – the client initiates the so-called SSL handshake, beginning with cli-

ent hello, as depicted in Figure 2.1. Next, the client verifies the identity of the server: if

the verification is not implemented correctly, an attacker can impersonate the server, thus

leading to information leakage. Verification involves checking the chain-of-trust in server’s

certificate [62], hostname [116], and certificate validity [62,179]. It may also include verify-

ing server’s certificate serial number, key usage etc., or any developer-specific requirements.

Failure in the verification should lead to termination of the connection.

SSL MiTM Attacks. In a MiTM attack, an attacker sits between two communicating

parties and intercepts, read, modify, and/or relay messages between the parties, making

them believe that they are instead talking directly to each other. In a MiTM attack
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Figure 2.1: SSL Handshake.

over SSL, an attacker must subvert the certificate verification in the SSL handshake to

be successful. The attacker does so aiming to, e.g., read and/or modify encrypted traffic

between the client and server. The attacker succeeds if one of the following holds:

• The client accepts all certificates as the server’s;

• The client does not verify the identity of anyone claiming to be the server;

• The server’s certificate is forged by the attacker;

SSL Implementation in Android. To provide security between apps and servers, app

developers turn to SSL over HTTP (HTTPS) sockets. Specifically, they rely on the an-

droid.net, javax.net.ssl, and java.security.cert packages which can be used to create secure

sockets, administer, and verify certificates and keys. java.security.cert provides classes and

interfaces for verifying the revocation status of a certificate. The javax.net.ssl package

provides developers with TrustManager and HostnameVerifier interfaces, which are used

in the SSL certificate validation logic. TrustManager manages all Certificate Authority

(CA) certificates used in assessing a certificate’s chain-of-trust validity. Only root CAs

trusted by Android are contained in the default TrustManager. The HostnameVerifier
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interface performs hostname verification whenever a URL’s hostname does not match the

hostname in the peer’s identification credentials.

Developers can use the TrustManager and HostnameVerifier provided by the Android

SDK as is or customize it to fit their need. Customization usually involves using developer-

specified credentials, validation logic on TrustManager and/or HostnameVerifier inter-

face. Reasons for customization can include any of the following:

• Certificate issued by a CA unknown to the OS

• Use of self-signed certificate

• Pinning peer credential (“SSL pinning”)

• Server configuration sending incomplete certificate chain

• Use of a single certificate for multiple hosts

SSL Pinning involves coupling a host’s trusted credential (e.g., an X.509 certificate or a

public key) to its identity. Any credential received other than the one coupled will not be

accepted as valid for the host, whether or not the credential is issued by a valid CA or it

is trusted by the OS. This is usually done when a developer knows beforehand the trusted

credentials of the host.

2.3 Program Analysis

The work presented in this thesis has involved one or more forms of program analysis. Here,

we first introduce program analysis and then the methods (i.e., with respect to execution

of the program) we have employed in our work in the context of analyzing Android apps.

Program analysis offers static compile-time techniques for predicting safe and com-

putable approximations to the sets of values or behaviors arising dynamically at runtime

when executing a program [151]. That is, it is an analysis performed to determine the
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correctness, robustness, and safety of a program. It is applied in program optimization

– detecting and avoiding redundant/superfluous computations – and program validation

– ensuring that a program does what it is supposed to do (correctness) or reducing the

likelihood of malicious behavior (safety). In order for an analysis to be computable, the

result of the analysis is usually reached from an approximation of a program behavior. The

analysis can be performed statically, dynamically, or a combination of both.

Static Analysis. This is a program analysis method that automatically analyzes a program

(in this work, apps) without executing it by examining the source or byte code. The pros

of using this analysis are that: it analyzes all portions of the source code and depending

on the constraints (e.g., context or path sensitivity), it can be scalable and fast. At the

same time, it has the following cons: it overestimates the code i.e., some portions of code

it analyzes may never be executed during runtime and it cannot analyze any code that is

loaded during runtime.

Dynamic Analysis. In this program analysis method, a program must be executed for it

to be analyzed. This approach has the following pros: it is able to examine portions of

code that are dependent on the runtime environment; it is able to examine any code that is

loaded during execution; and it examines portions of code that are reachable following any

number of execution paths. The cons of this approach include: it may be limited due to

how inputs to the app are generated during test; it only examines portions of code that are

executed during runtime; and the environment may influence the behavior of the examined

app.

Hybrid Analysis. Hybrid analysis is program analysis that combines both static and

dynamic analysis in the examination of an app. It inherits the pros of both static and

dynamic analysis and some of the cons inherent in one approach that the other does not

address.

There are four main approaches to program analysis, which include: abstract interpret-

ation, control flow analysis, data flow analysis, and type and effect systems [151]. Abstract
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interpretation is a technique used to derive an abstract semantics from which information

can be obtained about a program (concrete semantics) i.e., it is used to approximate a pro-

gram [63]. While control flow analysis is a technique that is used to determine the control

flow or the execution order of statements or instructions in a program. Data flow analysis

is a technique used to analyze the flow of data in a program in order to determine their

values at each point of the program and how they change over time. While type and effect

systems are an approach for augmenting static type systems to reason about and control a

program’s computational effects [145].

2.4 Machine Learning

In this section, we introduce machine learning (with a focus on classification) and the ma-

chine learning algorithms we employ to solve the classification problems our work addresses.

Machine Learning (ML) is an inductive process that involves automatically building

a classifier for classifying or clustering objects into categories or classes by observing the

characteristics (i.e., features) of a set of objects [183]. This process can either be supervised

or unsupervised. In the former, a set of objects (aka ground truth) are manually classified

into classes C1...n by a domain expert using a set of observed features represented as vector,

and the goal is for a classifier to automatically learn from these features, and be able to

predict the classes in C1...n of new unseen objects using their features. Whereas in the latter,

the goal is for a classifier to cluster objects using their features, into different clusters, each

of which can be assigned a class and meaning. In this thesis, we employ supervised ML

as the goal of our experiments (in Chapters 6 and 7) is to classify an app into one of two

classes: benign or malicious.

Training, Validation, and Test Sets. Typically, in supervised learning, the objects used

to train and assess models are divided into three: training, validation, and test sets. The

training, validation, and test sets are used to, respectively, fit the models, estimate pre-
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diction error for model selection, and assess the generalization error of the final chosen

model [93]. Validation of models can also be performed using the k-fold cross validation

approach, in which k different models are built by partitioning the initial objects into ap-

proximately equal-sized k sets: O1, O2, ..., Ok, and then iteratively applying a train-and-test

approach on the partitions using a different partition as the test set in each iteration. The

final evaluation metric values of the model is obtained by computing the average of the

effectiveness of each individual model.

The ML algorithm used to fit models in the training phase depends on several factors

that include: the type of problem, the size of the objects’ features in relation to the size of

the total amount of objects, number of classes of the objects, time to train the models etc.

There are several ML algorithms used for solving classification-related problems; here, we

only introduce the three algorithms we use in our work. We refer readers seeking to know

more about ML and ML algorithms to prior works [34,93,141,183].

K-Nearest Neighbor (KNN). KNN [92] is an ML algorithm that is used for classification

and regression. In solving a classification problem, it attempts to predict the class of a data

point (object) based on the class of a predefined k number of training examples (objects)

closest in distance to the data point. Generally, larger k values suppresses the effects of

noise on the classifier, but makes the class boundaries of the data points less distinct.

Random Forests. Random Forests [36] is an ensemble ML algorithm that builds several

independent tree-structured estimators (classifiers) from a subset of the training data and

then returns the average of their predictions as the prediction of the classifier. The larger

the number of estimators, the longer the time taken to train and classify samples but the

better the classifier. Although, beyond a certain number of estimators, there exists no

significant increase in the prediction results of the classifier.

Support Vector Machine (SVM). SVM [113] is an ML algorithm that is used for classific-

ation, regression and outliers detection. It operates by finding the hyperplane – a decision

boundary that splits the input variable space by their class – that creates the biggest mar-
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gin between the training data points of different classes [93]. The margin is calculated as

the distance from the hyperplane to only the closest points and only these points, called

the support vectors are relevant in defining the hyperplane and in the construction of the

classifier [37]. SVM is very effective when processing objects with high dimensional spaces

but may suffer from overfitting when the number of features of each object is much greater

than the number of objects.

Classification Metrics. There are several evaluation metrics used to show the effective-

ness of an ML classifier. Here, we only describe the metrics in the Scikit-learn Python

library [162], which we use in our work.

Precision. Precision shows the ability of a classifier to predict correctly, the class of an

object. It is given as the ratio tp/(tp + fp) where tp is the number of true positives, i.e.,

positive objects correctly predicted as positive ones and fp the number of false positives,

i.e., negative objects wrongly predicted as positive objects.

Recall. Recall shows the ability of a classifier to find all the positive [or relevant] objects.

It is given as the ratio tp/(tp+ fn) where fn is the number of false negatives, i.e., positive

objects wrongly predicted as negative ones.

F1-Score. The F1-Score also known as F-Measure or F-Score, is the harmonic mean or

weighted average of the precision and recall of a classifier. It is given as:

F1 =
2 ∗ (Precision ∗Recall)

(Precision + Recall)

Other metrics in the Scikit-learn Python library [162] that can be used to evaluate a

classifier include: Accuracy, Area Under the Curve (AUC), Receiver operating character-

istic (ROC) curve, Brier score, Cohen’s kappa etc.
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Chapter 3

Literature Review

In this chapter, we review prior work on the security and privacy of the Android OS, Android apps,

and app market.

Over the years, as Android’s popularity increased, the research community has invest-

igated its security, usability, users’ security and privacy, Android apps etc. In this chapter,

we review studies that investigate: (i) the security and privacy of the Android OS, focusing

on vulnerabilities discovered as well as API abuse; (ii) apps that pose security and privacy

risk either because of the vulnerabilities they contain or because they are malicious; and

(iii) the markets that distribute these apps, focusing on the characteristics of the apps that

comprise the markets and the measures if any, employed to vet the apps.

3.1 Security and Privacy in the Android OS

3.1.1 Vulnerabilities

We report here, prior work that examined the security of the Android OS, reporting vul-

nerabilities that allow for malicious activities.

Privilege Escalation. One of the approaches used in Android to provide security is the im-

plementation of access control and sandboxing. That is, system resources and components

as well as inter-process communications are protected by permissions that an app must

possess for it to access them. Consequently, each app is assigned a UserId which is mapped

to a set of permissions granted to the app at installation or run time and can be modified1

1Prior to Android version 6.0, the permission is fixed at installation time and cannot be modified after-
wards by the app or the user.
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at any time by the user. During runtime, a reference monitor checks whether access to

protected resources or inter-component communication should be permitted. Several stud-

ies [39,68,71,87] have investigated this access control mechanism in Android and show that

it is vulnerable to the confused deputy attacks [110], allowing apps to perform operations

or access resources they do not have permission for. Even though Bugiel et al. [39] propose

possible solutions to this problem, these attacks are still possible [114] four years after,

highlighting the importance of continuous research work and development of deployable

solutions to known Android security and privacy problems.

Device Rooting. Device rooting is another form of privilege escalation that exploits vul-

nerabilities (such as mishandling copy-on-write2, setuid resource exhaustion failure3) in

the Android kernel, allowing apps execute arbitrary code in the kernel rather than exploit-

ing the confused deputy problem. Apps that exploit these vulnerabilities pose a serious

security and privacy risk, as they can execute any command with elevated privilege, mask

their activities, and are hard to remove. Several studies [109,115,226] have discovered apps

packed with root exploits, which have consequently led to the development of techniques for

detecting rooted devices or apps containing root exploits [80,115]. Recently, Suarez-Tangil

and Stringhini [191] reported the increased use of native code by malicious apps which often

contain vulnerability exploits; one of which is used to root a device. This corroborates the

findings of Ho et al. [115] that known malicious apps that employ root exploits, all do so

via third-party native code.

Memory Corruption. One method via which memory corruption occurs is via buffer/heap

overflow. A number of research efforts [72, 112, 186] have discovered vulnerabilities in the

Android framework that allows a number of possible attacks, such as remote code execution,

data exfiltration, and privilege escalation. For instance, vulnerabilities in the Stagefright

media framework of Android was exploited using integer overflow and allowed an attacker

2https://access.redhat.com/security/vulnerabilities/DirtyCow
3https://nvd.nist.gov/vuln/detail/CVE-2008-0008
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remotely execute code on the device [72].

Other vulnerabilities that have been reported in previous studies include: data residue

vulnerability – a vulnerability that results from uncleared data (e.g., files, database, cap-

abilities, etc.) of an uninstalled app being inherited by a new app, thus resulting in privacy

leaks or privilege escalation [221]; side channel leakages that allow for runtime information

gathering attacks [220].

A comprehensive list of security vulnerabilities that have been discovered on Android

are available in the CVE database [12] and the vulnerabilities that have been patched by

Google are available in the Android Security Bulletin [11]. Usually, these vulnerabilities

are exploited by malicious actors via two mechanisms: drive-by download and malicious

apps [147]. This thesis focuses on vulnerability measurement and mitigation on apps since

they form a primary mechanism for vulnerability exploitation. A review of studies that have

investigated vulnerabilities in potentially benign apps as well as malicious apps designed

to exploit these vulnerabilities is presented in Section 3.2.

3.1.2 Framework API Abuse

Here, we discuss API calls that are intended by Google to allow developers perform certain

operations but have been used to carry out malicious activities. These API calls may or

may not have been deprecated or modified.

Permissions Abuse. Several research studies [21, 28, 74, 85, 87, 182] have investigated the

use of permission by app developers, with Au et al. [27] mapping permissions to their cor-

responding API calls. While permissions serve as an access control mechanism to protect

access to device and user information, they have been overly abused by developers request-

ing many permissions they often do not need [41]. These overly-permissioned apps pose

privacy risks to users, especially when they have vulnerabilities malicious apps can exploit;

thus, they serve as side-channels for leaking data. Also, the Android framework allows

developers define custom permissions which they can use to regulate access to their app
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components by other apps. Work by Sellwood and Crampton [184] and more recently by

Tuncay et al. [201], show how these can be abused to perform privilege escalation attacks

and unauthorized access to components. Finally, Sadeghi [178] presents a number of tools

for detecting and preventing security issues that are permission-induced.

GUI Confusion. The Android framework provides API calls for drawing views and activ-

ities as well as allowing a developer choose where to position them. Prior works [32,89,138,

152] show that these API calls can be used maliciously in GUI attacks that can result in

tapjacking, clickjacking, privacy leaks etc. Specifically, they show that an app can draw on

top of other apps using the addView, startActivity, moveTaskToFront, moveTaskToBack,

and the setView and show (for Toasts) methods. Depending on the flags set in these meth-

ods, an app can use them to intercept user inputs by either switching the UI the user

intends to interact with or allow the inputs pass through from the intended UI. Bianchi

et al. [32] developed a tool that detects and mitigate these GUI attacks and informs users

of an app whether the GUI they are interacting with belongs to the app or another app.

Recently, Fernandes et al. [89], Ren et al. [176], and Kraunelis et al. [131] show that these

defense mechanisms are not sufficient and that GUI attacks are still possible.

Dynamic Code Loading. The Android framework provides developers with API calls

that allow them dynamically load and execute code either from resources or the Internet.

Previous studies [142, 167, 222] show that these API calls are used by malware to load

malicious code or as an evasion technique to prevent detection. For example, before apps

are made available for download on Play Store, they are first examined for maliciousness and

other characteristics that Google has defined in its vetting process [136,199]. To defeat this

vetting process malicious developers can submit their apps without the malicious blocks

of code and dynamically load these blocks of code when the apps are running on users’

devices.
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3.2 Apps: A Driver for Security and Privacy Loss

While the Android OS may provide measures that enhance users’ security and privacy, apps

that run on the OS may yet expose users to security and privacy risks either intentionally

(i.e., malware) or unintentionally (i.e., as a result of vulnerabilities). In this section, we

review studies that examine security and privacy loss via Android apps.

3.2.1 Vulnerabilities

Here, we review prior works that investigate vulnerabilities in apps that could result in the

loss of users’ security and privacy when exploited by malevolent actors.

Privacy Leaks. In late 2013, researchers from Gibson Security discovered a flaw in Snapchat’s

API that allows an adversary to reconstruct Snapchat’s user base (including names, aliases,

phone numbers) within one day as well as the mass creation of bogus accounts [208]. Ikram

et al. [121] investigated the security and privacy risks of apps with VPN permission, find-

ing that 18% of the apps they analyzed implement tunneling protocols without encryption,

thereby exposing users to security and privacy loss. As a result of some apps transmitting

user information in plain text or accessing and transmitting sensitive information without

the knowledge of users, a number of research efforts have designed tools that track sensitive

information flow on a device. In particular, TaintDroid [76] taints the sources (e.g., device

sensors) of sensitive information and tracks their flow whether they lead to sinks (e.g.,

network socket) whenever an app accessed them. AppAudit [215] employs hybrid analysis

to detect information leakage at a true positive rate of 99.3% and no false positives.

SSL/TLS Implementation Vulnerabilities. Another means of privacy leakage in Android

apps is via vulnerable SSL implementation. This usually involves implementing vulnerable

TrustManagers and HostnameVerifiers that allow successful MiTM attacks (see Sec-

tion 2.2). Several studies show that apps [82, 95,189] and the underlying libraries [38,101]

used by apps contain vulnerabilities that result in the leakage of user information. Fahl et
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al. [82] employ static analysis to discover vulnerabilities in Android apps. They comple-

ment their analysis with a manual dynamic analysis of the apps to confirm their results.

While they attempt to discover vulnerabilities via static and dynamic analysis, their work

does not investigate whether these analysis types yield differing results and why. Conti et

al. [61] and Sounthiraraj et al. [189] introduce tools (respectively, MITHYSApp and SMV-

Hunter) for automated SSL vulnerability discovery. While MITHYSApp is designed to run

on users’ device, SMV-Hunter employs static analysis for large-scale automated SSL MiTM

Vulnerability (SMV) discovery. Kranch and Bonneau [130] perform a measurement study

of the adoption and understanding of HTTP Strict Transport Security (HSTS) and public

key pinning. Their study reveals a lack of understanding of these security features and

that cookies can be leaked from domains that implement key pinning to malicious scripts

in HTTP domains they load resources from.

Georgiev et al. [101] studied the libraries and APIs used in SSL implementation by apps,

finding that they are broken largely due to bad API design that leads to developers misin-

terpreting and misunderstanding parameters and return values. Similar to [101], Brubaker

et al. [38] implemented a means for large-scale adversarial testing of certificate validation

logic in different SSL libraries. Their study reveals that there are validation discrepancies

between popular SSL libraries such as OpenSSL and NSS, where one library accepts a cer-

tificate that another rejects. Bates et al. [29] introduce CERTSHIM, a tool for certificate

verification retrofitting that is dynamically hooked to SSL and data transport libraries to

prevent SSL vulnerabilities. For a survey of other proposed solutions to detecting and fix-

ing the SSL vulnerabilities, and general SSL usage in Android apps, readers can see [210]

and [174], respectively.

Although, these works have highlighted important vulnerabilities in SSL implementa-

tions by Android app developers, it is interesting to evaluate after several years, whether

these vulnerabilities are still prevalent especially in very popular apps with millions of

downloads. As reported by Fahl et al. [83], developers with vulnerable apps make their
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apps vulnerable usually because they want to use self-signed certificate as against buying

one and also to circumvent errors – copying SSL code from platforms such as Stack Over-

flow.4 This is confirmed by Fischer et al. [91] who recently showed that 183k apps contain

insecure TLS code copied from Stack Overflow. Therefore, providing developers code that

do not result in security errors and/or safe use of self-signed certificate might help mitigate

these vulnerabilities.

3.2.2 Malware

Here, we review prior works that detect apps developed to act maliciously. The research

community has developed a number of ways to examine these apps, with each approach

having pros and cons. The approaches generally used are static, dynamic, and hybrid

analysis. While static analysis allows for the overestimation of the code in an app, it

does not capture runtime behavior of apps. Although dynamic analysis captures runtime

behavior of the apps under analysis (AUA), it does not analyze behavior of the AUA not

observed during runtime as a result, may falsely classify the behavior of the AUA. To obtain

the best of static and dynamic analysis, they are combined in a hybrid manner to examine

AUA. Below, we review studies that have employed these approaches to detect malicious

apps.

3.2.2.1 Static Analysis

Android malware detection based on static analysis aims to classify an app as malicious or

benign by relying on features such as permission request, usage or sequence of API calls,

Intent, etc. extracted from the app’s apk.

Permissions. Prior works [77,118,180,182] have introduced techniques that build features

from the permissions requested by apps, leveraging the fact that malware often tend to

request dangerous or unneeded permissions. However, this approach may be prone to false

4https://stackoverflow.com/
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positives as benign apps may also request dangerous permissions [77]. Moreover, since

Android 6.0, the permission model allows users to grant permissions at runtime when they

are required for the first time, thus some dangerous permissions might never actually be

granted (in fact, app developers often request permissions that are never used [85]).

API Calls. Prior work has also relied on the usage of specific API calls or the sequence of

calls for malware detection. DroidAPIMiner [14] performs classification based on the API

calls that are more frequently used by malware. It relies on the top 169 API calls that are

used more frequently in their malware set than in their benign set, along with data flow

analysis on calls that are frequent in both benign and malicious apps, but occur up to 6%

more in the latter. TriFlow [148] ranks apps based on potential risks by using the observed

and possible information flows in the apps. DroidMiner [217] studies the program logic

of sensitive Android/Java framework API functions and resources, and detects malicious

behavior patterns. Hou et al. introduce HinDroid [117], which represents apps and API calls

as a structured heterogeneous information network, and aggregates the similarities among

apps using multi-kernel learning. Finally, ASTROID [88] uses common subgraphs among

samples as signatures for identifying unknown malware samples, while RevealDroid [97]

employs supervised learning and obfuscation-resilient methods targeting API usage and

intent actions to identify their families.

However, due to changes in the Android API as well as the evolution of malware, systems

based on the usage of specific API calls require frequent retraining as new API versions

are released and new types of malware are developed. Deprecation and/or addition of API

calls with new API releases is quite common, and this might prompt malware developers

to switch to different API calls. Also, systems that model the API calls as signatures can

be evaded by polymorphism and obfuscation, or by call re-ordering attacks [129].

Manifest and Byte Code. The manifest of an app has also been used in the detection

of malware as features such as permissions, intent filters etc. can be used to distinguish

between malicious and benign apps. Droidmat [214] uses API call tracing and manifest
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files to learn features for malware detection. Teufl et al. [200] apply knowledge discovery

processes and lean statistical methods on app metadata extracted from the app market,

while Gascon et al. [100] rely on embedded call graphs. MAST [47] statically analyzes apps

using features such as permissions, presence of native code, and intent filters and measures

the correlation between multiple qualitative data. Similarly, RiskRanker [109] detects zero-

day Android malware by assessing the potential security risks of apps. It examines an app to

detect certain behaviors it classifies as unsafe, such as native code encryption and dynamic

code loading which in conjunction with “attack code” that can exploit known vulnerabilities

could pose risk to users. Canfora et al. [44] follow two approaches in the detection of

malware: 1) a Hidden Markov model (HMM) to identify known malware families and 2)

a structural entropy that compares the similarity between the byte distribution of the

executable file of samples belonging to the same malware families.

Drebin [25] learns malware and goodware patterns offline, with the trained model

transferred to a device where it identifies malware by performing a broad static analysis

on the apps on the device. This is achieved by gathering numerous features from the app’s

manifest (intents, hardware components, app components) as well as the app’s byte code

(restricted and suspicious API calls, network addresses, permissions). Malevolent behavior

is reflected in patterns and combinations of extracted features from the static analysis. For

instance, the existence of both SEND SMS permission and the android.hardware.telephony

component in an app might indicate an attempt to send premium SMS messages, and this

combination can eventually constitute a detection pattern. Alas, techniques based on de-

compiled code can be evaded using dynamic code loading, reflection, and the use of native

code [167,173].

Machine Learning. Machine learning techniques have also been applied to assist Android

malware detection. Chen et al. [53] proposed KUAFUDET that uses a two-phase learning

process to enhance detection of malware that attempts to sabotage the training phase of

machine learning classifiers. Similarly, Transcend [126] presents a framework for identifying
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aging machine learning malware classification models, i.e., it uses statistical metrics to

compare the samples used for training a model to new unseen samples to predict degradation

in the detection accuracy of the model.

3.2.2.2 Dynamic Analysis

Dynamic analysis based techniques attempt to detect malware by capturing the runtime

behavior of an app, targeting either generic malware behaviors or specific ones. Droid-

Trace [224] uses ptrace (a system call often used by debuggers to control processes) to

monitor selected system calls that allow for the execution of dynamic payloads, and clas-

sify their behavior as, e.g., file access, network connection, inter-process communication, or

privilege escalation. Canfora et al. [42] extract features which they then use to classify an

app as malware or benign from the sequence of three system calls by executing the apps on a

Nexus 5 smartphone, while Lageman et al. [132] model an app’s behavior during execution

on a VM using both system calls and logcat logs. CopperDroid [196] employs dynamic

analysis to automatically reconstruct malware behavior by observing executed system calls.

While CrowDroid [40], a lightweight client running on a device, captures system calls gen-

erated by apps and sends them to a central server, which builds a behavioral model of each

app. Using strict sequences of system or API calls could be more easily evaded by malware,

which may map the strict sequences as signatures and then add unnecessary calls to evade

detection .

Finally, Chen et al. [56] propose a Markov chain-based model that dynamically analyze

system and developer-defined actions from intent messages (used by app components to

communicate with each other at runtime). They then probabilistically estimate whether

an app is performing benign or malicious actions at run time but obtain low accuracy (an

average of 0.67) overall.

Prior work typically perform dynamic analysis using automated input generators to

exercise apps when the device is running. These generators exercise apps using random
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fuzzing [140,218], concolic testing [20,102], or generating pseudorandom input [107]. How-

ever, this might be inadequate due to the low probability of triggering malicious behavior,

and can be side-stepped by knowledgeable adversaries, as described by Wong and Lie [212].

In addition, dynamic analysis techniques can only detect malicious activities if the code

exhibiting malicious behavior is actually triggered during the analysis.

3.2.2.3 Hybrid Analysis

A number of tools have combined static and dynamic analysis, e.g., by using the former to

analyze an apk and the latter to determine what execution paths to traverse, or by combin-

ing features extracted using both static and dynamic analysis. Andrubis [134] is a malware

analysis sandbox that extracts permissions, services, broadcast receivers, activities, pack-

age name, and SDK version from an app’s manifest as well as the actual bytecode. It then

dynamically builds a behavioral profile using static features as well as selected dynamic

ones, such as reading/writing to files, sending SMS, making phone calls, using crypto-

graphic operations, dynamically registering broadcast receivers, loading dex classes/native

libraries, etc. Chen et al. [54] introduce StormDroid which extracts static features, such as

permissions and API calls, and extend their features vector to add dynamic behavior-based

features. While their experiments show that their solution outperforms, in terms of accur-

acy, other antivirus systems, the quality of their detection model critically depends on the

availability of representative benign and malicious apps for training. MADAM [181] ex-

tracts five groups of features (system calls, sensitive API calls, SMS, user activity, and app

metadata) at four different layers – kernel, application, user and package – which are used

to build a behavioral model for apps, and uses two parallel classifiers to detect malware.

