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Abstract Survey calibration methods modify minimally
sample weights to satisfy domain-level benchmark con-
straints (BC), e.g. census totals. This allows exploitation of
auxiliary information to improve the representativeness of
sample data (addressing coverage limitations, non-response)
and the quality of sample-based estimates of population
parameters. Calibration methods may fail with samples
presenting small/zero counts for some benchmark groups
or when range restrictions (RR), such as positivity, are
imposed to avoid unrealistic or extreme weights. User-
defined modifications of BC/RR performed after encoun-
tering non-convergence allow little control on the solution,
and penalisation approaches modelling infeasibility may not
guarantee convergence. Paradoxically, this has led to under-
use in calibration of highly disaggregated information, when
available. We present an always-convergent flexible two-
step global optimisation (GO) survey calibration approach.
The feasibility of the calibration problem is assessed, and
automatically controlled minimum errors in BC or changes
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in RR are allowed to guarantee convergence in advance,
while preserving the good properties of calibration estima-
tors. Modelling alternatives under different scenarios using
various error/change and distance measures are formulated
and discussed. The GO approach is validated by calibrating
the weights of the 2012 Health Survey for England to a fine
age—gender—region cross-tabulation (378 counts) from the
2011 Census in England and Wales.
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1 Introduction

Survey calibration incorporates auxiliary information to a
sample in two closely related ways: weighting and estima-
tion. Calibration weights make a sample consistent with
auxiliary information (e.g. census population totals) while
in general respecting the initial sample design (Deville and
Sarndal 1992). Resulting calibration estimates of population
parameters (e.g. totals) improve direct sample estimates (e.g.
Horvitz—Thompson). Survey calibration methods can be also
applied to adjust for non-response or coverage limitations,
and to outlier detection (Sdarndal 2007). The internal consis-
tency of administrative data can be intrinsically guaranteed
with survey calibration, since it may provide a common
degree of agreement between estimates from multiple sam-
ples of the same population (Wu and Lu 2016).

Calibration estimates were initially introduced for finite
population totals or averages of either categorical or con-
tinuous variables. Example methods are the generalised
regression (GREG) and raking estimators (Deville and Siarn-
dal 1992; Singh and Mohl 1996). Calibration estimates
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were later developed for variance and bilinear parameters
(Théberge 1999), quantiles and ratios (Sarndal 2007). Given
an initial value for frequency tables with no zeroes, if either
auxiliary cells or marginal counts are known, the correspond-
ing poststratification problems can also be modelled using
survey calibration (Deville and Sérndal 1992). In particular,
direct standardisation of rates (e.g. age—sex standardisation
as commonly used in epidemiology and demography), can
also be addressed using survey calibration (Lumley 2010).

Survey calibration methods search for (real-valued) cali-
bration weights that: (i) satisfy a set of benchmark constraints
(BC) or calibration equations and, in most cases, (ii) are close
to initial weights. Therefore, calibration estimators are: (i)
design consistent and (ii) (asymptotically) design unbiased
(Deville and Sirndal 1992; Fuller 2002; Sirndal 2007). In
general, the use of auxiliary information in form of BC allows
for bias and/or variance reduction in population-level esti-
mates. The bias in calibration estimators is kept small by
staying close to initial (design) weights through the minimi-
sation of a distance measure. Some calibration methods use
distances with undesirable effects that are likely to inflate the
bias and/or variance: GREG may produce negative weights,
and raking extreme ones. Outliers, small domain estima-
tion or the estimation of nonlinear population parameters are
also likely to produce extreme and highly variable weights
(Théberge 2000; Wu and Lu 2016). Range restrictions (RR)
on weights are imposed in practice in order to avoid weights
taking unrealistic or extreme values. These can be imposed
directly on weights or through the function measuring the
distance to initial weights (Singh and Mohl 1996).

Failure of survey calibration methods may occur with real
data (Sautory 1991; Tanton et al. 2011). In fact, BC may
have no exact solution (zero error), either considered solely
or in combination with RR on weights (Singh and Mohl
1996). This can be due to: the sample not being representa-
tive (enough) of every non-void class in the cross-classified
BC; the RR being too tight; the BC forming an inconsistent
system of equations, due to their derivation from differing
data sources or from data with added noise as a result of
statistical disclosure control procedures (Tanton et al. 2011).
In addition, calibration algorithms may be unstable for too
many BC or when multi-collinear survey variables are being
benchmarked (Sautory 1991; Rao and Singh 1997). The exis-
tence of a solution to the range-restricted survey calibration
problem was studied theoretically in Théberge (2000).

Faced with non-convergence of standard algorithms in
practice, alternative approaches have been proposed: non-
modelling heuristics and penalised calibration, also known as
ridge calibration. Heuristics typically used include: broaden-
ing the categorisation of benchmark variables, modifying the
benchmarking values, loosening the RR on weights, or even
deleting some BC (Sautory 1991; Bankier et al. 1992). In
Tanton et al. (2011), an upper threshold on the total absolute
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error (TAE) in BC is used to accept non-convergent solu-
tions satisfying RR, with no further control for error in BC.
Penalised calibration allows a certain degree of relaxation
in each BC, being controlled by costs (or tolerances), while
still providing approximately unbiased and asymptotically
design-consistent estimators. Penalised versions of GREG
with RR can be found adaptively adjusting the set of toler-
ances on BC errors in Rao and Singh (1997) and addressing
its global minimisation in Wagner (2013). Non-convergence
is still reported by penalisation methods, being possible even
for loose RR on weights.

This paper proposes a global optimisation (GO) two-step
approach to range- restricted survey calibration. First, the
problem feasibility is guaranteed by optimally modifying the
BC and (for the first time) RR, if needed and in a controlled
manner. Second, the (always-feasible) resulting calibration
problem is solved. The GO method can provide asymp-
totically design-consistent and realistic solutions, avoiding
non-convergence problems and thus overcoming the typical
need for user-defined heuristics. Moreover, by keeping close
toinitial weights, GO is approximately unbiased when design
weights are available, otherwise benefiting from the a priori
information provided by initial weights.

In Sect. 2, we provide the technical formulations of range-
restricted survey calibration and calibration-based estimation
of totals and variance of estimates. We also summarise the
existing (unsuccessful) “penalisation” attempts to address
non-convergence. In Sect. 3, it is shown that the feasibil-
ity of a range-restricted calibration problem can be checked
in advance by solving a (generally sparse) linear program.
Moreover, using the £1-norm as an error measure, it is shown
that feasibility can be achieved if allowing for a minimum
(TAE) error in BC and/or a minimum change in RR. In
both cases, the formulations are sparse linear programming
problems, which have the advantage of being efficiently
solvable for many variables; £1-norm penalisation for errors
in addition allows modification of only a small number of
benchmark totals or range restrictions. Alternative error func-
tions and modelling options are also discussed.

