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Abstract

Modelling agents that are able to reason about actions in an ever-changing environment con-
tinues to be a central challenge in Artificial Intelligence, and many technical frameworks that
tackle it have been proposed over the past few decades. This thesis deals with this problem
in the case in which the environment and its evolution is incompletely known, and agents can
seek to gain further information about it and act accordingly. Two languages are proposed,
namely PEC+ and EPEC, which extend a standard logical language for reasoning about actions
known as the Event Calculus, and use Probability Theory as a measure of the agent’s degree of
belief about aspects of the domain. These languages are then shown to satisfy some essential

properties. PEC+ is implemented and tested against a number of real world scenarios.



Impact Statement

Artificial Intelligence (Al) is a branch of computing that nowadays has central importance in
both the industrial and academic world. This thesis presents ideas and methods belonging to
this highly impactful area, and this research has been undertaken with the expectation that it
will eventually be applied to realise applications for automated tasks such as automated fore-
casting, diagnosis and explanation in highly noisy environments. Some suggestions for possible
applications are presented in the thesis, and include e.g. applications to medical reasoning.
The frameworks presented here already constitute a further step towards a full integration be-
tween two fields relevant to Al, namely Reasoning About Actions and Probability Theory, and
a successful merger between these two areas is widely recognised to be of key importance in

furthering the field and impact of Al research.
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Chapter 1

Introduction

Endowing computing machines with human-like intelligence has been one of the major long-
term goals of Computer Science since its early days. A. M. Turing, in one of the most in-
fluential philosophical papers of the computing era [65], wrote in a concluding remark: “We
may hope that machines will eventually compete with men in all purely intellectual fields”, and
then asked “But which are the best ones to start with? Even this is a difficult decision”. Since
then, researchers in Artificial Intelligence (Al for short) have focused on a variety of intellectual
tasks, successfully tackling many of them and even managing to outperform humans at some.
However, human beings still remain unrivalled on a range of activities including (but not at all
limited to) natural language comprehension and processing, vision, decision-making and plan-
ning in unconstrained environments. Some of these tasks are commonly considered to be so
hard that even their sub-problems are sometimes thought to be equivalent to the very problem

of intelligence, as exemplified by D. Hofstadter in the context of natural language processing:

It is amazing how deep this problem with the word “the” is. It is probably safe to
say that writing a program which can fully handle the top five words of English —
“the”, “of”, “and”, “a”, and “to” — would be equivalent to solving the entire problem
of Al and hence tantamount to knowing what intelligence and consciousness are.
[32]

Problems that are as hard as the problem of AI itself have been recently dubbed Al-
Complenﬂ and, arguably, include the problem of reasoning about actions occurring along a
time dimension and their interaction with the environment — which is the focus of the present
work. That this problem is computationally complex is testified for example by the fact that it
has driven researchers into investigating a number of non-trivial sub-problems stemming from
it — most notably the Frame Problem, the Qualification Problem and the Ramification Problem
discussed below. Furthermore, it has drawn attention even from neighbouring fields such as
Cognitive Science and Philosophy (see e.g. [[15] and [59] for a survey). Finally, it is linked to
other central issues in Al: in Linguistics, methods for dealing with it have been successfully
applied e.g. to the semantics of tenses [66], which is relevant to the problem of natural language

processing discussed above.

'By analogy to “NP-Complete” in complexity theory, see e.g. https://en.wikipedia.org/wiki/
ATI-complete, accessed 1 Dec 2017.


https://en.wikipedia.org/wiki/AI-complete
https://en.wikipedia.org/wiki/AI-complete
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These introductory remarks serve to pinpoint the importance of the problem of Reasoning
about Actions in the context of Al, and to highlight its open-ended nature. Indeed, although
some technical solutions are already available, there is still a long way to go before human
performance is matched or even before the problem is satisfactorily formalised and a consensus
is reached about the form of its solution. This constitutes a first motivation for this thesis, which
proposes the integration of logical machinery — the favoured tool in this area — with models of
uncertainty (Probability Theory in particular) and epistemic features, hence changing the shape
of the usual (logic-based) solution. The types of reasoning that are relevant to this thesis are
informally introduced in section[I.1] Finally, it is important to note that efforts in this direction
have had and will continue to have significant impact on applications as discussed in section[I.2]

providing further important motivation for this work.

