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ABSTRACT 

We are all too familiar with the events that follow a bee sting – heat, redness, 

swelling and pain. These are Celsus’ four cardinal signs of inflammation that are 

driven by very well defined signals and hormones; in fact targeting the factors that 

drive this onset phase is the basis upon which most current anti-inflammatory 

therapies were developed. We are also very well aware that within a few hours these 

cardinal signs normally disappear. In other words, inflammation resolves. When it 

does not, inflammation persists resulting in damaging chronic conditions. While 

inflammatory onset is actively driven so also is its resolution – years of research has 

identified novel internal counter-regulatory signals that work together to switch off 

inflammation. Among these signals, lipids are potent signaling molecules that 

regulate an array of immune responses including vascular hyper reactivity and pain 

as well as leukocyte trafficking and clearance, so-called resolution. Here, we collate 

bioactive lipid research to date and summarise the major pathways involved in their 

biosynthesis and their role in inflammation as well as resolution. 
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ABBREVIATIONS 

Arachidonic acid (AA)  

Cyclooxygenase (COX)  

Thromboxane A synthase (TXAS)  

Prostaglandin D synthase (PGDS) 

Prostaglandin E synthase (PGES-1, -2 and -3) 

Prostaglandin F synthase (PGFS)  

Resolvins (Rvs)  

Protectins (PDs)  

IκB kinase (IKK),  

Cytochrome P450 (CYP450)  

Soluble (sEH) and microsomal (mEH) epoxide hydrolase’s 

Dihydroxy-eicosatrienoic acids (DHETs).  

Intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 

(VCAM-1) 

Cysteinyl leukotriene receptor 1 and 2 (cys-LT1 and cys-LT2). 

Lipoxins (LXs)  

15 epimeric-LX (15-epi-LXs) or aspirin-trigged LXs (ATL) 

18R-hydroxyeicosapentanoic acid (18R-HEPE)  

Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) 

Omega-3 polyunsaturated fatty acids (ω3-PUFA),  

Resolvin D1 (RvD1) 

Protectin D1 (PD1) 

Neuroprotectin D1 (NPD1).  

14S-hydroperoxydocosahexaenoic acid (14S-HPDHA; maresin, MaR1) 

Maresins (MaR)  
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naproxen 

Prednisone 

Infliximab 

Anakinra  

Cyclooxygenase  

arachidonic acid  

PGG2  

PGH2  

PGD2 

PGE2 

PGF2α 

PGI2  

TXA2 

prostanoid receptors  

PGJ2, Δ12,14-PGJ2  

15-deoxy-Δ12,14-PGJ2 [ 

PPAR-γ  

Cytochrome P450s  

CYP2J2  

linoleic acid  
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eicosapentaenoic acid  

lipoxygenase  

5,6--EET 

20-hydroxyeicosatetraenoic  

TRP 

GRP40 

LTC4 

LTD4 

LTE4 

LTB4 

LT receptors  

lipoxins 

LXB4 

ALX 

resolvins 

ChemR23 
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INFLAMMATION AND ITS RESOLUTION 

Inflammation is a protective response against infection and/or injury. However, when 

it becomes dysregulated as a consequence of genetic abnormalities, the ageing 

process or environmental factors, our immune system has the capacity to cause 

extensive damage. Arthritis, asthma, chronic obstructive pulmonary disease, 

Alzheimer’s disease, atherosclerosis and even cancer, while aetiologically disparate, 

are diseases unified by a dysregulated immune component. The current strategy of 

treating such diseases is based, largely, upon inhibiting the factors that drive acute 

inflammation such as nonsteroidal anti-inflammatory drugs (NSAIDS - naproxen, 

diclofenac, etc), steroids (Prednisone) and ‘biologic’ drugs such as Infliximab (anti-

TNF) and Anakinra (anti-IL-1). Although these medicines ameliorate disease 

symptoms they do not bring about a ‘cure’ and are ineffective in a significant subset 

of patients. Furthermore, side effects can hamper endogenous homeostatic systems, 

predisposing to infection. Thus, there is a need to develop more efficient and 

effective therapeutics; with one approach being to harness the bodies own healing 

process for therapeutic gain.  

 

Consequently, attention has turned to the other end of the inflammatory spectrum, 

resolution, in order to understand the endogenous processes that switch off 

inflammation. Our objective has been to identify novel internal counter-regulatory 

systems that terminate inflammation in order to provide new targets that can be 

harnessed pharmacologically to push on-going inflammation down a pro-resolution 

pathway. Consequently, resolution is now been studied in great detail with clear 

evidence suggesting that resolution is an active process with quantifiable indices and 
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specific requirements. Along these lines, lipid mediators have emerged as internal 

regulatory signals that activate many aspect of the inflammation/resolution cascade 

including terminating leukocyte trafficking into tissue once the inflammatory signal 

has been removed, scavenging pro-inflammatory signals as well as clearing dead 

cells from the resolves site.  Hence, in this review the role of lipids in the resolution 

cascade will be discussed.  

 

CYCLOOXYGENASE AND PROSTANOIDS 

Cyclooxygenase (COX) converts arachidonic acid (AA) to form PGG2 (Pagels, 

Sachs, Marnett, Dewitt, Day & Smith, 1983) with the peroxidase element of the 

enzyme further reducing PGG2 to PGH2 (Hamberg & Samuelsson, 1973), which 

serves as a precursor for all major prostanoid mediators. There are two principle 

isoforms involved in the conversion of AA to prostanoids, namely COX-1 and COX-2.  

Unlike COX-1, which is constitutively expressed in most cells and tissues and is 

broadly involved in house-keeping functions, COX-2 is induced in response to 

inflammatory (Dubois et al., 1998) being expressed at sites of infection and injury 

with the exception of parts of the brain and kidney (Harris, McKanna, Akai, 

Jacobson, Dubois & Breyer, 1994). Formation of prostanoids from PGH2 occurs 

through the actions of downstream synthases that are expressed in a tissue and cell 

type-selective fashion including prostaglandin D synthase (PGDS) (Shimizu, 

Yamamoto & Hayaishi, 1982) prostaglandin E synthase (PGES-1, -2 and -3) 

(Tanaka, Ward & Smith, 1987), prostaglandin F synthase (PGFS) (Hayashi, Fujii, 

Watanabe, Urade & Hayaishi, 1989), prostaglandin I synthase (PGIS), and 

thromboxane A synthase (TXAS) (Ullrich & Haurand, 1983), which form PGD2, PGE2, 
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PGF2α, PGI2 (also known as prostacyclin) and TXA2, respectively. The differential 

expression of these downstream enzymes within cells determines the profile and 

levels of prostanoid production generated under resting and inflammatory conditions. 