In Sect. 4, the generic GO algorithm for an always-
convergent globally optimal survey calibration is presented.
The Chi-square distance as in GREG is used for demon-
stration, its minimisation being globally optimal, leading
to approximately unbiased estimators. In fact, GREG-based
methods allowing for RR on weights are a particular case of
GO, provided that the earlier are convergent (to a global opti-
mum). The applicability of GO in small domain estimation
and microsimulation contexts is summarised in Sect. 5.

In Sect. 6, the performance of the GO method is exem-
plified with real data by calibrating the weights of the 2012
Health Survey for England to population totals from the 2011
Census in England and Wales. Broad age—gender (20 groups)
and region (9 groups) total counts are imposed as exact BC,
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while optimally controlled errors are allowed to calibrate
HSE weights to a fine age—gender—region cross-tabulation
(378 counts). The resulting calibration weights are further
used to estimate the total counts for a broad age by eco-
nomic activity cross-tabulation, which is used for validation
purposes.

Notation The symbols 1 and 0 will denote constant vectors
with all components equal to 1 and 0, respectively. Compar-
ison operators between two vectors will be used to denote
componentwise comparisons, e.g. 1 > 0.

2 Background

Assume as given survey data corresponding to a sample
S of size n, drawn from a population U, together with a
n-dimensional vector d of survey weights (by default, but
not limited to, the sample design weights). For x, a p-
dimensional vector of variables, assume as known the n x p
survey matrix X, which contains the values of x for all sample
units. For simplicity, the totals for variables are considered
as the measure of interest; the formulation is similar when
using proportions or averages. The variables can be either
continuous or categorical, the latter possibly expressed using
indicator binary variables (1-0 valued) for each category
group in order to exploit known total unit counts for that
group. The Horvitz—Thompson direct survey estimate of the
population totals for the values of x is tf T = X'd (Horvitz
and Thompson 1952). Also assume as given a more precise
estimate ty of the totals of x for the population, this estimate
provided for example by administrative census sources.

2.1 Survey calibration

Survey calibration aims at determining new survey weights
w that make the survey compatible with the known auxiliary
totals, i.e. satisfying the benchmark constraints:"
Xw—ty=0. (BO)
The weights should realistically represent units: for exam-
ple, counts of households or persons have to be positive (in
general, £11 < w < u1, for two constants ¢, u). More-
over, a drastic change in any particular weight from its initial
value should be avoided (in general, £>d < w < u»d, for two
constants £, u»). Accordingly, the weights can be subject to
range restrictions in the form

I<w<u, (RR)

! The case of a known group total tg is a particular case of BC in the
form 1;w — tg = 0.

being 1 and u known vectors.? Finally, in order to lead to unbi-
ased estimates, the weights should ideally respect as much
as possible the set of initial weights d, which is achieved by
minimising a distance ¥4 (w) between w and d.

Therefore, the mathematical problem associated with
range-restricted survey calibration reads:

arg miny, %g(w)
s.t. X'w—ty =0 (BO) (1
I<w<u (RR)

being w the calibration weights searched for.> The resulting
weights are used to make the survey compatible with known
auxiliary totals and in particular can be used to adjust to non-
response or coverage errors.

Following (Deville and Sérndal 1992), the function %4 (w)
is assumed to be, for every fixed d > 0: nonnegative, differ-
entiable, strictly convex, defined on an interval containing d,
such that %3(d) = 0, and having a differential continuous and
locally invertible at d. A typical function ¢ for the distance
to initial weights is the modified Chi-square or generalised
least squares distance (Singh and Mohl 1996)*

G w) = w—d)D (w—d), )

where D = diag (d) is a diagonal matrix with the elements
of d in the diagonal. In that case, the resolution of the sur-
vey calibration problem (1) if ignoring any range restrictions
(RR) gives the generalised regression weights (Deville and
Sérndal 1992; Merkouris 2010):

wOREG — d 4+ DX (X'DX) ' (tx — X'd) , 3)

the ratio estimator weights being a particular case for p = 1
if replacing D with diag(X)~'D (Deville and Sirndal 1992).

Another commonly used distance function is the modi-
fied discrimination information associated with the raking
estimator (Singh and Mohl 1996):

Gyl w) = <wi log <%) —w; + di) . )

i=1

There is no explicit formula to obtain the raking weights,
which, when ignoring (RR), have the form wMDI

Dexp(XA), for A a p-dimensional vector (Lagrange mul-
tiplier) solution of ty = X'Dexp (XA) (Deville and Sirndal

2 The case with no RR is a particular case in whichl = 0o -1= —u.

3 Alternatively used formulations of the calibration problem computing
the relative change in weights are equivalent to (1), where in that case
the unknown is g defined by g; = w;/d;, 1 <i <n.

4 In the case of known totals and initial weights consistent with those
totals (1'w = 1'd constant), the minimisation of the Chi-square distance
simplifies to minimising w'D~!w.
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1992). The raking ratio algorithm in Deming and Stephan
(1940) provided a solution for the particular case of con-
tingency tables (poststratification), which translates into the
benchmark variables being categorical group membership
indicators, some linear combination/s of which is/are unity
(i.e. the groups need not to be mutually exclusive) (Deville
and Sarndal 1992; Kott 2009).

2.2 Calibration estimators of totals and variance

Assume additionally as given an x r survey matrix Y contain-
ing the values of y, a r-dimensional variable of interest, for
all n sample units in S. The population totals ty for the vari-
able y can be estimated using the direct Horwitz—Thompson
estimator Y'd; however, the variance of this estimator is high.
The calibration estimators make use of calibration weights
wCa which account for available auxiliary information, to
produce the new estimate

t}(;ul — Y/WCul . (5)

In particular, calibration estimators are design-based, not
making use of any regression model linking the target
variable y with the auxiliary variables x. Given that the con-
sidered calibration distances ¥4 (w) satisfy the properties
assumed in Sect. 2.1, calibration estimators are both asymp-
totically design unbiased and design consistent, all of them
being asymptotically equivalent (Deville and Sérndal 1992).
Moreover, if the auxiliary information is sufficiently related
to the variable y, calibration estimators are more efficient
than the Horvitz—Thompson estimator (Fuller 2002).