1.1 Epistemic Reasoning with Logic and Probability

As briefly discussed above, this thesis has its roots in the field of Reasoning About Actions (RAA
for short) which deals with the problem of formally representing actions and their effects in a
changing environment, in order to automatically reason about the world in a commonsensical
way. For instance, one might expect a RAA framework to be able to draw deductions as simple

as

If the door is opened, the alarm will be activated,

(S1) I’'ll open the door tomorrow.

Tomorrow the alarm will be activated.

or, perhaps even more straightforwardly, one might want to infer

The walls are yellow,

(S2) I’'ll open the door in one hour.

The walls will still be yellow in two hours.

which seems a safe and rational conclusion given the two premises. Rather disappointingly,
Classical Logic, in the form of propositional and predicate calculus, does not provide a good
inbuilt model of cause and effect, as dealing with them always involves a set of non-trivial
background hypotheses which are implicitly assumed by human beings but need to be made
explicit when formally modelling a scenario. For instance, in syllogism [I.1] the following
statements are tacitly assumed: i) opening the door has no effect on the colour of the walls,
ii) no one is going to paint the walls in the next two hours, or, more generally, that no other
relevant action is going to be executed.

The problem of determining all the non-effects of an action is widely known as the Frame
Problenﬂ Together with its siblings, the Ramification Problem (concerned with determining
all the implicit effects of an action) and the Qualification Problem (in brief, the problem of

This term was used for the first time by J. McCarthy and P. J. Hayes in [47], see e.g. [58]] for a survey and a
comprehensive discussion.
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listing all the possible conditions preventing an action to achieve its intended effect), the frame
problem has stimulated the development of several techniques to solve it, or at least get round
it. Many of these efforts helped inspire the development of a non-standard logic, today known
as non-monotonic logic, which tackles problems such as representing default assumptions about
the world, without losing internal consistency of the representation.

Another feature of common sense reasoning that Classical Logic is unable to easily capture

its capacity to deal with various forms of uncertainty. For instance, consider the following case:

If it is raining, then it is cloudy,

(S3) It is raining.

It is cloudy.

This syllogism is supported by classical propositional calculus as it an application of Modus

Ponens. However, Classical Logic has no way to express the following, weaker, reasoning:

If it is raining, then it is cloudy,

(S4) It is cloudy.

It is more plausible that it is raining.

which expresses a very common way of reasoning. As a further example, consider the following

excerpt from a classic probability book by E. T. Jaynes:

Suppose some dark night a policeman walks down a street, apparently deserted; but
suddenly he hears a burglar alarm, looks across the street, and sees a jewellery store
with a broken window. Then a person wearing a mask comes crawling out through
the broken window, carrying a bag which turns out to be full of expensive jewellery.

The policeman immediately concludes that this gentleman is dishonest. [34]

The policeman’s conclusion, although not strictly following from the rules of deduction,
seems indeed very reasonable. Jaynes argues that in order to draw such a strong conclusion, the

policeman is using in fact a very weak syllogism of the form

If A then B becomes more plausible,

(S5) B is true.

A becomes more plausible.

where A is the statement “the gentleman is dishonest” and B is the conjunction of all the
observations made by the policeman (hearing a burglar alarm, seeing a jewellery store with a
broken window, etc...).