 

Presently there are nine known prostanoid receptors in mice and man. These include 

the PGD receptors DP1 and DP2, the PGE2 receptors, EP1, EP2, EP3 and EP4; the 

PGF receptor, FP; the PGI receptor, IP; and the TXA receptor, TP. In addition, there 

are splice variants of the EP3, FP and TP receptors differentiated only in their C-

terminal tails. All of these receptors belong to the G-protein coupled receptor 

(GPCR) superfamily of proteins, with the exception of DP2 (also known as CRTH2), 

which is a member of the chemoattractant receptor family (Hirai et al., 2001). The IP, 

DP1, EP2 and EP4 receptors signal through Gs resulting in an increased intracellular 

cAMP, whereas the EP3 receptor couples to Gi to reduce cAMP, while EP1, FP and 

TP receptors signal through Gq to induce calcium mobilization. 

 

The more common prostanoids, PGE2 and PGI2, both enhance vasodilation (Kaley, 

Hintze, Panzenbeck & Messina, 1985), oedema formation and vascular permeability 

particularly in the presence of histamine, bradykinin and 5-HT (Hata & Breyer, 2004). 

Mice that are genetically depleted for their respective receptors (IP, EP2 and EP3) 

show reduced pleural exudation following treatment with inflammogens including 

carrageenan and zymosan (Yuhki et al., 2004).  

 

Robust evidence from EP-deficient mice has shown that the febrile response to 

PGE2 arises from the actions of PGE2 on its EP3 receptor, which is present on 

sensory neurons in the periphery and brain (Dantzer, Konsman, Bluthe & Kelley, 
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2000). Equally, PGE2 is a potent pyretic agents known with elevated concentrations 

found in cerebrospinal fluid taken from patients with bacterial or viral infections 

(Saxena, Beg, Singhal & Ahmad, 1979). While none of the prostanoids cause pain 

directly, PGI2 and PGE2 reduce the threshold of nociceptor sensory neurons to 

stimulation when bound to IP, EP1, EP3 and EP4 receptors, respectively (Ahmadi, 

Lippross, Neuhuber & Zeilhofer, 2002).  

 

Prostanoids also play an important role in protecting against oxidative injury in 

cardiac tissue and in maintaining cardiovascular (CV) homeostasis. Indeed, their 

protective effect has been demonstrated in clinical studies, which found an increase 

risk of myocardial infarction (MI), stroke, systemic and pulmonary hypertension, 

thrombosis and sudden cardiac death following the use of COX-2 specific inhibitors 

(Garcia Rodriguez, Tacconelli & Patrignani, 2008). Furthermore, deleting specific 

prostanoid synthases and receptors result in an augmentation of 

ischemia/reperfusion injury (Xiao et al., 2001) as well as contributing to the decline in 

cardiac function following MI. CV health is regulated by vasodilatory PGI2 and pro-

thrombotic TXA2 (Bunting, Moncada & Vane, 1983), where PGI2 counterbalance the 

actions of TXA2 (Grosser, Fries & FitzGerald, 2006). Indeed, endothelial PGI2 along 

with NO prevent TXA2-induced platelet aggregation and thrombosis. TXA2 is derived 

from platelet COX-1 causing platelet aggregation and vascular smooth muscle 

contraction (Ellis et al., 1976). Clinical CV diseases including unstable angina, MI 

and stroke can arise from overproduction of TXA4. Importantly, the cardio-protective 

properties of aspirin can be attributed to the covalent inhibition of COX-1 (Rocca et 

al., 2002).         
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As well as being pro-inflammatory, many prostanoids upregulate intracellular cAMP 

triggering immuno-suppressive effects. For example, PGE2 and PGI2 reduce the 

ability of inflammatory leukocytes to phagocytose and kill microorganisms (Aronoff, 

Canetti & Peters-Golden, 2004), as well as inhibit the production of downstream pro-

inflammatory mediators (Aronoff et al., 2007) while, in contrast, triggering the 

synthesis of IL-10 and IL-6 (Harizi, Juzan, Pitard, Moreau & Gualde, 2002). Indeed, 

in a number of conditions associated with increased susceptibility to infection, 

including cancer (Starczewski, Voigtmann, Peskar & Peskar, 1984), aging (Hayek et 

al., 1997) and cystic fibrosis (Medjane, Raymond, Wu & Touqui, 2005) 

overexpression of PGE2 has been reported. Interestingly, during the very early 

phase of acute inflammation, PGE2 indirectly exerts pro-resolution effects by 

switching on the transcription of enzymes necessary for the generation of LXs (Levy, 

Clish, Schmidt, Gronert & Serhan, 2001), resolvins (Rvs) and protectins (PDs) 

(Hong, Gronert, Devchand, Moussignac & Serhan, 2003); these represent other 

classes of lipids mediators with pro-resolution properties. 

 

While PGD2 can elevate cAMP via its DP1, PGD2 may also act independently of its 

DP1 and DP2 receptors when it non-enzymatically dehydrates into prostaglandins of 

the J2 series (e.g. PGJ2, Δ12,14-PGJ2 and 15-deoxy-Δ12,14-PGJ2 [15d-PGJ2]) 

(Clark, Bishop-Bailey, Estrada-Hernandez, Hla, Puddington & Padula, 2000). These 

cyclopentenone PGs form covalent attachments with reactive sulphydryl groups on 

intracellular regulatory proteins, which enables modulation of their function. For 

instance, 15d-PGJ2 upon ligation to the nuclear receptor PPAR-γ (Khan, 1995), 

decreases pro-inflammatory cytokine release and modifies gene expression (Jiang, 

Ting & Seed, 1998) as well as directly inhibiting the actions of IκB kinase (IKK), 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1885
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which is responsible for the activation of NF-κB (Cernuda-Morollon, Pineda-Molina, 

Canada & Perez-Sala, 2001). 15d-PGJ2, identified in rodent peritonitis resolution 

exudates (Rajakariar et al., 2007), independently of PPAR-γ, can preferentially inhibit 

monocyte rather than neutrophil trafficking through differential regulation of cell-

adhesion molecule and chemokine expression (Gilroy, Colville-Nash, McMaster, 

Sawatzky, Willoughby & Lawrence, 2003); regulate macrophage activation and pro-

inflammatory gene expression (Lawrence, 2002); and induce leukocyte apoptosis 

through a caspase-dependent mechanism (Bishop-Bailey & Hla, 1999). Moreover, it 

has been shown that PGD2-derived compounds function as endogenous breaking 

signals for lymphocytes to stimulate resolution (Trivedi et al., 2006).  See Table 1 for 

prostanoids their bio-actions and concentrations at sites of inflammation. 