The variance of calibration estimators can be approx-
imated asymptotically using the fact that all estimators
are asymptotically equivalent to the generalised regression
estimator YYWOREG (Deville and Sirndal 1992). A com-
pact form for the asymptotic variance of the generalised
regression estimator can be found e.g. in Merkouris (2010).
Alternative jackknife estimates of variance can be used in a
more general context and were shown to outperform Taylor-
based techniques for estimating the variance of calibration
estimators in Stukel et al. (1996). This paper will accord-
ingly adopt a non-asymptotic jackknife approach to estimate
the variance of calibration estimators, at the expense of a
higher computational burden.

2.3 Non-convergence and penalised calibration

Several iterative methods have been used to solve the survey
calibration problem (1), when including (RR), for various
distance functions (Singh and Mohl 1996). As explained
in Introduction, there are many possible reasons for non-
convergence, specially when considering RR in addition to
BC. This is usually addressed by using heuristics that either
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modify the BC and/or RR or allow some error in (BC), but,
however, do not perform any optimal control of that error.

Penalised calibration instead searches for weights satis-
fying (RR) while allowing parametrically for errors in (BC).
This is done via the minimisation of a compromise between
the distance to initial weights and the errors in BC:

GIREG (w) + (X'w —t) A7 (X'w — ty) (6)

where A = diag(X) is adiagonal matrix depending on param-
eters A = (A;),1 < j < p. The smallest possible values
for these parameters are iteratively searched for in Rao and
Singh (1997), where in fact these are obtained as a function
of user-specified tolerances on the errors in (BC). Although
this approach is shown to reduce the discrepancy in respect-
ing (BC) for given (RR), its dependence on parameters used
to control for errors in (BC) is critical for convergence. See
e.g. Théberge (2000) for a closed-form solution to the prob-
lem, and Beaumont and Bocci (2008) and Section 9 in Fuller
(2002) for closely related model-based “ridge regression”
approaches. See Chen et al. (2002) for a less general mod-
elling of errors using empirical likelihood methods.
Similarly, in Wagner (2013) a vector of unknowns &p
was used to model the multiplicative error in part of the
benchmark totals so that the corresponding subset B of BC
is satisfied: X\;w = diag(ty p)ep. Even if this approach
required no “penalisation” parameters, convergence prob-
lems arose in a simulation even if allowing any value for the
errors € in some BC, and increased significantly (14-23%
failure) when imposing actual bounds on those errors.

3 Optimal control for RR and BC to allow
successful range-restricted calibration

All existing methods addressing the range-restricted survey
calibration problem (1) run into non-convergence issues or
lack of control of the errors in BC, even if using penalisation
formulations like (6) that theoretically allow for the mini-
mum error in BC. The usual approach consists in running
a calibration method and at the end (after a long running
time), if encountering non-convergence, requires an user to
adjust the RR and/or BC. We propose instead to assess if the
given values for RR and BC allow the existence for a solution
(feasibility), and to compute optimal alternative values that
guarantee the feasibility in case of foreseen non-convergence,
given user-specified values for the tolerance on errors in BC,
and binding and loose values for RR.

The natural questions that we will address in this section
are, given RR vectors 1, u? is problem (1) feasible? is it

3 If setting to 400 either of the RR vectors, we obtain the same ques-
tions for the other RR vector.
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feasible if allowing a certain error ¢ in BC? in fact, what is
the minimum error that needs to be allowed in BC to achieve
feasibility? alternatively, what is the smallest change in RR
that we need to perform to obtain feasibility (even if possibly
allowing for some error ¢ in BC)?

3.1 An introductory example

Before entering into details, let us inspect the previous ques-
tions in a very simple scenario with n = 100 individuals in a
sample with initial weights d = 20 - 1 to be calibrated using
one known benchmark constraint BC:

wi + -+ wioo = 2016 (N

If we impose as RR the positivity of weights 0 < w, the BC
and RR can be satisfied simultaneously, e.g. by setting all
weights equal to 20.16, or by setting 99 weights to 20 and
just one weight to 36 (the calibration solution will depend
on the distance function used to measure changes in initial
weights). However, if we impose that 0 < w < 20 -1 as
RR on weights in order to avoid any survey unit to represent
more than 20 total units, the BC (7) cannot be satisfied; thus,
the combination of BC and RR is incompatible. In that case,
if we allow a small arbitrary error of 100 in (7), the problem
becomes feasible by taking all weights equal to 20. In doing
so, we obtain an error in BC equal to 16, which is in fact
the minimum needed for compatibility with the given RR.
Alternatively, the upper bound on weights can be set to 20.16-
1 (or any higher value) in order to have feasibility given the
original BC.

3.2 Can the problem be solved?

The existence of a solution (feasibility) for the range-
restricted calibration problem (1) is equivalent to the exis-
tence of solutions for the set of constraints:

X'w—-t,=0,

{ Lo ®)
<w<u.

If this set is non-void, then it will be possible to find in it
the vector of weights w at minimum distance ¥4 (w) to the
set of initial weights d. By expressing the equality as two
inequalities, the system (8) can be seen as a set of affine
inequalities in the unknown w, and therefore, its feasibility
could be checked using direct methods like system reduction
by repeatedly using Fourier—-Motzkin elimination (Dantzig
and Eaves 1973). An alternative algorithm for assessing the
existence of a solution to the range-restricted calibration
problem was developed in Théberge (2000). However, the

existence of a solution can also be addressed by comput-
ing the minimum change needed in BC or RR for feasibility
(following sections): if no change is needed, then the original
problem is feasible; otherwise, the minimum needed change
has already been computed.

3.3 Feasibility guarantee allowing minimum error in BC

The minimum total absolute error (TAE) in BC needed for
their compatibility with the given RR is

TAE* = miny || X'W — tx||
st.l<w<u, ©
being ||v||; the £1-norm of a p-dimensional vector v, defined
by |Ivll; = Z{;l |vi|. The total absolute error has a very
easy physical interpretation given that its units are the same as
those of the population totals ty. The minimisation of the TAE
error can be written as the minimisation of ||g||; =1 & =
€1+ - -+¢&,, foranonnegative vector & such that IX'w—ty| <
& (componentwise). By decomposing the absolute value, we
obtain two vector inequalities,(’ and therefore:

TAE* =miny ; 1' &
st.X'wW—8<ty, - Xw—2 < —tg, (10
l<w<u,&>0.