These examples show how any flexible enough model of common sense reasoning should
be able to handle aspects of uncertainty. Many Al researchers have suggested that probability
can help provide a semantics to a logic of plausible reasoning, which is able to retain the rigour
of deductive logic and augment it with the possibility to handle softer ways of reasoning such

as those introduced above.
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Finally, imagine that an agent A lives in the environment being modelled, and move the fo-
cus to investigating what A knows. For example, syllogism (S3) can be turned into the following

similar reasoning:

A knows that if it is raining, then it is cloudy,

(S6) A knows that it is raining.

A knows that it is cloudy.

Syllogism (S6) differs from syllogism (S3) in a crucial aspect: it is not sufficient for the
weather to be rainy for A to know that it is cloudy: A must also know that it is raining. In other

words, the following syllogism is not valid:

A knows that if it is raining, then it is cloudy,

(S7) It is raining.

A knows that it is cloudy.

In order to gain access to the truth value of the proposition “It is raining”, A might want e.g.
to look outside the window or listen to the newspaper: i.e., A needs to perform a sensing action.

It is frequently assumed that if some fact is known, then that fact must be true, e.g.:

A knows that it is raining.
(S8)

It is raining.
implying that the following is a valid reasoning:

If it is raining, then it is cloudy,

(S9) A knows that it is raining.

It is cloudy.

which is exactly equivalent to (S3). Under this assumption sensing actions must be perfect, i.e.
they cannot produce knowledge that does not correspond to truth.

Things are different when mixing together Epistemic Logic (which deals with knowledge)
and plausible reasoning. Indeed, “A knows that it is plausible that it is raining” does not imply
“It is raining”, i.e. one can know that some fact is plausible without that fact being true. This
allows for the possibility of modelling imperfect sensing actions, that is, actions that produce
knowledge that does not necessarily correspond to truth, as opposed to perfect sensing actions
discussed above.

This work explores how these forms of reasoning can be integrated in a standard RAA lan-
guage known as the Event Calculus (EC for short). In EC, time-stamped actions affecting the
current state of an environment can be performed by an agent. In this thesis, EC is augmented
with actions whose effects are specified probabilistically and with (imperfect) sensing actions

which update the state of knowledge of the agent, where the state of knowledge is of a proba-
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bilistic nature.

1.2 Application Domains and Example Scenarios

In the last few years there has been an increase of interest in RAA and logic programming:
many frameworks, which were initially mainly tested against benchmark problems such as the
Yale Shooting Problem [31] are now being used in real-world applications. On the other hand,
this thesis also deals with Probability Theory which has recently been highly successful in Al,
as demonstrated by the emergence of numerous fields of Computer Science based on proba-
bilistic reasoning such as Machine Learning, Data Mining, Pattern Recognition and Automated
Control. Arguably, a robust and scalable integration between RAA and Probabilistic Reasoning
would result in a benefit for the field of Reasoning about Actions, which in turn would have a
positive impact on its applications. Similarly to combining temporal logic and probability, the
frameworks presented in this thesis could be fruitfully applied, for instance, to domains such as
automated medical applications (e.g. diagnosis and explanation), detection of complex activi-
ties (e.g. attacks on tcp/ip protocols, events from security cameras), and modelling of temporal
phenomena (e.g. biological, geological phenomena). Some of these applications are surveyed
in chapter[7]

The remainder of this section introduces example scenarios some of which are used as run-
ning examples throughout this thesis, with an emphasis on the medical domain which constitutes

an appropriate application area for the epistemic capabilities of the frameworks presented here.

1.2.1 Medical Scenarios

As mentioned above, a suitable application domain for logic programming and RAA techniques
is the medical one. For instance, parts of Watson (see e.g. [20]), developed at IBM, are written
in Prolog — a logic programming language often used in the context of RAA. Watson has gained
worldwide attention for winning in Natural Language-based TV show Jeopardy!, and it is now
being applied to medicine and automated healthcare [21} [16]. The frameworks presented in
this thesis, with their ability to deal with probabilistic data and knowledge, lend themselves
to scenarios where patients undergo medical tests (modeled by imperfect sensing actions) and
take action accordingly. The first scenario does not use any epistemic feature and is taken as a

starting point.