 

PROSTANOIDS AND POST-RESOLUTION BIOLOGY 

Recently, we demonstrated that classical resolution may not be the end of the local 

immune response to infection/injury, but rather that a third phase subsequent to 

these exists: post-resolution (Motwani et al., 2017). Traditionally, resolution 

processes were deemed successful if acute inflammation, as described by leukocyte 

clearance and cytokine catabolism, was terminated; however they may have a 

hitherto unappreciated role in controlling adaptive immune responses and 

maintaining tolerance. Specifically, we found that murine innate immune-mediated 

responses to low-dose yeast cell wall extract (zymosan, administaered intra 

perioneally [i.p.]) or bacteria (S. pneumoniaeovalbumin-labelled, i.p.) resolved. 

Interestingly, these low-dose stimuli elicited a previously overlooked second wave of 

leukocyte influx into tissues that persisted for weeks. These cells comprised three 

separate populations of Ly6chi monocyte-derived macrophages (MDMs) including 
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CD11B+/CD49d+/CD115+/MHC-II+ myeloid-derived suppressor cells (MDSCs), F4-

80lo/MHC-II+/CD11c+ dendritic cells (DCs) and F4-80int/CD11Bhi/CD11c- 

macrophages. In addition, tissue-resident (embryonic-derived) macrophages, which 

disappear during the acute inflammatory response, re-appear. These diverse 

populations of macrophages were observed alongside lymph node expansion and 

increased numbers of peripheral blood and tissue memory T and B lymphocytes. 

polymorphonuclear (PMNs) were not present during this phase. One of the key 

events in this process is the sustained synthesis of PGE2, which is derived from 

macrophage COX-1/mPGES and that is triggered by IFN. It transpires that this post-

resolution phase of prostanoid biosynthesis creates a window of susceptibility to 

repeat infections on the one hand, while also controlling local adaptive immune 

processes on the other (Newson et al., 2017). The nature of these 

prostanoid/adaptive immune interactions is being investigated.   

 

CYTOCHROME P450  

Cytochrome P450s (CYP450s) are a family of membrane-bound, haem-containing 

enzymes found in the liver, Kidneys, brain, heart, CV system and lung and are best 

characterized for the catalysis of NADPH-dependent oxidation of drugs, chemicals 

and carcinogens and hormones (Nelson et al., 1996). The CYP450 family contains 

57 genes in humans, and although approximately one quarter of these have been 

shown capable of metabolizing PUFAs, the CYP2J2 and CYP2C family members 

(CYP2C8, 2C9) are thought to be the major enzymes responsible for lipid mediator 

production (Bishop-Bailey, Thomson, Askari, Faulkner & Wheeler-Jones, 2014). In 

addition to metabolizing AA (Figure 1), CYP450s also readily metabolise the related 

6 PUFA linoleic acid (LA) Figure 2, and 3 PUFAs (see below also) 

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=242&familyType=ENZYME
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=262
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1052


 

 

This article is protected by copyright. All rights reserved. 

docosahexaenoic acid (DHA, Figure 3) and eicosapentaenoic acid (EPA, Figure 4) 

in to series of related biologically active mediators (Smilowitz et al., 2013). CYP450 

are capable or metabolizing PUFA substrates by epoxygenase, lipoxygenase and -

hydroxylase type activities (Zeldin, 2001). The epoxygenase activity inserts a single 

molecular oxygen in to one of the double bonds of each PUFA e.g. for AA to form 

one of 4 regioisomers of epoxyeicosatrienoic acid (5,6-, 8,9-, 11,12- or 14,15-EET; 

the numbers indicating the double bond in AA subject to epoxygenation (Zeldin, 

2001). Each EET can be formed as either an R/S or S/R stereoisomer, with ratios of 

production depending on the generating CYP450. Stereoisomers of EETs may have 

different biological activities, but little research exists to understand the extent if 

these differences. CYP450s can also have lipoxygenase activity producing mid-chain 

(12[R]-), and -hydroxylase activity producing terminal (19[S>R]-, and 20-) 

hydroxyeicosatetraenoic acids (HETEs) (Roman, 2002). Once formed, epoxygenase 

products in particular are quickly metabolized by epoxide hydrolases (EH) or 

reincorporated in to membranes (Zeldin, 2001). Soluble (sEH) and microsomal 

(mEH) epoxide hydrolase’s (EH; encoded by the ephx2 and ephx1 respectively) 

combine to metabolize virtually all epoxygenase products in vivo (Edin et al., 2018). 

e.g. EETs get converted to dihydroxy-eicosatrienoic acids (DHETs). Importantly, a 

number of sEH-inhibitors (sEH-I) have been developed that inhibit the breakdown of 

epoxygenase products to potentiate there signalling (Hwang, Wecksler, Wagner & 

Hammock, 2013).  

AA and related PUFA are metabolised by CYP epoxygenase and epoxide hydolases 

in the vascular endothelium (Zhang, Oltman, Lu, Lee, Dellsperger & VanRollins, 

2001) (Roman, 2002), and vascular smooth muscle. In vascular smooth muscle, AA 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1051
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3362
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is also catalysed by CYP hydroxylases to 20-HETE (Wang, Guan, Nguyen, Zand, 

Nasjletti & Laniado-Schwartzman, 1999). Indeed, CYP4F3A in myeloid tissue 

catalyzes the ω-hydroxylation of leukotriene B4 to 20-hydroxy leukotriene B4, an 

inactivation process that is critical for the regulation of the inflammatory response 

(Johnson, Edson, Totah & Rettie, 2015). However, it is unknown whether CYP4F3 is 

the source of 20-HETE produced by PMNs (Bednar et al., 2000). These metabolites 

play a large and complex role in maintaining cardiac, renal and pulmonary 

homeostasis by regulating vascular tone and reactivity, ion transport, renal and 

pulmonary functions as well as growth responses (Fleming, 2007). Moreover, they 

have been shown to exert striking anti-inflammatory actions (Inceoglu et al., 2008), 

see below.   