Marvin [133] uses features from both static and dynamic analysis to award malice scores

(ranging from 0 to 10) to an app and classify as malware, apps with scores greater than

5, while CuriousDroid [46], an automated user interface (UI) interaction for Android apps,

integrates Andrubis [134] as its dynamic module in order to detect malware. It decomposes
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an app’s UI on-the-fly and creates a context-based model, generating series of interactions

that aim to emulate real human interaction. IntelliDroid [212] introduces a targeted input

generator that integrates with TaintDroid [76] aiming to track sensitive information flow

from a source (e.g., a content provider such as contact list database) to a sink (e.g., network

socket). It allows the dynamic analysis tool to specify APIs to target and generates inputs

in a precise order that can be used to stimulate the Application Under Analysis (AUA) to

observe potential malicious behavior.

Since there are several entry points into an Android app (e.g., via an activity, service,

and broadcast), dynamically stimulating an AUA is usually done using tools like Monkey

or MonkeyRunner, or humans. Targeted input generation tools such as CuriousDroid and

Intellidroid aim to provide an alternative stimulation of apps that is closer to stimulation

by humans and more intelligent than Monkey and MonkeyRunner. Finally, we refer the

reader seeking more details on the large body of work on Android malware to prior works

on useful surveys of Android malware families and detection tools [18, 84, 195], as well as

an assessment of Android analysis techniques [175].

3.3 Security and Privacy in Android App Stores

Due to app stores serving as a repository and channel for app distribution, they pose serious

security and privacy risks to users; especially, when they act maliciously or are hacked by

malicious actors. Thus, related work have evaluated app stores using apps on the store and

user reviews to reach conclusion about the security or trust levels of the store.

3.3.1 Apps on the Store

Jansen and Bloemendal [123] define an app store as: “An online curated marketplace that

allows developers to sell and distribute their products to actors within one or more multi-

sided software platform ecosystems”. Their conceptual model of an app store highlights
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that an app store should have policies that regulate functional features such as app quality.

Therefore, we review here, prior works that have reached conclusion of app stores based on

the apps available on the store.

As a result of the limited accessibility of Play Store in China, most Android users in

China install apps from other third party app store. In order to evaluate the trustworthiness

of some of these app stores, Ng et al. [150] measure the similarity and difference in content

of the apps on these stores to the official apps available on the developers’ website. They

find that 37.74% of the apps they obtain from these app stores, are either an older version

of the official app or have resources that have been modified. Similarly, they find that

the permissions or the code have been modified in 36.17% of the apps. Due to the nature

of these modifications (permissions, resources, and code) the resulting apps on the app

store could be acting maliciously, as a result, the app stores are awarded a low trustworthy

ranking score (47.37 over 100). Kikuchi et al. [128] also investigated the mitigation efforts

five app stores (including Google’s Play Store) apply in preventing the upload of malicious

apps to their stores. They evaluate the mitigation efforts using three different metrics:

malware presence ratio, malware download ratio, and malware survival period. They find

that malware presence in three third-party markets is about ten times higher than in Play

Store and that only Play Store takes active steps to remove malware.

While Ng et al. [150] reveal apps that have been modified on third party stores, other

studies [50, 64, 225] investigate the distribution of repackaged apps in different app stores.

With Crussell et al. [64] revealing that at least, 141 apps have been cloned multiple times,

some as many as seven times, and Chen et al. [50] showing that repackaging is used by

malevolent actors to include advertisements or malicious code in legitimate apps.

Finally, a number of other research studies [51, 104, 137, 223] have also proposed ways

for app stores to verify or vet apps they distribute. Fahl et al. [81] propose a framework

– Application Transparency (AT) – for defending against very powerful adversaries and

DroidSearch [172] presents pre-filtering techniques that allow for quick retrieval of candidate
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apps from app stores that should be further analyzed for maliciousness.

3.3.2 User Reviews

User reviews on apps usually indicate satisfaction or dissatisfaction with the apps, here,

we review research efforts that have presented techniques for extracting knowledge from

reviews.

Several studies [52,94,127,161,204] have developed data mining techniques with senti-

ment and topic analysis to extract useful information from online user reviews. Specifically,

Iacob and Harrison [119] proposed MARA (Mobile App Review Analyzer) for automatic-

ally retrieving feature requests for app reviews on online markets. Maalej and Nabil [139]

extended this work by applying string matching, sentiment analysis, Natural Language

Processing (NLP), and metadata review to user reviews from the Apple App Store and

Google Play Store for automatic classification of the reviews as bug reports, feature re-

quests, user experiences, and ratings. They achieve precision and recall for all four classes

that ranges from 71% to 97%. Similar to their work is [161], that also uses NLP, text and

sentiment analysis to automatically classify reviews into defined categories like maintenance

and evolution. Although many of these studies present tools and frameworks for extracting

information about feature requests and bugs, security and privacy researchers can employ

similar techniques in selecting apps for vulnerability analysis.

Concluding Remarks. From our review of previous literature, we observe some interesting

patterns and gaps. First, over time, the same or similar vulnerabilities are discovered in

the Android OS or apps. For example, Android framework API abuse that results in GUI

attacks were reported in 2012 [138] and six years later, these attacks are still possible [131].

With respect to the OS, once a vulnerability is discovered, they are patched in the form of

over-the-air updates pushed to devices in timely fashion depending on the severity of the
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vulnerability. Similarly, the framework are also updated with new API version releases that

deprecate vulnerable API calls and add new API calls. Whereas with respect to apps, it is

not often clear whether developers fix vulnerabilities in their apps that are serious security

and privacy threats to users or if they do so in a timely manner.

Second, static analysis malware detection tools based on API calls are likely easy to

evade if malware authors learn what API calls are used as signatures for detection. For

example, they could use a combination of different API calls that allow them achieve the

same function. Moreover, the Android framework is constantly changing with the addition

and deprecation of API calls with new API releases. Third, employing pseudorandom input

generators to stimulate apps as used by dynamic analysis-based tools might be inadequate

due to the low probability of triggering malicious behavior. That is, compared to a hu-

man user, pseudorandom input generators might only trigger events that malware are not

interested in capturing due to the events not processing or accessing sensitive information.

This thesis thus, presents research methods and analysis we carry out to address these

observations. We divide the thesis into two parts, with the first part (Chapter 4 and 5)

focusing on vulnerability discovery and mitigation on Android apps (first observation).

While the second part (Chapter 6 and 7) focuses on the detection of malicious apps (second

and third observations).
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Chapter 4

Experimenting with SSL/TLS Vulnerabilities in

Android Apps

In this chapter, we address RQ1: Are vulnerabilities in SSL implementations that enable successful

man-in-the-middle attacks of network connections prevalent in Android apps? If so, can we provide

better recommendations that help address these problem?

The work presented in this chapter has been published in the 2015 ACM WiSec [157]

4.1 Motivation

Over the past few years, the number of always-on, always-connected smartphones has

skyrocketed [98,99]. In 2013, 73% of mobile phone users regularly accessed the Internet via

their mobile devices [13,190] and this ratio is likely to increase as sales of smartphones and

tablets keep growing. Naturally, as the number of smartphones increase, so do the total

amount of personal and sensitive information they transmit. Thus, it is crucial to secure

traffic exchanged by these devices, especially considering that mobile users might connect

to open Wi-Fi networks or even fake cell towers. The Transport Layer Security (TLS)

protocol and its predecessor, Secure Sockets Layer (SSL) are cryptographic protocols that

help to provide confidentiality, integrity, and authentication of network traffic. However,

SSL/TLS implementations in smartphone applications (apps) have more bugs and are prone

to vulnerabilities than browsers. For example, they are vulnerable to man-in-the-middle

(MiTM) attacks [82,101]. Moreover, while browsers provide users with visual feedback that

the communication is secured (via the lock symbol) and of certificate validation issues, apps
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do so less extensively and effectively [19].

Prior works [38, 101] that studied the libraries and APIs used in SSL implementations

by non-browser apps show that misunderstanding of the libraries have lead to developers

designing apps that have enabled the leakage and retrieval of users’ personally identifiable

information (PII). Further, [61,82] show that vulnerabilities are also introduced for reasons

such as the use of self-signed certificate or circumventing security errors. Although these

studies [38, 189] have presented means for detecting vulnerabilities, it is unclear whether

these are still prevalent in Android apps. Therefore, in this chapter, we address the research

question, RQ1, introduced in Chapter 1.1, which we further divide into the following sub-

questions:

Q1 Do popular apps contain SSL vulnerabilities that allow for the leakage of PII?

Q2 Do popular apps employ certificate pinning to enhance the security of their network

traffic?

Q3 Can we provide useful recommendations that help developers that want to use self-

signed certificate use them in a secure way?

The rest of this chapter is structured as follows: Section 4.2 introduces the methodology

we employ to perform our experiments, while Section 4.3 presents the results. Finally,

Section 4.4 discusses the implications of our results, the recommendations we make for the

safe use of self-signed certificates, and the limitations of our work.

4.2 Methodology

In order to address these research questions, we perform static and dynamic analysis on

100 apps with at least 10M downloads (10% of all apps with at least 10M downloads, as

per [2]), that request full network access. In this section, we discuss: our analysis methods;
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the apps that comprise our dataset; the sensitive information we track for leakage; and the

ethical considerations that we put in place.

4.2.1 Static Analysis

To carry out our analysis, we first perform a manual analysis of apps to understand the

different ways developers introduce vulnerabilities in their apps. To do so, we use a cus-

tom script to decompile apps using dex2jar1 and JD-GUI2 and search for key terms such

as HttpsURLConnection, HostnameVerifier, and TrustManager, which indicate the pres-

ence of SSL code. Then, we manually analyze the TrustManager and HostnameVerifier

implementations of the apps to i) look for possible vulnerabilities and ii) check whether

certificate pinning is employed.

TLSDroid. After manually analyzing the TrustManagers and HostnameVerifiers found in

apps in our dataset, we then implement TLSDroid, which employs static analysis for large

scale SSL vulnerability discovery. TLSDroid extends MalloDroid [82] and it is dependent

on Androguard.3 Unlike MalloDroid, it can correctly analyze multidex apps and it can

tell when an app’s SSL implementation is not vulnerable by checking for the invocation

of methods used to validate a certificate. It works in two phases; in the first phase, it

classifies an app as either vulnerable or not, based on whether it detects a vulnerable or

correct SSL implementation, whereas in the second phase, it classifies those apps that have

not been classified in the first phase into one of: vulnerable, potentially vulnerable, or not

vulnerable. We describe these phases in more details below.

To detect vulnerable SSL implementations, we analyze the TrustManagers, Hostname-

Verifiers, and WebViews found in an app. As stated in Section 2.2, the TrustManager

assesses the validity of a certificate’s chain-of-trust, while the HostnameVerifier verifies

that the hostname in the certificate matches the hostname of the connecting peer. To

1https://code.google.com/p/dex2jar/
2http://jd.benow.ca/
3https://github.com/androguard/androguard
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do so, the Android framework API provides developers with a number of methods (e.g.,

checkServerTrusted, checkValidity, and verify) that can be used to check the valid-

ity of a peer’s certificate. TLSDroid collects all the methods that TrustManagers and

HostnameVerifiers use to validate chain-of-trust and hostname, respectively, as well as

those that can be used to validate certificates in general. In its first phase, TLSDroid

checks if the methods used to validate chain-of-trust or hostname are implemented and

whether certificates are validated correctly. It reports an implementation as vulnerable if

the method is empty, returns true or void without performing any checks, or instantiates

an insecure SSLSocketFactory or HostnameVerifier i.e., AllowAllHostnameVerifier.

With respect to the WebView (a view used to display web pages), it checks whether the

implementation just returns true or void when an SSL error occurs i.e., the error is not

handled and the connection may be established if possible.

If the methods used to validate chain-of-trust or hostname are implemented and they

are not classified in the first phase, TLSDroid then moves to a second phase and collects

all the API calls that are invoked in each method and performs a one step forward-flow

analysis. It then iteratively checks for certificate validation in each of the collected API

calls. If it does not find a correct certificate validation in the list of API calls checked,

it reports the TrustManager or HostnameVerifier as potentially vulnerable. Whereas

if it finds a correct implementation, it reports the app as not vulnerable and vulnerable

otherwise. Here, we report an app as potentially vulnerable because it is possible that

an n-step forward-flow analysis may not reveal a correct implementation. While we limit

the step of the flow analysis to one to aid faster analysis (about 5 secs on average per

app) in a large scale setting, the number of forward-flow analysis TLSDroid performs can

be increased. In both phases, if the classes of all the vulnerable or potentially vulnerable

methods are not referenced in any other class in the app, the app is not reported as

containing vulnerability. We do this to reduce false positives that static analysis introduces

due to code overestimation.
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4.2.2 Dynamic Analysis

When analyzing apps dynamically, we manually exercise apps as this allows us use features

of the apps that would request/need sensitive information and probe for vulnerabilities. In

Chapter 7, we show how apps can be dynamically assessed in a large scale using a virtual

device and allowing both humans and an automated pseudorandom input generator to

exercise the apps. During our analysis, we assume the presence of an adversary that has

control over the Wi-Fi access point a victim connects to and simulate the following possible

MiTM attack scenarios:

S1: The adversary has their CA certificate with which they are able to generate valid

certificates for any number of domains, installed on the victim’s device;

S2: The adversary presents an invalid, self-signed certificate;

S3: The adversary presents a certificate with a wrong Common Name (CN) and/or Sub-

jectAltName, signed by a valid CA.

S1 allows us address Q2 because apps that employ certificate pinning will reject con-

nections to their servers because the [valid] certificates presented differ from the pinned

certificates. S2 and S3 allow us address Q1 as apps that establish connections to their

servers in these settings will leak user information. To address Q3, we encourage the use

of certificate pinning and provide a code sample with a fail-safe default when the wrong

certificate is used in the wrong environment i.e., development vs production.

Experimental Testbed. We conduct our experiments using an LG Nexus 4 smartphone

running Android KitKat 4.4.4 that connects to a Lenovo laptop (running Windows 8.1),

which acts as the Wi-Fi access point. To capture traffic and perform MiTM attacks, we

install and run Wireshark4 and Fiddler25 (we install Fiddler’s certificate on the device

as the trusted CA certificate used to sign other leaf certificates) on the access point. We

4https://www.wireshark.org/
5http://www.telerik.com/fiddler
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conduct the experiments in the Autumn of 2014 and then reexamined them in March/April

2015. All statistics refer to the first round of the tests, however, whenever an app is no

longer vulnerable (during second round of test), we report it in the text.

Sensitive Information. Throughout our experiments, we classify as sensitive, packets with

the following information: login credentials, device information (e.g., IMEI number), loc-

ation data, chat and email messages, financial information, appointments on calendar,

contact list, and files.

Ethical Considerations. We password-protect (using WPA2) the access point in our ex-

periments to ensure that only the test device can connect to it. Also, we conduct the

experiments in a controlled test environment to ensure we only monitor or capture traffic

from the network that we setup.

4.2.3 Datasets

To build a dataset of popular Android apps, we select 97 apps that request permission for

full network access and that have been downloaded at least 10 million times (according to

the official Android market – Play Store). We choose apps from several different categories

(including social networks, gaming, IM, e-commerce, etc.) that access and process multiple

kinds of sensitive information rather than those that only exchange login credentials. We

also add 3 more apps that request full network access, even though they have less than

10M downloads: Barclays Mobile Banking, TextSecure, and Amazon Local. We choose

Barclays Mobile Banking and TextSecure in order to include in our dataset, at least one

mobile banking app and one secure chat app due to the sensitivity of the information they

transmit and their claims of security. We choose Amazon Local in order to investigate

whether there are implementation differences in apps from the same developers.6

The total number of downloads for the 100 selected apps amounts to over 10 billion

6Amazon and Amazon Local did implement SSL differently as of our first tests but both implement
pinning as of our second tests.
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#Downloads (Millions) #Apps

> 1,000 4
500 - 1000 6
100 - 500 31
50 - 100 19
10 - 50 37
< 10 3

Table 4.1: Distribution of examined apps by number of downloads.

according to statistics provided by the Google Play store. Table 4.1 summarizes the dis-

tribution of apps by number of downloads (at the time of our experiments). Note that

according to AndroidRank [2], there are about 1,000 apps with 10M+ downloads around

the time of our experiments, thus, our 100-app set roughly corresponds to 10% of all apps

with 10M+ downloads. The complete list of apps we analyze is reported in Appendix A.1.

4.3 Results

In this section, we present the result of our analysis and in Section 4.4, discuss the implic-

ation of the results.

4.3.1 Static Analysis

Although we evaluate TLSDroid using a dataset comprising 111,324 apps obtained from

Play Store and finding that 24,053 (resp., 22,697) and 1,089 (resp., 15,060) of them, respect-

ively, contain vulnerable and potentially vulnerable TrustManagers (resp., HostnameVeri-

fiers), we do not discuss the results here as it is work in progress. Here, we focus on the

results of our manual analysis only.

As discussed earlier, after decompiling an app, we search for SSL keywords to identify

apps using SSL. We find that 93/100 apps include SSL code, while the remaining 7 (AVG

antivirus, Candy Crush, Clean Master, Google Earth, Play Music, Jobsearch, and Voice

Search) do not include SSL, even though they use tokens from Google, Facebook, or Twitter
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TrustManager SocketFactory

NäıveTrustManager NäıveSslSocketFactory
BogusTrustManagerFactory AndroidSSLSocketFactory

FakeX509TrustManager FakeSocketFactory
TrustEveryoneTrustManager TrustNonFacebookSocketFactory

TrustAllManager TrustAllSSLSocketFactory
EasyX509TrustManager EasySSLSocketFactory
IgnoreCertTrustManager SimpleSSLSocketFactory

TrivialTrustManager AllTrustingSSLSocketFactory
BurstlySSLSocketFactory

SelfSignedCertSocketFactory
KakaoSSLSocketFactory

TrustingSSLSocketFactory
ConvivaSSLSocketFactory
SSLSocketFactoryTrustAll

Table 4.2: Known vulnerable TrustManager and SocketFactory subclasses accepting all certific-
ates [82].

user accounts on the device to access secure web pages. We find that 84% (78/93) of the

apps with SSL code implement their own TrustManager or HostnameVerifier, while the

remaining 16% use Android’s default TrustManager and a combination of the subclasses

of the HostnameVerifier.

We analyzed the 93 SSL-enabled apps and find that 48 of them include HostnameVerifi-

ers accepting all hostnames. Out of the 48 apps, 41 implement hostname verifiers that

always return true and/or use the AllowAllHostnameVerifier subclass, while the other 7

implement hostname verifiers that return true without any check. Our analysis also reveals

that 46 of the SSL-enabled apps implement a TrustManager that accepts all certificates.

Examples of TrustManager and SocketFactory doing so which have also been reported

by prior work [82] are shown in Table 4.2.

4.3.2 Dynamic Analysis

We start our analysis by looking for information leakage, i.e., aiming to identify whether

any sensitive information is sent in the clear, and then move on to MiTM attacks.

57



Sensitive Data #Apps

Username and Password 3
GPS Location 4
IMEI Number 2
IMSI Number 1

Table 4.3: Sensitive data sent via HTTP.

Unencrypted Traffic. Table 4.3 summarizes the number of apps sending sensitive inform-

ation unencrypted. Specifically, we find that 4shared, Duolingo, and Pic Collage send

usernames and passwords in the clear during login, while Deezer encrypts the password

with a nonce and transmits it over HTTP. Location is sent in the clear by MeetMe and

Google Maps (no longer the case as of March 2015), GO SMS Pro/Launcher EX, and

IMDB. Also, GO SMS Pro sends the IMEI and IMSI unencrypted, whereas Talking Angela

sends the IMEI unencrypted. While it has been reported that transmission of IMEI/IMSI

and location data are mostly done by embedded ad libraries [1, 73], this is only true for

Talking Angela.

MiTM. Next, we use Fiddler to mount MiTM attacks in the three scenarios discussed

in Section 4.2, starting with S1, i.e., an attacker having their CA certificate installed on

the victim’s device. We find that 91 apps establish login connections and grant access

to secure pages, thus, allowing the attacker to capture sensitive information such as login

credentials, financial information, contact list, calendar schedules, and chat messages. On

the other hand, 9 apps do not connect thanks to SSL pinning. In scenario S2 (i.e., an

attacker presenting an invalid certificate), 23 of the apps complete the connection (the

implementation accepts all certificates), with 9 of them leaking sensitive information. In

S3, when the attacker presents a certificate with a wrong CN and/or SubjectAltName,

we find that 29 of the apps establish a connection, with 11 of them revealing sensitive

information. A total of 20 apps are vulnerable in all three scenarios, with 9 of them

revealing sensitive information.

During the MiTM attack, only 3 apps (and all in scenario S2) present the user with an
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Analysis Type Category #Apps

Analyzed Apps 100

Static Analysis
Apps with SSL code 93
Accepts all certificates 46
Accepts wrong hostname 48

Dynamic Analysis

Vulnerable to S1 91
Vulnerable to S2 23
Vulnerable to S3 29
Vulnerable to S1, S2, and S3 20

Table 4.4: Summary of results.

error message, such as the one illustrated in Figure 4.1(a), indicating that the connection

was refused due to an SSL certificate error. Other apps continue loading indefinitely, crash,

display a message trying to redirect the user to a web browser, display a blank screen, or

a generic message (e.g., “Unable to connect. Please check your connection and try again”

and “Incorrect device time. Please ensure the device time is correctly set and try again”).

Figure 4.1(b)–4.1(d) show examples of unhelpful warning messages displayed by some of

the apps when the connection is not established.

4.4 Discussion

In this section, we analyze and discuss the implications of our results, recommendations,

and the limitations of our study.

4.4.1 Analysis of Results

Summary of Results. The results of our analysis are summarized in Table 4.4. From

the static analysis, we deduce that majority of SSL-enabled apps are vulnerable to MiTM

attacks due to wrong hostname verification. Specifically, vulnerable hostname verifiers use

the AllowAllHostnameVerifier class or return true without performing any checks (or

checking if the common name ends with a given suffix). We also find that almost half of the
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(a) (b)

(c) (d)

Figure 4.1: Warnings presented to users as a result of non-validation of an SSL certificate.

apps are vulnerable because their TrustManager accept invalid or self-signed certificates.

Then, following our dynamic analysis, we posit that in the presence of a MiTM attack:

(1) apps with correct implementation of SSL pinning are not vulnerable; (2) apps with a

vulnerable TrustManager are vulnerable; and (3) apps using AllowAllHostnameVerifier

or a vulnerable HostnameVerifier are vulnerable. Also note that the overwhelming ma-

jority of apps (91) are vulnerable to powerful adversaries with a certificate on the user’s

device.
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4.4.1.1 “Secure” Apps

We now analyze the 9 apps that do not establish connections in any of the three attack

scenarios considered. These are: Amazon (10M downloads), Barclays Banking (1M), BBM

(50M), Bitstrips (10M), Dropbox (100M), MeetMe (10M), TextSecure (500K), Twitter

(100M), and Vine (10M), for a total of almost 300M downloads. Apps that are not vulner-

able in all attack scenarios account for only 2.6% of the total number of downloads of the

apps we test. While Twitter and Amazon apps are not vulnerable in any of our scenarios,

they can be compromised indirectly using leaked credentials. This is because Tweetcaster

(requires credentials for a Twitter account) and Amazon Local/Music (the same credentials

as Amazon) are vulnerable in scenario S1.7

We also notice that 10 apps (e.g., Skype, Telegram, Viber) employ proprietary protocols

or obscure their traffic, and/or did not connect via the MiTM proxy. These apps establish

login sessions, and transmit messages/chat conversation in all three attack scenarios, except

for Skype which does not load the contact list in scenario S3 (hence, no chat or call conver-

sation can be initiated). Regardless, the in-app purchase SDK and the WebView interface

(when present) of these apps (excluding Telegram, which does not offer in-app purchase)

can be exploited in scenario S1 because e.g., debit card information used to subscribe and

purchase call credit on Skype is retrievable.

4.4.1.2 Google Apps

Next, we investigate all the Google apps in our dataset that request full network access and

have 10M+ downloads that are loaded on the Nexus 4 phone by default: Gmail, Calendar,

Maps, Google+, Play Store, Play Music, and Play Movies. We find that they are all

vulnerable in scenario S1, with debit card information and PayPal credentials exposed

during in-app purchase. Note that this is not limited to the Google apps but also to non-

Google apps that use Google’s in-app purchase API (a total of 40 in our dataset). Other

7This is no longer the case for Amazon Local/Music as of March 2015.
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sensitive information accessible from Google apps in scenario S1 include: usernames and

encrypted passwords, email messages (from Gmail), location, calendar, and reminders.

4.4.1.3 Vulnerable Apps

With respect to apps vulnerable in any of the three attacking scenarios during dynamic

analysis, we notice that 59 apps (including Netflix and Facebook8) are vulnerable in scenario

S1 but not in S2 and S3. This means that these apps are secure against most adversaries,

but not against very strong (e.g., state-like) adversaries. Protecting against vulnerability in

S1 can be achieved using SSL pinning, which might however add some extra developmental

cost. Also, there are 32 apps including, e.g., Groupon, Vevo, and Zoosk, that are vulnerable

in scenario S2 and/or S3, i.e., they trust all certificates and/or all hostnames.

Five apps (Booking.com, IMDB, PayPal, Trip Advisor, and TuneIn Radio) establish

login sessions in S3, however, we are not able to extract the credentials from the eaves-

dropped traffic. For instance, after login, PayPal refuses to establish further connections

but displays a Toast with the message “SSL Error” at the bottom of the screen. We

have two possible explanations for this. One is that logins are established simply due to

cached cookies. Alternatively, we notice that developers tend to create several different

TrustManager and HostnameVerifier implementing and enforcing different levels of se-

curity checks, thus potentially leading to oversights in creating connections with the wrong

TrustManager.

A total of 20 apps are vulnerable in all three scenarios. One of such app is Job Search

which displays a warning – shown in Figure 4.2 – signaling a problem with the certificate

and providing users with the option to continue. As highlighted in prior work [193], users

tend to ignore SSL warnings, and if users decide to continue, the adversary would access

credentials and other sensitive data.

As mentioned earlier, a few apps send login credentials unencrypted. Specifically,

8Friend list, chat messages, and credentials are accessible from Facebook in S1.
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Figure 4.2: Certificate warning displayed by Job Search app in S2 and S3.

4shared sends login credentials as part of the URI in the GET command, thus making

them trivially accessible by anyone eavesdropping on the traffic. Deezer encrypts user’s

password with a nonce before transmission, while Duolingo and Pic Collage send it in plain-

text. While some developers may not consider their service to be sensitive, password reuse

makes this practice extremely dangerous nonetheless, as discussed in prior works [67,122].

Disclosure & Updates. We communicated our findings to the developers of apps trans-

mitting sensitive information unencrypted and with possible vulnerabilities in scenarios S2

and S3. As a result, Pic Collage now establish login sessions and transmit user information

via HTTPS, while 4shared hashes passwords before transmitting them over HTTP. Also,

besides updates to Google Maps and Amazon apps discussed earlier, we also report that,

as of April 2015, Ask.fm, Textplus and Viber no longer establish connection in scenario S2,

while Groupon and IMDB do not in scenario S3.

4.4.1.4 Static vs Dynamic Analysis

As the results of our static and dynamic analysis differ somewhat, we set to investigate the

reasons for this inconsistency.

Possible False Negatives in Dynamic Analysis. First, we note that dynamic analysis may

miss some vulnerabilities discovered in static analysis i.e., vulnerable TrustManagers and

SocketFactory implementations. This may happen as a result of the vulnerabilities being

in apps’ functionalities that are not tested during our dynamic analysis. For instance, static
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analysis reveals that Naı̈veTrustManager and FakeSocketFactory interfaces are used in 7

apps by the Application Crash Reports for Android (ACRA) library. However, our dynamic

analysis does not test ACRA interaction as no app crashed during usage, thus, it does not

report these apps as vulnerable.

Possible False Positives in Static Analysis. A total of 23 apps possibly contain vulnerable

TrustManager and SocketFactory implementations that dynamic analysis did not report.