Scenario 1.1 (Antibiotic). A patient has a rash often associated with a bacterial infection, and
can take an antibiotic known to be reasonably effective against the infection. Treatment is
not always successful, and if not may still clear the rash. Failed treatment leaves the bacteria

resistant. The patient is treated twice.

This scenario is a rather simplistic one, and does not correspond to what usually happens in
real life in many ways — for example, the patient is treated twice with an antibiotic, regardless
of any impact on her symptoms, putting herself under risk of the bacteria becoming resistant.
In reality, medical tests are often employed to find out whether someone actually needs treat-

ment. Nonetheless, this scenario involves a good amount of uncertainty as implied by the use
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of expressions such as “often”, “reasonably”, “not always” and “may”, and therefore is a good
benchmark problem for the non-epistemic framework introduced in this thesis.

A problem that involves medical testing is the following from [17]:

Scenario 1.2 (Breast Cancer Problem). The probability of breast cancer is 1% for a woman
at 40 who participates in a routine screening. If a woman has breast cancer, the probability is
79.2% that she will have a positive mammography. If a woman does not have breast cancer, the
probability is 9.6% that she will also have a positive mammography. A woman in this age group
had a positive mammography in a routine screening. What is the probability that she actually

has breast cancer?

This example has been used to show that humans are not good at taking into account base
rates (in this example, the base rate is the 1% probability that a woman has breast cancer when
participating in a routine testing) when reasoning probabilistically. Indeed, it was found in [[17]]
that about 95 out of 100 physicians (almost) discard any prior probability and estimate the actual
probability to be around 75% - this dramatically differs from the actual probability of 7.7%.
This systematic fallacy of human reasoning is known as base rate neglect and similar instances
have been observed and extensively studied (see e.g. [35]). Given that humans (including
experts) tend to misjudge probabilities in similar scenarios, frameworks introduced in this thesis
could be useful, for example, to inform patients about the actual interpretation of their medical
tests results and to aid medical decisions while providing explanations and correct estimates for
probabilities based on the patients’ medical histories.

The following is a more realistic scenario adapted from [1]]:

Scenario 1.3 (Tuberculosis). Tuberculosis (TB for short) is thought to affect 1/3 of people in
the world, and every year a further 1% of the population is newly infected. It is mainly spread
through its bacterial pathogen Mycobacterium tuberculosis via inhalation of infected droplets.
Approximately 80-90% of individuals facing high level of exposure to the pathogen are in-
fected, and infection is asymptomatic in most cases (latent TB) as only about 5% develop the
clinincal disease (active TB) within a short amount of time following the infection. Individuals
with latent TB do not transmit the disease, but they carry a 5% lifetime risk of developing active
TB, mainly because of reactivation of the original pathogen. According to a particular patient’s
report, he was exposed to TB twice in the past, when he was 30 and when he was 32. The doctor
follows some guidelines and judges the first exposure as a low-risk exposure and the second one

as a high-risk one.

Scenario [1.3] which is summarised in fig. [[.T} can be readily modelled using frameworks
presented in this thesis, and is used to show some of their advanced features such as (probabil-
sitic) triggered actions. Furthermore, it allows for extensions that would make it more realistic
(for instance by taking into account that HIV-positive patients affected with latent TB carry a
10% yearly risk of reactivation, and that reactivation probability is significantly higher within 7

years from infection). Among these, the following extension makes use of epistemic reasoning:

Scenario 1.4 (Tuberculosis, Epistemic extension). The doctor advises him to perform a fuber-
culin skin test, and then start treatment with antibiotics if he is highly likely infected with the

pathogen to avoid further development of the disease.
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Latent TB
~ 5% per
~ 95% lifetime
— Exposure ~ 80-90% Infection Reactivation
~ 10-20% %‘
Uninfected Active TB

Figure 1.1: Diagrammatic representation of the effects of a single exposure in scenario adapted from
[1)].