 

CYTOCHROME P450 AND INFLAMMATION  

EETs catalysed by CYPs 2C8, 2C9 and 2J2 inhibit the activation of the transcription 

factor NF-κB via the inhibitor of κB kinase (IKK) (Node et al., 1999). Consequently, 

EETs may therefore have the propensity to down-regulate various cytokine-induced 

pro-inflammatory signalling pathways downstream of NF-κB activation. This may 

explain how EETs prevent the adhesion of PMNs to the vascular wall by suppressing 

the expression of cell adhesion molecules, including intracellular adhesion molecule-

1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin on the 

surface of endothelial cells in response to cytokines (TNF-α and IL-1α), and LPS 

(Fleming, 2007), Figure 5. We recently published that epoxygenases are anti-

inflammatory in human primary monocytes and macrophages (Bystrom et al., 2011), 

regulate M1 and M2 phenotype (Bystrom et al., 2011) and promote bacterial and 

lipid phagocytosis (Bystrom et al., 2013). In a mouse model of inflammatory 
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resolution we took this further using a CYP450 epoxygenase inhibitor SKF525A and 

sEH knockout mice (Gilroy et al., 2016). We reported how CYP450 epoxygenase-

derived mediators play a crucial role in controlling the infiltration of monocytes into 

sites of inflammation and are essential for the pro-resolution phenotype of cells of 

the monocyte lineage (Gilroy et al., 2016) driving macrophage efferocytosis. 

Additionally, it was recently reported that EETs display analgesic bioactions during 

experimental inflammatory pain (Inceoglu et al., 2008). In general CYP450-derived 

epoxygenase products are anti-atherosclerotic, vasodilatory and anti-inflammatory 

(Chaudhary et al.), with the notable exception of linoleic acid-derived / epoxide 

hydrolase product DiHOMEs. DiHOMEs have recently been shown to mediate 

thermal hyperalgesia (Zimmer et al., 2018), and at high levels are toxic to PMNs, and 

were originally termed ‘leukotoxins’ (Moghaddam, Grant, Cheek, Greene, Williamson 

& Hammock, 1997).  

 

The use of sEH-Is and sEH knockout mice has been invaluable to understanding the 

in vivo roles or epoxygenase products. Inhibiting sEH has revealed protective roles 

for epoxygenase products in injury-induced vascular neointima formation 

(Revermann et al.), atherosclerosis and aneurysm formation (Zhang et al., 2009), 

and inflammatory cell recruitment (Gilroy et al., 2016). sEH inhibition or 

overexpression of producing enzymes such as CYP2J2 are also protective in various 

acute inflammatory lung injury models (Revermann et al., 2009). EETs released from 

platelets exert anti-thrombotic properties by inhibiting platelet aggregation induced by 

AA and vascular injury (Briggs, Xiao, Parkin, Shen & Goldman, 2000). EETs can 

also increase the expression of tissue plasminogen activator in a cAMP-dependent 
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mechanism, thus suggesting potentially important roles in controlling the fibrinolytic 

balance at sites of inflammation (Node et al., 2001). 

 

The identification of epoxygenase-product receptors has almost exclusively focused 

on arachidonic acid derived- EETs and HETEs, with very little research so far on 

other n3 and n6-PUFA products. Putative receptor targets include transient receptor 

potential (TRP) channels, peroxisome-proliferator-activator receptors, and GRP40 

(Bishop-Bailey, Thomson, Askari, Faulkner & Wheeler-Jones, 2014). EETs can 

directly activate PPAR-γ in endothelial cells (Liu et al., 2005) and PPAR- in 

monocytes with EET-mediated anti-inflammatory effects blocked by PPAR-γ (Liu et 

al., 2005) or PPAR- antagonists, respectively. PPAR activation does not however 

account for all the anti-inflammatory effects of EETs. It has been suggested that the 

anti-inflammatory properties of EETs occurred through its ligation to a cell surface 

receptor. It was reported that EETs bind with high-affinity to an ‘EET-receptor’ on the 

surface of a monocytic cell line, belonging to a specific class of GPCRs (Behm, 

Ogbonna, Wu, Burns-Kurtis & Douglas, 2009). GRP40 can be activated by 14,15-

EET (Ma, Wang, Chen, Zhang, Harris & Chen, 2015). However, it must be noted that 

GRP40 activation only occurred above 10M (Ma, Wang, Chen, Zhang, Harris & 

Chen, 2015); whereas most biological effects occur in the nM range. These 

receptors are not present in all cells and their known actions don’t always correlate 

with the vascular and anti-inflammatory activities of epoxygenase products. The 

identity of this receptor and its role, if any, in initiating the immuno-modulatory 

actions of EETs is yet to be determined. By contrast, intracellular signalling pathways 

are more established. Depending on the model system used, epoxygenases or its 

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=78
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products can reduce cellular activation by inhibiting NFB, inhibiting ERK activation, 

elevate cAMP, and/ or induce cellular hyperpolarization (Thomson, Askari & Bishop-

Bailey, 2012). Recently it has also been proposed that inhibiting inflammatory 

endoplasmic reticulum stress may be critical for the beneficial effects of 

epoxygenase products, in particular neuropathic pain. 

 

As stated above CYP hydroxylases metabolites also possess anti-inflammatory 

properties.  For instance, 16-HETE can block the adhesion of leukocytes to the 

microvascular endothelium (Bednar et al., 2000) while also suppressing the 

synthesis of LTs as well as inhibiting rises in cerebrospinal fluid pressure, which 

represents index of tissue damage and swelling, in thrombo-embolic model of stroke 

in rabbits (Bednar et al., 2000). Moreover, PMN-derived 20-HETE and 16-HETE also 

counteract TX-induced platelet aggregation (Hill, Fitzpatrick & Murphy, 1992). 