While 9 are confirmed vulnerabilities, the discrepancy suggests they are not used to create

SSL sessions as they might have been introduced for testing purposes but never removed

in production. Thus, this might generate some false positives during static analysis, how-

ever, because of code obfuscation, it is not always feasible to completely remove such false

positives from static analysis.

4.4.2 Recommendations

We now discuss some recommendations to app developers vis-à-vis the vulnerabilities dis-

cussed in this chapter. We find that many TrustManagers are vulnerable as they accept

self-signed certificates. This may occur as developers wish to accept self-signed certific-

ates for testing purposes but forget to disable the feature in their production environment.

While others purposely choose to employ self-signed certificates in production, and proceed

to customize their TrustManagers. TrustManagers that accept self-signed certificates usu-

ally check for the presence of a single certificate, and verify whether or not it is valid by

calling the checkValidity() method. This implies that any self-signed certificate currently

valid would be accepted by the app.

In order to use self-signed certificates safely, developers should enable SSL pinning

instead, rather than using a TrustManager that accepts all certificates. While the normal

practice of using self-signed certificate is to verify the certificate thumbprint, we recommend

the use of self-signed root certificates. Developers should create a keystore with self-signed

root certificate to sign any number of leaf certificates to be employed on servers. The keystore
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is then used to create a TrustManager. The leaf certificates are then verified against the

self-signed root certificate. Credentials to be checked can include public key, SubjectAltName,

signature, and any other field specified by the developer.

The same method should also be used when developers have a valid certificate signed

by a trusted CA, but need to use a self-signed one for testing purposes. A separate keystore

containing the self-signed root certificate for development environment should be created

and used to initialize the TrustManager, but with the same pinning validation logic as that

of the production environment. Employing the same pinning validation logic of checking

public key, signature, etc., would ensure that developers only add a new self-signed root

certificate to the development keystore and/or create new leaf certificates signed by the

self-signed root certificate for any number of tests without disrupting the SSL validation

logic. If one forgets to change the keystore used to initialize the TrustManager, the SSL

pinning validation logic will act as a fail-safe default, leading to the failure of all secure

connections, thus pointing the developer to check the keystore used for validation. A sample

code snippet that could be used for this purpose is presented in Appendix A.2 and is

also available online as a Github gist.9 Similarly, to help developers detect vulnerable

TLS implementations either from libraries they have included in their apps or those they

have written themselves, we also make available our fork10 of MalloDroid and will release

TLSDroid soon.

As recent studies [15,91] show, the source of developers’ information impact the security

of their code. In a user study conducted by Acar et al. [15], developers who were only

allowed access to Stack Overflow as their information source when they encountered coding

challenges, produced significantly less secure but more functional code than those who were

allowed to use only the official Android documentation. They show that of the 139 Stack

Overflow threads their participants accessed, only 17% contain secure code. This result is

confirmed by Fischer et al. [91], who show that of the 1.3 million apps from Play Store that

9https://gist.github.com/luckenzo/416d9da141b302bfcfcd7b0d3b95489f
10https://github.com/luckenzo/mallodroid
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they analyze, 15.4% contain code snippet from Stack Overflow, with 97.9% of the snippet

being insecure. As a result of these findings, it is important to provide developers with

tools that help them detect vulnerabilities or with secure code snippet, which we do.

Finally, while the certificate pinning logic works when the peer certificate is signed by

a known root CA, whenever a peer’s certificate is not known beforehand, developers could

use the default TrustManager that relies on the OS’s trusted credentials.

4.4.3 Open Problems

Following our analysis, we highlight a few open research problems. First, we emphasize

how, more than 2 years after prior work drew attention to SSL implementations on mobile

platforms, many popular apps still accept all certificates and wrong hostnames, and are

vulnerable to MiTM attacks. We argue for the need to give developers more effective tools

that can help them detect and fix issues before the app is in production, and not only ways

to detect vulnerabilities after the fact. To this end, we have discussed how developers could

safely use self-signed certificates, and more strategies could be experimented with [29,83].

The analysis of private information leakage and SSL vulnerabilities should be part of

the vetting process performed by app markets, such as Google Play. These already scan

apps for malware, inappropriate content, system interference, etc. [106]. Alternatively,

research efforts should be encouraged to do so in lieu of app markets. Considering that

tools are already available that allow crawling of app markets [206] as well as methodologies

for large-scale analysis of SSL vulnerabilities [189], the community could design a portal

keeping track over time of such vulnerabilities and reporting them to the public. Ideally,

this could also be integrated with results from large-scale dynamic analysis.

Another set of open problems relates to designing meaningful mechanisms for visual

feedback. Recall that in the browser context, the lock icon informs users that their connec-

tion is secure and that extensive research has analyzed (and proposed improvements to) SSL

warnings [16, 86, 193]. On the contrary, little has been done in the context of smartphone
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apps. This prompts a number of challenges as it is not clear how to provide meaningful

feedback and how to proceed with respect to warnings. Arguably, we should not rely on the

user to fix problems the community is not able to, as users often have no idea as to what

warnings actually mean or what is the right course of action. A possible research avenue is

to contextualize the warnings: if the user is connected via Wi-Fi, they could receive a dif-

ferent set of warnings, following a contextual security approach [146]. A user that connects

to Wi-Fi and gets a descriptive warning (e.g., the certificate of www.twitter.com is signed

by Mallory, Inc. but was expected to be signed by Verisign) is more likely to disconnect

from the Wi-Fi.

4.4.4 Limitations

While it is inherently hard to perform large-scale dynamic analysis, we acknowledge the

limited size of our 100-app corpus. However, this actually represents a reasonably sized

sample of popular Android apps – as per statistics from AndroidRank [2], roughly 10% of

all apps with at least 10M downloads. Also, we did not use cookies as an attack vector to

exploit vulnerabilities. As mentioned by Sun and Beznosov [192], developers include OAuth

tokens in cookies and these were often accessible, thus, they could be used to exploit further

attack scenarios. Finally, the different program analysis approaches typically have pros and

cons (see Chapter 2.3). For example, dynamic analysis produces some false negatives as

we might not monitor all possible SSL sockets that connect to servers, while static analysis

may have revealed vulnerable codes that are not reachable during runtime because they

are developmental code only, potentially leading to a handful of false positives.

4.4.5 Concluding Remarks

In this chapter, we investigated the implementation of SSL in Android apps. Our results

showed that a worrying number of popular apps do not implement the security protocol

correctly, consequently making their apps vulnerable to MiTM attacks. In particular, 23
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and 29 apps (out of 100), respectively implement the TrustManager and HostnameVerifier

incorrectly, while four apps do not even employ encryption. Although during dynamic

analysis we require the adversary to have access to or control the Wi-Fi access point the

victim’s device connects to, previous studies [90, 169] show that this is trivial to achieve

with the deployment of fake or rogue access points. Moreover, users often connect to public

Wi-Fi hotspots that are not secured by any form of encryption [57, 111], allowing anyone

connected to the same network to eavesdrop and manipulate the network packets.

Due to the ease of setting up rogue access points (e.g., an unsecured Wi-Fi access points

at public places with a spoof SSID), apps with vulnerable SSL implementation expose the

users’ private and sensitive information to eavesdroppers and active adversaries. Even

when legitimate Wi-Fi access points are protected by encryption, prior work also shows

that an adversary can crack the Wi-Fi security using techniques such as key re-installation

attacks [203], brute force and rainbow tables [103], and statistical analysis [30,35]. Hence,

incorrect implementation of security and privacy protocols such as SSL by app developers

removes a layer of protection from users. Thus, our work highlights the importance of

correct implementation of the SSL protocol.
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Chapter 5

Experimental Analysis of Popular Anonymous,

Ephemeral, and End-to-End Encrypted Apps

In this chapter, we address RQ2: Do apps that claim to provide security and privacy properties

that protect user information actually do?

The work presented in this chapter has been published in the 2016 NDSS UEOP [158]

5.1 Motivation

5.1.1 The Research Problem

As social networking takes to the mobile world, smartphone apps provide users with ever-

changing ways to interact with each other with some of them being used by over a billion

users. Following Edward Snowden’s revelations, reports of government snooping, and in-

creasingly detrimental hacks, privacy and anonymity technologies have been increasingly

often in the news, with a growing number of users becoming aware – loosely speaking – of

privacy and encryption notions [155]. Service providers have rolled out, or have announced

they will, more privacy-enhancing tools, e.g., support for end-to-end encryption [143] and

HTTPS by default [219]. At the same time, a number of social networking and communic-

ation apps have entered the market, promising to offer security and privacy properties such

as anonymity, ephemerality i.e., making messages between communicating parties avail-

able only for a set amount of time, and/or end-to-end encryption (E2EE). While it is not

uncommon to stumble upon claims like “military-grade encryption” or “NSA-proof” [8] in
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the description of these apps, few studies thus far have actually analyzed the guarantees

they provide.

Prior works have studied the adoption of these apps, investigating the motivation for

their use [166,187]. Pielot and Oliver [166] study the motivations behind the use of Snapchat

by teenagers finding that teens use Snapchat as they are excited by the ephemerality, see

fewer risks, and non-commitment to persistent messengers. Similarly, Shein [187] points out

that users do not use ephemeral messaging because they have something to hide, rather,

because they do not want to add digital artifacts to their digital “detritus”. In 2014,

the Electronic Frontier Foundation (EFF) provided a Secure Messaging Scorecard that

attempted to evaluate “secure” messaging apps based on a number of criteria.1 But this

scorecard has since been archived as they conclude that “it wasn’t possible for us to clearly

describe the security features of many popular messaging apps, in a consistent and complete

way, while considering the varied situations and security concerns of our audience.” [45] To

this end, work presented in this chapter is motivated by the need for a systematic study of

a careful selection of apps that claim to provide selected properties only. That is, in this

chapter, we address the research question, RQ2, summarized here as:

• Do the security and privacy claims of “privacy-enhancing” Android apps match real-

ity?

5.1.2 The Research Roadmap

To address the research question, we first focus on three security and privacy properties,

namely, anonymity, ephemerality, and E2EE. Second, we compile a list of 18 apps that offer

E2EE, anonymity and/or ephemerality, focusing on 8 popular ones (Confide, Frankly Chat,

Secret, Snapchat, Telegram, Whisper, Wickr, and Yik Yak). We review their functionalit-

ies and perform an empirical evaluation, based on static and dynamic analysis, aimed to

compare the claims of the selected apps against results of our analysis.

1https://www.eff.org/node/82654
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The rest of this chapter is structured as follows: Section 5.2 presents the methodology

used in our analysis as well as the apps we analyze, while Section 5.3 presents the results.

Finally, Section 5.4 discusses the implication of our results and the limitations of the study.

5.2 Methodology

In this section, we present the definition of the selected security and privacy properties as

it relates to the apps in our dataset, description of the selected apps, and the experimental

setup used to analyze the presence or absence of these properties.

5.2.1 App Corpus

5.2.1.1 Apps Selection

We start by building a list of apps that are categorized as “anonymous” on Product Hunt [5].

We then look at their descriptions and at similar apps on the Google Play, and focus

on those described as offering end-to-end encryption, anonymity and/or ephemerality, as

defined below:

• Anonymity: is defined as the property that a subject is not identifiable within a

set of subjects, known as the anonymity set [165], e.g., as provided by Tor [194] for

anonymous communications. In the context of this paper, the term anonymity will

be used to denote that users are anonymous with respect to other users of the app

or with respect to the app provider.

• End-to-End Encryption (E2EE): Data exchanged between two communicating

parties is encrypted in a way that only the sender and the intended recipient can

decrypt it, so, e.g., eavesdroppers and service providers cannot read or modify mes-

sages.
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App Launched #Downloads Type Content Anonymity Ephemerality E2EE Social Links

20 Day Stranger 2014 Unknown Temporary OSN Photos and location Yes No No No
Armortext 2012 50–100K Chat (Enterprise) Text and files No User-defined Yes Yes
BurnerApp 2012 100–500K Temporary Call and SMS N/A N/A No Yes

numbers
Confide 2014 100–500K Chat Text, documents, photos No After message Yes Yes

is read
CoverMe 2013 100–500K Chat Text, voice, photos, videos No User-defined Yes Yes

Disposable Unknown 100–500K Temporary Call and SMS N/A N/A No Yes
Number numbers

Frankly Chat 2013 500K–1M Chat Text, pictures, videos, Optional for 10s No Yes
voice group chat

Secret 2014 5–10M Anonymous OSN, Text, photos, Yes No No Yes/No
Chat

Seecrypt SC3 2014 10–50K Chat Text, voice, files No No Yes Yes
Silent Circle 2012 100–200K Encrypted Phone Call, SMS, files No User-defined Yes Yes
Snapchat 2011 100–500M Transient OSN Photos, videos No 1–10s No Yes
Telegram 2013 50–100M Chat Text, photos, audio, No Optional Optional Yes

videos, files, location
TextSecure 2010 500K–1M Chat Text, files No No Yes Yes
TigerText 2010 500K–1M Chat Text, files No User-defined Yes Yes

Vidme 2013 50–100K Video Sharing Videos Yes No No No
Whisper 2012 1–5M Anonymous OSN, Text, photos Yes No No No

Chat
Wickr 2012 100–500K Chat Text, files, photos, audio, No User-defined Yes Yes

videos
Yik Yak 2013 1–5M Local Bulletin Text Yes No No No

Table 5.1: Our first selection of 18 smartphone apps providing at least one among ephemerality,
anonymity, or end-to-end encryption. N/A denotes ‘Not Applicable’. Apps in bold constitute the
focus of our analysis.

• Ephemerality: In cryptography, it denotes the property that encryption keys change

with every message or after a certain period. Instead, here ephemerality is used to

indicate that messages are not available to recipients on the user interface after a

period of time [33]. For instance, in apps like Snapchat, messages “disappear” from

the app (but may still be stored on the server) a few seconds after they are read.

Initial List of Apps. Our first list contains 18 apps, listed in Table 5.1, where we also

report their first release date, number of downloads as reported by Google Play Store, the

kind(s) of content that can be shared via the apps (e.g., text, videos, files), and whether the

apps create persistent social links. Note that our first selection does not include popular

apps like WhatsApp, since it attempts, but does not guarantee2 to provide E2EE for all

users [96].

2At the time of this study, i.e., Summer of 2015, WhatsApp did not guarantee E2EE for all its user base
but this is no longer the case.
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5.2.1.2 Selection Criteria

Final List of Apps. From our corpus, we focus on apps with the most downloads that offer

ephemerality, anonymity, E2EE, or, preferably, a combination of them. We exclude Silent

Circle and TigerText as they require, respectively, paid subscription and a registered com-

pany email. We reduce our selection to 8 apps: Confide, Frankly Chat, Secret, Snapchat,

Telegram, Whisper, Wickr, and Yik Yak (bold entries in Table 5.1). Next, we provide an

overview of their advertised functionalities, complementing information in the Table 5.1.

(Descriptions below are taken from either Google Play Store or the apps’ respective web-

sites.)

Confide: offers end-to-end encryption and ephemerality. It allows users to share text,

photos, and documents from their device and it integrates with Dropbox and Google Drive.

It provides read receipts and notification of screenshot capture attempts. Messages are not

displayed on the app until the recipient wands over them with a finger, so that only a

limited portion of the message is revealed at a time. After a portion of the message is read,

it is grayed out Screenshots are also disabled on Android. Messages that have not been

read are kept on the server for a maximum of 30 days.

Frankly Chat: is a chat app that allows users to send ephemeral messages (text, picture,

video or audio), anonymous group chats, and un-send messages that the recipient has

not opened. Messages disappear after 10 seconds but users can pin their chats disabling

ephemerality. Both parties do not need to have the app installed to receive messages. A

link is sent to a recipient without the app via email and when clicked, reveals the message.

Messages are deleted from the server after 24 hours – whether they are read or not.

Secret: (discontinued May 2015) lets users post anonymously to other nearby users. Users

can view secrets from other locations but can only comment on those from their nearby

location. Users can chat privately with friends and engage in a group chat with the chat

history disappearing after a period of inactivity.
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Snapchat: is an app that allows users send text, photos and videos that are displayed for 1

to 10 seconds (as set by the user) before they “disappear”, i.e., they are no longer available

to their friends. If the recipient takes a screenshot, the sender is notified. Users can also

view Stories, i.e., a collection of snaps around the same theme, and a so-called Discover,

i.e., accessing snaps from different selected editorials.

Telegram: is a messaging app that lets users exchange text, photos, videos, and files.

It also provides users with an option to engage in a “secret chat”, which provides E2EE

and optional ephemerality. Senders are notified if the recipient takes a screenshot. Account

information, along with all messages, media, contacts stored at Telegram servers are deleted

after 6 months of login inactivity.

Whisper: is a location-based mobile social network that allows users to anonymously share

texts displayed atop images, which are either selected by the users or suggested by the app.

Users can view and respond to whispers either as a private message or via another whisper.

Wickr: is a chat app supporting text, audio, video, photos, and files, with user-defined

ephemerality (maximum 6 days). It also allows users to engage in group chats, shred

deleted files securely, and prevents screenshots on Android and claims to anonymize users

by removing metadata (such as persistent identifiers or geo-location) from their contents.

Yik Yak: is a local bulletin-board social network allowing nearby users to post yaks an-

onymously. Users clustered within a 10-mile radius are considered local and can post, view,

reply to, and up/down vote yaks but can only view yaks outside their locality.

5.2.2 Experimental Setup

Next, we present the setup we use to statically and dynamically examine the apps. We

follow similar strategy presented in Chapter 4 and while the “reality” of an app’s behavior

is observed during dynamic analysis, statically examining apps may reveal potential vul-

nerabilities that may not be revealed due to limited code coverage during dynamic analysis.
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(a) Proxy Setup Using Fiddler. (b) Proxy Setup Using SSLsplit.

Figure 5.1: Dynamic analysis setup.

5.2.2.1 Static Analysis

Following the approach presented in Chapter 4.2, we use the same custom script, which

allows us decompile .apk files to .jar files using dex2jar3, from which we extract the related

Java classes using JD-GUI.4 We then search for SSL/TLS keywords like TrustManager [9],

HostnameVerifier [3], SSLSocketFactory [6], and HttpsURLConnection [4]. Then, we

manually inspect the TrustManager and HostnameVerifier interfaces used to accept or

reject a server’s credentials: the former manages the certificates of all Certificate Author-

ities (CAs) used in assessing a certificate’s validity, while the latter performs hostname

verification whenever a URL’s hostname does not match the hostname in the certificate.

We also emphasize that performing a manual analysis of the apps rather than using TLS-

Droid introduced in Chapter 4.2, does not affect the results reported in Section 5.3.

5.2.2.2 Dynamic Analysis

Similar to the approach applied in Chapter 4.2.2, we manually instantiate the apps during

dynamic analysis. Although, using a pseudorandom input generator such as Monkey [107]

allows us automate the experiment and improves scalability, manually exercising apps al-

lows us target specific features of the apps that employs the security and privacy properties

3https://code.google.com/p/dex2jar/
4http://jd.benow.ca/
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we are interested in. We show in Chapter 7, how we can scale our analysis with real user

input and automated pseudorandom input generator.

We conduct our experiments on a LG Nexus 4 smartphone running Android 5.1 and

connected to a Wi-Fi access point under our control. (Note that the Wi-Fi network was

secured using WPA2 to prevent unauthorized connections and ensure that only intended

traffic was captured.) Our intention is to examine what an attacker can access from an app

advertised as privacy-enhancing, and what can be deduced as regards privacy-enhancing

claims. Hence, we assume an adversary that cannot elevate her privilege nor have access to

a rooted device. We perform actions including sign-up, login, profile editing, sending/read-

ing messages, while monitoring traffic transmitted and received by the apps. We collect

traffic using Wireshark and analyze unencrypted traffic to check for sensitive information

transmitted in the clear. We also rely on HTTP proxies such as Fiddler5 and SSLsplit [7]

to mount man-in-the-middle (MiTM) attacks and decrypt HTTPS traffic. Proxying is

supported in two ways:

1. Regular Proxy: We install the Fiddler HTTP proxy on a Windows 8.1 laptop (which

also acts as Wi-Fi access point), listening on port 8888, and manually configure the

smartphone to connect to the proxy. Figure 5.1(a) illustrates our proxy setup using

Fiddler. We also install Fiddler’s CA certificate on the smartphone and laptop to

allow for the decryption of HTTPS traffic.

2. Transparent Proxy: Some Android apps are programmed to ignore proxy settings, so

Fiddler does not accept/forward their packets. This happens with Telegram, Wickr

(non-CSS/JS), and Frankly Chat (chat packets). Therefore, we set up a transparent

proxy as shown in Figure 5.1(b) using SSLsplit MiTM proxy set to listen on port

9014 on a Linux desktop running Fedora 22, which also acts as a Wi-Fi access point.

We use iptables to redirect to port 9014 all traffic to ports 80, 443, and 5228 (GCM).

5http://www.telerik.com/fiddler
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As SSLsplit uses a CA certificate to generate leaf certificates for the HTTPS servers

each app connects to, we generate and install a CA certificate on the smartphone,

and pass it to SSLsplit running on the Linux machine.

5.3 Results

Here, we report the results of our findings after statically and dynamically examining the

apps and in the next chapter, discuss the implications of our results.

5.3.1 Static Analysis

Several sockets are usually created to transport data to different hostnames in an app,

therefore, sockets in an app may have different SSL implementations. We observe different

SSL implementations in the 8 apps, and summarize our findings below.

Non-Customized SSL Implementation. App developers can choose to use any one of

five defined HostnameVerifier subclass for hostname verification, and use TrustManager

initialized with a keystore of CA certificates trusted by the Android OS to determine

whether a certificate is valid or not, or customize certificate validation by defining their

own logic for accepting or rejecting a certificate. All the 8 apps in our corpus con-

tain some non-customized SSL implementations. Telegram and Yik Yak only use non-

customized SSL code, with the former relying on BrowserCompatHostnameVerifier class

and building sockets from default SSLSocketFactory. Confide and Snapchat both use the

BrowserCompatHostnameVerifier class, while Wickr has instances of all HostnameVerifi-

er subclasses but uses the BrowserCompatHostnameVerifier class on most of its sockets.

Snapchat does not customize its TrustManager either and registers a scheme from the de-

fault SocketFactory. Secret uses sockets from the default SSLSocketFactory but employs

regex pattern matching for hostname verification.

Vulnerable TrustManager/HostnameVerifier. Frankly Chat, Whisper, and Wickr all con-
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tain TrustManager and HostnameVerifier that accept all certificates or hostnames. Alas,

this makes it possible for an adversary to perform MiTM attacks and retrieve information

sent on the sockets that use the vulnerable TrustManager and/or HostnameVerifier. Vul-

nerable HostnameVerifier in Frankly Chat returns true without performing any check,

while Wickr uses the AllowAllHostnameVerifier subclass which is also used in Whisper

by Bugsense crash reporter.

Certificate Pinning. Confide, Frankly Chat, and Whisper implement certificate pinning.

Confide pins the expected CA certificate which is also accessible from the decompiled apk,

whereas Whisper uses the hash of the pinned certificate appended with the domain name

to make certificate validation decisions. For Frankly Chat, a single certificate is expected

and its hash is checked for in the received certificate chain. Frankly Chat also initializes

another TrustManager with a keystore that loads certificate from file.

5.3.2 Dynamic Analysis

We now present the results of our dynamic analysis, which are also summarized in Table 5.2.

No Proxy. We start by simply analyzing traffic captured by Wireshark and observe that

Secret and Frankly Chat send sensitive information in the clear. Specifically, in Frankly

Chat, the Android advertising ID (a unique identifier) is transmitted in the clear, via an

HTTP GET request, along with Device Name. The list of actions a user performs on

Frankly Chat can also be observed from the request URL. Secret instead leaks Google

Maps location requests (and responses) via HTTP GET.

Regular Proxy. Using Fiddler as a MiTM proxy, we notice that Confide and Whisper do

not complete connection with their servers due to certificate pinning. Note that Whisper

started implementing pinning after an update on April 22, 2015. Prior to that, one could

capture Whisper traffic via Fiddler and access location and user ID. We also notice that

Frankly Chat hashes passwords using MD5 without salt, while Snapchat sends usernames

and passwords without hashing. Although inconsistently, Snapchat also sends previous
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App Fiddler SSLsplit

Confide No connection No connection
Frankly Chat TLS traffic is decrypted but packets

containing chat messages not routed
through proxy

TLS traffic is decrypted but there is
no connection to the server when chat
is attempted

Secret All packets decrypted Not Available (discontinued before we
started using the transparent proxy)

Snapchat All packets decrypted All packets decrypted
Telegram Connects but traffic does not pass

through proxy
TLS traffic is decrypted but E2EE is
enabled

Whisper No connection No connection
Wickr Connects but traffic does not pass

through proxy
TLS traffic is decrypted but E2EE is
enabled

Yik Yak All packets decrypted All packets decrypted

Table 5.2: Summary of dynamic analysis results.

“expired” chat messages to the other party even though these are not displayed on the UI.6

Decrypted traffic from Secret, Whisper, and Yik Yak show that these apps associate

unique user IDs to each user, respectively, ClientId, wuid, and user ID. We test the persist-

ence of these IDs and find that, even if the apps’ cache on the device is cleared through the

Android interface, and the apps uninstalled and reinstalled, Whisper and Yik Yak retain

the user ID from the uninstalled account and restore all previous whispers and yaks from

the account. On Whisper, we manually delete its wuid and state files (in the /sdcard/whis-

per directory) before reinstalling the app: this successfully clears all previous whispers and

a new wuid file is generated. However, it does not completely de-associate the device from

the “old” account as the “new” account still gets notifications of private messages from con-

versations started by the “old” account. On the contrary, clearing Secret’s cache unlinks

previous messages, even without uninstalling the app.

Telegram and Wickr ignore the proxy settings, i.e., traffic does not pass through our

proxy. Frankly Chat also ignore the proxy when sending chat messages but not for traffic

generated by other actions.

Transparent Proxy. Using SSLsplit, we decrypt SSL-encrypted traffic from Wickr and

Telegram. We do not find any sensitive information or chat messages being transmitted

6Note: we have informed Snapchat of this in October 2015 but did not get any response.
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as the traffic is indeed encrypted. Apps for which SSL-encrypted traffic is recovered using

Fiddler exhibit the same behavior on the transparent proxy, with Confide and Whisper

not connecting due to pinning. We observe that certificate pinning is implemented on the

socket used to transmit chat messages on Frankly Chat, as we cannot send chat messages

but perform other actions, e.g., editing profiles and adding new friends. We also uninstall

the CA certificate from the device to observe whether non-trusted certificate are accepted,

and find that none of the apps established an HTTPS connection, which implies the apps

do not use TrustMangers accepting any certificate as valid as reported in Chapter 4.

5.4 Discussion

We now discuss the implications of our analysis, in light of the properties promised by the

8 studied apps.

5.4.1 Anonymity

Anonymity w.r.t Other Users. Posts on Secret and Yik Yak (respectively, secrets and

yaks) are not displayed along with any identifier, thus making users anonymous with respect

to other users. On Whisper, due to the presence of a display name (non-unique identifier

shown to other users) and its “Nearby” function, communities can be formed as a result of

viewing and responding to whispers from nearby locations. Thus, it may be possible to link

whispers to a display name, while at the same time querying the distance to the target, as

described by Wang et al. [209].