Given that both the objective and all constraint functions are
affine in the unknowns (w, &), we have shown that finding
the optimal TAE is a linear programming problem (Boyd
and Vandenberghe 2004). This class of convex optimisation
problems may be solved quickly and with global optimality
convergence guaranteed by exploiting duality relations and
optimality theorems (Boyd and Vandenberghe 2004). If the
solution is TAE™* = 0, it means that the calibration prob-
lem (1) is feasible; nonzero minimum TAE values require
the modification of the original problem as proposed in
Sect. 4.

3.4 Feasibility search by allowing minimum change in
RR and user-specified error in BC

Assume now that we do not want to have a TAE error in
BC greater than a scalar value ¢ (ideally equal to 0), but that
we allow a small change in RR provided by two nonnega-
tive vectors A, u, while keeping the weights inside a limiting
range: L < w < U. The smallest possible fotal absolute
change (TAC) in RR that guarantees feasibility with TAE
error below ¢ and final weights inside the maximum limiting
range, if it exists, can be computed as

© Forany x, y real numbers, |x| < yisequivalenttox < yand —x <y
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TAC* =miny p,w A1+ 1kl

st 1 X'w—tgll <€, an
L<l-A<w<u+p=<U,
A>0, u>0.

The associated linear programming problem reads:

TAC*=miny , w3z 1'A+1p
st.X'w—e<ty, Xw—e<—-t,,1e<e,
~-W—A<-l,w—pu<u,
0<A<1-L,0<pu<U-u,e>0.
(12)

This problem has the trivial solution 7T AC* = 0 for values
¢ above or equal to TAE*, given that TAE* is the mini-
mum error needed without modifying the RR. It may happen
that the problem has no solution for a given ¢ smaller than
T AE*, for instance for ¢ = 0 with non-consistent BC. More
precisely, the problem (12) will be feasible only for val-
ues of ¢ above or equal to TAE™*, where TAE** is the
minimum error needed modifying the RR with the limit
bounds L < w < U. Errors smaller than TAE** cannot
be obtained; the solution of (12) with ¢ =TAE** will have
TAC*< 1/ (1 — L) + 1’ (U — u), the later being the biggest
possible change in RR. Values of ¢ between TAE** and TAE*
will have a solution TAC* > 0, so the original calibration
problem (1) will need to be modified to be feasible, as pro-
posed in Sect. 4.

3.5 Alternative possibilities to model feasibility

The global optimality and simplicity of the previous approach
are not affected if constant factors are introduced. For exam-
ple, different relative weights » may be assigned to different
BC, by just replacing in (10) and (12) the expression 1’ with
r’z. In particular, in the case that the benchmark values are
provided from administrative totals of cross-tabulated vari-
ables, it is possible to normalise the TAE by dividing each
benchmark constraint by the relevant total of the correspond-
ing administrative table, so that the global measure of error is
a sum of comparable errors. Similarly, it is possible to divide
the benchmark totals ty by the relevant benchmark table totals
v so that the calibration weights represent proportions, by just
replacing ty with diag(v)’] tx.

Different precision levels on BC can be also achieved, e.g.
having some “exact” BC as in Wagner (2013) or some BC
with a smaller penalisation to errors as in Rao and Singh
(1997), by setting in (10) and (12) the corresponding com-
ponents of & to the desired precision values. This option will
be used in the experimental validation of the paper, where
the exact BC will correspond to a broad cross-tabulation
and a finer cross-tabulation will be used as inexact BC. If
wanting to add a “Gelman” bound xgp to control for the
ratio of the largest to the smallest calibrated weight, two
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scalar variables « > 0, B8 > 0 and the linear constraints
{al <w < B1, —kgo + B < 0} need to be added to the
optimisation programs (Wagner 2013). The modified prob-
lems remain linear given that these constraints are linear. The
problem in Sect. 3.4 can usually be simplified: if the lower
bound I has to be 0 (positivity of weights), then only the upper
bound can be varied, which can be done by only estimating
p while setting A to zero; or if the changes can be the same
for all RR, then only one parameter needs to be used for each
of the increment vectors A and p.

The ideal choice of a penalisation function should be based
on distributional assumptions for errors in BC and desired
changes in RR,” depending on the problem and available
computational power. The proposed £;-norm allows a linear
programming implementation and is a robust penalisation
that in practice produces many very small residuals, allow-
ing to identify many BC that can be satisfied exactly e.g. by
looking at the components of & in (10). A simpler approach
can use the £,,-norm to penalise errors (the maximum com-
ponent in a vector being penalised), which is equivalent to
considering as single-valued the unknown vectors & in (10)
and A, p in (12).

Using a ¢>-norm or a weighted least squares penalisa-
tion converts the feasibility programs into quadratic and
quadratically constrained quadratic, which are solvable for
less variables and are more time-consuming than linear pro-
grams (Boyd and Vandenberghe 2004). In fact, Théberge
proposed using a quadratic norm to allow minimum errors in
BC for GREG without RR in Théberge (1999) (a closed-form
solution exists). In Théberge (2000), he further formulated
the problem with RR (Section 2) but adopted a not always-
convergent penalisation-like formulation for its resolution
(Section 4).

4 Optimally modelling and solving
range-restricted survey calibration

We have seen in Sect. 3 that the feasibility of the range-
restricted calibration problem (1) has linear complexity,
independently of the chosen distance function %3(w), and
it can be achieved with equal complexity level by allow-
ing optimally controlled errors in BC and/or changes in RR.
In this section, we propose Algorithm 1 to solve the range-
restricted survey calibration problem (1) for any given RR
bounds by allowing the minimum needed modification(s) of
the BC tolerance. A more complex Algorithm 2 is also pro-

7" Assuming independent identically distributed random errors in a lin-
ear system, the ¢-norm penalisation gives the MLE for a Laplacian
distribution of errors, whereas the £,- and £~,-norm penalisations give
the MLE for Gaussian and uniform error distributions, respectively
(Boyd and Vandenberghe 2004).
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posed, automatically performing optimal modification(s) of
RR, only if needed and controlling for the error in BC via a
user-defined parameter . We also discuss the choice of a dis-
tance function ¢g(w) in the proposed algorithms and focus
on the particular Chi-square distance for demonstration.