1.2.2 Other Scenarios

Section [[.2.1] presents scenarios that are closely related to the field of medicine and which im-
mediately suggest an application area. However, it is useful to introduce other scenarios — not
necessarily tied to a specific application domain — in order to show other features of the frame-
works introduced in this thesis. These scenarios can be regarded as simple narratives and are
discussed for different purposes and under different perspectives throughout the course of this
thesis.

A simple coin-toss scenario is used to introduce some basic concepts:

Scenario 1.5 (Coin Toss). A coin initially (instant 0) shows Heads. A robot can attempt to toss
the coin, but there is a small chance that it will fail to pick it up, leaving the coin unchanged.

The robot attempts to toss the coin (instant 1).
The following scenario can be seen as an example of planning:

Scenario 1.6 (Light switch). A button is used to turn a light on/off. Due to a faulty contact,
pressing the button does not always have an effect. An agent does not know if the light is
initially on or off, and can only imperfectly sense if it is off or on. The goal is to have the light
turned on at instant 2 onwards, hence the agent first imperfectly senses the light (instant 0) and

then presses the button at a later time (instant 1) if reasonably certain that the light is off.

1.3 Thesis Contributions and Outline

This thesis’ main contribution is to present a novel combination of several types of reasoning,

some of which were discussed in section namely :
1. Reasoning About Actions
2. Narrative Reasoning

3. Plausible Reasoning
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4. Epistemic Reasoning
5. Support for Belief-Conditioned Actions

This resulted in PEC+ and EPEC, two action languages based on the Event Calculus’ on-
tology which use probability theory as a representation for plausibility and belief. These frame-
works fit in a current trend in logic-based Al and enrich the current set of available methods,
e.g.: EFEC [42]] (supporting 1,2, 4 and 5), BHL [3]] ( supporting 1, 3 and 4), Language £+ (sup-
porting 1, 3, 4 and 5 but no imperfect sensing), and PAL [4]], Prob-EC and MLN-EC [61} [62]]
(supporting 1, 2 and 3).

These languages are then implemented using two different paradigms (the logic program-
ming and the probabilistic programming one). The correctness of the logic programming im-
plementation is also proved.

This thesis is structured as follows:

e Chapter [2] introduces the context and some preliminary concepts that are needed for un-

derstanding the rest of the thesis.

e Chapter 3|introduces PEC+ (short for Probabilistic Event Calculus), an action language

combining a narrative-based approach to RAA with the ability to reason probabilistically.

e Chapter dimplements PEC+ in ASP (short for Answer Set Programming), a state-of-the-
art logic programming language, and then proves and discusses some properties of this
implementation, most notably its correctness. Some remarks about its scalability then

follow.

e Chapter[5]introduces EPEC (short for Epistemic Probabilistic Event Calculus), an action
language that combines narrative, probabilistic and epistemic reasoning. EPEC relies on

PEC+ for its non-epistemic component.

e Chapter [6] uses approximate inference methods to tackle scalability problems of the im-

plementation provided in chapter {4
e Chapter[7|compare PEC+ and EPEC to current related work.

e Chapter[8]draws some final conclusions with a view to further research.



Chapter 2
Background

This chapter introduces and discusses some background notions from first order logic, reasoning

about actions, answer set programming and probability theory.

2.1 Reasoning About Actions

Reasoning About Actions (RAA for short) is a field at the intersection of Logic and Al whose
main aim is that of modelling dynamical worlds where agent-controlled actions may happen.
Its roots can be traced back to McCarthy [44]], whose work led to the formalisation of one of
the first RAA frameworks, the Situation Calculus [45)]. However, the path leading to a sound
formalisation of RAA was affected by problems [47, [31] whose solution required elaborating
new techniques and sometimes even developing new logics [46,58]]. This chapter presents those

techniques and problems which are relevant to this work.