Users who think they are anonymous are more likely to share sensitive content they

might not share on non-anonymous OSN platforms, which makes “anonymous” apps po-

tential targets of scammers/blackmailers that can identify users. This motivates us to

examine the possibility of creating social links between users, i.e., linking a user and a

set of actions. We find that this is not possible on Yik Yak as there are no one-to-one
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conversations. Also, when the Yik Yak stream is monitored by a non-participating user,

user IDs observed are symbolic to the real unique user ID. The symbolic user ID is only

associated to one yak, hence, one cannot use it to link a user as the ID differs across yaks

by the same user. Frankly Chat optionally offers k-anonymity during a group chat with

k+1 friends. Due to the social link already present in the group (users chat with friends),

psychological differences make it possible to identify who says what.

Anonymity w.r.t Service Provider. All apps associate identifiers to their users, which

allows them to link each user across multiple sessions. Wickr claims to strip any metadata

that could allow them to identify their users, thereby making users anonymous and im-

possible to track [211], but we cannot verify this claim since all traffic is end-to-end en-

crypted.

We observe different levels of persistence of user IDs in Secret, Whisper, and Yik Yak, as

mentioned earlier. Secret stores identifiers on users’ device, so an identifier would cease to

persist beyond data and cache clearance. For Whisper and Yik Yak, we have two hypotheses

as to why user IDs survive when the app is uninstalled and later reinstalled: either they store

identifiers on their servers and restore them to a device on re-installation or they create the

user IDs from the same device information using a deterministic function. This observation

indicates that Whisper and Yik Yak’s user IDs are linked to device information, thus

making users persistently linkable. While Whisper and Yik Yak do reveal the information

they collect from users in their privacy policy, previous work shows that the overwhelming

majority of users do not read (or anyway understand) privacy policies [10]. Both apps

collect information including device ID, IP address, geo-location, which can be used to

track users. This, along with profiles from analytics providers (which both apps embed),

can be used to de-anonymize users’ age, gender, and other traits with a high degree of

accuracy [185]. Finally, note that Whisper’s description on Google Play, while including

terms like ‘anonymous profiles’ and ‘anonymous social network’, is actually ambiguous as

to whether they refer to anonymity with respect to Whisper or other users (or both).
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Location Restriction. Secret and Yik Yak’s restriction on feeds a user can see (and interact

with) can simply be defeated, e.g., as Android lets users to use mock locations in developer

mode. In combination with an app that feeds GPS locations chosen by the user (e.g., Fake

GPS), this allows them to access geo-tagged messages from anywhere.

5.4.2 Ephemerality

Confide, Frankly Chat, Snapchat, Telegram, and Wickr offer message ephemerality with

varying time intervals. Confide claims messages disappear after it is read once [60] but this

is not the case as messages only “disappear” after a user navigates away. This implies the

recipient can keep the message for longer as long as they do not navigate away from the

opened message. In Frankly Chat, messages “disappear” after 10 seconds (even though

users can pin messages). Ephemerality on Telegram only applies to “secret chats” and

the expiration time is defined by the user. Snapchat and Wickr also let users determine

how long their message last, with Snapchat defining a range of 1–10s (default 3s). On

Snapchat, previous chat messages are actually part of the response received from the server,

even though they are not displayed on the client’s UI. This indicates that read messages

are actually not deleted from Snapchat servers immediately, despite what is stated in

Snapchat’s privacy policy [188]. Since Confide and Frankly Chat implement certificate

pinning, we cannot examine if responses from the server during chat contain past messages.

Also, Telegram and Wickr encrypt data before transmission, thus we cannot make any

analysis from intercepted packets.

Of all the apps offering ephemerality, only Confide and Wickr instruct the Android

OS to prevent screen capture from a recipient. Obviously, however, the recipient can still

take a photo with another camera, and video recording would defeat Confide’s wand-based

approach. Confide can claim to offer plausible deniability if a photo is taken, as messages are

not displayed along with the name of the sender, hence, pictures would not preserve the link

between the message and the identity of the sender. Frankly Chat, Snapchat, and Telegram
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only notify the sender that the recipient has taken a screenshot, thus ephemerality claims

are only valid assuming the recipient is not willing to violate a social contract between them

and the sender. Also, if messages are not completely wiped from the server, the provider

is obviously still subject to subpoena and/or vulnerable to hacking.

5.4.3 End-to-End Encryption

Confide and Wickr claim to employ E2EE by default, using AES-128 and AES-256, respect-

ively. We can confirm E2EE in Wickr but not in Confide, since certificate pinning prevents

interception of traffic. Also, Telegram offers E2EE for “secret chat” using AES-256 and

client-server encryption (i.e. only the server and both clients can decrypt traffic) which also

prevents MiTM attacks for non-secret chats. In both secret and non-secret chat, Telegram

uses a proprietary protocol, MTProto, and transmit traffic over SSL although its webpage

states otherwise.7 Telegram and Wickr’s implementations also claim to support perfect

forward secrecy [198,211].

5.4.4 Limitations

First, our analysis is only limited to eight apps which we plan to extend as part of future

work. We downloaded the metadata of 1.4 million apps collected using PlayDrone [206] and

found 455 apps that might be offering anonymity, ephemerality, or end-to-end encryption.

Second, during dynamic analysis, we manually test apps, which consequently limits the

number of apps we can analyze. However, manually testing the apps ensures that code

paths that trigger network connectivity are tested compared to using automated tools

(e.g., a pseudorandom input generator such as Monkey [107]) that may traverse many code

paths that do not initiate any network connectivity. This limitation can be addressed by

using Chimp [17] to crowdsource human input. We also plan to explore automation of the

process, e.g., by using Monkey [107] or other input generators to test apps on the Android

7https://core.telegram.org/mtproto#http-transport
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emulator.

5.4.5 Concluding Remarks

Although work presented in this chapter applies similar methodology as that in Chapter 4,

it investigates a different problem. Specifically, some apps are advertised as “privacy-

enhancing” or providing “military-grade encryption”; therefore, we investigate whether we

can extract information or deanonymize users of such apps – actions the security or privacy

properties these apps claim to provide should typically not allow us perform. Verifying

whether apps advertised to exhibit one or more of these security and privacy properties is

important due to the false sense of trust users put on them when they actually do not have

these properties. For example, it is claimed that “Ephemeral messages are incredibly freeing

and make people communicate more authentically and freely with their friends” [187].

While the “fun” and non-commitment of ephemeral messaging apps are drivers why users

use them [166,177].

When these apps fail to implement properties such as ephemerality correctly, users

are exposed to privacy violations which may hinder the adoption of other apps that are

advertised as secure and correctly implemented. In fact, our work show some interesting

findings such as inconsistent application of ephemerality on ephemeral app, i.e., Snapchat

and the use of persistent identifiers in anonymous apps. Finally, our findings (e.g., w.r.t

E2EE) could also feed into any future scorecard (e.g., EFF Secure Messaging Scorecard)

that attempts to provide security information guide to non-expert users.
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Chapter 6

MaMaDroid: Detecting Android Malware by

Building Behavioral Models using Abstracted API

Calls

In this chapter, we address RQ3: Can we design new malware detection tools that are more robust

to malware and Android framework evolution than the state-of-the-art?

The work presented in this chapter is the extended version of work published in NDSS [144] and it is currently

under submission at ACM TOPS [160]

6.1 Motivation

6.1.1 The Research Problem

Malware running on mobile devices can be particularly lucrative, as it may enable attackers

to defeat two-factor authentication for financial and banking systems [205] and/or trigger

the leakage of sensitive information [108]. As a consequence, the number of malware samples

has skyrocketed in recent years, and, due to its increased popularity, cybercriminals have

increasingly targeted the Android ecosystem [59]. Detecting malware on mobile devices

presents additional challenges compared to desktop/laptop computers: smartphones have

limited battery life, making it impossible to use traditional approaches requiring constant

scanning and complex computation [168]. Thus, Android malware detection is typically

performed in a centralized fashion, i.e., by analyzing apps submitted to the Play Store

using Bouncer [154] or Play Protect [65]. However, many malicious apps manage to avoid
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detection [149, 213], and manufacturers as well as users can install apps that come from

third party stores that may not perform any malware checks [227].

As a result, the research community has proposed a number of techniques to detect

malware on Android. Previous work has often relied on the permissions requested by

apps [77, 182], using models built from malware samples. This, however, is prone to false

positives, since there are often legitimate reasons for benign apps to request permissions

classified as dangerous [77]. Another approach, used by DroidApiMiner [14], is to perform

classification based on API calls frequently used by malware. However, relying on the most

common calls observed during training prompts the need for constant retraining, due to

the evolution of malware and the Android API alike. For instance, “old” calls are often

deprecated with new API releases, so malware developers may switch to different calls to

perform similar actions. Hence, in this chapter we address RQ3 (see Section 1.1) which is

divided into the following sub-questions:

Q1 Can we model the behavior of malicious apps in a way that improves malware detec-

tion?

Q2 Can we design a malware detection system that does not require frequent retraining

of the classification model but that is still acceptably effective?

6.1.2 The Research Roadmap

To address Q1, we model the behavior of apps as Markov chains derived from the sequence

of API calls in their executable files using static analysis. Our intuition behind the use

of the sequences of API calls is that malware may use calls for different operations, and

in a different order, than benign apps. For example, android.media.MediaRecorder can be

used by any app that has permission to record audio, but the call sequence may reveal

that malware only uses calls from this class after calls to getRunningTasks(), which allows

recording conversations [220], as opposed to benign apps where calls from the class may
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appear in any order. To measure the effectiveness of this approach, we compare it to a

detection system that models apps using the frequency of API calls rather than sequences

of the API calls (i.e., DroidApiMiner [14]).

We address Q2 by abstracting the API calls we use in our model to different levels of

granularity. Abstraction provides resilience to API changes in the Android framework as

for example, while method calls may change frequently (due to deprecation and addition)

with new API releases, packages are added and removed less frequently. At the same time,

the abstraction we apply does not “abstract away” the behavior of an app. For instance,

packages include classes and interfaces used to perform similar operations on similar objects,

so we can model the types of operations from the package name alone. For example, the

java.io package is used for system I/O and access to the file system, even though there are

different classes and interfaces provided by the package for such operations. We measure

the contribution of abstraction to the effectiveness of our detection tool by evaluating the

tool on dataset spanning several years, and comparing it to a system that employs similar

modeling approach but without abstraction.

As outlined in Chapter 1.4, the work presented here is in collaboration with other co-

authors, and they all contributed towards its completion. Specifically, the implementation

of Markov chain-based modeling (Section 6.2.1.3), classification (Section 6.2.1.4), dataset

characterization (Section 6.3.2), evaluation of MaMaDroid in 2 of 3 modes i.e., family

and package modes (Section 6.4.1), and the runtime measurement of the modeling and

classification modules of MaMaDroid are the contributions of the other coauthors.

The rest of this chapter is organized as follows: Section 6.2 presents the design and

implementation of MaMaDroid and its variant FAM, while Section 6.3 introduces the

dataset used to evaluate MaMaDroid and FAM. Section 6.4 presents the results achieved

by MaMaDroid and FAM and finally, Section 6.5 discusses possible evasion techniques

and the limitations of our work.
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Figure 6.1: Overview of MaMaDroid’s operation. In (1), it extracts the call graph from an
Android app, next, it builds the sequences of (abstracted) API calls from the call graph (2). In (3),
the sequences of calls are used to build a Markov chain and a feature vector for that app. Finally,
classification is performed in (4), labeling the app as benign or malicious.

6.2 Design and Implementation of MaMaDroid

We now present our malware detection tool: MaMaDroid, its design and implementation.

To measure the contribution of the Markov chain model derived from the sequence of API

calls to the effectiveness of MaMaDroid, we build a variant (which we call FAM i.e.,

frequency analysis model) that uses the frequency of API calls rather than their sequences

and compare both. To measure the contribution of abstraction to its effectiveness, we

compare its variant FAM to DroidApiMiner since they are both based on the frequency

of API calls. In this section, we introduce both MaMaDroid and its variant, FAM.

6.2.1 App Behavior as Markov Chains (MaMaDroid)

Building Blocks. MaMaDroid’s operation goes through four phases, as depicted in Fig-

ure 6.1. First, we extract the call graph from each app by using static analysis (1), then, we

obtain the sequences of API calls using all unique nodes after which we abstract each call

to class, package, or family (2). Next, we model the behavior of each app by constructing

Markov chains from the sequences of API calls for the app (3), with the transition prob-

abilities used as the feature vector to classify the app as either benign or malware using a

machine learning classifier (4). In the rest of this section, we discuss each of these steps in

detail.
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package com.fa.c;

import android.content.Context;

import android.os.Environment;

import android.util.Log;

import com.stericson.RootShell.execution.Command;

import com.stericson.RootShell.execution.Shell;

import com.stericson.RootTools.RootTools;

import java.io.File;

public class RootCommandExecutor {

public static boolean Execute(Context paramContext) {

paramContext = new Command(0, new String[] { "cat " + Environment.getExternalStorageDirectory().

getAbsolutePath() + File.separator + Utilities.GetWatchDogName(paramContext) + " > /data/" +

Utilities.GetWatchDogName(paramContext), "cat " + Environment.getExternalStorageDirectory().

getAbsolutePath() + File.separator + Utilities.GetExecName(paramContext) + " > /data/" +

Utilities.GetExecName(paramContext), "rm " + Environment.getExternalStorageDirectory().

getAbsolutePath() + File.separator + Utilities.GetWatchDogName(paramContext), "rm " +

Environment.getExternalStorageDirectory().getAbsolutePath() + File.separator + Utilities.

GetExecName(paramContext), "chmod 777 /data/" + Utilities.GetWatchDogName(paramContext), "

chmod 777 /data/" + Utilities.GetExecName(paramContext), "/data/" + Utilities.GetWatchDogName

(paramContext) + " " + Utilities.GetDeviceInfoCommandLineArgs(paramContext) + " /data/" +

Utilities.GetExecName(paramContext) + " " + Environment.getExternalStorageDirectory().

getAbsolutePath() + File.separator + Utilities.GetExchangeFileName(paramContext) + " " +

Environment.getExternalStorageDirectory().getAbsolutePath() + File.separator + " " +

Utilities.GetPhoneNumber(paramContext) });

try {

RootTools.getShell(true).add(paramContext);

return true;

}

catch (Exception paramContext) {

Log.d("CPS", paramContext.getMessage());

}

return false;

}

}

Figure 6.2: Code from a malicious app (com.g.o.speed.memboost) executing commands as root.

6.2.1.1 Call Graph Extraction

The first step in MaMaDroid is to extract the app’s call graph. We do so by performing

static analysis on the app’s apk, i.e., the standard Android archive file format containing

all files, including the Java bytecode, making up the app. We use a Java optimization and

analysis framework, Soot [202], to extract call graphs and FlowDroid [26] to ensure contexts

and flows are preserved. Specifically, we use FlowDroid, which is based on Soot, to create

a dummy main method that serves as the main entry point into the app under analysis

(AUA). We do so because Android apps have multiple entry points via which they can be

started or invoked. Although apps have an activity launcher, which serves as the main entry
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com.fa.c.RootCommandExecutor:
Execute()

android.util.Log:
d()

com.stericson.RootTools.RootTools:
getShell()

java.lang.Throwable:
getMessage() com.stericson.RootShell.execution.Shell:

add()

Figure 6.3: Call graph of the API calls in the try/catch block of Figure 6.2. (Return types and
parameters are omitted to ease presentation).

point, it is not mandatory that they are implemented (e.g., apps that run as a service),

hence, creating a single entry point allows us to reliably traverse the AUA. FlowDroid also

lets us model the information flow from sources and sinks using those provided by SuSi [171]

as well as callbacks.

To better clarify the different steps involved in our system, throughout this section, we

employ a “running example” using a real-world malware sample. Figure 6.2 lists a class

extracted from the decompiled apk of malware disguised as a memory booster app (with

package name com.g.o.speed.memboost), which executes commands (rm, chmod, etc.) as

root.1 To ease presentation, we focus on the portion of the code executed in the try/catch

block. The resulting call graph of the try/catch block is shown in Figure 6.3. For simplicity,

we omit calls for object initialization, return types and parameters, as well as implicit calls

in a method. Additional calls that are invoked when getShell(true) is called are not shown,

except for the add() method that is directly called by the program code, as shown in

Figure 6.2.

6.2.1.2 Sequence Extraction and Abstraction

In its second phase, MaMaDroid extracts the sequences of API calls from the call graph

and abstract the calls to one of three mode.

Sequence Extraction. Since MaMaDroid uses static analysis, the graph obtained from

Soot represents the sequence of functions that are potentially called by the app. However,

1https://www.hackread.com/ghost-push-android-malware/

90

https://www.hackread.com/ghost-push-android-malware/


com.fa.c.RootCommandExecutor:
Execute()

[self-defined,

self-defined, self-defined]

com.fa.c.RootCommandExecutor:
Execute()

[self-defined,

self-defined, self-defined]

com.fa.c.RootCommandExecutor:
Execute()

[self-defined,

self-defined, self-defined]

com.stericson.RootTools.
RootTools: getShell()

[self-defined,

self-defined, self-defined]

com.stericson.RootShell.
execution.Shell: add()

[self-defined,

self-defined, self-defined]

android.util.Log:
d()

[android.util.Log,

android.util, android]

java.lang.Throwable:
getMessage()

[java.lang.Throwable,

java.lang, java]

Figure 6.4: Sequence of API calls extracted from the call graphs in Figure 6.3, with the corres-
ponding class/package/family abstraction in square brackets.

each execution of the app could take a specific branch of the graph and only execute a

subset of the calls. For instance, when running the code in Figure 6.2 multiple times, the

Execute method could be followed by different calls, e.g., getShell() in the try block only

or getShell() and then getMessage() in the catch block.

Thus, in this phase, MaMaDroid operates as follows. First, it identifies a set of entry

nodes in the call graph, i.e., nodes with no incoming edges (for example, the Execute method

in the snippet from Figure 6.2 is the entry node if there is no incoming edge from any other

call in the app). Then, it enumerates the paths reachable from each entry node. The sets

of all paths identified during this phase constitutes the sequences of API calls which will be

used to build a Markov chain behavioral model and to extract features. In Figure 6.4, we

show the sequence of API calls obtained from the call graph in Figure 6.3. We also report

in square brackets, the family, package, and class to which the call is abstracted.

package︷ ︸︸ ︷
java︸︷︷︸

family

.lang.Throwable:

︸ ︷︷ ︸
Class

String getMessage()

Figure 6.5: An example of an API call and its family, package, and class.

API Call Abstraction. Rather than analyzing raw API calls from the sequence of calls,

we build MaMaDroid to work at a higher level, and operate in one of three modes by

abstracting each call to its family, package, or class. Note that “family” as used in this
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work refers to the “root” name of an API package and not to a “malware family” since

we do not attempt to label each malware sample to its family. The intuition for this

abstraction is to make MaMaDroid resilient to API changes and achieve scalability. In

fact, our experiments presented in Section 6.3.2, show that from a dataset of 44K apps,

we extract more than 10 million unique API calls, which, depending on the modeling

approach used to model each app, may result in the feature vectors being very sparse. In

Figure 6.5, we present an example of how abstraction works using the API call getMessage(),

which is abstracted to, respectively, java, java.lang, and java.lang.Throwable in family,

package, and class modes.

When operating in family mode, we abstract an API call to one of the nine Android

families, i.e., android, google, java, javax, xml, apache, junit, json, dom, which cor-

respond to the android.*, com.google.*, java.*, javax.*, org.xml.*, org.apache.*, junit.*,

org.json, and org.w3c.dom.* packages. Whereas in package mode, we abstract the call to

its package name using the list of Android packages from the documentation2 consisting

of 243 packages as of API level 24 (the latest version as of August 2016 when this work

was done), as well as 95 from the Google API.3 In class mode, we abstract each call to

its class name using a whitelist of all class names in the Android and Google APIs, which

consists respectively, 4,855 and 1116 classes.4 In all modes, we abstract developer-defined

(e.g., com.stericson.roottools) and obfuscated (e.g. com.fa.a.b.d) API calls respectively, as

self-defined and obfuscated. Note that we label an API call as obfuscated if we can-

not tell what its class implements, extends, or inherits, due to identifier mangling. Also,

we first abstract an API call to its class name before abstracting to its family or package

name. We do this to prevent the possibility of abstracting self-defined calls to those of the

Google or Android framework when they are named in such a way that they look similar

to that of the Android, java, or Google APIs. Overall, there are 11 (9+2) families, 340

2https://developer.android.com/reference/packages.html
3https://developers.google.com/android/reference/packages
4https://developer.android.com/reference/classes.html
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(243+95+2) packages, and 5,973 (4,855+1,116+2) classes. Given the three different types

of abstractions, naturally, we expect that the higher the abstraction, the lighter the system

is, although possibly less accurate.

Reducing the Number of Classes. When operating in class mode, since there are 5,973

classes, processing the Markov chain transitions that results in this mode increases the

memory requirements. Therefore, to reduce the complexity, we cluster classes based on

their similarity. To this end, we build a co-occurrence matrix that counts the number

of times a class is used with other classes in the same sequence in all datasets. More

specifically, we build a co-occurrence matrix C, of size (5,973·5,973)/2, where Ci,j denotes

the number of times the i-th and the j-th class appear in the same sequence, for all apps

in all datasets. From the co-occurrence matrix, we compute the cosine similarity (i.e.,

cos(xxx,yyy) = xxx·yyy
||xxx||·||yyy||), and use k-means to cluster the classes based on their similarity into

400 clusters and use each cluster as the label for all the classes it contains. Since we do not

cluster classes abstracted to self-defined and obfuscated, we have a total of 402 labels.

6.2.1.3 Markov chain-Based Modeling

Next, MaMaDroid builds features vector used for classification, based on the Markov

chains representing the sequences of abstracted API calls for an app. Before discussing this

in detail, we first review the basic concepts of Markov chains.

Markov Chains. Markov chains are memoryless models where the probability of trans-

itioning from a state to another only depends on the current state [153]. They are often

represented as a set of nodes, each corresponding to a different state, and a set of edges

connecting one node to another labeled with the probability of that transition. The sum

of all probabilities associated to all edges from any node (including, if present, an edge

going back to the node itself) is exactly 1. The set of possible states of the Markov chain

is denoted as S. If Sj and Sk are two connected states, Pjk denotes the probability of

transition from Sj to Sk. Pjk is given by the number of occurrences (Ojk) of state Sk after
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Figure 6.6: Markov chains originating from the call sequence in Figure 6.4 when using classes (a),
packages (b) or families (c).

state Sj , divided by Oji for all states i in the chain, i.e., Pjk =
Ojk∑
i∈S Oji

.

Building the Model. For each app, MaMaDroid takes as input the sequence of abstracted

API calls of that app (classes, packages or families, depending on the selected mode of

operation), and builds a Markov chain where each class/package/family is a state and the

transitions represent the probability of moving from one state to another. For each Markov

chain, state S0 is the entry point from which other calls are made in a sequence. As an

example, Figure 6.6 illustrates the Markov chains built using classes, packages, and families,

respectively, from the sequences reported in Figure 6.4.

We argue that considering single transitions is more robust against attempts to evade

detection by inserting useless API calls in order to deceive signature-based systems [129].

In fact, MaMaDroid considers all possible calls – i.e., all the branches originating from a

node – in the Markov chain, so adding calls would not significantly change the probabilities

of transitions between nodes (specifically, families, packages, or classes depending on the

operational mode) for each app.

Feature Extraction. Next, we use the probabilities of transitioning from one state (ab-

stracted call) to another in the Markov chain as the features vector of each app. States

that are not present in a chain are represented as 0 in the features vector. The vector

derived from the Markov chain depends on the operational mode of MaMaDroid. With

families, there are 11 possible states, thus 121 possible transitions in each chain, while,
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when abstracting to packages, there are 340 states and 115,600 possible transitions and

with classes, there are 402 states therefore, 161,604 possible transitions.

Using PCA. We also apply Principal Component Analysis (PCA) [125], which performs

feature reduction by transforming the feature space into a new space made of components

that are a linear combination of the original features. The first components contain as much

variance (i.e., amount of information) as possible. The variance is given as a percentage of

the total amount of information of the original feature space. We apply PCA to the feature

set in order to select the principal components. As PCA transforms the feature space

into a smaller one where the variance is represented with as few components as possible,

it considerably reduces computation/memory complexity. Also, PCA could improve the

accuracy of the classification by removing from the feature space, features that make the

classifier perform worse.

6.2.1.4 Classification

The last step is to perform classification, i.e., predicting apps as either benign or mal-

ware. To this end, we test MaMaDroid using different classification algorithms: Random

Forests, 1-Nearest Neighbor (1-NN), 3-Nearest Neighbor (3-NN), and Support Vector Ma-

chines (SVM). Each model is trained using the features vector obtained from the apps in

the training set and are evaluated using 10-fold cross validation. Also note that due to the

different number of features used in different modes, we use two distinct configurations for

the Random Forests algorithm. Specifically, when abstracting to families, we use 51 trees

with maximum depth 8, while, with classes and packages, we use 101 trees of maximum

depth 64. To tune Random Forests we follow the methodology presented by Bernard et

al. [31].
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6.2.2 App Behavior as Frequency of API Calls (FAM)

We also design a variant of MaMaDroid that is based on the frequency, rather than

sequences, of abstracted API calls and in the rest of this chapter, we denote this variant as

FAM (Frequency Analysis Model). We implement FAM to assess the role of abstraction

in the detection performance of MaMaDroid. In the rest of this section, we discuss the

steps that comprise FAM’s operation.

6.2.2.1 API Call Extraction and Abstraction

API Call Extraction. The first step in FAM is to statically extract the API calls from

an app. To do this, we use Androguard, a python tool for analyzing Android apps.5

Using Androguard, we obtain the dalvik executable (DEX) of the app from which we

extract the method and class names of every API call. As a result of comparing FAM to

DroidApiMiner, we remove from the app, all API calls that are part of advertisement

libraries using a manually compiled list of advertisement libraries obtained from the authors

of DroidApiMiner.

After obtaining the API calls in an app, we abstract the API calls to their family,

package, and class names following the same abstraction procedure in MaMaDroid already

presented in Section 6.2.1.2.

6.2.2.2 Frequency Analysis-Based Modeling

In the second step of FAM, we model the behavior of each app by performing a frequency

analysis and using abstracted calls that are more frequently used in malware than benign

apps. That is, for each malware and benign dataset used for evaluation, we only use calls

that are used more in the malware dataset than in the benign dataset. The number of

calls used to model each app is dependent on the abstraction level/mode of operation i.e.,

family, package or class. In family mode, we use all families that occur more frequently in

5https://github.com/androguard/androguard
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malware than in benign samples due to the small set of families (11). Whereas in package

mode, we use the top 172 packages that occur more frequently in our malware dataset than

the benign dataset. In class mode, we use the top 336 classes that occur more frequently in

our malware dataset than in the benign. We use the top 172 packages and 336 classes so as

to build the model with packages and classes, respectively, from at least two families (the

android family has 171 packages) and packages (the java.util package has 335 classes).

6.2.2.3 Classification

The last step is the features vector extraction and classification of samples as either benign

or malicious. We obtain as features vector, the usage/non-usage of the calls derived from

step 2 (in previous section) in an app. We represent the presence/absence of e.g., a class

in an app as 1/0. Finally, we use the Random Forests, 1-Nearest Neighbor (1-NN), and

3-Nearest Neighbor (3-NN) algorithms for classification and use the same Random Forests

configuration presented in Section 6.2.1.4.

6.3 Dataset

In this section, we introduce the datasets used in the evaluation of MaMaDroid, FAM,

and DroidApiMiner which include 43,940 apk files, specifically, 8,447 benign and 35,493

malware samples. We include a mix of older and newer apps, spanning from October

2010 to May 2016, as we aim to verify that MaMaDroid is robust to changes in Android

malware samples as well as APIs. To the best of our knowledge, at the time of this study

our dataset comprises the largest dataset of malware samples ever used in a research paper

on Android malware detection.