Therefore, it can surmised that not only do metabolites of CYPs maintain CV and 

renal, but they also regulate other diverse signalling pathways pertinent to 

fibrinolysis, platelet aggregation, inflammation and cellular injury.            

 

LEUKOTRIENE AND LIPOXINS – BIOSYNTHESIS  

Lipoxygenase (LOX) enzymes include 5-, 12-, or 15-LOX and are expressed in 

leukocytes, platelets and endothelial cells, respectively. 5-LOX, for instance, 

metabolise AA to the slow-reacting substances of anaphylaxis (LTC4, LTD4 and 

LTE4: potent mediators of the allergic response) (Lewis, Austen, Drazen, Clark, 

Marfat & Corey, 1980) as well as LTB4, a powerful PMN and eosinophil 

chemoattractant (Borgeat & Samuelsson, 1979).  

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3354
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To date, four subtypes of LT receptors have been described including B leukotriene 

receptor 1 and 2 (BLT1 and BLT2), and cysteinyl leukotriene receptor 1 and 2 (cys-

LT1 and cys-LT2). Once bound, LTs a signal via a G-protein in the cytoplasm to 

increase intracellular calcium and block formation of cAMP, which then modulates 

diverse cellular activities ranging from motility to transcriptional activation. While Cys-

LT1 mediate mucus secretion, oedema accumulation and broncho-constriction in 

airways (Lynch et al., 1999), Cys-LT2 drives inflammatory responses, tissue fibrosis 

in the lung as well as vascular permeability (Beller, Friend, Maekawa, Lam, Austen & 

Kanaoka, 2004). Not surprisingly, Cys-LT1 is overexpressed in patients with chronic 

rhinosinusitis or asthma who have aspirin sensitivity (Sousa, Parikh, Scadding, 

Corrigan & Lee, 2002). By comparison, BLT1 is a high-affinity receptor for LTB4, and 

is responsible for its chemo-attractant and pro-inflammatory properties (Tager & 

Luster, 2003). Although BLT2 acts in a similar fashion to BLT1, LTB4 affinity towards 

BLT1 is much higher. 

 

In contrast, lipoxins (LXs) are a series of trihydroxytetraene-containing bioactive 

eicosanoids that were first isolated from human leukocytes in the mid 1980’s 

(Serhan, Hamberg & Samuelsson, 1984). However, in contrast to LTs, which are 

manufactured by intracellular biosynthesis, LXs are generated through cell-cell 

interactions by a process known as transcellular biosynthesis. In different human cell 

types, during the first biosynthetic step of LX biosynthesis, LOX inserts molecular 

oxygen into AA. This can be achieved by two major routes - the first pathway occurs 

in eosinophils, monocytes, or epithelial cells and involves the oxygenation of AA at 

C-15 by 15-LOX yielding 15S-HPETE. Secreted 15S-HPETE is then taken up by 

monocytes or PMNs and converted to 5,6-epoxytetraene by 5-LOX, which is then 

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=35
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This article is protected by copyright. All rights reserved. 

hydrolysed within these cells by either LXA4 or LXB4 hydrolase to LXA4 or LXB4. 

Activation of this pathway concomitantly reduces LT synthesis, which requires 5-LOX 

to convert AA into LTA4 (Claria & Serhan, 1995). The second major route of LX 

biosynthesis occurs in a LTA4-dependent manner and involves platelet-leukocyte 

interactions. 5-LOX within leukocytes converts AA into LTA4, which when secreted is 

taken up by platelets adhering on the surface of the leukocyte and is subsequently 

transformed to LXA4 and LXB4. This occurs via the LX synthase activity of human 

12-LOX (Romano & Serhan, 1992). A third pathway of LX generation was 

discovered following aspirin ingestion, which irreversibly acetylates COX-2 in 

endothelial cells and other activated cell types; this is a property specific to aspirin 

and not shared with other NSAIDs. Consequently, instead of COX-2 converting AA 

into PGG2, aspirin acetylation reprograms the enzyme resulting in the transformation 

of AA into 15R-HETE (C-15 alcohol carried in the R-configuration). This is then 

metabolised in a transcellular manner by adherent leukocyte, vascular endothelial or 

epithelial 5-LOX to form 15 epimeric-LX (15-epi-LX) or aspirin-trigged LXs (ATL) that 

carry their C-15 alcohol in the R configuration rather than 15S native LX. Although 

initially thought to be only aspirin triggered, a pathway of endogenous 15-epi-LX 

generation has recently been described, where neuronal sphingosine kinase 1 

mediates this COX-2 acetylation(Lee et al., 2018). ATL’s share many of the immune 

regulatory characteristics of native LXs.  

 

LIPOXINS – RECEPTORS AND BIO-ACTIONS  

The biological actions of LXA4 and 15-epi-LXs are mediated through ALX receptor, 

which is a specific G-protein-coupled receptor (GPCR) isolated and cloned in mouse, 

human and rat tissues (Chiang, Takano, Arita, Watanabe & Serhan, 2003); ALX is 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5216
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also known as the FPRL1 receptor. Human ALX was identified and cloned in various 

leukocytes populations including T cells (Ariel, Chiang, Arita, Petasis & Serhan, 

2003), monocytes (Maddox, Hachicha, Takano, Petasis, Fokin & Serhan, 1997) as 

well as tissue-resident macrophages, synovial fibroblasts (Sodin-Semrl, Taddeo, 

Tseng, Varga & Fiore, 2000) and intestinal epithelial cells (Gronert, Gewirtz, Madara 

& Serhan, 1998). LXA4 and 15-epi-lipoxin A4 (not for LXB4, LTB4, LTD4 or PGE2) 

show high affinity towards ALX (Kd = 1.7nM) [231]. ALX also has the ability to 

interact with other small peptides/proteins such as Ac2-26 and glucocorticoid-derived 

annexin-1, which carry out similar anti-inflammatory effects as LXs and 15-epi-LXs. 

Studies in transgenic mice over-expressing human ALX showed that the protective 

and immune modulatory effects of LXs and 15-epi-LXs were ligand- and receptor-

dependent (Devchand et al., 2003). In a peritonitis model of zymosan-induced acute 

inflammation, infiltration of neutrophils was substantially diminished in ALX 

transgenic mice compared to their wild-type equivalents (Devchand et al., 2003) with 

the site of lipoxin action identified as being the leukocyte/endothelial interface 

mediated by the generation of nitric oxide’s anti-adhesive properties (Paul-Clark, Van 

Cao, Moradi-Bidhendi, Cooper & Gilroy, 2004). 