2.1.1 Frame Problem

The frame problem can be briefly summarised as the problem of providing a concise represen-
tation of the principle that most properties of the world do not change by virtue of an action
being executed. For instance, one might want to express the fact that, although opening a door
might activate an alarm, the execution of such an action does not alter its colour, does not make
one feel depressed, does not change the name of the current French prime minister and does not
make an asteroid crash into Mars.

To see how this problem presents itself in practice, consider the following example:

Example 2.1 (Door Opening). Consider a very simple classical logic language L consisting of
the unary predicates IsOpen, IsBlue and AttemptOpen. The intended meaning of IsOpen(t) is
that the door is open at time ¢, the intended meaning of IsBlue(t) is that the colour of the door is
blue at time ¢ and the intended meaning of AttemptOpen(t) is that an agent attempts to open the
door at time ¢. In this setting, the two predicates IsOpen and IsBlue represent properties of the
world and are usually called fluents, whereas AttemptOpen represents the occurrence of an event
and is usually referred to as an action. At time zero, the door is shut and its colour is blue and
the agent opens the door. It is reasonable to think that this situation is captured by the following

axioms:

15
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(D1) —IsOpen(0),

(D2) IsBlue(0),

(D3) Vt(AttemptOpen(t) — IsOpen(t + 1)),
(D4) AttemptOpen(0).

If two time constants 0,1 are considered (plus some axioms to deal with elemen-

tary arithmetic over 0,1) and every predicate symbol is interpreted as itself, theory T' =

{D1I] | D4} has four models:
Model 1: —IsOpen(0), IsBlue(0), IsOpen(1), AttemptOpen(0), IsBlue(1), AttemptOpen(1),

Model 2: —IsOpen(0), IsBlue(0), IsOpen(1), AttemptOpen(0), IsBlue(1),
—AttemptOpen(1),

Model 3: —IsOpen(0),  IsBlue(0),  IsOpen(l),  AttemptOpen(0),  —IsBlue(1),
AttemptOpen(1),

Model 4: —IsOpen(0),  IsBlue(0),  IsOpen(l),  AttemptOpen(0),  —IsBlue(1),
—AttemptOpen(1).

and in particular it is the case that 7' |= IsOpen(1) but not that T |= IsBlue(1) as desired.
According to T', the door could have changed colour! Notice also that T' [= AttemptOpen(1)
and T' £ —AttemptOpen(1), i.e. T is unable to determine whether another action AttemptOpen
is executed at time 1.

To bridge the gap between intuition and such theories, McCarthy introduced the concept of
circumscription [46], which formalises the idea that a predicate should be true for the fewest
possible number of objects. This is done by transforming the formula # to be minimised with
respect to a predicate P to a second-order formula CIRC[f, P]. This new second order formula,
informally speaking, says that there is no predicate () which satisfies # and is true of fewer
objects than P, i.e. P is somewhat minimal with respect to truth: it only sets to true those

objects which are required to be true by 6.

Example 2.2 (Door Opening, continued). Recall theory 7' = {D]| | D4]} and consider
a new theory 7" = CIRCI[T'; AttemptOpen). 1t is now the case that 7" |= —ArtemptOpen(1),

i.e. the circumscription is forcing the default assumption that, although the theory carries no
information about an occurrence of AttemptOpen at 1, AttemptOpen does not take place at time
1, which seems a reasonable assumption given the lack of information. Compare this with real
world conversations: typically, when talking we purposely omit to mention the (infinite set of)
actions that did not take place!

However, this new theory 7" is still affected by the frame problem. It is indeed the case that
T P~ IsBlue(1) and T' [~ —IsBlue(1). Even worse, circumscribing with respect to the other

predicates in the theory as well results in a nonsensical set of inferences, e.g.

CIRC|T'; AttemptOpen, IsBlue, IsOpen| = IsBlue(0)
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and
CIRC[T'; AttemptOpen, IsBlue, IsOpen] |= —IsBlue(1)

i.e., the door changes colour!