Algorithm 1 Optimal calibration with minimum error in BC

Require: {X, tx, d} data, {I, u} RR on weights, %3 (w) distance function
1: Compute TAE* min total absolute error achievable in BC, using (10)

2: if TAE* is 0 (Original problem feasible) then
3: return w = solution of (1), i.e.
W = arg miny, 9g(w)
s.t. X'w—ty = 0 (BO)
I<w=<u (RR)

4: else
5: return w = sol. of (1) replacing BC with || X'w — ty||; <TAE*
6: end if

Algorithm 1 solves the range-restricted calibration prob-
lem (1) in two steps: first, the TAE™ minimum value is
computed; then, the calibration problem allowing TAE error
in BC equal to TAE* is solved optimally. The convergence
of this two-step approach is guaranteed by construction while
respecting the asymptotic design consistency. The advantage
with respect to existing penalisation methods is that feasibil-
ity is optimally guaranteed in advance by solving a simple
linear program, without need to test the convergence of any
calibration problem.

In practice, while it is usually plausible to agree in some
limiting bounds L, U for the value of weights, the choice
of the RR values I, u is somewhat arbitrary. For instance, if
the units are persons or households weights must be positive
(L = 0), but it could also be desirable to impose a minimum
weightl > 0 for each unit, its actual value being flexible, ide-
ally allowing both for convergence and for a low error in BC
if using Algorithm 1. This is the case both for RR expressed
in absolute terms or as relative changes in initial weights, as
justified in Sect. 2.1. Rather than manually exploring a range
of possible RR values (best possible existing practice), Algo-
rithm 2 optimally modifies RR given user-specified values ¢
for the maximum allowed error in BC and L, U as bounds
for the final RR.

For sufficiently high values of ¢, the tolerance to error in
BC (infinity in the extreme case), Algorithm 2 will preserve
the initial RR and return the same solution as Algorithm 1. In
other words, Algorithm 1 can be obtained from Algorithm 2
by setting ¢ to infinity. For values of ¢ smaller than T AE*,
a further step is performed trying to achieve error in BC
below ¢ by modifying the RR with a minimum total absolute
change T AC*, always keeping the weights inside the limiting
bounds L, U. In case the modification of RR cannot lead to a
feasible problem, Algorithm 2 proposes to use ¢ = T AE™,

the minimum possible error in BC for the given hard bounds
L, UonRR.

Algorithm 2 Optimal calibration via optimal control for

errors in BC and changes in RR

Require: {X, tg, d} data, {1, u, L, U} RR and bounds, ¥4 (w) distance
function, &€ max allowed error in BC

1: Compute TAE* min total absolute error achievable in BC, using (10)

2: if TAE* is O (Original problem feasible) then
3: return w = solution of (1), i.e.
W = arg miny, 94(w)
s.t. X'w—ty =0 (BO)

I<w<u (RR)
4: else
5: if TAE* < ¢ then
6: return w = sol. of (1) replacing BC with |X'w —
|l <TAE*
7: else
8: Compute TAE** min total absolute error achievable in BC,
using (10) replacing RR withL <w < U
9: if ¢ <TAE** then
10: warning the lowest valid value for ¢ is TAE**
go to line 12 using ¢ =TAE**
11: else
12: Search TAC* min total absolute change needed in
RR to have a TAE error in BC below ¢, using (12)
13: return w = sol. of (1) replacing BC with || X'w—

tlli < & and RR with |IA[l} + [lnlli < TAC*,
L<l-A=<=w<u+pu=<U,A>0,p>0

14: end if

15: end if

16: end if

In both Algorithm 1 and Algorithm 2, the original range-
restricted calibration problem (1) is solved if it is feasible
(line 3), and otherwise, it is replaced by a problem of the
form

arg miny, , %g(w)

w
s.t. A <a,
<y>_ (13)
b < W <c,
y

for a matrix A, vectors a, b, ¢, and auxiliary variables
y defined by the algorithm. More specifically, the opti-
misation domain from (1) is modified in Algorithm 2 on
line 6 (line 5 in Algorithm 1) by replacing the BC with
IX'W — tx||; < TAE*, and on line 10 in Algorithm 2 addi-
tional constraints of similar nature are added. The resulting
domains can be expressed using affine inequalities in the
form (13) with the help of auxiliary variables, as done in
Sect. 3. Therefore, the complexity of the resulting problems
will be mainly associated with that of the distance function
Ga(w).

Under the assumptions of Sect. 2.1 for the distance func-
tion ¥g(w), the problems (13) are convex with smooth
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objective and therefore can be solved with global optimal-
ity convergence guarantees by exploiting duality relations
and optimality theorems like the necessity and sufficiency of
Karush—Kuhn—Tucker conditions (Boyd and Vandenberghe
2004). The resolution can be done with fast convergence
in particular cases; a closely related example is the semis-
mooth Newton method proposed in Wagner (2013) for the
Chi-square distance (2) and the raking distance (4). Note
that despite its possible efficient minimisation, a £; distance
function is not suitable since it would allow a few weights
being very distant from initial ones, which could undesirably
cause a high bias in calibration estimators. Rather than devel-
oping resolution methods for different distances, this paper
has focussed on developing a flexible always-convergent
optimal calibration framework, which is exemplified by
adapting the range-restricted generalised regression (GREG)
estimator.

The range-restricted calibration problem (1) for the Chi-
square distance (2) was identified as a quadratic program-
ming problem in (Isaki et al. 2000), and its fast opti-
mal resolution exploiting duality principles was addressed
recently (Wagner 2013); however, its feasibility has not
yet been guaranteed by any method. If using Algorithm 2
for this purpose, the resulting modified problems (13) are
inequality-constrained quadratic convex optimisation pro-
gramming problems. These can be solved in polynomial
time, and in practice relatively quickly, while assessing
the global optimality of the solution (Boyd and Van-
denberghe 2004). Implementation details and source code
for the simpler version in Algorithm 1 are provided in
Appendix 1.

5 Small domain estimation and microsimulation

When wanting to produce estimators for a small domain of
the population, it is no longer efficient to use calibration
weights that were computed using the whole survey and aux-
iliary totals for the whole population. Survey calibration at
the domain level and/or knowledge on the domain size, or
combining information from multiple surveys at the domain
level, provides approximately unbiased design-consistent
estimators with substantial variance reduction with respect to
other estimators (Merkouris 2010). An intermediate option
is adopted in small area estimation (by, for example, but not
limited to, spatial microsimulation) when (sufficient) survey
data are not available for a small area, consisting in using out-
of-area survey data in combination with known area totals
(Tanton 2014).

More in general, microsimulation may combine surveys
and benchmarks corresponding to different periods of time
or to non-exactly matching domains or areas (Ballas and
Clarke 2009; Tanton 2014) or may calibrate survey-based
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but otherwise simulated data (Pudney and Sutherland 1994;
Wittenberg et al. 2011). From a modelling perspective,
reweighing survey data to match small area counts requires
allowing for errors in BC. From a computing perspective,
although computing power has exponentially improved, the
problems of small area level estimation/production of small
area level data are still computationally intensive. Our global
optimisation approach automatically models and controls for
errors in BC, and offers a computationally efficient method
of producing small area level data by solving linear and
quadratic optimisation programs.