 

15-epi-LX analogues also regulate an ALX-dependent p38/MAPK cascade, known to 

promote chemotaxis by inhibiting leukocyte-specific AP-1 phosphorylation and 

activation (Ohira et al., 2004). In addition to ALX, LXs also function as partial 

agonists to a subclass of rhodopsin receptors (CysLT1) more commonly activated by 

LTs, mediating bioactions in several tissues and cell types other than leukocytes 

(Badr, DeBoer, Schwartzberg & Serhan, 1989). At nanomolar concentrations LXA4 

has been shown to compete for binding with LTD4 on mesangial cells (Badr, DeBoer, 
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Schwartzberg & Serhan, 1989) and human umbilical vein endothelial cells (HUVECs) 

(Fiore, Romano, Reardon & Serhan, 1993) as well as opposing the pro-inflammatory 

effects of LTD4. There is also evidence that another intracellular receptor; the Ah 

receptor (AhR) mediates the bioactions of LXs; AhR is a ligand activated 

transcription factor that can trigger such anti-inflammatory events as the expression 

of suppressor of cytokine signalling 2 (SOCS-2) (Aliberti, Serhan & Sher, 2002).  

 

Lipoxins are anti-inflammatory at nanomolar concentrations controlling both 

granulocyte and myeloid cell entry into sites of inflammation. Indeed, the ability of 

LXs to diminish neutrophil trafficking was corroborated when an analogue of 15-epi-

LX was intravenously administered to BLT1 knockout mice that have dramatically 

elevated neutrophils in the lungs after high limb ischemia-reperfusion (Chiang, 

Gronert, Clish, O'Brien, Freeman & Serhan, 1999). Furthermore, research in our 

laboratory has uncovered in humans that 15-epi-LXs regulates PMN influx in forearm 

blisters, accounting for low-dose aspirin’s anti-inflammatory properties (Morris et al., 

2009). Our additional work on resolving inflammation has revealed that humans fall 

into two categories, those who resolved their acute inflammatory responses in an 

immediate manner and those that show a more delayed or prolonged healing 

process, with the severity and duration controlled by endogenous epi-lipoxins/ALX 

expression(Morris et al., 2010). Paradoxically, while they inhibit neutrophil and 

eosinophil transmigration (Maddox, Colgan, Clish, Petasis, Fokin & Serhan, 1998), 

lipoxins promote monocyte infiltration into sites of inflammation, which, when 

differentiated into macrophages bring about some of they key aspects of resolution 

and wound healing (Maddox & Serhan, 1996) without inducing neutrophil 
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degranulation or release of other reactive oxygen species (Jozsef, Zouki, Petasis, 

Serhan & Filep, 2002)..  

 

Once at the site of inflammation and resolution, monocyte-derived macrophages are 

stimulated by lipoxins to ingest and clear apoptotic neutrophils (Godson, Mitchell, 

Harvey, Petasis, Hogg & Brady, 2000), which maybe facilitated by changes in the 

actin cytoskeleton (Maderna, Cottell, Berlasconi, Petasis, Brady & Godson, 2002). 

Moreover, lipoxins increase levels of the anti-inflammatory cytokine TGF-β1, which, 

in turn, dampen a range of pro-inflammatory pathways (Bannenberg et al., 2005). 

LXs also anti-fibrotic thereby improve tissue remodelling by reducing the proliferation 

of fibroblasts and mesanglial cells induced by a numbers of factors, including 

connective-tissue growth factor, platelet-derived growth factor, TNF-α, LTD4 and 

TGF-β (Leonard et al., 2002). 15-epi-LXs exert the same biological effects as 

endogenously produced LXs, but with additional properties including causing 

increased vasorelaxation (Serhan, 1994) and endothelial cell production of anti-

inflammatory nitric oxide synthesis (Paul-Clark, Van Cao, Moradi-Bidhendi, Cooper & 

Gilroy, 2004). In addition, 15-epi-lipoxin A4 inhibits TNF-α-induced IL-1β in 

periodontitis in vivo (Hachicha, Pouliot, Petasis & Serhan, 1999), down-regulates 

SOCS-2 signalling (Machado et al., 2006) and dampens TNF-α-induced IL-8 

biosynthesis (Gronert, Gewirtz, Madara & Serhan, 1998). Expectedly, LXs and 15-

epi-LXs exert beneficial effects in a range of experimental models of inflammation 

and human diseases including cystic fibrosis (Karp, Flick, Yang, Uddin & Petasis, 

2005), glomerulonephritis (Munger et al., 1999), periodontitis (Pouliot, Clish, Petasis, 

Van Dyke & Serhan, 2000), ischemia/reperfusion injury (Chiang, Gronert, Clish, 

O'Brien, Freeman & Serhan, 1999), various cutaneous inflammation models 
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(Schottelius et al., 2002), pleuritis (Paul-Clark, Van Cao, Moradi-Bidhendi, Cooper & 

Gilroy, 2004), asthma (Levy, Bonnans, Silverman, Palmer, Marigowda & Israel, 

2005), wound healing processes in the eye (Gronert, Maheshwari, Khan, Hassan, 

Dunn & Laniado Schwartzman, 2005), colitis, inflammation-induced hyperalgesia in 

rats, as well as microbial infection in mice (Aliberti, Hieny, Reis e Sousa, Serhan & 

Sher, 2002). See Table 1 for SPMs their bio-actions and concentrations at sites of 

inflammation. 

 

SPECIALISED PRO-RESOLVING LIPID MEDIATORS (SPMs) - BIOSYNTHESIS 

Omega-3 polyunsaturated fatty acids (ω3-PUFA), including eicosapentaenoic acid 

(EPA), docosahexaenoic acid (DHA) are known to maintain organ function and 

health but also in reducing severity of inflammatory reactions and incidences of 

infection (Arita et al., 2005b). Although, also now known to be metabolized by COX, 

LOX and CYP450 pathways into distinct lipid mediators, a novel series of ω-3 PUFA 

products were identified in the resolving exudate of a mouse dorsal air pouch or 

peritonitis model using lipidomic and bio-informatic analysis (Lu, Hong, Tjonahen & 

Serhan, 2005). These endogenous mediators are called resolvins (Rvs), protectins 

(PDs) and maresins.  