Benign Samples. Our benign datasets consist of two sets of samples: (1) one, which

we denote as oldbenign, includes 5,879 apps collected by PlayDrone [206] between April
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Category Name Date Range #Samples #Samples #Samples
(API Calls) (Call Graph)

Benign
oldbenign Apr 2013 – Nov 2013 5,879 5,837 5,572
newbenign Mar 2016 – Mar 2016 2,568 2,565 2,465

Total Benign: 8,447 8,402 8,037

Malware

drebin Oct 2010 – Aug 2012 5,560 5,546 5,512
2013 Jan 2013 – Jun 2013 6,228 6,146 6,091
2014 Jun 2013 – Mar 2014 15,417 14,866 13,804
2015 Jan 2015 – Jun 2015 5,314 5,161 4,451
2016 Jan 2016 – May 2016 2,974 2,802 2,555

Total Malware: 35,493 34,521 32,413

Table 6.1: Overview of the datasets used in our experiments.

and November 2013, and published on the Internet Archive6 on August 7, 2014; and (2)

another denoted as newbenign, obtained by downloading the top 100 apps in each of the

29 categories on Play Store as of March 7, 2016, using the googleplay-api tool.7 Due to

errors encountered while downloading some apps, we only obtain 2,843 out of 2,900 apps.

Note that 275 of these belong to more than one category, therefore, the newbenign dataset

ultimately includes 2,568 unique apps.

Malware Samples. The set of malware samples includes apps that were used to test

Drebin [25], dating back to October 2010 – August 2012 (5,560), which we denote as

drebin, as well as more recent ones that have been uploaded on the VirusShare8 site

over the years. Specifically, we gather from VirusShare, respectively, 6,228, 15,417, 5,314,

and 2,974 samples from 2013, 2014, 2015, and 2016. We consider each of these datasets

separately in our analysis.

6.3.1 Dataset Preprocessing

API Calls. For each app, we extract all API calls using Androguard since as explained in

Section 6.4.4, these constitute the features used by DroidApiMiner [14] (against which

6https://archive.org/details/playdrone-apk-e8
7https://github.com/egirault/googleplay-api
8https://virusshare.com/
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Figure 6.7: CDF of the number of API calls in different apps in each dataset.

we compare our system) as well as FAM. Due to Androguard failing to decompress some of

the apks, bad CRC-32 redundancy checks, and errors during unpacking, we are not able to

extract the API calls for all the samples, but only for 40,923 (8,402 benign, 34,521 malware)

out of the 43,940 apps in our datasets.

Call Graphs. To extract the call graph of each apk, we use Soot. For some of the larger

apks, Soot requires a non-negligible amount of memory to extract the call graph, so we

allocate 16GB of RAM to the Java VM heap space. We find that for 2,472 (364 benign

+ 2,108 malware) samples, Soot is not able to complete the extraction due to it failing

to apply the jb phase as well as reporting an error in opening some zip files (i.e., the

apk). The jb phase is used by Soot to transform Java bytecode into jimple intermediate

representation (the primary IR of Soot) for optimization purposes. Therefore, we exclude

these apps in our evaluation and discuss this limitation further in Section 6.5.4.

In Table 6.1, we provide a summary of our seven datasets, reporting the total number

of samples per dataset, as well as those for which we are able to extract the API calls

(second-to-last column) and the call graphs (last column).
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Figure 6.8: CDFs of the percentage of android (a) and google (b) family calls in our dataset.

6.3.2 Dataset Characterization

Aiming to shed light on the evolution of API calls in Android apps, we also performed some

measurements over our datasets. In Figure 6.7, we plot the Cumulative Distribution Func-

tion (CDF) of the number of unique API calls in the apps in different datasets, highlighting

that newer apps, both benign and malicious, use more API calls overall than older apps.

This indicates that as time goes by, Android apps become more complex. When looking at

the fraction of API calls belonging to specific families, we discover some interesting aspects

of Android apps developed in different years. In particular, we notice that the usage of

API calls in the android family become less prominent as time passes (Figure 6.8(a)), both

in benign and malicious datasets, while google calls become more common in newer apps

(Figure 6.8(b)). In general, we conclude that benign and malicious apps show the same

evolutionary trends over the years. Malware, however, appears to reach the same charac-

teristics (in terms of level of complexity and fraction of API calls from certain families) as

legitimate apps with a few years of delay.

100



6.4 Evaluation

To assess the accuracy of the classification, we use the standard F-measure metric, cal-

culated as F −measure = 2 · (Precision · Recall)/(Precision + Recall), where Precision =

TP/(TP+FP) and Recall = TP/(TP+FN). TP denotes the number of samples correctly

classified as malicious, while FP and FN indicate, respectively, the number of samples mis-

takenly identified as malicious and benign. We perform 10-fold cross validation using at

least one malicious and one benign dataset from Table 6.1. In other words, after merging

the datasets, the resulting set is shuffled and divided into ten equal-size random subsets.

Classification is then performed ten times using nine subsets for training and one for testing,

and results are averaged out over the ten experiments.

6.4.1 Evaluating MaMaDroid

We now present an experimental evaluation of MaMaDroid in all (i.e., family, pack-

age, and class) modes. We use the datasets summarized in Table 6.1, and evaluate Ma-

MaDroid, as per (1) its accuracy on benign and malicious samples developed around the

same time; and (2) its robustness to the evolution of malware as well as of the Android

framework by using older datasets for training and newer ones for testing and vice-versa.

When implementing MaMaDroid in family mode, we exclude json and dom families be-

cause they are almost never used across all our datasets, and junit, which is primarily used

for testing. In package mode, in order to avoid mislabeling when self-defined APIs have

“android” in the name, we split the android package into its two classes, i.e., android.R

and android.Manifest. Therefore, in family mode, there are 8 possible states, thus 64

features, whereas in package mode, 341 states and 116,281 features, and in class mode,

402 states and 161,604 features. In both modes, we do not report the result of SVM be-

cause it is less effective and efficient. For example, the F-Measure with SVM using Radial

Basis Functions (RBF) is 0.09 lower than with Random Forests, and it is 5 times slower to
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Figure 6.9: F-measure of MaMaDroid classification with datasets from the same year using
three different classifiers.

train in family mode than 3-Nearest Neighbors (the slowest among the other classification

methods).

6.4.1.1 Detection Accuracy

We start by evaluating the performance of MaMaDroid when it is trained and tested on

dataset from the same year. In Figure 6.9, we plot the F-measure achieved by MaMaDroid

in family, package, and class modes using datasets from the same year for training and

testing and the three different classifiers. As already discussed in Section 6.2.1.3, we apply

PCA as it allows us transform a large feature space into a smaller one. For example when

operating in package mode, PCA could be particularly beneficial to reduce computation
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XXXXXXXXDataset
Mode [Precision, Recall, F-measure]

Family Family (PCA) Package Package (PCA) Class Class (PCA)
drebin, oldbenign 0.82 0.95 0.88 0.84 0.92 0.88 0.95 0.97 0.96 0.94 0.95 0.94 0.95 0.97 0.96 0.92 0.94 0.93
2013, oldbenign 0.91 0.93 0.92 0.93 0.90 0.92 0.98 0.95 0.97 0.97 0.95 0.96 0.98 0.95 0.97 0.97 0.94 0.96
2014, oldbenign 0.88 0.96 0.92 0.87 0.94 0.90 0.93 0.97 0.95 0.92 0.96 0.94 0.93 0.97 0.95 0.91 0.95 0.93
2014, newbenign 0.97 0.99 0.98 0.96 0.99 0.97 0.98 1.00 0.99 0.97 1.00 0.99 0.98 1.00 0.99 0.98 1.00 0.99
2015, newbenign 0.89 0.93 0.91 0.87 0.93 0.90 0.93 0.98 0.95 0.91 0.97 0.94 0.93 0.98 0.95 0.92 0.97 0.94
2016, newbenign 0.87 0.91 0.89 0.86 0.88 0.87 0.92 0.92 0.92 0.88 0.89 0.89 0.91 0.92 0.92 0.88 0.92 0.90

Table 6.2: Precision, Recall, and F-measure obtained by MaMaDroid when trained and tested
with dataset from the same year, with and without PCA.

and memory complexity, since MaMaDroid originally has to operate over 116,281 features

that may result in sparse features vector and overfitting. Hence, in Table 6.2 we report

the precision, recall, and F-measure achieved by MaMaDroid in family (small features

space), package, and class (large features space) modes with and without the application

of PCA using Random Forests classifier. We report the results for Random Forests only

because it outperforms both 1-NN and 3-NN (Figure 6.9) while also being very fast.

The Effects of PCA. When operating in package mode, we find that only 67% of the

variance is taken into account by the 10 most important PCA components, whereas in

family mode, at least 91% of the variance is included by the 10 PCA Components. As

shown in Table 6.2, the F-measure using PCA is only slightly lower (up to 3%) than when

using the full feature set. Since the results with and without PCA are about the same,

it suggests that MaMaDroid does not suffer from overfitting which may result from the

high dimensionality of its feature space.

Family Mode. In Figure 6.9(a), we report the F-measure when operating in family mode

for Random Forests, 1-NN and 3-NN. The F-measure is always at least 0.88 with Random

Forests, and, when tested on the 2014 dataset, it reaches 0.98. With some datasets, Ma-

MaDroid performs slightly better than with others. In general, lower F-measures are due

to increased false positives since recall is always above 0.91, while precision might be lower

due to the fact that malware datasets are larger than the benign sets.

Package Mode. When MaMaDroid runs in package mode, the classification performance

improves, with F-measure ranging from 0.92 (2016 and newbenign) to 0.99 (2014 and
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newbenign), using Random Forests. In Figure 6.9(b), we report the F-measure achieved in

this mode using Random Forests, 1-NN, and 3-NN.

Class Mode. When operating in class mode, the classification performance improves com-

pared to family mode and retains the same performance compared to package mode. In

particular, it achieves F-measure ranging from 0.92 (2016 and newbenign) to 0.99 (2014

and newbenign), using Random Forests. In Figure 6.9(c), we report the F-measure achieved

in this mode using the three (i.e., Random Forests, 1-NN, and 3-NN) different classifiers.

In general, MaMaDroid performs better in package and class modes in all datasets

with F-measure ranging from 0.92 – 0.99 compared to 0.88 – 0.98 in family mode. This is as

a result of the increased granularity which enables MaMaDroid identify more differences

between benign and malicious apps. On the other hand, however, this likely reduces the

efficiency of the system, as many of the states derived from the abstraction are used only

a few times. The differences in time performance between the two modes are analyzed

in detail in Section 6.4.5. Overall, we find that abstraction to class (finest granularity)

does not provide significantly higher accuracy when compared to abstraction to package,

yielding an average increase in F-measure of 0.0012.

6.4.1.2 Detection Over Time

As Android evolves over the years, so do the characteristics of both benign and malicious

apps. Such evolution must be taken into account when evaluating Android malware detec-

tion systems, since their accuracy might significantly be affected as newer APIs are released

and/or as malicious developers modify their strategies in order to avoid detection. Evalu-

ating this aspect constitutes one of our research questions, and one of the reasons why our

datasets span across multiple years (i.e., 2010 – 2016).

Recall that MaMaDroid relies on the sequence of API calls extracted from the call

graphs and abstracted to one of three modes of operation. Therefore, it may be less sus-

ceptible to changes in the Android API than other classification systems such as Droid-
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ApiMiner [14] and Drebin [25]. Since these rely on the use, or the frequency, of certain

API calls to classify malware vs benign samples, they need to be retrained following new

API releases. On the contrary, retraining is not needed as often with MaMaDroid, since

families and packages represent more abstract functionalities that change less over time.

Consider, for instance, the android.os.health package: released with API level 24, it

contains a set of classes that helps developers track and monitor system resources.9 Classi-

fication systems built before this release – as in the case of DroidApiMiner [14] (released

in 2013, when Android API was up to level 20) – need to be retrained if this package is more

frequently used by malicious apps than benign apps, while MaMaDroid only needs to add

a new state to its Markov chain when operating in package mode, while no additional state

is required when operating in family mode.

Older Training, Newer Testing. To verify this hypothesis, we evaluate MaMaDroid using

older samples (i.e., oldbenign with each of the three oldest malware datasets – drebin,

2013, and 2014) as training sets and newer ones (i.e., oldbenign and all malware datasets

newer than the one used in training) as testing sets. Figure 6.10(a) reports the average

F-measure of the classification in this setting when MaMaDroid operates in family mode.

The x-axis reports the difference in years between training and testing malware sets. We

obtain F-measure of 0.86 when we classify samples that are one year older than the samples

on which we train. Classification is still relatively accurate, at 0.75, even after two years.

Then, from Figure 6.10(b), we observe that the average F-measure does not significantly

change when operating in package mode. In class mode, we obtain average F-measure of

0.84 and 0.59, respectively (see Figure 6.10(c)), when trained on datasets one and two years

older than the testing set. All modes of operation are affected by one particular condition,

already discussed in Section 6.3.2: our benign datasets seem to be “ahead” of malicious

ones by 1–2 years in the way they use certain API calls. As a result, we notice a drop

in accuracy when classifying future samples and using drebin (with samples from 2010

9https://developer.android.com/reference/android/os/health/package-summary.html
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Figure 6.10: F-measure achieved by MaMaDroid using older samples for training and newer
samples for testing. The x-axis shows the difference in years between the training and testing
dataset.

to 2012) or 2013 as the malicious training set and oldbenign (late 2013/early 2014) as

the benign training set. More specifically, we observe that MaMaDroid correctly detects

benign apps, while it starts missing true positives and increasing false negatives – i.e.,

achieving lower recall.

Overall, we find that finer-grained abstraction actually performs worse with time when

older samples are used for training and newer ones for testing. We note that this is due to

a possible number of reasons: 1) newer classes or packages in recent API releases cannot be
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captured in the behavioral model of older tools, whereas families are; and 2) evolution of

malware either as a result of changes in the API or patching of vulnerabilities or presence

of newer vulnerabilities that allow for stealthier malicious activities.

Newer Training, Older Testing. We also set to verify whether older malware samples can

still be detected by the system – if not, this would obviously become vulnerable to older

(and possibly popular) attacks. Therefore, we also perform the “opposite” experiment, i.e.,

training MaMaDroid with newer benign (March 2016) and malware (early 2014 to mid

2016) datasets, and checking whether it is able to detect malware developed years before.

Specifically, Figure 6.11 reports results when training MaMaDroid with samples from a

given year, and testing it with others that are up to 4 years older: it retains similar F-

measure over the years. Specifically, in family mode (Figure 6.11(a)), it varies from 0.93 to

0.96, whereas in package mode (Figure 6.10(b)), from 0.95 to 0.97 with the oldest samples.

In class mode, the average F-measure is 0.95 and 0.99, respectively, when trained with

datasets one and two years newer than the test sets, as reported in Figure 6.11(c).

While MaMaDroid performs well in all modes, the finer the abstraction, the better it

performs when trained with newer samples and tested on older samples.

6.4.2 Evaluating FAM

We again use the datasets in Table 6.1 to evaluate FAM’s accuracy when training and

testing on datasets from the same year and from different years.

6.4.2.1 Detection Accuracy

We start our evaluation by measuring how well FAM detects malware by training and

testing using samples that are developed around the same time. Figure 6.12 reports the

F-measure achieved in family, package, and class modes using three different classifiers.

Table 6.3 reports precision, recall, and F-measure achieved by FAM on each dataset com-

bination, when operating in family, package, and class modes, using Random Forests. We
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Figure 6.11: F-measure achieved by MaMaDroid using newer samples for training and older
samples for testing. The x-axis shows the difference in years between the training and testing
dataset.

only report the results from the Random Forest classifier because it outperforms both the

1-NN and 3-NN classifiers.

Family Mode. Due to the number of possible families (i.e., 11), FAM builds a model

from all families that occur more in our malware dataset than the benign dataset. Note

that in this modeling approach, we also remove the junit family as it is mainly used for

testing. When the drebin and 2013 malware datasets are used in combination with the

oldbenign dataset, there are no families that are more frequently used in these datasets
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XXXXXXXXXDataset
Mode [Precision, Recall, F-measure]

Family Package Class

drebin, oldbenign - - - 0.51 0.57 0.54 0.50 0.47 0.49

2013, oldbenign - - - 0.53 0.57 0.55 0.58 0.57 0.58

2014, oldbenign 0.71 0.76 0.73 0.73 0.73 0.73 0.73 0.76 0.75

2014, newbenign 0.85 0.90 0.87 0.88 0.89 0.89 0.88 0.89 0.89

2015, newbenign 0.64 0.70 0.67 0.68 0.66 0.67 0.68 0.67 0.68

2016, newbenign 0.51 0.49 0.50 0.53 0.52 0.53 0.54 0.54 0.54

Table 6.3: Precision, Recall, and F-measure (with Random Forests) of FAM when trained and
tested on dataset from the same year in all modes.

than the benign dataset. As a result, FAM does not yield any result with these datasets

as it operates by building a model only from API calls that are more frequently used in

malware than benign samples. With the other datasets, there are two (2016), four (2014),

and five families (2015) that occur more frequently in the malware dataset than the benign

one.

From Figure 6.12(a), we observe that F-measure is always at least 0.5 with Random

Forests, and when tested on the 2014 (malware) dataset, it reaches 0.87. In general, lower

F-measures are due to increased false positives. This follows a similar trend observed in

Section 6.4.1.2.

Package Mode. When FAM operates in package mode, it builds a model using the min-

imum of, all packages that occur more frequently in malware or the top 172 packages used

more frequently in malware than benign apps. We use the top 172 packages as we attempt

to build the model where possible, with packages from at least two families (the android

family has 171 packages). In our datasets, there are at least two (2013) and at most 39

(2016) packages that are used more frequently in malware than in benign samples. Hence,

all packages that occur more in malware than benign apps are always used to build the

model.

Classification performance improves in package mode, with F-measure ranging from

0.53 with 2016 and newbenign to 0.89 with 2014 and newbenign, using Random Forests.

Figure 6.12(b) shows that Random Forests generally provides better results also in this
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Figure 6.12: F-measure achieved by FAM with datasets from the same year and the different
modes of operation.

case. Similar to family mode, the drebin and 2013 datasets respectively, have only five

and two packages that occur more than in the oldbenign dataset. Hence, the results when

these datasets are evaluated is poor due to the limited amount of features.

Class Mode. In class mode, FAM builds a model using the minimum of, all classes that

occur more frequently in malware than benign samples or the top 336 classes that occur

more in malware than benign apps. In our datasets, there are at least three classes that

occur more in malware (2013) than benign samples and at most, 862 classes that occur

more frequently in malware (2015) than the benign dataset.

In Figure 6.12(c), we report the performance of FAM showing that it performs best
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(F-measure of 0.89) with the 2014 and newbenign datasets.

6.4.2.2 Detection Over Time

Once again, we evaluate the detection accuracy over time, i.e., we train FAM using older

samples and test it with newer samples and vice versa. We report the F-measure as the

average of the F-measure over multiple dataset combinations; e.g., when training with newer

samples and testing on older samples, the F-measure after three years is the average of the

F-measure when training with, respectively, (2015, newbenign) and (2016, newbenign)

and testing on drebin and 2013.

Older Training, Newer Testing. In Figure 6.13(a), we show the F-measure when FAM

operates in family mode and is trained with samples that are older than the classified

samples. The x-axis reports the difference in years between training and testing data. We

obtain an F-measure of 0.97 when training with samples that are one year older than the

samples in the testing set. As mentioned in Section 6.4.2.1, there are no results when the

drebin and 2013 datasets are used for training, hence, after 3 years the F-measure is 0. In

package mode, the F-measure is 0.81 after one year, 0.76 after two years, and it drops to

0.51 after four years (Figure 6.13(b)). Whereas in class mode, FAM achieves F-measure of

0.85 after one year and drops to 0.70 after two.

Although FAM appears to perform better in family mode than in package or class

modes, note that the detection accuracy after one and two years in family mode does

not include results when the training set is (drebin, oldbenign) or (2013, oldbenign)

(see Section 6.4.2.1). We believe this is as a result of FAM performing best when trained

on the 2014 dataset in all modes and performing poorly when trained with (drebin,

oldbenign) and (2013, oldbenign) in package/class mode due to limited features. For

example, result after two years (in family mode) is the average of the F-measure when

training with (2014, oldbenign/newbenign) datasets and testing on the 2016 dataset.

Whereas in package mode, the result is the average F-measure obtained from training with
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Figure 6.13: F-measure achieved by FAM using older samples for training and newer samples for
testing. The x-axis shows the difference in years between the training and test data.

(drebin, oldbenign), (2013, oldbenign), and (2014, oldbenign/newbenign) datasets

and testing with respectively, 2014, 2015, and 2016.

Newer Training, Older Testing. We also evaluate the opposite setting, i.e., training FAM

with newer datasets, and checking whether it is able to detect malware developed years

before. Specifically, Figure 6.14 report results when training FAM with samples from a

given year, and testing it with others that are up to 4 years older showing that F-measure

range from 0.69 to 0.92 in family mode, 0.65 to 0.94 in package mode, and 0.66 to 0.97 in

class mode. Recall that in family mode, FAM is unable to build a model when drebin and

112



0 1 2 3 4
Years

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

RF
1-NN
3-NN

(a) family mode

0 1 2 3 4
Years

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

RF
1-NN
3-NN

(b) package mode

0 1 2 3 4
Years

0.0

0.2

0.4

0.6

0.8

1.0

F-
m

ea
su

re

RF
1-NN
3-NN

(c) class mode

Figure 6.14: F-measure achieved by FAM using newer samples for training and older samples for
testing. The x-axis shows the difference in years between the training and test data.

2013 are used for training, thus, effecting the overall result. This effect is minimal in this

setting since the training sets are newer than the testing sets. That is, the drebin dataset

is not used to evaluate any dataset, while the 2013 dataset is used in only one setting i.e.,

when the training set is one year newer than the testing set.

6.4.3 The Effectiveness of the Modeling Approach: FAM vs MaMaDroid

Recall that with Q1, we attempt to improve the effectiveness of malware detection, as a

result, we model the behavior of apps as Markov chains using the sequence of abstracted
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XXXXXXXXXXXDataset
Mode

F-measure
Family Package

FAM MaMaDroid FAM MaMaDroid

drebin, oldbenign - 0.88 0.54 0.96

2013, oldbenign - 0.92 0.55 0.97

2014, oldbenign 0.73 0.92 0.73 0.95

2014, newbenign 0.87 0.98 0.89 0.99

2015, newbenign 0.67 0.91 0.67 0.95

2016, newbenign 0.50 0.89 0.53 0.92

Table 6.4: F-measure of FAM and MaMaDroid in family and package modes when trained and
tested on dataset from the same year.

API calls (i.e., MaMaDroid). In this section therefore, we compare the detection accuracy

of MaMaDroid to FAM– a variant of MaMaDroid that is based on a frequency analysis

model – to measure its effectiveness, focusing on the family and package modes.

Detection Accuracy of Malware from Same Year. In Table 6.4, we report accuracy of

FAM and MaMaDroid when they are trained and tested on samples from the same year

using Random Forests in both family and package modes. MaMaDroid outperforms FAM

in all test settings with FAM achieving its best result when trained and tested with (2014

and newbenign), achieving F-measures of 0.89 (package mode). Overall, MaMaDroid

achieves higher F-measure compared to FAM due to its modeling approach i.e., Markov

chain modeling of the sequence of calls, as it can model differences between benign and

malicious apps when popular API calls common to both invoke other API calls in different

order. In addition, MaMaDroid is more robust as with some datasets, FAM fails to build

a model when the abstracted calls occur equally or more frequently in benign samples

compared to malicious samples.

Detection Accuracy of Malware from Different Years. We also compare FAM with

MaMaDroid when they are trained and tested with datasets across several years. In

Table 6.5, we report the F-measures achieved by MaMaDroid and FAM in package mode

using Random Forests, and show how they compare using two different sets of experiments.

In the first set of experiments, we train MaMaDroid and FAM using samples comprising
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Testing Sets
drebin, oldbenign 2013, oldbenign 2014, oldbenign 2015, oldbenign 2016, oldbenign

Training Sets FAM MaMa FAM MaMa FAM MaMa FAM MaMa FAM MaMa

drebin,oldbenign 0.54 0.96 0.50 0.96 0.50 0.79 0.50 0.42 0.51 0.43

2013,oldbenign 0.90 0.93 0.55 0.97 0.95 0.74 0.87 0.36 0.82 0.29

2014,oldbenign 0.95 0.92 0.99 0.93 0.73 0.95 0.81 0.79 0.82 0.78

drebin, newbenign 2013, newbenign 2014, newbenign 2015, newbenign 2016, newbenign

Training Sets FAM MaMa FAM MaMa FAM MaMa FAM MaMa FAM MaMa

2014,newbenign 0.99 0.99 0.99 0.99 0.89 0.99 0.86 0.89 0.82 0.83

2015,newbenign 0.92 0.98 0.84 0.98 0.95 0.99 0.67 0.95 0.91 0.90

2016,newbenign 0.83 0.97 0.69 0.97 0.91 0.99 0.86 0.93 0.53 0.92

Table 6.5: F-Measure of MaMaDroid (MaMa) vs its variant using frequency analysis (FAM).

the oldbenign and one of the three oldest malware datasets (drebin, 2013, 2014) each,

and test them on all malware datasets. FAM outperforms MaMaDroid in nine out of the

15 experiments, largely, when the training set comprises the drebin/2013 and oldbenign

datasets. Recall that when drebin and 2013 malware datasets are used for training FAM in

package mode, only five and two packages (and at most, 39 packages in 2016) respectively,

are used to build the model. It is possible that these packages are the principal components

that distinguishes malware from benign samples. In the second set of experiments, we train

MaMaDroid and FAM using samples comprising the newbenign and one of the three

recent malware datasets (2014, 2015, 2016) each, and test them on all malware datasets.

In this setting, MaMaDroid outperforms FAM in all but one experiment where FAM is

only slightly better.

Overall, we find that the Markov chain-based model achieves higher detection accuracy

in both family and package modes when MaMaDroid is trained and tested on dataset

from the same year (Table 6.4) and across several years (Table 6.5).

6.4.4 The Effectiveness of Abstraction: FAM vs DroidApiMiner

In order to address Q2, we propose abstracting the API calls and evaluate how our system

performs using datasets spanning several years. To measure whether abstracting API calls

contributes to the effectiveness of MaMaDroid and FAM, we compare the detection per-

formance of FAM to prior work that uses API features for Android malware classification.
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We compare specifically to DroidApiMiner [14] because: (i) it uses API calls and their

parameters, and it also uses the same modeling approach as FAM to perform classifica-

tion; (ii) it reports high true positive rate (up to 97.8%) on almost 4K malware samples

obtained from McAfee and Genome [226], and 16K benign samples; and (iii) its source

code has been made available to us by the authors. For reference on how both compare

to MaMaDroid, we include the results of MaMaDroid in the tables but do not discuss

them here, since we already compared MaMaDroid to FAM in Section 6.4.3.

In DroidApiMiner, permissions that are requested more frequently by malware samples

than by benign apps are used to perform a baseline classification. Then, the system also

applies frequency analysis on the list of API calls after removing API calls from ad libraries,

using the 169 most frequent API calls in the malware samples (occurring at least 6% more

in malware than benign samples). Finally, data flow analysis is applied on the API calls

that are frequent in both benign and malicious samples, but do not occur by at least 6%

more in the malware set. Using the top 60 parameters, the 169 most frequent calls change,

and authors report a precision of 97.8%.