6 Evaluation

The proposed methods are demonstrated and validated using
real datasets: the Health Survey for England 2012 (HSE)
and the 2011 Census in England and Wales (CEW). The
HSE is representative of the English population living in pri-
vate households (Craig and Mindell 2012), and it is drawn in
2011 using a multi-stage stratified sampling approach. Avail-
able survey weights adjust for selection, non-response, and
population age—gender and strategic health authority region
profiles. CEW tables DC1104EW and DC1602EWLA pro-
vide population total counts for non-institutional residents
in England. The initial survey sample for the experiments
consisted of 10,308 individuals from HSE 2012.8

In all experiments,” census-based population totals for 10
age groups cross-tabulated with gender and population totals
for the 9 regions in England (20 + 9 counts for a population
of size N =52,059,931) were imposed as exact constraints,
and the positivity of calibration weights was imposed as part
of range restrictions (RR) on weights. An additional BC was
imposed with 378 population totals for 21 age groups cross-
tabulated with gender and region.'? This fine cross-tabulation
was not available at the time of release of the HSE data.
The experiments did not use any continuous benchmarks for
the sake of simplicity, but benchmarks on continuous data,
e.g. average age per region, could be incorporated.!! Pop-
ulation totals for five age groups by four economic activity
groups (in-employment, ILO unemployed, retired, and other
inactive) were used only for validation, but not as BC. All
used BC and validation tables are provided as supplementary
material.

8 25 adults not having a valid economic activity were discarded.

O Ages 04, 5-9, 10-15, 16-24, 25-34, 3544, 45-54, 55-64, 65-74,
75+.

10° Ages 04, 5-7, 8-9, 10-14, 15, 16-17, 18-19, 20-24, 25-29, 30—
34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 7579,
80-84, 85+.

11 Ages 16-24, 25-34, 35-49, 50-64, 65+.
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Independently of any RR choice (or the initial sample
weights), the fine age—gender—region cross-tabulation with
378 group totals cannot be satisfied exactly by calibration
weights, given that the sample has a zero count for one
group.'? Further motivated by the presence of some small
counts, traditional calibration would only impose a broad
cross-tabulation on the survey weights like the 29 age—gender
and region counts that we will impose exactly in all experi-
ments. However, the fine age—gender—region counts provide a
much richer picture of the joint distribution of those variables,
and the original weights are distant from correctly represent-
ing that picture: the total absolute error (TAE) of the HSE
2012 weights for that BC is of 7,858,083 units (a 15.14% of
the total population size). Given that the cross-tabulation is
categorical, the total absolute error is counting the number of
individuals wrongly assigned to each cross-tabulation group.
Since we are imposing exact broad age—gender population
counts, the estimated population total remains fixed. Thus
half of the TAE is the number of individuals being misclas-
sified, which for the HSE estimate is 7.5% of the English
population.

Instead of ignoring the fine age—gender—region cross-
tabulation, it can be used to calibrate the sample weights
if we allow some error in BC (which arises as a natural need
for the given data), consequently resulting in better estimates
on age—gender—region-related variables. In order to allow
a direct comparison of the gain in adding this strategy to
the traditional approach, we imposed as exact the already
described broad age—gender and region cross-tabulations.
We performed three validation experiments returning pos-
itive weights (w > 0) at minimum Chi-square distance (2)
to the initial sample weights:

Ex1. Minimum TAE error in BC;

Ex2. Minimum TAEinBCand0.5-1 <w < 3.5-1asRR;

Ex3. Minimum TAC change in Ex2 RR so that TAE <
0.1%.

The corresponding resolution using optimisation programs
is summarised in Algorithm 1 for Ex1 and Ex2, and in Algo-
rithm 2 for Ex3. Implementation details and source code for
Algorithm 1 are provided in Appendix 1.

For all experiments and for the original HSE data, we show
in Table 1 the modified Chi-squared distance (2) between
the HSE and each considered set of weights and provide
descriptive statistics of the latter. Jackknife standard devi-
ation (SD) estimates for the BC/validation count estimates
were obtained using 94 groups of primary sampling units
(PSUs), built up by deleting six PSUs at each time as
described in Kott 1998. The error measures used for esti-

12 The HSE 2012 sample does not contain females in the North East
aged 15.

Table 1 Chi-square distance and distribution statistics for the HSE and
obtained calibration weights

Chi-sq Min QI Median Q3 Max Max/Min
HSE 0.0 036 0.77 091 1.14  6.67 18.32
Ex1 570.3 0.31  0.73  0.90 1.14 726 2331

Ex2 5246 050 0.73 0.90 1.14  3.50 7.00
Ex3  549.1 036 0.73 0.90 1.14 5.04 14.00

Table 2 Age—gender—region cross-tabulation estimation (378 counts):
average standard deviation (SD) over all estimates, and BC fitting errors

SD TAE TAE (%) TRE (%) RMSE
HSE 205,835.4 7,858,083.0 15.09 6829.8  27,415.5
Exl 3091.3 29,678.0  0.06 121.0 1079.4
Ex2 11,2983  339,509.2  0.65 604.1 3227.8
Ex3 3525.2 52,059.9  0.10 192.3 1177.1

Table3 Age by economic activity estimation (20 counts): average stan-
dard deviation (SD) over all estimates, and validation errors

SD TAE TAE (%) TRE (%) RMSE
HSE 1,027,677.0 2,059,120.9 4.89 633.1 165,721.7
Ex]  861,528.8 1,763,839.5 4.19 494.1 130,193.5
Ex2  869,717.6 1,786,060.9 4.24 4973 130,407.6
Ex3  856,300.1 1,749,775.5 4.16 492.8 129,310.1

Experiments Ex1-Ex3 only control for errors in BC, but do not use the
validation table for calibrating the survey weights

mated counts were: TAE the total absolute error, the TAE as
a percentage of the population total, TRE the total relative
error (sum of relative errors over all group counts, as a %),
and RMSE the root mean square error. Table 2 shows the
average SD and fitting errors for the fine age—gender—region
BC cross-tabulation estimates and Table 3 the average SD
and errors for the age by economic activity validation count
estimates.