 

EPA or DHA generate the Rvs and are categorised as members of the E-series 

(from EPA) or D-series (from DHA). Both series Rvs were initially isolated from 

murine dorsal air pouches treated with EPA or DHA as well as aspirin. Transcellular 

formation of E-series Rvs occurs with the conversion of EPA to 18R-

hydroxyeicosapentanoic acid (18R-HEPE) by COX-2 expressed within endothelial 

cells treated with aspirin. Similar to 15R-HETE in 15-epi-LX formation, 18R-HEPE is 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3934
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released from endothelial cells to neighboring leukocytes for its conversion by 5-LOX 

to either RvE1 or RvE2, via a 5(6) epoxide-containing intermediate (Arita, Clish & 

Serhan, 2005). This interaction is blocked by selective COX-2 inhibition but not by 

indomethacin or paracetamol (Serhan, Clish, Brannon, Colgan, Chiang & Gronert, 

2000). Although this transcellular route was proposed as the synthetic pathway for 

Rvs, intracellular production of resolvins and maresins have been observed in 

macrophages without the need for transcellular interactions. RvE1 is spontaneously 

produced in healthy subjects with levels increasing after treatment with either aspirin 

or EPA (Arita et al., 2005a). D-series Rvs, aspirin-triggered RvD1 (AT-RvD1) and 

RvD1 are synthesised via a pathway involving sequential oxygenations, initiated by 

15-LOX or aspirin-acetylated COX-2 in the microvascular, respectively, followed by 

5-LOX in human neutrophils with an epoxide containing intermediate. For AT-RvD1s, 

DHA is initially converted to epimeric 17R-hydroxydocosahexaenoic acid (17R-

HDHA). In the absence of aspirin, however, DHA is enzymatically converted to 17S-

HDHA (Hong, Gronert, Devchand, Moussignac & Serhan, 2003). Interestingly, 

generation of E-series Rvs can also be mediated by microbial and mammalian 

cytochrome P450 enzymes, which convert EPA into 18-HEPE. 18-HEPE can then be 

transformed by human neutrophils into either RvE1 or RvE2 (Serhan, Clish, 

Brannon, Colgan, Chiang & Gronert, 2000). Hence, it is possible that microbes at 

sites of infection may contribute to the production of Rvs in a similar pathway. 

 

DHA is also a precursor for the generation of PDs being enzymatically converted by 

15-LOX to a 17S-hydroperoxide-containing intermediate. This intermediate is then 

converted by leukocytes into a 16(17)-epoxide that is subsequently converted in 

these cells to a 10,17-dihydroxy-containing compound (Hong, Gronert, Devchand, 
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Moussignac & Serhan, 2003). PDs are distinguished by the presence of a 

conjugated triene double bond and by their potent bioactivity. One specific DHA-

derived lipid mediator, 10,17S-docosatriene was termed protectin D1 (PD1), which 

when generated in neural tissue is called neuroprotectin D1 (NPD1). Moreover, PD1 

exhibits tissue-specific bioactivity as in humans this lipid is synthesised by peripheral 

blood mononuclear cells and Th2 CD4+ T-cells, while in mice it has been isolated 

from exudates and brain cells, human microglial cells (Serhan et al., 2002) and in 

peripheral blood (Hong, Gronert, Devchand, Moussignac & Serhan, 2003).  

 

SPMs IN INFLAMMATION AND RESOLUTION 

One of the broader immunomodulatory properties of RvE1 is its ability to inhibit the 

accumulation neutrophil and dendritic cells at sites of inflammation. This occurs by 

blocking trans-endothelial migration of these cells across the microvascular 

endothelium as well as enhancing their clearance from inflammatory sites (Arita et 

al., 2005a). Other actions of RvE1 includes inhibition of reactive oxygen intermediate 

production from neutrophil in response to bacterial peptide, fMLP and TNFα (Gronert 

et al., 2004); inhibition of LTB4-BLT1 signalling via NF-κB and hence the 

biosynthesis of pro-inflammatory chemokine and cytokines (Arita, Ohira, Sun, 

Elangovan, Chiang & Serhan, 2007); enhancement of macrophage efferocytosis of 

apoptotic bodies (Schwab, Chiang, Arita & Serhan, 2007); upregulation of the CC-

chemokine receptor 5 (CCR5) on late apoptotic neutrophils (Ariel et al., 2006), 

which, in turn, abrogates chemokine signaling. RvE1 has also been shown to 

regulate leukocyte pro-inflammatory cell surface markers including L-selectin, whilst 

selectively disrupting TX-mediated platelet aggregation (Dona et al., 2008), adding 

further insight into its anti-inflammatory/pro-resolution properties. In disease states, 
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RvE1 suppresses Porphyromonas gingivalis-induced oral inflammation and bone 

loss during periodontitis (Hasturk et al., 2006), is protective in trinitrobenzene-

sulphonic acid-induced colitis in rodents (Arita et al., 2005b) as well as mediating re-

epithelisation of mouse cornea after thermal-injury (Gronert, Maheshwari, Khan, 

Hassan, Dunn & Laniado Schwartzman, 2005). Taken together, RvE1 triggers 

various aspects of the pro-resolution cascade ranging from the timely inhibition of 

granulocyte accumulation at sites of inflammation to the efferocytosis or clearance of 

inflammatory debris, reviewed in (Serhan, 2008).  

 

RvE1 binds to ChemR23 with high affinity (Kd = 48.3nm) resulting in the down-

regulation of NF-κB activity and consequently pro-inflammatory cytokine synthesis 

such as TNF-α as well as modulating pathways involved in mitogen-activated protein 

kinase (MAPK) signalling (Arita et al., 2005a). Although it has been found in the 

kidney, gastro-intestinal system, brain as well as CV tissue and cells of the myeloid 

lineage, the percentage of ChemR23 expression is highly variable. For example, 

ChemR23 is significantly increased on human monocytes but comparatively less so 

on neutrophils in response to anti-inflammatory mediators such as TGF-β. As with 

ALX, ChemR23 is also receptor for peptide ligands including chemerin, which also 

exerts anti-inflammatory actions (Cash et al., 2008). RvE1 also interacts with the 

LTB4 receptor, BLT1 and is a partial antagonist preventing neutrophil activation 

(Arita, Ohira, Sun, Elangovan, Chiang & Serhan, 2007). Therefore, RvE1 couples to 

two distinct receptors to suppress pro-inflammatory mechanisms while enhancing 

pro-resolution pathways.  