After obtaining DroidApiMiner’s source code from the authors, as well as a list of

packages (i.e., ad libraries) used for feature refinement, we re-implement the system by

modifying the code in order to reflect recent changes in Androguard (used by DroidAp-

iMiner for API call extraction). We extract the API calls for all apps in the datasets listed

in Table 6.1, and perform a frequency analysis on the calls. Recall that Androguard fails

to extract calls for about 2% (1,017) of apps, thus DroidApiMiner is evaluated over the

samples in the second-to-last column of Table 6.1. We also implement classification, which

is missing from the code provided by the authors, using k-NN (with k=3) since it achieves

the best results according to the paper. We use 2/3 of the dataset for training and 1/3 for

testing as implemented by the authors.

Detection Accuracy of Malware from Same Year. In Table 6.6, we report the results

of DroidApiMiner and FAM (family and package modes) when they are trained and
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XXXXXXXXXXXDataset
Mode

F-measure
Family Package

FAM MaMaDroid FAM MaMaDroid DroidApiMiner

drebin, oldbenign - 0.88 0.54 0.96 0.32

2013, oldbenign - 0.92 0.55 0.97 0.36

2014, oldbenign 0.73 0.92 0.73 0.95 0.62

2014, newbenign 0.87 0.98 0.89 0.99 0.92

2015, newbenign 0.67 0.91 0.67 0.95 0.77

2016, newbenign 0.50 0.89 0.53 0.92 0.36

Table 6.6: F-measure of FAM and MaMaDroid in family and package modes as well as, Droid-
ApiMiner [14] when trained and tested on dataset from the same year.

tested on datasets from the same year. When FAM operates in family mode, it performs

better than DroidApiMiner in two of the four datasets combination. In package mode, it

outperforms DroidApiMiner in four out of six datasets combinations. DroidApiMiner

only performs better than FAM when they are both trained and tested using the (2014

and newbenign), and (2015 and newbenign) datasets in both modes.

Detection Accuracy of Malware from Different Years. In Table 6.7, we report the res-

ults of DroidApiMiner compared to FAM on different combination of datasets in package

mode. First, we train it using older dataset composed of oldbenign combined with one of

the three oldest malware datasets each (drebin, 2013, and 2014), and test on all malware

datasets. With this configuration, DroidApiMiner achieves its best result (F-measure

of 0.62) when trained and tested on 2014 and oldbenign. The F-measure drops to 0.33

and 0.39, respectively, when tested on samples one year into the future and past. With

the same datasets, FAM achieves an F-measure of 0.73 which increases to 0.81 and 0.99,

respectively, one year into the future and past. In this set of experiments, FAM outper-

forms DroidApiMiner in all 15 experiments showing that it is more effective in detecting

malware over several years.

As a second set of experiments, we train DroidApiMiner using a dataset composed

of newbenign combined with one of the three most recent malware datasets each (2014,

2015, and 2016). Again, we test DroidApiMiner on all malware datasets. It achieves its

117



Testing Sets
drebin, oldbenign 2013, oldbenign 2014, oldbenign 2015, oldbenign 2016, oldbenign

Training Sets Droid FAM MaMa Droid FAM MaMa Droid FAM MaMa Droid FAM MaMa Droid FAM MaMa

drebin,oldbenign 0.32 0.54 0.96 0.35 0.50 0.96 0.34 0.50 0.79 0.30 0.50 0.42 0.33 0.51 0.43

2013,oldbenign 0.33 0.90 0.93 0.36 0.55 0.97 0.35 0.95 0.74 0.31 0.87 0.36 0.33 0.82 0.29

2014,oldbenign 0.36 0.95 0.92 0.39 0.99 0.93 0.62 0.73 0.95 0.33 0.81 0.79 0.37 0.82 0.78

drebin, newbenign 2013, newbenign 2014, newbenign 2015, newbenign 2016, newbenign

Training Sets Droid FAM MaMa Droid FAM MaMa Droid FAM MaMa Droid FAM MaMa Droid FAM MaMa

2014,newbenign 0.76 0.99 0.99 0.75 0.99 0.99 0.92 0.89 0.99 0.67 0.86 0.89 0.65 0.82 0.83

2015,newbenign 0.68 0.92 0.98 0.68 0.84 0.98 0.69 0.95 0.99 0.77 0.67 0.95 0.65 0.91 0.90

2016,newbenign 0.33 0.83 0.97 0.35 0.69 0.97 0.36 0.91 0.99 0.34 0.86 0.93 0.36 0.53 0.92

Table 6.7: F-Measure of MaMaDroid (MaMa) vs our variant using frequency analysis (FAM)
vs DroidApiMiner (Droid) [14].

best result when the 2014 and newbenign datasets are used for both testing and training,

yielding F-measure of 0.92, which drops to 0.67 and 0.75 one year into the future and

past, respectively. With the same datasets, FAM achieves F-measure of 0.89 and it drops

to 0.86 one year into the future but rises to 0.99 one year into the past. Comparing

DroidApiMiner and FAM shows that DroidApiMiner only performs better than FAM

in two out of 15 experiments. In these two experiments, FAM was trained and tested on

samples from the same year and resulted in a slightly lower precision, thus, increasing false

positives.

As summarized in Table 6.7, MaMaDroid and FAM, respectively, achieves signific-

antly higher performance than DroidApiMiner in all but one and two settings out of 30,

showing that abstracting the API calls improves the detection accuracy of our systems.

In the settings where DroidApiMiner performs better than MaMaDroid, the malicious

training set is much older than the malicious test set.

6.4.5 Runtime Performance

We now analyze the runtime performance of MaMaDroid and FAM, when operating in

family, package, or class mode, as well as DroidApiMiner. We run our experiments on a

desktop with a 40-core 2.30GHz CPU and 128GB of RAM, but only use 1 core and allocate

16GB of RAM for evaluation.
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6.4.5.1 MaMaDroid

We envision MaMaDroid to be integrated in offline detection systems, e.g., run by the app

store. Recall that MaMaDroid consists of different phases, so in the following, we review

the computational overhead incurred by each of them, aiming to assess the feasibility of

real-world deployment.

MaMaDroid’s first step involves extracting the call graph from an apk and the com-

plexity of this task varies significantly across apps. On average, it takes 9.2s±14 (min

0.02s, max 13m) to complete for samples in our malware sets. Benign apps usually yield

larger call graphs, and the average time to extract them is 25.4s±63 (min 0.06s, max 18m)

per app. Next, we measure the time needed to extract call sequences while abstracting to

families, packages, or classes depending on MaMaDroid’s mode of operation. In family

mode, this phase completes in about 1.3s on average (and at most 11.0s) with both benign

and malicious samples. Abstracting to packages takes slightly longer, due to the use of 341

packages in MaMaDroid. On average, this extraction takes 1.67s±3.1 for malicious apps

and 1.73s±3.2 for benign samples. Recall that in class mode, after abstracting to classes,

we cluster the classes to a smaller set of labels due to its size. Therefore, in this mode

it takes on average, 5.84s±2.1 and 7.3s±4.2 respectively, to first abstract the calls from

malware and benign apps to classes, and 2.74s per app to build the co-occurrence matrix

from which we compute the similarity between classes. Finally, clustering and abstracting

each call to its corresponding class label takes 2.38s and 3.4s respectively, for malware

and benign apps. In total, it takes 10.96s to abstract calls from malware apps to their

corresponding class labels and 13.44s for benign apps.

MaMaDroid’s third step includes Markov chain modeling and features vector extrac-

tion. With malicious samples, it takes on average 0.2s±0.3, 2.5s±3.2, and 1.49s±2.39 (and

at most 2.4s, 22.1s, and 46.10s), respectively, with families, packages, and classes, whereas

with benign samples, it takes 0.6s±0.3, 6.7s±3.8, and 2.23s±2.74 (at most 1.7s, 18.4s, and

43.98s). Finally, the last step is classification and the performance depends on both the
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machine learning algorithm employed and the mode of operation. More specifically, run-

ning times are affected by the number of features for the app to be classified, and not by

the initial dimension of the call graph, or by whether the app is benign or malicious. Re-

gardless, in family mode, Random Forests, 1-NN, and 3-NN all take less than 0.01s. With

packages, it takes, respectively, 0.65s, 1.05s, and 0.007s per app with 1-NN, 3-NN, Random

Forests. Whereas it takes, respectively, 1.02s, 1.65s, and 0.05s per app with 1-NN, 3-NN,

and Random Forests in class mode.

Overall, when operating in family mode, malware and benign samples take on average,

10.7s and 27.3s respectively, to complete the entire process, from call graph extraction

to classification. In package mode, the average completion times for malware and benign

samples are 13.37s and 33.83s respectively. Whereas in class mode, the average completion

times are respectively, 21.7s and 41.12s for malware and benign apps. In both modes of

operation, time is mostly (>80%) spent on call graph extraction.

6.4.5.2 FAM

FAM, which is a variant of MaMaDroid, includes three phases. The first phase, API

calls extraction, takes 0.7s±1.5 (min 0.01s, max 28.4s) per app in our malware datasets

and 13.2s±22.2 (min 0.01s, max 222s) per benign app. The second phase includes API

call abstraction, frequency analysis, and feature extraction. While API call abstraction

is dependent on the dataset and the mode of operation, frequency analysis and feature

extraction are only dependent on the mode of operation and are very fast in all modes.

In particular, it takes on average, 1.32s, 1.69s±3.2, and 5.86s±2.1 respectively, to com-

plete a malware app in family, package, and class modes. Whereas it takes on average,

1.32s±3.1, 1.75s±3.2, and 7.32s±2.1 respectively, for a benign app in family, package, and

class modes. The last phase which is classification is very fast regardless of dataset, mode

of operation, and classifier used. Specifically, it takes less than 0.01s to classify each app

in all modes using the three different classifiers. Overall, it takes in total 2.02s, 2.39s, and
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6.56s respectively, to classify a malware app in family, package, and class modes. While

with benign apps, the total is 14.52s, 14.95s, and 20.52s respectively, in family, package,

and class modes.

6.4.5.3 DroidApiMiner

Finally, we evaluate the runtime performance of DroidApiMiner [14]. Its first step, i.e.,

extracting API calls, takes 0.7s±1.5 (min 0.01s, max 28.4s) per app in our malware data-

sets. Whereas it takes on average, 13.2s±22.2 (min 0.01s, max 222s) per benign app. In

the second phase, i.e., frequency and data flow analysis, it takes on average, 4.2s per app.

Finally, classification using 3-NN is very fast, i.e., 0.002s on average. In total, DroidAp-

iMiner takes respectively, 17.4s and 4.9s for a complete execution on one app from our

benign and malware datasets, which while faster than MaMaDroid, achieves significantly

lower accuracy. In comparison to MaMaDroid, DroidApiMiner takes 5.8s and 9.9s less

on average to analyze and classify a malicious and benign app when MaMaDroid operates

in family mode and 8.47s and 16.43s less on average in package mode.

In conclusion, our experiments show that our prototype implementation of MaMaDroid

is scalable enough to be deployed. Assuming that, everyday, a number of apps in the order

of 10,000 are submitted to Google Play, and using the average execution time of benign

samples in family (27.3s), package (33.83s), and class (41.12s) modes, we estimate that

it would take less than an hour and a half to complete execution of all apps submitted

daily in both modes, with just 64 cores. Note that we could not find accurate statistics

reporting the number of apps submitted everyday, but only the total number of apps on

Google Play.10 On average, this number increases by a couple of thousands per day, and

although we do not know how many apps are removed, we believe 10,000 apps submitted

every day is likely an upper bound.

10http://www.appbrain.com/stats/number-of-android-apps
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6.5 Discussion

Our work yields important insights around the use of API calls in malicious apps, showing

that, by abstracting the API calls to higher levels and modeling these abstracted calls, we

can obtain high detection accuracy and retain it over several years, which is crucial due to

the continuous evolution of the Android ecosystem.

As discussed in Section 6.3, the use of API calls changes over time, and in different ways

across malicious and benign samples. From our newer datasets which include samples up to

Spring 2016 (API level 23), we observe that newer APIs introduce more packages, classes,

and methods, while also deprecating some. Figure 6.7 shows that benign apps use more

calls than malicious apps developed around the same time. We also notice an interesting

trend in the use of Android (Figure 6.8(a)) and Google (Figure 6.8(b)) APIs: malicious

apps follow the same trend as benign apps in the way they adopt certain APIs, but with a

delay of some years. This might be a side effect of Android malware authors’ tendency to

repackage benign apps, adding their malicious functionalities onto them.

Given the frequent changes in the Android framework and the continuous evolution of

malware, systems like DroidApiMiner [14] – being dependent on the presence or the use

of certain API calls – become increasingly less effective with time. As shown in Table 6.7,

malware that uses API calls released after those used by samples in the training set cannot

be identified by these systems. On the contrary, as shown in Figure 6.10, MaMaDroid

detects malware samples that are 1 year newer than the training set obtaining an F-measure

of 0.86 (as opposed to 0.46 with DroidApiMiner) when the apps are modeled as Markov

chains. After 2 years, the value is still at 0.75 (0.42 with DroidApiMiner), dropping to

0.51 after 4 years.

We argue that the effectiveness of MaMaDroid’s classification remains relatively high

for a longer period, owing to the abstraction of API calls and the Markov models generated

from the sequence of API calls. These models tend to be more robust to malware evolution
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because abstracting to, e.g., packages makes the system less susceptible to the introduction

of new API calls. To verify this, we developed a variant of MaMaDroid named FAM

that abstracts API calls and is based on frequency analysis similar to DroidApiMiner.

Although, the addition of API call abstraction results in an improvement of the detection

accuracy of the system (an F-measure of 0.81 and 0.76 after one and two years respectively),

it also resulted in scenarios where there are no API calls that are more frequently used in

malware than benign apps.

In general, abstraction allows MaMaDroid capture newer classes/methods added to

the API, since these are abstracted to already-known families or packages. As a result, it

does not require any change or modification in its operation with newer API releases. In

case newer packages are added to newer API level releases, MaMaDroid only requires

adding a new state for each new package to the Markov chains, and the probability of a

transition from a state to this new state in old apps (i.e., apps without the new packages)

would be 0. That is, if only two packages are added in the new API release, only two states

need to be added which requires trivial effort. In reality though, methods and classes

are more frequently added than packages with new API releases. Hence, we also evaluate

whether MaMaDroid still performs as well as in package mode, when we abstract API calls

to classes and measure the overall overhead increase. Results from Figure 6.10, and 6.11

indicate that finer-grained abstraction is less effective as time passes when older samples are

used for training and newer samples for testing, while they are more effective when samples

from the same year or newer than the testing sets are used for training. However, while all

three modes of abstraction performs relatively well, we believe abstraction to packages is

the most effective as it generally performs better than family – though less lightweight –

and as well as class but more efficient.

123



6.5.1 Case Studies of False Positives and Negatives

The evaluation presented in Section 6.4 shows that our systems detect Android malware

with high accuracy. As in any detection system, however, the systems make a small number

of incorrect classifications, incurring some false positives and false negatives. Next, we

discuss a few case studies aiming to better understand these misclassifications. We focus

on MaMaDroid since it achieves better results, and when we experiment with newer

datasets, i.e., 2016 and newbenign in package mode.

False Positives. First, we analyze the manifest of 164 apps mistakenly detected as malware

by MaMaDroid, finding that most of them use “dangerous” permissions [21]. In particu-

lar, 67% write to external storage, 32% read the phone state, and 21% access the device’s

fine location. We further analyzed apps (5%) that use the READ SMS and SEND SMS

permissions, i.e., even though they are not SMS-related apps, they can read and send SMSs

as part of the services they provide to users. In particular, a “in case of emergency” app is

able to send messages to several contacts from its database (possibly added by the user),

which is a typical behavior of Android malware in our dataset, ultimately leading Ma-

MaDroid to flag it as malicious. As there are sometimes legitimate reasons for benign

apps to use permissions considered to be dangerous, we also analyze the false positives

using a second approach. Specifically, we examine the average number of the 100 most

important features used by MaMaDroid to distinguish malware from benign apps that

are present in the false positive samples. We select the top 100 features as it represents no

more than about 4.5% of the features (there are 2202 features in the 2016 and newbenign

datasets). As we show in Figure 6.15, for 90% of the false positives, there are only on

average, 33 of the most important features present in their features vectors which is similar

to the behavior observed in the true positives (34/100). MaMaDroid misclassifies these

samples because they exhibit similar behavior to the true positives and these samples could

be further manually analyzed to ascertain maliciousness.
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Figure 6.15: CDF of the number of important features in each classification type.

False Negatives. We also check 114 malware samples missed by MaMaDroid using

VirusTotal.11 We find that 18% of the false negatives are actually not classified as malware

by any of the antivirus engines used by VirusTotal, suggesting that these are actually

legitimate apps mistakenly included in the VirusShare dataset. 45% of MaMaDroid’s

false negatives are adware, typically, repackaged apps in which the advertisement library

has been substituted with a third-party one to create monetary profit for the developers.

Since they are not performing any clear malicious activity, MaMaDroid is unable to

identify them as malware. Finally, we find that 16% of the false negatives reported by

MaMaDroid are samples sending text messages or starting calls to premium services.

We also do a similar analysis of false negatives with similar results. That is, there a few

more adware samples (53%), but similar percentages for potentially benign apps (15%)

and samples sending SMSs or placing calls (11%). We also investigate further, the false

negatives using the 100 most important features of MaMaDroid. We find that for 90% of

the false negatives, they have on average, 97 of the 100 features similar to the true negatives

(98/100).

11https://www.virustotal.com
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6.5.2 Evasion

Next, we discuss possible evasion techniques and how they can be addressed. One straight-

forward evasion approach could be to repackage a benign app with small snippets of mali-

cious code added to a few classes. However, it is difficult to embed malicious code in such

a way that, at the same time, the resulting Markov chain looks similar to a benign one.

For instance, the running example from Section 6.2 (malware posing as a memory booster

app and executing unwanted commands as root) is correctly classified by MaMaDroid;

although most functionalities in this malware are the same as the original app, injected

API calls generate some transitions in the Markov chain that are not typical of benign

samples.

The opposite procedure, i.e., embedding portions of benign code into a malicious app, is

also likely ineffective against MaMaDroid, since, for each app, we derive the feature vector

from the transition probability between calls over the entire app. A malware developer

would have to embed benign code inside the malware in such a way that the overall sequence

of calls yields similar transition probabilities as those in a benign app, but this is difficult

to achieve because if the sequences of calls have to be different (otherwise there would be

no attack), then the models will also be different.

Moreover, attackers could try using reflection, dynamic code loading, or native code [167].

Because MaMaDroid uses static analysis, it fails to detect malicious code when it is loaded

or determined at runtime. However, MaMaDroid can detect reflection when a method

from the reflection package (java.lang.reflect) is executed. Therefore, we obtain the

correct sequence of calls up to the invocation of the reflection call, which may be sufficient

to distinguish between malware and benign apps. Similarly, MaMaDroid can detect the

usage of class loaders and package contexts that can be used to load arbitrary code, but it

is not able to model the code loaded; likewise, native code that is part of the app cannot be

modeled, as it is not Java and is not processed by Soot. These limitations are not specific to

MaMaDroid, but common to static analysis in general, and could be possibly mitigated
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using MaMaDroid alongside dynamic analysis techniques.

Another approach could be using dynamic dispatch so that a class X in package A

is created to extend class Y in package B with static analysis reporting a call to root()

defined in Y as X.root(), whereas at runtime Y.root() is executed. This can be addressed,

however, with a small increase in MaMaDroid’s computational cost, by keeping track of

self-defined classes that extend or implement classes in the recognized APIs, and abstract

polymorphic functions of this self-defined class to the corresponding recognized package,

while, at the same time, abstracting as self-defined overridden functions in the class.

Finally, identifier mangling and other forms of obfuscation could be used aiming to

obfuscate code and hide malicious actions. However, since classes in the Android frame-

work cannot be obfuscated by obfuscation tools, malware developers can only do so for

self-defined classes. MaMaDroid labels obfuscated calls as obfuscated so, ultimately,

these would be captured in the behavioral model (and the Markov chain) for the app. In

our sample, we observe that benign apps use significantly less obfuscation than malicious

apps, indicating that obfuscating a significant number of classes is not a good evasion

strategy since this would likely make the sample more easily identifiable as malicious. Mal-

ware developers might also attempt to evade MaMaDroid by naming their self-defined

packages in such a way that they look similar to that of the android or google APIs, e.g.,

java.lang.reflect.malware is easily prevented by first abstracting to classes before abstracting

to any further modes as we already do in Section 6.2.1.2.

6.5.3 Possible Bias

The performance of MaMaDroid may suffer from possible bias as recently highlighted by

Pendlebury et al. [163]. Here, we provide a review of the biases and whether MaMaDroid

suffer from them.

Pendelebury et al. [163] presents Tesseract, which attempts to eliminate spacial and

temporal bias present in malware classifiers. To eliminate these biases, the authors suggest
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malware classifiers should enforce three constraints: Temporal training consistency i.e., all

objects in the training set must temporally precede all objects in the testing set, Temporal

goodware/malware windows consistency i.e., in every testing slot of size ∆, all test objects

must be from the same time window, and Realistic malware-to-goodware percentage in test-

ing i.e., the testing distribution must reflect the real-world percentage of malware observed

in the wild.

With respect to the constraints that eliminate temporal bias, recall that we evaluate

MaMaDroid over several experimental settings and some of these settings do not violate

these constraints. For example, there is temporal goodware/malware windows consistency

in many of the settings when it is evaluated using samples from the same year (e.g., new-

benign and 2016) and when it is trained on older (resp. newer) samples and tested on

newer (resp. older) samples e.g., oldbenign and 2013. While temporal training consistency

shows the performance of the classifier in detecting unknown samples (especially when the

unknown samples are not derivatives of previously known malware family), many malware

classifiers usually have false negatives. Malware families in these false negatives could form

the base of present or “future” malware. For example, samples previously classed as good-

ware from Google Play Store are from time to time detected as malware [48, 49, 197, 207].

As a result of samples previously detected as goodware now being detected as malware, we

argue that robust malware classifiers should be able to detect previous (training with newer

samples and testing on older samples), present (training and testing on samples from the

same time window), and future (training on older samples and testing on newer samples)

malware objects effectively.

During the evaluation of MaMaDroid, we do not enforce the constraint that eliminates

spacial bias as proposed in Tesseract. When we evaluate MaMaDroid, the minimum and

maximum percentages of malware in the testing set are 49.7% and 84.85%, respectively,

which effects the Precision and Recall. But as already highlighted by Pendelebury et

al. [163], estimating the percentage of malicious Android apps in the wild with respect to
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goodware, is a non-trivial task, with different sources reporting different results [105,135].

6.5.4 Limitations

MaMaDroid requires a sizable amount of memory in order to perform classification,

when operating in package mode, working on more than 100,000 features per sample. The

quantity of features, however, can be further reduced using feature selection algorithms

such as PCA. As explained in Section 6.4, when we use 10 components from the PCA, the

system performs almost as well as the one using all the features; moreover, using PCA comes

with a much lower memory complexity in order to run the machine learning algorithms,

because the number of dimensions of the features space is remarkably reduced.

Soot [202], which we use to extract call graphs, fails to analyze some apks. In fact,

we were not able to extract call graphs for a fraction (4.6%) of the apps in the original

datasets due to scripts either failing to apply the jb phase, which is used to transform Java

bytecode to the primary intermediate representation (i.e., jimple) of Soot or not able to

open the apk. Even though this does not really affect the results of our evaluation, one

could avoid it by using a different/custom intermediate representation for the analysis or

use different tools to extract the call graphs which we plan to do as part of future work.

In general, static analysis methodologies for malware detection on Android could fail to

capture the runtime environment context, code that is executed more frequently, or other

effects stemming from user input [25]. These limitations can be addressed using dynamic

analysis, or by recording function calls on a device. Dynamic analysis observes the live

performance of the samples, recording what activity is actually performed at runtime.

Through dynamic analysis, it is also possible to provide inputs to the app and then analyze

the reaction of the app to these inputs, going beyond static analysis limits. To this end,

in the next chapter we employ MaMaDroid in a dynamic analysis setting and investigate

how it performs compared to static analysis.
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6.5.5 Concluding Remarks

In this chapter, we presented MaMaDroid for detecting malware statically by abstracting

the sequence of API calls; then, modeling the API calls as Markov chains; and finally,

using the transition probabilities of the Markov chains as the features that identify an

app. We showed that these techniques allow our detection tools to detect malware at high

accuracy even after one year. Compared to DroidAPIMiner, the detection performance of

MaMaDroid is less susceptible to malware and the Android framework evolution. Our

results emphasized the importance of designing detection systems that do not easily go

out-of-date when malware evolve their evasion techniques. The continuous evolution of

malware evasion techniques result in an arms race, with the malware developers evolving

their techniques when their apps start being detected. Although the performance of Ma-

MaDroid also deteriorates after two years (which may be due to the characteristics of our

dataset i.e., malware lagging benign apps by upto two years in the way they use API calls,

which is mentioned in Section 6.4.1.2), it could serve as a building block for more robust

designs by the research community. Finally, we make the code of MaMaDroid as well

as the hash of the samples in our datasets publicly available12 and, on request, the apk

samples, parsed call graphs, and abstracted sequences of API calls on which MaMaDroid

has been evaluated on.

12https://bitbucket.org/gianluca_students/mamadroid_code
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Chapter 7

A Family of Droids: Analyzing Behavioral

Model-based Android Malware Detection via

Static and Dynamic Analysis

In this chapter, we address RQ4: Does having humans test apps during dynamic analysis improve

malware detection compared to pseudorandom input generators such as Monkey [107]? and

RQ5: How do different analysis methods (i.e., static, dynamic, and hybrid analysis) compare to each

other, in terms of malware detection performance when the same technique is used to build the

detection models?

The work presented in this chapter has been published in PST [156]

7.1 Motivation

7.1.1 The Research Problem

As the Android framework and malware that targets it evolve, so do the techniques that

detect these malware; the techniques either undergo modifications or change completely.

The research community has proposed a number of techniques to detect and block malware

based on either static or dynamic analysis. With the former, the code is recovered from

the apk, and features are extracted to train machine learning classifiers; with the latter,

apps are executed in a controlled environment, usually on an emulator or a virtual device,

via a real person or an automatic input generator such as Monkey [107].

In particular, a few approaches have been recently proposed aiming to improve accuracy
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of malware detection. (1) Behavioral Modeling: MaMaDroid which is presented in the

previous chapter, uses static analysis to build a behavioral model of malware samples,

relying on the sequences of abstracted API calls; this yields high accuracy and is also

resilient to API changes, thus, reducing the need to re-train models. (2) Input Generators:

previous studies [20,46,140] have introduced input generators that aim to mimic app usage

by humans, more effectively than the standard Android pseudorandom input generator

(Monkey), thus improving the chances of triggering malicious code during execution. (3)

Hybrid Analysis: by combining static and dynamic analysis, hybrid analysis has been

used to get the best of the two worlds, typically, following two possible strategies. One

approach is to use static analysis to gather information about the apps under analysis

(e.g., intent filters an app listens for, execution paths to specific API calls, etc.) and

then execute apps in the dynamic analysis stage, while ensuring that all execution paths

of interest are triggered [46, 212]; in the other approach, features extracted using static

analysis (e.g., permissions, API calls, etc.) are combined with those from dynamic analysis

(e.g., file access, networking events, etc.), and used to train an ensemble machine learning

model [133,134].

Overall, despite a large body of work proposing various Android malware detection

tools, the research community’s stance on whether to use static or dynamic analysis primar-

ily stems from the systems’ limitations and the vulnerabilities to possible evasion techniques

faced by each approach. For instance, static analysis methods that extract features from

permissions requested by apps often yield high false positive rates, since benign apps may

actually need to request permissions classified as dangerous [77], while systems that per-

form classification based on the frequency of API calls [14] often require constant retraining;

moreover, reflection and dynamic code loading can be used to evade static analysis-based

detection. On the other hand, while dynamic analysis tools are not susceptible to the

above evasion techniques, their accuracy is greatly dependent on whether malicious code

is actually triggered during test execution, and in general dynamic analysis often does not
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scale. Nonetheless, we still lack a deep understanding of whether detection techniques im-

plemented in one approach (e.g., static) may actually perform better if implemented in the

other approach (dynamic).