The original HSE weights (HSE, first row in all tables) do
not present very extreme values, the highest ratio between
weights being 18.32 (Table 1). As already explained, the HSE
weights perform badly in estimating the fine age—gender—
region distribution in England: 15% of total absolute error
and 6,829.8% of total relative error, with an average SD equal
to 0.95% of the total population (Table 2). The broad age by
economic activity cross-tabulation is quite well estimated by
HSE with TAE error below 5% (Table 3). This is possibly
in part because the broad categorisation of age is similar to
the age categorisation which the HSE weights adjust for. See
Appendix 2 for further discussion.

The Ex1 calibration weights (Ex1, second row in all tables)
are at average Chi-square distance of 0.5 to the HSE weights
and have slightly more extreme values, the highest ratio
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between weights being 23.31 (Table 1). The resulting Ex1
age—gender-region BC count estimates have much smaller
SD than the HSE estimates, the proposed method being there-
fore more efficient, and have by construction a very small
bias: the minimum possible TAE error in BC (Table 2). All
considered SD and error indicators indicate consistently an
improvement in performance when applying the Ex1 cali-
bration weights to estimate the non-fitted validation totals
(Table 3).

Experiment Ex2 (third row in all tables) provides an exam-
ple of a practice commonly followed by practitioners and
found in the literature, see e.g. Singh and Mohl (1996), Stukel
et al. (1996), consisting in the arbitrary selection of range
restriction values for the calibration weights and a posteri-
ori observation of errors (in case of convergence). The Ex2
selected RR values resultin a (user-defined) low dispersion in
Ex2 weights (highest ratio between weights being 7), which
computation required a minimum TAE error in BC of 0.65%
for convergence. As a result the average deviances and all
the fitting errors and validation errors are higher for Ex2
than those for the Ex1 weights (Tables 2 and 3). So far we
have seen that Ex1 provided an optimal fit of the BC but
at the expense of slightly more extreme weights, and also
that an arbitrary choice of RR on weights in Ex2 achieved
more centred weights at expense of increasing the SD and the
(minimum) errors in both the BC and validation estimates.

It would certainly be time-consuming to perform an explo-
ration of possible values for RR in order to obtain satisfactory
weights with non-extreme values and low SD and low (mini-
mum) fitting errors for the BC. Instead, Ex3 (fourth row in all
tables) searches for the minimum change in provided initial
values for RR at expense of allowing a (user-specified) 0.1%
TAE error in fitting the fine age—gender—region BC counts.
Compared with Ex2, both fitting and validation errors were
smaller for Ex3. Compared with Ex1, Ex3 resulted in a set of
weights with less extreme values, the highest ratio between
weights being 14.00, and an small increase in (controlled)
bias and SD in fitting the BC. Nonetheless, Ex3 provided
(slightly) better estimates of the validation counts, pointing
at a possible dangerous over-fitting effect if using the Ex1
approach: fitting too closely a fine cross-tabulation (having
small counts) may well increase the bias and variance in
estimation for non-fitted variables. However, in the case con-
sidered here, this effect was tiny compared to the efficiency
gain and bias reduction with respect to estimates obtained
using the initial HSE weights.

Overall, the three experiments Ex1-Ex3 used Algorithm 2
to minimally modify the HSE weights to adjust them to the
fine age—gender—region BC cross-tabulation totals, overcom-
ing the fact that the survey sample had small and even zero
counts for that cross-tabulation. This was done by allowing
for a minimum error in BC, which can be seen as equivalent
to clustering some benchmark groups. Thus the experiments
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optimally improved a practice often followed arbitrarily to
avoid non-convergence. In all experiments, not only was
the fitted BC age—gender—region distribution much better
approximated than with the original HSE weights, but also
efficiency and performance improved when estimating age
by economic activity validation total counts.

7 Summary and conclusion

This paper has presented a two-step global optimisation (GO)
approach to design-based survey calibration with guaranteed
convergence, allowing for range restrictions on weights while
controlling for those range restrictions and the (minimum)
error in benchmark constraints.

First, GO assesses the feasibility of the range-restricted
calibration problem, with infeasible problems being trans-
formed into feasible ones by allowing minimal errors in
the benchmark constraints (BC) and/or minimal changes in
the weights’ range restrictions (RR). For this purpose, GO
identifies the minimum achievable difference between the
calibrated (reweighted) survey and the benchmark totals, tak-
ing into account any RR specified for the solution weights.
It also identifies the minimum needed change in those RR,
allowing exploration of an alternative solution, more respect-
ful of the original problem, having zero or below-minimum
error in BC (in general, the existence of solution is only
guaranteed if allowing the minimum error in BC). All the
problems involved in this first step assessing/guaranteeing
feasibility are modelled using the robust £i-norm penali-
sation ({0~ and £>-norm alternatives, as well as weighted
versions, were discussed in the text) and as a result can be
solved efficiently using sparse linear programming. Second,
the GO approach applies global optimisation techniques for
minimising the change in weights subject to allowing only the
minimum error in BC or change in RR required for feasibility
(already computed in the previous step). The approach has
been theoretically exemplified with the Chi-square distance
being used to measure the change in weights with respect to
initial (design) ones. Other distances have been considered,
for which modern optimisation techniques will be useful to
solve the resulting calibration problems.

The first step to assess/achieve feasibility represents an
efficient modelling alternative to the current approaches in
which convergence is known only after running a calibration
method (time costly) and the reasons for non-convergence are
not always clear. Moreover, existing approaches either make
use of heuristics after encountering non-convergence, which
do not offer enough control on the solution, or require user-
defined parameters to model infeasibility, which in practice
may not avoid non-convergence.

For survey calibration problems where the BC can be met,
GO will provide a solution equivalent to that produced by
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calibration methods that allow RR on weights (assuming
the chosen number of iterations in iterative methods poses
no limit to convergence). GO-based estimators preserve the
good properties of survey calibration estimators, design con-
sistency, and asymptotic design unbiasedness, while adding
guaranteed convergence and global optimality. In a real data
experiment, we showed a double-win situation (gain in both
bias and variance), achieved through two-level calibration:
broad group cross-tabulations were imposed exactly, whereas
a small group cross-tabulation (leading to zero counts in
the survey) was managed optimally using the proposed
approach.
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Appendix 1: Implementation details and R source
code for Algorithm 1

We implemented our algorithms using the optimisation soft-
ware Gurobi Optimization, Inc (2016). We called Gurobi
functions from R Core Team (2016) using the R package
“gurobi” provided by the software. The following additional
R packages were used:

— Matrix: Sparse and Dense Matrix Classes and Methods!3;
— slam: Sparse Lightweight Arrays and Matrices'4.