 

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=338


 

 

This article is protected by copyright. All rights reserved. 

While structurally distinct from RvE1, RvE2 is a second member of the EPA-derived 

family of E-series resolvins. In PMNs from human, it is generated at higher 

concentrations than RvE1, but is equipotent when given intravenously and additive 

when administered alongside RvE1 (Tjonahen et al., 2006). RvE2 also suppresses 

PMN migration into the peritoneum after zymosan (Tjonahen et al., 2006) and it is 

still unclear what receptor RvE2 couples to it is reported to mediate resolution by 

activating the chemerin receptor ChemR23 and antagonising the LTB4 receptor 

BLT1.  

 

There are four members of the D-series Rvs including RvD1, RvD2, RvD3 and RvD4 

(Hong, Gronert, Devchand, Moussignac & Serhan, 2003). As with RvE1, RvD1/D2 

exerts both anti-inflammatory and pro-resolution properties by blocking neutrophil 

infiltration, while also enhancing macrophage efferocytosis of apoptotic bodies 

(Krishnamoorthy et al.). The latter occurs via the binding of RvD1 to either ALX or 

GPR32, which are present on the surface of monocytes and PMNs, the expression 

of which is upregulated by inflammatory stimuli including granulocyte-macrophage-

colony-stimulating factor (GM-CSF) and zymosan (Krishnamoorthy et al.). 

Importantly, in a model of cecal ligation and puncture (CLP) RvD2, whose receptor is 

GPR18(Chiang, Dalli, Colas & Serhan, 2015), in addition to blocking peritoneal PMN 

accumulation markedly reduced bacteria numbers and pro-inflammatory cytokines 

leading to increased animal survival (Spite et al., 2009).  

 

As already mentioned, in addition to D-series Rvs, DHA also acts as a precursor for 

the synthesis of PDs. PD1, for instance, is synthesised in the human brain, microglial 

(Serhan et al., 2002) and peripheral blood mononuclear cells (Hong, Gronert, 
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Devchand, Moussignac & Serhan, 2003). As with Rvs, PD1 may also inhibit PMN 

migration as well as toll-like receptor-mediated activation (Duffield et al., 2006) while 

suppressing Th2 inflammatory cytokines and pro-inflammatory lipid mediator 

synthesis (Levy et al., 2007). PD1 also blocks T-cell migration in vivo and promotes 

T-cell apoptosis (Ariel et al., 2005). PD1 is protective in experimental models of 

oxidative stress (Mukherjee, Marcheselli, Barreiro, Hu, Bok & Bazan, 2007), 

ischemic stroke (Marcheselli et al., 2003), ischemia-reperfusion renal injury (Duffield 

et al., 2006), asthma (Levy et al., 2007) and Alzheimer’s (Lukiw et al., 2005). Indeed, 

peripheral blood mononuclear cells from Alzheimer’s patients given a DHA-rich 

dietary supplement show dampened biosynthesis of IL-1β, IL-6 and granulocyte-

colony-stimulating factor (G-CSF) (Vedin et al., 2008). As with RvE2, a receptor is 

yet to be identified. However, it is possible that it couples to a distinct receptor to 

RvE1 as its anti-inflammatory effects are additive with those of RvE1 in vivo.    

 

Maresins (MaR1 and MaR2) are produced in tissues by macrophages via the actions 

of 12-LOX, through a 13,14-epoxide intermediate (Serhan et al., 2009). MaR1 can 

also be generated at sites of vascular inflammation during human platelet–neutrophil 

interactions via platelet 12-LOX conversion of DHA to 13S,14S-epoxy-maresin, 

followed by neutrophil conversion to MaR1 (Abdulnour et al., 2014). The receptors 

for maresins have yet to be identified. Though maresins have only been recently it 

has been reported that, as with Rvs and PD1, MaR1 block the infiltration of PMNs, 

whilst stimulating macrophage phagocytosis of apoptotic PMNs/zymosan (Serhan et 

al., 2009).  
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SUMMARY 

Inflammation is a good thing; it kills bacteria and helps to heal wounds while 

imparting long term memory against the inciting antigen. Lipids play a key role in 

these events and come in many forms, including those that drive the cardinal signs 

of inflammation and those that help to restrain it and bring the response to a timely 

end. In fact, studying lipids and their inhibitors, NSAIDs, has given us a great deal of 

insight into homeostasis, immune responses to infection/injury and the wound 

healing process. Indeed, inflammatory onset has been an historical point of interest 

for the development of anti-inflammatory drug therapies. Research on the other end 

of the inflammatory spectrum, resolution, has provided the opportunity to harness 

internal mediators and their receptors to help drive on-going inflammation down a 

pro-resolution pathway. Moreover, this is achievable without compromising host 

defence. Such complex manipulation of the immune system provides new 

opportunities to develop further pro-resolution therapies based upon what we have 

learned from studying lipids in this setting. 

 

FOOTNOTE 

Nomenclature of Targets and Ligands 

Key protein targets and ligands in this article are hyperlinked to corresponding 

entries in http://www.guidetopharmacology.org, the common portal for data from the 

IUPHAR/BPS Guide to PHARMACOLOGY (Harding et al., 2018), and are 

permanently archived in the Concise Guide to PHARMACOLOGY 2017/18 

(Alexander et al., 2017). 
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Figure 1. Cytochrome p450 metabolism of arachidonic acid to EETs and their 

subsequent conversion by she to DHETs. 
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Figure 2. Cytochrome p450 metabolism of linoleic acid acid to EPOMEs and 

DHOMEs 
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Figure 3. Cytochrome p450 metabolism of DHA to Epoxide docosapentaenoic acids. 
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Figure 4. Cytochrome p450 metabolism of DHA to Epoxyeicosatetraenoic acids 
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Figure 5. Biological properties of cytochrome p450 metabolites 
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Table 1. Biological actions of lipid mediators and their relative concentrations at sites 

of inflammation 

 

 

 