In this chapter, we aim to fill this research gap by addressing RQ4 and RQ5, summarized

here as:

• Will having humans test apps during dynamic analysis, improve malware detection?

• How do different analysis methods (i.e., static, dynamic, and hybrid analysis) compare

to each other, when the same underlying detection technique is employed?

7.1.2 The Research Roadmap

In order to address RQ4, we modify Chimp [17], a platform that allows the crowdsourcing

of human inputs for testing Android apps, to support building a behavioral model-based

malware detection system (as per MaMaDroid). This modification allows us extract

sequences of abstracted API calls from the traces produced while executing an app in a

virtual device (instead of extracting the calls from the apk as per MaMaDroid). We

call the resulting system AuntieDroid. We then instantiate AuntieDroid using both

an automated pseudorandom input generator (i.e., Monkey) and user-generated inputs

and evaluate how they effect its detection performance. To address RQ5, we first select

the technique we introduced in MaMaDroid (see Chapter 6) as the underlying detection

technique across all analysis methods. Because as we showed earlier, it effectively detects

malware at a high accuracy even after one year. We implement MaMaDroid’s technique

in a dynamic analysis setting as AuntieDroid, and to obtain a hybrid version, we merged

the sequence of abstracted API calls from static and dynamic analysis.

The work presented in this chapter includes the contributions of the other coauthors as

outlined in Chapter 1.4. In particular, the modification of the virtual device (Section 7.2.1),

app stimulation integration (Section 7.2.2), and the comparative analysis of the misclassi-
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Figure 7.1: High-level overview of AuntieDroid. An apk sample is run in a virtual device, using
either Monkey or human. Then, the APIs called during execution are parsed and used for feature
extraction. Finally, the app is classified as either benign or malicious.

fication across analysis methods (Section 7.5.2.2) are the contributions of coauthors.

The rest of this chapter is structured as follows: Section 7.2 presents the design and

implementation of AuntieDroid, while Section 7.3 presents the experiments carried out

as well as the datasets used for the study. Section 7.4 presents the results obtained when

each analysis method is evaluated and Section 7.5 shows how they compare to each other.

Finally, Section 7.6 discusses the challenges as well as the limitations of our work.

7.2 AuntieDroid: Overview and Implementation

In this section, we present AuntieDroid, a system performing Android malware detec-

tion based on behavioral models extracted through dynamic analysis. Our main objective

is to compare its performance to its static analysis counterpart, i.e., MaMaDroid (see

Chapter 6). In fact, we build on it, in that we again model the sequences of (abstracted)

calls as Markov chains, and use the transition probabilities between states as features.

In order to build the behavioral model in dynamic analysis, we modify a virtual device

to allow us to capture the sequence of API calls from the runtime execution trace of apps.

We call the resulting system AuntieDroid, and summarize its operation in Figure 7.1.

First, we execute apps in a virtual device, stimulated by either an automated program
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(Monkey) or a human. We then parse the traces generated by the executions, and extract

features for classification.

7.2.1 Virtual Device

As mentioned above, the first step in AuntieDroid is to execute apk samples in a virtual

device with either (i) human users or (ii) an UI automation tool like the Monkey [107].

Our virtual device testbed, described in detail below, builds on Chimp, an Android testing

system recently presented by Almeida et al. [17] which can be used to collect human inputs

from mobile apps.

Chimp [17]. Chimp virtualizes Android devices using the Android-x86 platform, running

behind a QEMU instance on a Linux server. Although it uses an x86 Android image,

Chimp actually supports two application binary interfaces (ABI), i.e., both ARM and x86

instruction sets are supported. Once running, the virtualized device can be stimulated by

either a locally running automated tool (e.g., Monkey), or the UI can be streamed to a

remote browser, allowing humans to interact with it. Chimp can be used to collect a wide

range of data (user interactions, network traffic, performance, etc.) as well as explicit user

feedback; however, for the sake of AuntieDroid, we modify it to generate and collect

run-time traces, i.e., the call graph of an app’s interactive execution.

Modifications to Chimp. In order to effectively monitor malware execution, we substan-

tially modify the original prototype of Chimp, which was primarily designed to enable

large-scale, human testing of benign apps. In fact, the original prototype supports code

instrumentation via a Java code coverage library called EMMA [75], unfortunately, EMMA

requires an app’s source code to be instrumented, which is often not accessible for closed-

source apps such as those analyzed in our work. Therefore, we modify Chimp to get access

to debug level run-time information from un-instrumented code. Note that in Android,

each app runs on a dedicated VM which opens a debugger port using Java’s Debug Wire

Protocol (JWDP). As long as the device is set as debuggable (ro.debuggable property),
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we can connect to the VM’s JWDP port to activate VM level method tracing.

We also have to activate tracing: in Android, one can either use Android’s Activity

Manager (AM) or the DDM Service. Both end up enabling the same functionality – i.e.,

startMethodTracing on dalvik.system.VMDebug and android.os.Debug – but through

different approaches. That is, AM (via adb am) exposes a limited API that eventually

reaches the app via Inter-Process Communication (IPC), while the DDM Service (DDMS,

as used by Android Studio) opens a connection directly to the VM’s debugger, providing

fine grain control over tracing parameters. We choose the second approach since it is

parameterizable, allowing us to set the trace buffer size, which by default (8MB) can only

hold a few seconds of method traces. Hence, we implement a new DDM Service in Chimp,

using the ddmlib library [69] to communicate with the VMs and activate tracing. Our

DDM service multiplexes all tracing requests through a single debugger and we further

modify the ddmlib tracing methods to dump traces to the VM file system, and set the

trace buffer size to 128MB. However, apps tested on the virtual device can generate more

than 128MB of traces, thus, we add a background job that retrieves and removes traces

from the VMs every 30s. Besides preventing the tracing buffer from filling up, this lets us

capture partial traces for apps that might crash during stimulation.

To deal with malware masquerading as legitimate applications by using the same pack-

age names, we uniquely identify apps based on a hash of the binary, salted with the package

name and a unique testing campaign identifier. This is then mapped to the app’s storage

location on disk. We also modify Chimp to disable the app verification security feature in

Android that attempts to prevent the installation of malicious apps.

7.2.2 App Stimulation

As mentioned, to stimulate the Application Under Analysis (AUA), we use both Monkey

and humans.

Monkey [107]. Monkey is Android’s de-facto standard UI automation tool used to generate
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inputs. In AuntieDroid, “Monkeys” (i.e., more than one Monkey instance) are deployed

on the same machine that the virtual devices are running on. We set Monkeys to run a

single app for 5 minutes (one virtual device VM per app): each Monkey is setup to generate

events every 100ms and ignore timeouts, crashes, and security exceptions (although we

still log and process them). Setting Monkey to generate input for 5 minutes only does

not adversely affect code coverage, as prior work [58] reports that most input generators

achieve maximum coverage between 5 to 10 minutes. As Monkey may generate events at a

higher frequency than some apps can process (e.g., generating ANR events), we also re-run

offending apps with a decreased rate (300ms).

Humans. In order to have real users stimulate the samples, we recruit about 5k (5,030)

workers from the Crowdflower.com crowdsourcing platform. We let them interact with

the virtual device by streaming its UI to their browser via an HTML5 client. The client

transmits user actions back to AuntieDroid, which translates them to Android inputs

and forwards them to the virtual device. In addition to the virtual device UI, user controls

were provided to, e.g., move to the next app in the testing session.

Each user is given 4 randomly selected apps from our dataset and told to explore as

much of its functionality as possible before proceeding to the next app. We do not enforce

a lower bound on the time users must spend testing apps, since given the nature of our

sample, some apps might have limited interaction opportunities. Consequently, we let at

least three different users stimulate the same app. We also limit app install time to 40s

to avoid frustrating the users and we pay each user $0.12 per session (i.e., a single test of

session of the 4 randomly selected apps), with the test sessions running from August 9th

to 11th, 2017.

Ethics. For the experiments involving humans, we have obtained approval through our

institution’s ethical review process. Although we requested basic demographic data (age,

gender, country), we did not collect privacy sensitive information, and users were instructed

not to enter any real, personal information, e.g., account details. Participants did not have
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to install any software on their devices: they interacted with the apps on a webpage, while

we collected information about the app execution in the background. Also note that we

provided email credentials to use when required, so that they did not have to use their own

credentials or other contact information.

7.2.3 Trace Parsing

As discussed above, our virtual device component takes care of collecting method traces,

network packets, and event logs generated when the app is running. To parse these traces,

one could use different strategies, for instance, tracking data flow from selected sources (e.g.,

the device id – getDeviceID()) to sinks (e.g., a data output stream – writeBytes()), or

using frequency analysis to derive commonly used API calls by malware (as in DroidAP-

IMiner [14]).

AuntieDroid follows the behavioral model based approach of MaMaDroid, but it is

based on the sequences of API calls that the app performs at runtime, rather than statically

extracting it from the apk. This way, we aim to capture different behavior when benign and

malicious apps invoke API calls that access sensitive information. For instance, a benign

SMS app might receive an SMS, get the message body using getMessageBody() and after-

wards, display the message to a user via a view by executing, in sequence, setText(String

msg) and show() methods of the view. A malicious app, however, might exfiltrate all re-

ceived SMSs by executing sendTextMessage() for every message before displaying it.

To derive the API call sequences, we collect the method traces and transform them into

a call graph using dmtracedump [170]. From the call graph, we then extract the sequences

using a custom script, while preserving the number of times an API call is executed as a

multiplier in each sequence. As discussed above, to avoid losing traces when the trace buffer

is full, we collect virtual device traces every 30s, and clear the buffer for incoming traces.

Along the same lines, we have a median of three different users run the same app to improve

the quality of the traces gathered. As a result, we aggregate the sequences of API calls they
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air.com.eni.ChefJudy030.AppEntry.onNewIntent

Trace 1

air.com.eni.ChefJudy030.AppEntry.onNewIntent

Trace 2

air.com.eni.ChefJudy030.AppEntry.onNewIntent

Aggregated Trace

air.com.eni.ChefJudy030.AppEntry.InvokeMethod

java.lang.Class.getMethod
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Figure 7.2: Aggregated sequence of API calls showing the direct children of the call
air.com.eni.ChefJudy030.AppEntry. onNewIntent, along with the number of times they are
called (numbers on the arrow).

generate for the same app into a single sequence. In Figure 7.2, we provide an example of

the sequence for the API call air.com.eni.ChefJudy030.AppEntry.onNewIntent when

aggregated from two other sequences. We do not show the params and return type to ease

presentation. Also, in some cases, Trace 1 may contain API calls in a sequence that is not

called in Trace 2, hence, the aggregated trace also reflects such calls.

7.2.4 Feature Extraction and Classification

As in MaMaDroid, which operates in one of three modes i.e., family, package, or class,

AuntieDroid also abstracts each API call in the parsed trace to its corresponding family,

package or class names using the Android API packages from API level 26 and the latest

Google API packages. The abstraction allows for resilience to API changes in the Android

framework as packages are added or deprecated less frequently compared to single API

calls. It also helps to reduce the feature set size as the feature vector of each app is the

square of the number of states in the Markov chain.

We then build a behavioral model from the abstracted sequences of API calls by building

a Markov chain that models the sequences from which we extract features used to classify

an app as either benign or malicious. More specifically, features are the probability of

transitioning from one state (i.e., API call) to another in the Markov chain representing
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the API call sequences in an app.

Classification. Finally, we perform classification – i.e., predicting an app as benign or

malware, using a supervised machine learning classifier. More specifically, we use Random

Forests with 10-fold cross validation. We choose Random Forests since it performs well on

binary classification over high-dimension feature spaces, which is the case with the Markov

chain based model from MaMaDroid.

7.3 Experimental Setup

In this section, we introduce our experiments, the datasets used in our evaluation, as well

as the preprocessing carried out on them.

7.3.1 Overview of Experiments and Detection Approaches

As discussed in Section 7.1, we aim to perform a comparative analysis of Android malware

detection systems based on behavioral models, using static, dynamic, and hybrid analysis.

To this end, we perform three sets of experiments. (1) Static: We evaluate MaMaDroid,

which performs Android malware detection based on behavioral modeling in static analysis;

(2) Dynamic: We analyze the detection performance of AuntieDroid, comparing both

automated input generation (Monkey) and human-generated input; (3) Hybrid: We com-

bine static and dynamic analysis by merging the sequences of API calls from both methods,

once again comparing Monkey and human based input generation.

All methods operate in one of two levels of abstraction, i.e., API calls are abstracted to

either their family or package names. We do not evaluate the performance of the system

in class mode since as shown in the previous chapter (see Section 6.4.1), abstracting to

class does not provide a significant increase in detection accuracy over package mode.

Overall, we use the same modeling technique and the same machine learning classifier.

More specifically, we use the Random Forests classifier and in family (resp., package)
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mode, we use a configuration of 51 (resp., 101) trees with depth equal to 8 (resp., 32).

7.3.2 Datasets

Our evaluation uses two datasets: a collection of recent malware samples and a dataset of

random benign apps, as discussed below.

Benign Samples. For consistency, we opt to re-use the set of 2,568 benign apps labeled

as “newbenign” in the previous chapter. In June 2017, we re-downloaded all the apps in

order to ensure we have working apps and their latest version, obtaining 2,242 (87%) apps.

We complement this list with a 33% sample of the top 49 apps (as of June 2017) from the

29 categories listed on the Google Play Store, adding an additional 481 samples. Overall,

our benign dataset includes a total of 2,723 apps.

Malware Samples. Our malware dataset includes samples obtained in June 2017 from Vir-

usShare – a repository of apps that are likely to be malicious.1 More precisely, VirusShare

contains samples that have been detected as malware on various OS platforms, including

Android. To obtain only Android malware, we check that each sample is correctly zipped

and packaged as an apk, contains a Manifest file, and has a package name. Using this

method, we gather 2,692 valid Android samples labeled as malware in 2017 by the anti-

virus engines on VirusShare. In addition, we add two more apps (Chef Judy and Dress

Up Musa) from the Google Play Store reported as malware in the news and later removed

from the play store.2 In total, our malware dataset includes 2,694 apps.

7.3.3 Dataset Preprocessing

In order to evaluate each detection method, we first pre-process the samples in our dataset

as described below.

Static Analysis. For static analysis, we re-use MaMaDroid and set a timeout limit of

1https://virusshare.com/
2See https://goo.gl/hBjm0T and https://goo.gl/IQprtP
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Failure Benign Malware

Already installed 10 9?

Contains native code not compatible with the device’s CPU 0 2
App’s dex files could not be optimized and validated 0 1
Apk could not be unarchived by Android aapt 3 4
Shared library requested by app is not available on the device 0 1
Does not support the SDK (version 4.4.2) on the device 36 6
Requests a shared user already installed on the device 0 1
Android’s failure to parse the app’s certificate 0 4
Fails to complete installation within time limit (40s) 39 23

Total: 88 51

Table 7.1: Reasons why apps fail to install on the virtual device. ?These are repackaged Google
apps i.e., they have the same package names as the Google apps but with a different hash.

six hours during the call graph extraction phase. We could not obtain the call graphs for

98 (3.6%) and 251 (9.3%) apps in the benign and malware datasets, respectively. This is

consistent with experiments reported in Chapter 6 and it is due to the timeout and samples

exceeding memory requirement (we allocate 16GB for the JVM heap space).

Dynamic Analysis. During dynamic analysis, before running the apps on the virtual device,

we process them statically using Androguard3 to determine whether they have activities.

Out of the total 5,417 apps in our datasets, we find that 82 apps contain no activity. As

interaction with an Android app requires visuals that users can click, tap, or touch to

trigger events, we therefore exclude these from the samples to be stimulated using Monkey

or humans. We also remove 244 apps that do not have a launcher activity, since launching

these apps on the virtual device will have no visual effect; i.e., no UI will be displayed to

the tester. Finally, we do not include 139 apps which fail to install on the virtual device

for one of the reasons shown in Table 7.1.

Hybrid Analysis. To obtain a hybrid detection system, we merge the sequences of abstrac-

ted API calls (from which we extract features) obtained using both static and dynamic

analysis. More specifically, we merge the sequences of API calls following the same strategy

3https://github.com/androguard/androguard
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Analysis Stimulator Category #Samples #Traces /
Call graphs

Static – Benign 2,723 2,625
(MaMaDroid) Malware 2,694 2,443

Dynamic Human Benign 2,596 2,348
(AuntieDroid) Malware 2,356 1,911

Monkey Benign 2,596 2,336
Malware 2,356 1,892

Hybrid Static & Human Benign 2,596 2,235
Malware 2,356 1,708

Static & Monkey Benign 2,596 2,234
Malware 2,356 1,686

Table 7.2: Datasets used to evaluate each method of analysis.

used to aggregate the traces discussed in Section 7.2.3. Naturally, for hybrid analysis, we

use samples for which we have traces for both static and dynamic analysis.

Final Datasets. In Table 7.2 we report, in the right-most column, the final number of

samples in each dataset, for each method of analysis. During dynamic analysis, we fail to

obtain traces for 724 apps when stimulating with Monkey and 693 when stimulating with

humans. We discuss the reasons for the failure after examining the logs in Section 7.6.1.

Note that the hybrid analysis method consists of samples for which we obtain traces both

statically and dynamically.

7.4 Evaluation of Detection Approaches

In this section, we present the results of our experimental evaluation, reporting both de-

tection performance and, for dynamic analysis, code coverage. We compare the detection

performance of each approach in terms of F -measure as it is the harmonic mean of the

Recall and Precision of the classification model. In scenarios where the prediction of a

class (e.g., the malware class) is of utmost importance, Precision can be used. As a result,
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Analysis Stimulator Mode F -measure Precision Recall

Static – Family 0.86 0.84 0.88
(MaMaDroid) Package 0.91 0.89 0.93

Dynamic Human Family 0.85 0.80 0.90
(AuntieDroid) Package 0.88 0.84 0.92

Monkey Family 0.86 0.84 0.89
Package 0.92 0.91 0.93

Hybrid Static & Human Family 0.87 0.86 0.88
Package 0.90 0.88 0.91

Static & Monkey Family 0.88 0.88 0.89
Package 0.92 0.92 0.93

Table 7.3: Results achieved by all analysis methods while using human and Monkey as app
stimulators during dynamic analysis.

we report along with the F -measure, the Precision and Recall for each approach.

7.4.1 Static Analysis

In static analysis, we train and test the family and package modes of MaMaDroid using

the dataset presented in Table 7.2. Note that while MaMaDroid as presented in the

previous chapter uses API level 24, we use API level 26 (the most recent at the time of this

study) in this chapter.

We run our experiments on the samples (2,625 benign and 2,443 malware) for which

we obtain call graphs, and report the F -measure obtained when operating in family and

package modes in the top two rows of Table 7.3. We observe that the latter performs slightly

better, achieving F -measure of 0.91, compared to 0.86 in the former which is consistent

with the results reported in Chapter 6. The package mode achieves higher F -measure than

family mode as it captures the behavior of apps at a finer granularity which reveals more

distinguishing behaviors between malware and benign apps as demonstrated by higher

Precision and Recall (see Table 7.3).
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(a) (b)

Figure 7.3: CDF of the percentage of (a) code covered in benign and malicious apps when they are
stimulated by Monkey and human, and (b) API calls that are dynamically loaded during dynamic
analysis.

7.4.2 Dynamic Analysis

Next, we report the results achieved by dynamic analysis (i.e., using AuntieDroid), com-

paring between stimulation performed by Monkey and humans.

Detection Performance. For Monkey, we evaluate the classifier on the dataset shown in

Table 7.2, i.e., on 2,336/1,892 samples for benign/malware. When AuntieDroid runs

in family mode, it achieves F -measure, precision, and recall of 0.86, 0.84, and 0.89, re-

spectively. Whereas in package mode, it achieves F -measure, precision, and recall of 0.92,

0.91, and 0.93, respectively, as reported in Table 7.3. When humans stimulate the apps

(2,348 benign and 1,911 malware) and AuntieDroid runs in family mode, the F -measure,

precision, and recall are 0.85, 0.80, and 0.90, respectively. Whereas when operating in

package mode, F -measure, precision, and recall go up to 0.88, 0.84, and 0.92, respectively

(see Table 7.3).

Overall, lower F -measures in all modes of operation in dynamic analysis compared to

static analysis (i.e., AuntieDroid vs MaMaDroid) are due to increases in false positives.

In fact, recall is around 0.90 on all experiments, while precision is as low as 0.80 (family

mode with humans).
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Code Coverage. As mentioned earlier, the performances of dynamic analysis tools are

affected by whether malicious code is triggered during execution. Since AuntieDroid

relies on the sequences of API calls to detect malware, we analyze code coverage of each

app to measure how much of an app’s API calls Monkey/humans successfully trigger. To

this end, we focus on API calls that begin with the package name of the app.

For the apps for which we obtain traces (85% and 86%, resp., for Monkey and human),

Monkey is able to trigger on average, 20% of the API calls. In Figure 7.3(a), we plot the

cumulative distribution function (CDF) of the percentage of code covered, showing that for

90% of the benign apps, at least 40% of the API calls are triggered by Monkey. Whereas

with respect to the malware samples, at least 57% of the API calls are triggered. As for

humans, we find that users are able to trigger, on average, 14% of the API calls. Similarly,

Figure 7.3(a) shows that at least 29% of the API calls are triggered in 90% of the benign

apps. However, with 90% of the malicious apps, 41% of the API calls are triggered.

With both stimulators, there is a higher percentage of code coverage in the malware

apps than in benign apps. This is due to malware apps being smaller in size compared to

the benign apps in our dataset. The mean number of API calls in the benign and malware

apps are respectively, 43,518 and 16,780. However, with respect to stimulators, Monkey

is able to trigger more code in apps compared to humans, which is likely due to Monkey

triggering more events (at a rate of 100ms for 5 mins) than humans in the time each spend

testing the apps.

Dynamic Code Loading. We also report the percentage of code that is dynamically loaded

by apps by examining the API calls that exist in the dynamic traces but not in the apk.

That is, we extract the API calls from the apk using apktool [23] and measure the percentage

of the calls that are in the dynamic traces but not in that extracted statically. We do

this to evaluate the prevalence of dynamic code loading in apps as this could be used

for malicious purposes [167]. For instance, malware developers may design their apps

(or repackage benign apps) to only dynamically load the malicious code and evade static

146



analysis tools [191, 226]. In Figure 7.3(b), we report the CDF of the percentage of the

code that is dynamically loaded, finding that in 90% of the samples, 97% of the API calls

are dynamically loaded irrespective of the app stimulator. As for malware and benign

apps, about 99.5% of the API calls are dynamically loaded in 90% of malware samples

irrespective of the stimulator compared to about 97% in benign apps. We also evaluate the

percentage of the dynamically loaded code that is common to all apps to measure whether

they are primarily virtual device or OS operations such as app installation, start/stop

method tracing, os handler etc. We find that only 0.14% and 0.08%, respectively, are

common across apps when the stimulator is human and Monkey.

Overall, with up to 99.5% of code being dynamically loaded in 90% of our malware

samples, we believe that dynamic code loading might indeed pose a problem for malware

detection tools based solely on static analysis and dependent on API calls. That is, these

tools might not be resilient to evasion techniques that load code dynamically, since a large

portion of the executed code will not be examined at all. On the other hand, with benign

apps also heavily employing dynamic code loading, we cannot conclude that only apps that

load a large portion of their code during dynamic analysis are malicious.

7.4.3 Hybrid Analysis

We now report the results achieved by hybrid analysis, comparing between stimulation

performed by Monkey and humans. Recall that only samples for which we have obtained

a trace in both static and dynamic analysis, as reported in Table 7.2, are merged and

evaluated. In family mode, the hybrid system, using traces produced by Monkey, achieves

an F -measure of 0.88, whereas when using traces produced by humans, it achieves 0.87.

When operating in package mode and using Monkey, it achieves an F -measure of 0.92, and

0.90 with humans, as reported in Table 7.3.

Note that we do not report code coverage in hybrid analysis because the traces from

static analysis are an overestimation of the API calls in the app. Hence, merged traces do
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(a) (b)

Figure 7.4: CDF of the percentage of code covered (a) when apps are stimulated by humans and
Monkey, and (b) when the correctly classified and misclassified apps are stimulated by humans and
Monkey.

not reflect code covered in each app when executed.

7.5 Comparative Analysis of Detection Approaches

We now set out to examine and compare: (1) the detection performance of each analysis

method, i.e., detecting malware based on a behavioral model built via static, dynamic,

or hybrid analysis, (2) the samples that are misclassified with each method, and (3) the

samples misclassified in one method but correctly classified by another. Due to each method

having inherent limitations, it is not clear from prior work how they compare against each

other. Therefore, in this section, we shed light on their comparisons.

7.5.1 Detection Performance

We start by comparing the results of the different analysis methods. Recall that we have

abstracted each API call to either its family or package name, therefore, each method

operates in one of two modes. When operating in family mode, with static analysis we

achieve an F -measure of 0.86, whereas with dynamic analysis, we achieve F -measure of 0.86

when apps are stimulated by Monkey and 0.85 when stimulated by humans (see Table 7.3).
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In package mode, we achieve F -measure of 0.91 with static analysis, whereas with dynamic

analysis we achieve F -measure of 0.92 when apps are stimulated by Monkey and 0.88 when

stimulated by humans (see Table 7.3).

The results show that static analysis is at least as effective as dynamic analysis depend-

ing on the app stimulator used during dynamic analysis. We believe this is because the

behavioral model used to perform detection primarily leverages API calls. Although static

analysis is not able to detect maliciousness when code is loaded dynamically, it provides an

overestimation of the API call sequences in the apk. Consequently, all behaviors that can

be extracted from the apk are actually captured by the static analysis classifier. On the

other hand, dynamic analysis captures only the behavior exhibited by the samples during

runtime. Hence, any behavior not observed during runtime is not used in the decision-

making of the dynamic analysis classifier.

To verify this hypothesis, we evaluate how the percentage of code covered differs when

different app stimulators are employed as well as in correctly classified and misclassified

samples. From Figure 7.4(a), we observe that when Monkey is used as the app stimulator,

at least 48% of the API calls are triggered in 90% of the samples, compared to 35% when

they are stimulated by humans. Similarly, as shown in Figure 7.4(b), 49% of the API calls

are triggered in 90% of the samples correctly classified when Monkey is used to stimulate

apps compared to 44% of API calls in 90% of the apps that are misclassified. When humans

are used to stimulate the apps, 40% of the API calls are triggered in 90% of samples that

are correctly classified compared to 38% triggered in 90% of samples misclassified. As a

result of better code coverage, dynamic analysis performs better when apps are stimulated

by Monkey compared to when apps are stimulated by crowdsourced users. Therefore, we

find that, other than the non-susceptibility to evasion techniques such as dynamic code

loading, dynamic analysis tools based on API calls may have no advantage over static

analysis based tools unless the code coverage is improved.

However, when traces from static and dynamic analysis are merged into a hybrid sys-
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tem, in family mode, we achieve F -measure of 0.88 when the dynamic traces are produced

by Monkey compared to 0.86 achieved by both static analysis and dynamic analysis (with

Monkey) alone. Similarly, we achieve F -measure of 0.87 when the dynamic traces are

generated with humans stimulating the apps compared to 0.86 and 0.85 achieved respect-

ively by static and dynamic (humans) analysis alone. In package mode, the hybrid system

achieves F -measure of 0.92 when the dynamic traces are produced by Monkey and 0.90 with

humans. The hybrid system outperforms the dynamic analysis system in all modes (i.e.,

family and package), as it also captures behavior not exhibited during runtime execution

of the apps as a result of the overestimation from static analysis, while it improves static

analysis as it captures frequently used API calls – a behavior that cannot be captured by

static analysis – and API calls that are dynamically loaded.