R and the Matrix and slam packages were freely available
under the terms of the GNU General Public Licence as pub-
lished by the Free Software Foundation (version 2 or later),
while access to Gurobi was granted under the terms of a free
named-user academic licence. Figure 1 shows the R code
for Algorithm 1 for demonstration purposes. Detail on the
optimisation programs follows.

Assume given X survey data, d initial weights, ty array of
BC, N the population size, and 1, u RR on weights.

13 https://cran.r-project.org/web/packages/Matrix/index.html
14 https://cran.r-project.org/web/packages/slam/index.html

Minimum total absolute error in BC. The minimum total
absolute error achievable in BC is computed by solving (10)
in the compact linear form (14). Note that the known pop-
ulation size is added to BC as additional linear constraint:
1'w=N.

. w
TAE* =miny, ; (0/,1) <5)

s.t. Ay <W> op; rhs; , (14)

3
lbg(vj)gub,
&

X -Id
where Aj = (—X/ —Id), opj is an array of operators with
1 0

tx
2p times “<” followed by a “=,"rhs; = (—tx) ,Ib = <(l)> s
N

andub=< v )
oo -1

Optimal calibration allowing for minimum error in BC. The
calibration problem is solved allowing for the minimum
TAE error achievable in BC (determined in the previous
step). The resulting quadratic optimisation problem, impos-
ing the known population size as additional constraint, is
summarised in (15).

wCal _ arg miny, (w, E) Q (g) + (0/’ 0’) (g)

s.t. Ay (VEV) opa rhs; (15)

lb§<g)§ub,

where Q is a diagonal matrix with the inverse of d followed

X -Id
by 0 in the diagonal, Ay = _0)/( I/Id , Op2 is an array of
1 0
operators with 2p + 1 times “<” followed by a “=," rhs; =
tx
T;tg* , and Ib, ub are defined in (14).
N

Appendix 2: Further validation

A further validation was performed using the 20 age by eco-
nomic activity groups considered for validation in the main
text, additionally cross-tabulated by region (a total of 180
counts to be estimated). Table 4 shows the validation results,
which overall are consistent with Table 3. The gain in per-
formance of our approach (Ex1-Ex3) with respect to HSE is
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GOalgorithml <— function( X, # nxp matrix of survey data

tX, # p—array of BC totals
N, # total population size
d, # n—array of initial weights
b, # n—array of lower bounds (RR)
ub # n—array of upper bounds (RR)
)
require ( Matrix ) #package used to handle sparse matrices
require( slam ) #package enhancing Matrix
require( gurobi ) #package to access the Gurobi optimisation software
n = nrow( X );
p = ncol( X );
#omitting controls: length(d)==n, sum(d)==N, sum(d!=0)==n, length(lb)==n, length(ub)==n,

## STEPI: MINIMUM TAE

#1.1. PROBLEM FORMULATION

objl = ¢( rep(0.0,n), rep(1.0,p) ) # linear objective for TAE minimisation

Al = Matrix (0, nrow =2x%p+1, ncol=p+n, sparse=TRUE)

Al[ l:p ,1:n] = t(X); Al[ l:p ,(n+1):(n+p)] = -Diagonal (x=1,n=p) ;
Al[(p+1):(2%p),1:n] = —t(X); Al[(p+1):(2%p),(n+1):(n+p)] = -Diagonal (x=1,n=p) ;
Al[ 2xp+1 ,1:n] = 1;

opl = ¢( rep(’<=",2%p), =" )

rhsl = c¢( tX, —tX, N )

LBl = ¢( 1b, rep(0.p) );

UBl = ¢( ub, rep(N#p,p) );

## 1.2. SOLVING STEPI USING GUROBI

model <— list( obj=objl, A=Al, rhs=rhsl, sense=opl, 1b=LBl, ub=UBI, vtype="C’ )
params <— list( OutputFlag=0 )
result <— gurobi (model ,params)
statusl = result$ status ;
if ( statusl == "INFEASIBLE" ){
print ( "ERROR when computing the minimum TAE: check your input!" )

} # ommiting further control on the status (globally optimal TAE found?)

sum(lb<ub)==n

TAEmin = result$objval;

errl = result$x[n+(1:p)]; #errors in BC are useful if TAEmin is too high to analyse which BC fail
## STEP2: OPTIMAL CALIBRATION ALLOWING FOR TAEmin ERROR IN BC

#2.1. PROBLEM FORMULATION

A2 = Matrix (0, nrow=2x%p+2, ncol=p+n, sparse=TRUE)

A2[ 1:p ,1:n 1 = t(X); A2[ 1:p ,(n+1):(n+p)] = -Diagonal (x=1,n=p) ;
A2[(p+1):(2xp),1:n ] = —t(X); A2[(p+1):(2%p),(n+1):(n+p)] = -Diagonal (x=1,n=p) ;
A2[ 2xp+1 ,1:(n+p)] = objl;

A2[ 2xp+2 ,l:n 1 = 1;

op2 = c( rep(’<=",2xp+1), =" )

rhs2 = ¢( tX, —tX, TAEmin, N )

Q2 = diag( c(1/d, rep(0.0,p)) ) #matrix of the quadratic objective function

##2.2. SOLVING STEP 2 USING GUROBI

model <— list( Q=Q2, obj=0, A=A2, rhs=rhs2, sense=op2, 1b=LBl, ub=UBIl, vtype='C’ )

result <— gurobi (model , params)

status2 = result$status ; #omitting (redundant) control on resolution status
err2 = result$x[n+(l:p)]l; #omitting analysis of errors in BC

w = result$x[1:n] #calibration weights (main output)

return( w )

}

Fig. 1 R Source code for Agorithm 1
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Table 4 Age by economic activity by region estimation (180 counts):
average standard deviation (SD) over all estimates, and validation errors

SD TAE TAE (%) TRE (%) RMSE
HSE 279,2952 5,073,091.0 12.06 8936.7 44,071.9
Exl 178,523.2  3,270,789.0 .77 7883.2 26,536.4
Ex2  179,533.4  3,285,067.0 7.81 7884.3 26,876.9
Ex3  178,101.0 3,262,183.0 7.75 7892.7 26,481.1

Experiments Ex1-Ex3 only control for errors in BC, but do not use the
validation table for calibrating the survey weights

more significant that in that table, possibly in part because age
totals disaggregated by region are not used to build the HSE
weights, and fundamentally because our approach allowed to
optimally incorporate very detailed relevant auxiliary infor-
mation to the calibration weights, which is exploited by the
resulting estimates.
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