7.5.2 Misclassifications

Next, we examine the samples that are misclassified in each method of analysis, aiming to

understand the differences in the model of the correctly classified and misclassified samples.

We perform our analysis on samples that have been classified by all three methods in

package mode.

7.5.2.1 Misclassifications Within Each Analysis Method

To understand why samples are misclassified, we formulate and verify the hypothesis that

misclassifications are due to missing API calls that are considered “important” by the

classifiers. To this end, we select the 100 most important features used by each classifier

to distinguish between potential malware and benign samples, and evaluate the average

number of these features present in each sample. We select the 100 most important features

because it represents, at most, about 10% of the features recorded in our experiments.

Recall that a feature in our detection technique is the probability of evoking an abstracted

API call, and transitions not evoked during the experiments have probability of 0. The
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(a) Humans (b) Monkey

Figure 7.5: Number of false positives in each analysis method and when the apps are stimulated
by humans (a) or Monkey (b) during dynamic analysis.

maximum number of features with probability > 0 in our dataset is 1,869 (static analysis)

and the minimum is 1,022 (dynamic analysis with humans). We expect that samples that

are misclassified will have a similar number of important features as those of the opposite

class.

Using the top 100 features for each classifier, we compare the average number of the

features in the true positives (i.e., correctly classified malware samples) to the false negatives

(malware classified as benign), as well as true negatives to false positives.

False Positives.

In Figure 7.5(a) and 7.5(b), we report the number of false positives in each method of

analysis, respectively, when apps are stimulated by humans and by Monkey during dynamic

analysis. With the former, there are 215, 317, and 209 false positives, respectively, with

static, dynamic, and hybrid analysis. With the latter, there are 217, 178, and 137 false

positives with static, dynamic, and hybrid analysis. Using the top 100 features, we find

that the false positives in static analysis exhibit similar behavior to that observed in true

positives. Specifically, they have, on average, 54.12±22.65 features out of the 100 most

important features, which is similar to 59.96±19.46 in true positive samples. The same

behavior is also observed in both dynamic and hybrid analysis irrespective of the app

stimulator. In Figure 7.6, we plot the CDF of the number of features present in each
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(b) Dynamic Analysis
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(c) Hybrid Analysis

Figure 7.6: CDF of the number of features present (out of the 100 most important features) in
each classification type for all analysis methods (with human during dynamic analysis).

classification type for all analysis methods when humans stimulate apps during dynamic

analysis and, in Figure 7.7, with Monkey. The figures show that the behavioral model of

the false positives in all analysis methods is similar to that observed on the true positives.

For example, in Figure 7.6(c) (hybrid analysis) 90% of the false positives have no more

than 50 of the 100 most important features (similar to the true positives – 49/100) while

true negatives reach 86 features out of 100.

False Negatives. In Figure 7.8(a) and 7.8(b), we report the number of false negatives

in each analysis method, respectively, when apps are stimulated by humans and Monkey.

With the former, there are 148, 151, and 153 false negatives, respectively, in static, dynamic,
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(a) Static Analysis
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(b) Dynamic Analysis
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(c) Hybrid Analysis

Figure 7.7: CDF of the number of features present (out of the 100 most important features) in
each classification type for all analysis methods (with Monkey during dynamic analysis).

and hybrid analysis, while, with the latter, there are 149, 132, and 126 false negatives. In

static analysis, we find that the behavioral model of the false negatives are similar to that

observed in the true negatives. In particular, of the 100 most important features used to

distinguish malware from benign samples, there are, on average, 82.08±11.75 features per

false negative sample. The value is more similar to the 88.91±11.31 important features

per true negative sample rather than the 59.96±19.46 important features per true positive

sample. The same result is also observed in dynamic analysis irrespective of the stimulator,

and in hybrid analysis as well. For example, in Figure 7.7(b) (dynamic analysis), 90% of

the false negative samples have 84 of the 100 features, a value more similar to 89 features
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(a) Humans (b) Monkey

Figure 7.8: Number of false negatives in each analysis method and when the apps are stimulated
by humans (a) or Monkey (b) during dynamic analysis.

(true negatives) rather than 70 features (true positives).

7.5.2.2 Misclassifications Across Analysis Methods

Next, we attempt to clarify why some samples are misclassified by one method of analysis

but correctly classified by another. The first important difference among the methods is the

code coverage: dynamic analysis does not cover the entire code base of an app. Moreover,

stimulating with Monkey vs humans yield different code coverage. This might result in a

few scenarios:

1. Dynamic analysis may not have triggered the malicious code that is captured in static

analysis;

2. Static analysis may reveal sequences of API calls that are not necessarily malicious,

but characterize many malicious apps;

3. The API calls not triggered during dynamic analysis may poison the resulting Markov

chains leading to training poisoning or misclassification of the sample, depending on

whether the sample is part of the training or the test set.

Scenarios (1) and (2) are possible reasons why static analysis correctly detects some
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samples and dynamic analysis does not, while (3) refers to the opposite. Although the

hybrid system captures sequences of API calls from both static and dynamic analysis, it

actually results in completely new Markov chains and features for training and classification.

While more accurate than the individual methods, as the features values change (i.e., the

transition probabilities), it behaves differently.

Another important factor is the presence of loops in the code waiting for user interaction.

A good example in our dataset are the games Dumb ways to die 1 & 2. These apps have

“minigames” where a user has to click several times on the right spot of the screen at the

right time. When executed, the apps enter a loop waiting for user action, and decide the

next action based on what happened before returning to waiting for user action. Static

analysis would catch the four different outcomes (i.e., execution path) of the loop, i.e.,

wrong click, correct click, the user won the game, the user lost the game. Dynamic analysis

would repeat the loop many times depending on the continuous clicks of the human or of

Monkey, and the user/Monkey may never win or lose. Static analysis will record the four

possible loop paths without repeating the sequences in its traces, and the user/Monkey

may not record all the possible sequences, but have duplicated sequences due to multiple

clicks resulting in the same outcome. All these differences characterize the recorded traces,

and therefore may result in different Markov chains and decisions among the methods.

7.6 Discussion

In this chapter, we address three research questions: 1) can we extend static analysis-based

malware detection techniques based on behavioral modeling to use dynamic analysis, 2)

does having humans provide input during dynamic analysis improve malware detection

compared to pseudorandom input generators, and 3) how does each analysis method com-

pare to the other when using a common modeling approach. To this end, we built a dynamic

analysis tool, AuntieDroid, which supports app stimulation via both humans (via crowd-
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sourcing) and pseudorandom input generators (Monkey). We also reuse MaMaDroid with

the most recent packages from API level 26. Then, to build a hybrid system, we merged the

sequences of API calls from static and dynamic analysis. All three methods operate in one

of two modes, i.e., family and package, based on the level of abstraction; in family mode,

static, dynamic (human/Monkey), and hybrid analysis, respectively, achieve F -measures

of 0.86, 0.85/0.86, and 0.88. Whereas in package mode, they achieve 0.91, 0.88/0.92, and

0.92.

Overall, our experiments yield some interesting findings. Hybrid analysis performs best

because it captures the best of both worlds, i.e., static and dynamic analysis, as it is able

to capture the sequences of API calls that are actually executed and/or dynamically loaded

(from the latter), and capture code not executed during testing due to code overestimation

(from the former). Nonetheless, static analysis performs well overall, often better than

dynamic analysis; when looking at misclassifications across methods, we find that those

occurring in dynamic but not in static analysis are likely due to poor code coverage, thus,

the feature vectors in dynamic analysis may not reveal features (e.g., a chunk of benign

code in repackaged samples) that characterize malware in our dataset. Then, we show that

dynamic analysis performs better with Monkey than humans because the former is able to

trigger more code than the latter.

Cost Analysis Between App Stimulators. When humans are recruited to test apps, we

pay each user $0.12 per session (a session involves a user testing a set of four randomly

selected apps). For the 5,030 users we recruited, we paid a total of $603.6. Whereas when

Monkey is used to test apps, we do not incur any cost other than the memory and CPU

requirement for running each Monkey instance. With respect to the average number of

API calls each stimulator trigger per seconds, as stated in Section 7.2.2, we set Monkey to

trigger an event at a rate of 100ms (i.e., 10 events/s) for 5 minutes. As an event can map

to multiple API calls, we find that Monkey triggers on average, about 99 API calls per
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second.4 With humans, we do not restrict how long each users should test the apps and we

did not keep track of how long each user spends on an app before moving on to the next

app. Hence, it is not possible to calculate the number of API calls triggered per second by

our users. Nonetheless, we show in Figure 7.4(a), the CDF of the percentage of the API

calls in app users are able to trigger compared to Monkey.

7.6.1 Challenges with Dynamic Analysis

We now discuss the challenges we faced when analyzing the apps during dynamic analysis.

Apps with no Trace. When executing apps during dynamic analysis on AuntieDroid,

we find that, for some apps, we do not obtain any trace. Specifically, there are no traces

for 724 apps when using Monkey and 693 when using humans. In total, we do not obtain

traces for 835 unique apps. Further examination of the logs of these apps shows that this

happens because:

1. The apps stop responding, i.e., “Application Not Responding” (ANR) is thrown by

Android as the app cannot respond to user input (154 occurrences);

2. Lack of OpenGL minimum specification matching the requirement of the app (229);

3. Fatal error in an app’s onCreate() launcher activity method, causing the app to

crash (452).

Apps with no Package Name in Apk. For some apps where we do obtain traces, we find

that they do not contain any API call beginning with the package name of the app. Recall

that in order to evaluate the code coverage of each app, we focus on API calls that begin

with the package name of the app. Using this approach, we find there are 350 apps in our

dataset for which calls beginning with the package name are not present in the dynamic

traces nor the apk. Upon further analysis, we find these apps use package names that are

4Note that this rate takes into account apps that crash or become non-responsive, hence, it is dependent
on several factors such as failures, type of events etc.
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different from that declared in their manifest. To calculate code coverage for these apps,

we use as package names, those packages (excluding packages from the Android and Google

API) that have at least one activity and broadcast receiver and/or service classes in the

apk.

7.6.2 Limitations

One of the contributions of our work is extending Chimp [17] to create a virtual device on

which AuntieDroid builds, but, naturally, our work is not without limitations. First, we

only support one Android version at this time: KitKat 4.4.2. However, we expect KitKat

to actually be more vulnerable to malware than more recent versions of Android; moreover,

only 0.8% of apps in our sample (see Section 7.3.3) require a newer version of Android.

An interesting future research avenue would be to explore differences in malware behavior

across versions of Android, which previous work has indicated to be quite significant [216].

Second, our virtual device does not yet support the full range of OpenGL operations,

which somewhat limits the number of apps that we can evaluate. However, this support is

an ongoing effort by the Android x86 community5 and only 229 (4.6% of our dataset) of

apps that we failed to acquire a trace for required full OpenGL support.

Third, when performing static analysis with MaMaDroid, we do not analyze all apps

because some apps fail to decompile. These failures are due to: bad CRC-32 redundancy

checks, errors during unpacking, or failure to transform the Java bytecode into jimple

intermediate representation by Soot. We exclude these apps from our analysis and report

static analysis results for only apps that we have successfully decompiled. Finally, we

remark that, when stimulating the apps using humans, the users we recruit may not have

tested each app in the way they would have used the apps on their own device, which is

also an item for future work.

Although some characteristics peculiar to AuntieDroid’s virtual device (e.g., it runs

5Qemu’s OpenGL 3 support was announced very recently – see http://www.android-x86.org/

releases/releasenote-7-1-rc1

158

http://www.android-x86.org/releases/releasenote-7-1-rc1
http://www.android-x86.org/releases/releasenote-7-1-rc1


as a hardware assisted virtualization) should prevent evasion by malware that tries to

circumvent emulators/virtual devices using environment variables [70, 124, 142, 164], we

plan, as part of future work, to update it to use a virtual device that appears as close to

a real device as possible. Moreover, we intend to use input generators that target specific

behaviors of an app, so as to target certain API calls mostly used by malware rather than

trying to improve the code coverage during dynamic analysis. Finally, we plan to detect

and measure the prevalence of malware that specifically employs dynamic code loading as

an evasion technique.

7.6.3 Concluding Remarks

In this chapter, we presented AuntieDroid for detecting malware dynamically by integ-

rating MaMaDroid into Chimp. We allowed both human users and automated pseudor-

andom input generator i.e., Monkey to instantiate AuntieDroid. We found that Monkey

outperforms human users largely due to its ability to achieve better code coverage. We also

performed a comparative analysis of the different analytical methods i.e., static, dynamic,

and hybrid in malware detection, showing that hybrid analysis performs best and that

static analysis is at least as effective as dynamic analysis depending on the input generator

to apps during dynamic analysis. Our results encourage the use of hybrid analysis in the

detection of malware as it inherits the pros of both static and dynamic analysis, while

addressing some of the cons inherent in one of static or dynamic analysis that the other

addresses.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

With the increasing number of Android apps and sources of personally identifiable informa-

tion on the devices these apps run on, it is imperative to analyze how these apps access and

transmit these information. Prior work showed that, due to vulnerabilities in these apps

or the Android OS itself, malevolent actors can exfiltrate users’ information thereby, com-

promising users’ security and privacy. Similarly, other research efforts showed that some

apps compromise users’ security and privacy because they are designed to be malicious.

This thesis builds on prior work by measuring and proposing new mitigation techniques to

the security and privacy issues in Android apps.

In particular, we first examined whether popular apps still use vulnerable SSL sockets

that allow man-in-the-middle (MiTM) attackers retrieve user information during transmis-

sion (Chapter 4). Our analysis showed that this practice is still common even after more

than two years since studies highlighted the security and privacy risks of such practice. The

vulnerable apps allow MiTM attacks because they either accepted all self-signed certificates

or did not verify the domain name. In order to mitigate MiTM attacks, we recommended

(and provided code sample) that app developers use a certificate pinning logic that verifies

both recognized CA-signed and self-signed certificates correctly and allows them employ

self-signed certificates safely.

Next, we investigated whether apps that are advertised as employing end-to-end en-

cryption, anonymity, or ephemerality, actually do so and do so correctly (Chapter 5). We
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showed that some “anonymous” social networking apps (Whisper and Yik Yak) actually

identify their users with distinct IDs that are persistent as previous activities like chats,

whispers and yaks are restored to the device even if the user uninstalls and reinstalls the

app. This behavior shows that, although they do not require users to provide their email or

phone number, they can still persistently link – and possibly de-anonymize – users. Simil-

arly, ephemeral messaging apps may not always delete messages as we found in Snapchat.

While Snapchat promises that messages will “disappear” after 10 seconds, the messages

are not immediately deleted from their servers, as old messages are actually included in

responses sent to the clients. However, we confirmed that apps such as Telegram and Wickr

do offer end-to-end encrypted chat messaging.

Then, we presented MaMaDroid, an Android malware detection system that is based

on modeling the sequences of API calls as Markov chains (Chapter 6). MaMaDroid is

designed to operate in one of three modes, with different granularities, by abstracting API

calls to either families, packages or classes. It effectively detects unknown malware samples

developed around the same time as the samples on which it is trained (F-measure up to

0.99), and maintains a high detection performance over time at F-measure of 0.86 and 0.75,

respectively, one and two years after the model has been trained. We examined how the

modeling approach effects the performance of MaMaDroid by comparing it to a variant,

FAM, that employs frequency analysis modeling instead. Our results show that Markov

chain-based modeling achieves higher detection accuracy and is more robust, especially in

scenarios where API calls are not more frequent in malware than in benign apps. Similarly,

we also examined the effects of abstraction by comparing FAM to DroidApiMiner [14],

since both are based on frequency analysis. FAM outperforms DroidApiMiner show-

ing that API call abstraction improves the detection accuracy of our systems. Overall,

our results demonstrate that statistical behavioral models introduced by MaMaDroid–

in particular, abstraction and Markov chain modeling of API call sequence – are more ro-

bust than traditional techniques, highlighting how it can form the basis of more advanced
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detection systems in the future.

Finally, we compared how each program analysis approach (i.e., static, dynamic, and

hybrid) performs when they employ the same underlying modeling technique (Chapter 7).

Specifically, we employ MaMaDroid as the underlying modeling technique and implement

it in a dynamic setting by integrating it in a virtual device. The resulting tool is called

AuntieDroid and it supports app stimulation via both humans and pseudorandom input

generators (Monkey). To build a hybrid system, we merged the sequences of API calls from

static and dynamic analysis. Overall, our experiments showed that hybrid analysis performs

best because it captures the best of static and dynamic analysis, as it is able to capture

the sequences of API calls that are actually executed and/or dynamically loaded (from the

latter), and capture codes that are not executed during testing due to code overestimation

(from the former). Nonetheless, static analysis performs well overall, often better than

dynamic analysis; when looking at misclassifications across methods, we found that those

occurring in dynamic but not in static analysis are likely due to poor code coverage, thus,

the feature vectors in dynamic analysis may not reveal features (e.g., a chunk of benign

code in repackaged samples) that characterize malware in our dataset. We also showed

that dynamic analysis performs better with Monkey than humans because the former is

able to trigger more code than the latter.

In order to help developers mitigate against the problems highlighted in this thesis, we

make our code publicly available. Developers or even app stores that want to detect vul-

nerable TLS implementation in Android apps can do so using our fork of Mallodroid [82],

available here: https://github.com/luckenzo/mallodroid. As Mallodroid does not cor-

rectly analyze multidex apps and cannot tell when an app has a secure implementation,

we have developed a tool called TLSDroid, which performs a large scale analysis of apps

as well as address the shortcomings of MalloDroid. TLSDroid will also be made available

on the author’s profile1 on Github. In addition, we also make our sample code for safe use

1https://github.com/luckenzo
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of self-signed certificates as a Github gist2, so it is easily accessible when developers search

for selected keywords.

With respect to detecting malicious apps, we have also made the code of MaMaDroid

as well as hashes of our dataset available in the project’s online repository: https://

bitbucket.org/gianluca_students/mamadroid_code. As Chimp is offered as a paid

service3 by its developers, we do not make AuntieDroid available. Nonetheless, the

modifications we make to Chimp that allow us collect method traces are preserved and

are accessible in the paid service. Hence, researchers can use Chimp to collect the traces

and use the MaMaDroid scripts to parse the traces and perform classification. Finally,

researchers can also modify how MaMaDroid reports performance (e.g., from F -measure

to Precision) to fit their use-case. For example, in scenarios where the prediction of a

class (e.g., the malware class) is of utmost importance, Precision can be used and the

classification model can be tuned to improve Precision and reduce false negative rate.

8.2 Future Work

In order to perform MiTM attacks as presented in Chapter 4 and 5, we install a CA certi-

ficate on the device which is then used as one of the trust anchors (i.e., trusted certificates)

by the Android OS to determine whether a certificate chain should be accepted as valid

or not. But as from API level 24, this behavior has changed.4 Any app targeting this

API level or above, will no longer trust CA certificates installed by users or apps with

administrative permissions by default, except the app explicitly decides to. One possible

work that arises from this change is to examine if this change has been implemented cor-

rectly without vulnerabilities, and most importantly, if the change has been implemented

correctly, do developers of apps that handle financial information (or apps advertised as

2https://gist.github.com/luckenzo/416d9da141b302bfcfcd7b0d3b95489f
3https://tappas.io/
4https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
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security-enhancing) trust user installed CAs without the use of certificate pinning?

Future work could also investigate how piggybacking (i.e., injecting malicious code into

benign apps and repackaging and distributing it as the original) affects the effectiveness

of MaMaDroid and other malware detection tools. For example, if a benign app is

repackaged and only a single method that performs malicious activity is injected, does

MaMaDroid detect the app as malicious? If more methods and classes that perform

malicious activities are added, is there a threshold of the number of methods or classes at

which MaMaDroid detects an app as malicious and benign otherwise?

Finally, future work could address the limitations present in this thesis. For example,

they could use other decompilers or custom tools (instead of Soot) to extract call graphs

from apps, so as to ensure that all apps are analyzed.
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Appendix A

SSL

A.1 Complete List of Apps Investigated

4shared 8 Ball Pool Adobe AIR Amazon
Amazon Local – Deals, Coupons Amazon Music Talking Angela Angry Birds
Ask.fm - Social Q&A Network AVG Antivirus Security – FREE Badoo – Meet New People BBM
Barclays Mobile Banking Bible Bitstrips Booking.com Hotel Reservations
Calendar Candy Crush Saga Clean Master (Speed Booster) Deezer Music
Dictionary.com Dropbox Google Drive Duolingo: Learn Languages Free
Google Earth eBay Endomondo Running Cycling Walking Facebook
Farm Heroes Saga Flipagram Flipboard: Your News Magazine Fruit Ninja Free
Gmail GO Launcher EX GO Locker – Theme & Wallpaper GO SMS Pro
Google+ Google Search Groupon Hangouts
Hill Climb Racing Instagram IMDb Movies & TV Jetpack Joyride
Job Search KakaoStory KakaoTalk: Free Calls & Text Keep
LINE: Free Calls & Messages LinkedIn Magic Piano by Smule Magisto Video Editor & Maker
Maps MeetMe: Chat & Meet New People Facebook Messenger Despicable Me (Minion Rush)
Netflix Noom Coach: Weight Loss Plan PayPal PicsArt Photo Studio
Pic Collage Pinterest Play Movies & TV Play Music
Play Newsstand Play Store POF Free Dating App QR Droid Code Scanner
Shazam Skype Snapchat SoundCloud – Music & Audio
SoundHound Spotify Music Subway Surfers Talking Ben
Talking Tom 2 Tango: Free Video Calls & Text The Simpsons: Tapped Out Telegram
Temple Run 2 textPlus Free Text + Calls TextSecure Private Messenger Google Translate
TripAdvisor Tumblr TuneIn Radio TweetCaster for Twitter
Twitter VEVO Viber Vine
Voice Search WhatsApp WeChat Words with Friends
Yahoo Mail Yelp YouTube Zoosk

Table A.1: Complete list of apps examined in Chapter 4

A.2 SSL Pinning Using any of Two Keystores

pub l i c c l a s s PinManager implements X509TrustManager {

/∗ Get a d e f a u l t keys to r e i n s t anc e or s p e c i f y your keys to r e type e . g
. , BKS ∗/

KeyStore ks = KeyStore . g e t In s tance ( KeyStore . getDefaultType ( ) ) ;

p r i v a t e St r ing keyAlgorithm ;
p r i v a t e PublicKey storedPubKey ;
p r i v a t e St r ing s e r i a l ;
S t r ing a l i a s = ”myCert” ;

pub l i c PinManager ( InputStream f i l e ) throws KeyStoreException {
t ry {

ks . load ( f i l e , password ) ;

180



} catch ( IOException e ) {
e . pr intStackTrace ( ) ;

} catch ( NoSuchAlgorithmException e ) {
e . pr intStackTrace ( ) ;

} catch ( C e r t i f i c a t e E x c e p t i o n e ) {
e . pr intStackTrace ( ) ;

}
/∗ Get c e r t i f i c a t e and a s s o c i a t e d pub l i c key ∗/
X509Cer t i f i c a t e c e r t = ( X509Cer t i f i c a t e ) ks . g e t C e r t i f i c a t e ( a l i a s ) ;
storedPubKey = c e r t . getPublicKey ( ) ;
keyAlgorithm = storedPubKey . getAlgorithm ( ) ;
s e r i a l = c e r t . getSerialNumber ( ) . t oS t r i ng ( ) ;

}

/∗ Create TrustManager with s p e c i f i e d keys to r e ∗/
try {

TrustManagerFactory tmf = TrustManagerFactory . g e t In s tance ( ”X509” ) ;
tmf . i n i t ( ( KeyStore ) myStore ) ;
f o r ( TrustManager tm : tmf . getTrustManagers ( ) ) {
( ( X509TrustManager ) tm) . checkServerTrusted ( chain , authType ) ;}

}
catch ( Exception e ) {

throw new C e r t i f i c a t e E x c e p t i o n ( e ) ;
}

@Override
pub l i c void checkCl ientTrusted ( X509Cer t i f i c a t e [ ] x 5 0 9 C e r t i f i c a t e s ,

S t r ing authType ) throws C e r t i f i c a t e E x c e p t i o n {
re turn ; // The c l i e n t i s not authent i ca ted but you can implement

your own checks i f d e s i r e d
}

@Override
pub l i c void checkServerTrusted ( X509Cer t i f i c a t e [ ] x 5 0 9 C e r t i f i c a t e s ,

S t r ing authType ) throws C e r t i f i c a t e E x c e p t i o n {
i f ( n u l l == x 5 0 9 C e r t i f i c a t e s ) { // throw e r r o r i f c e r t chain i s

empty
throw new I l l ega lArgumentExcept ion ( ” Server X509Cer t i f i c a t e array

i s n u l l ” ) ;
}
/∗ Get s e r v e r c e r t i f i c a t e ’ s pub l i c key ∗/
PublicKey pubKey = x 5 0 9 C e r t i f i c a t e s [ 0 ] . getPublicKey ( ) ;

/∗ Check i f keys match ∗/
f i n a l boolean keyMatch = pubKey . equa l s ( storedPubKey ) ;

i f ( ! ( n u l l != authType && authType . equa l s IgnoreCase ( keyAlgorithm ) ) )
{ // throw e r r o r i f pub l i c key a lgor i thm i s not same
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throw new C e r t i f i c a t e E x c e p t i o n ( ” Server AuthType does not match” ) ;
}
i f ( x 5 0 9 C e r t i f i c a t e s [ 0 ] . getSer ia lNumber ( ) . t oS t r i ng ( ) == s e r i a l )

throw new C e r t i f i c a t e E x c e p t i o n ( ” Server s e r i a l number doesn ’ t
match” ) ;

i f ( ! keyMatch ) {
throw new C e r t i f i c a t e E x c e p t i o n ( ” Publ ic key expected does not

match” ) ;
}

}
}

/∗ One o f the keys to r e should be commented . . . ∗/

/∗ Development environment keys to r e ∗/
i n t myStore = R. raw . devStore ;

/∗ Production environment keys to r e ∗/
i n t myStore = R. raw . proStore ;

/∗ I n i t i a l i z e SSL context with customized TrustManager ∗/
try {

InputStream in = getResources ( ) . openRawResource ( myStore ) ; // c r e a t e
an input stream with s p e c i f i e d keys to r e

TrustManager trustManager [ ] = {new PinManager ( in ) } ;
SSLContext s s lContext = SSLContext . g e t In s tance ( ”TLSv1 . 2 ” ) ;
s s lContext . i n i t ( nu l l , trustManager , n u l l ) ;
/∗ Create connect ion us ing customized socke t f a c t o r y ∗/
URL u r l = new URL( ” https : //www. bob . com/” ) ;
HttpsURLConnection connect ion = ( HttpsURLConnection ) u r l .

openConnection ( ) ;
ur lConnect ion . s e tHostnameVer i f i e r ( hos tnameVer i f i e r ) ;
ur lConnect ion . setSSLSocketFactory ( s s lContext . getSocketFactory ( ) ) ;

} catch ( FileNotFoundException e ) {
e . pr intStackTrace ( ) ;

} catch ( IOException e ) {
e . pr intStackTrace ( ) ;

} catch ( NoSuchAlgorithmException e ) {
e . pr intStackTrace ( ) ;

} catch ( KeyStoreException e ) {
e . pr intStackTrace ( ) ;

} catch ( KeyManagementException e ) {
e . pr intStackTrace ( ) ;

}
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