This happens because change has to be minimised rather than fluents, i.e. when possible, any
fluent should keep its truth value as time flows. McCarthy’s original intuition was to introduce
new predicates to represent change in features of the world, and then minimise them. This can
be done in the toy example by introducing two new predicates, ChangeOpen and ChangeBlue,

and two new axioms
(D5) Vt[ChangeOpen(t) <> —(IsOpen(t) <> IsOpen(t + 1))],
(D6) Vt[ChangeBlue(t) <> —(IsBlue(t) <> IsBlue(t + 1))].
and applying circumscription to the new theory 7" = yields

CIRC[T™; ChangeOpen, ChangeBlue, AttemptOpen| = IsBlue(1)

which finally meets intuition.

Although this might look like a definitive solution to the frame problem, it soon turns out
that this is not necessarily the case as Hanks and McDermott point out in a classic paper [31],
so that care has to be taken in how circumscription is applied to avoid anomalous models of
theories. The next sections show how circumscription and analogous techniques (including
Clark’s completion [9] and Reiter’s successor axioms [[55]]) are used to provide robust solutions
to the frame problem by deriving default assumptions from theories.

Note that this thesis follows the usual convention in this field that all free variables in a

theory are considered to be universally quantified with maximum scope.

Example 2.3 (Door opening, continued). Using this convention, the example theory T+ can be

equivalently written as follows:
(D1) —IsOpen(0),
(D2) IsBlue(0),
(D3) ArtemptOpen(t) — IsOpen(t + 1),
(D4) ArtemptOpen(0),
(D5) ChangeOpen(t) <> —=(IsOpen(t) <> IsOpen(t + 1)),

(D6) ChangeBlue(t) <> —(IsBlue(t) <> IsBlue(t + 1)).

2.1.2 The Situation Calculus

In the previous section actions and properties of the environment were naively axiomatised using
simple unary first-order predicates. The Situation Calculus (SC for short) (originally introduced

[45]]; the version discussed here is adapted from [55]]) is a more refined and systematic approach
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to RAA, which is built on top of a many-sorteaﬂ second order calculus with standard axioms
for equality. It is based on a branching time-structure, in which hypothetically occurring actions
lead from one situation to another. Its main sorts are S for situations, O for objects, and A for
actions. Informally speaking, a situation is a history of actions performed starting from the initial
situation Sp. A binary function Do : A x § — § is used to move from one situation to another,
so that Do(A, S) stands for the situation which is obtained by executing action A in situation
S. A predicate Poss(A, S) expresses the conditions under which A can be executed in situation
S. Finally, a set of functions and relations called functional and relational fluents are used to
model specific properties of the world. For example, fluents WindowlsOpen and WaterlsHot
can be true or false according to whether the window is open or closed and similarly for the hot
water. An action AttemptCloseWindow makes the fluent WindowlIsOpen false, while an action
AttemptBoilWater makes the fluent HotWater true.

Some everyday world features can be expressed using this language, as shown in the fol-

lowing example.

Example 2.4 (Door Opening in SC). Consider the simple door example from Section [2.1.1
The fact that the door is initially open and blue can be expressed by the two axioms

(D1%*) IsOpen(Sy)
(D2%*) IsBlue(Sp)

while the action of opening the door might be modelled through
(D3*) IsOpen(Do(AttemptOpen, s))

where IsOpen and IsBlue are relational fluents, AtfemptOpen is an action, and s is a situation
variable (implicitly universally quantified).

This model can be extended to the case in which the door can be unlocked, the door is
initially locked, unlocking the door only works when the door is closed, and an attempt to open

the door does not succeed when the door is locked by simply adding the following axioms:

(D4*) —IsLocked(Do(AttemptUnlock, s))
(D5*) IsLocked(Sy)
(D6*) Poss(AttemptOpen, s) < —IsLocked(s)

(D7%*) Poss(AttemptUnlock, s) <— —IsOpen(s)

Although  the  theory T* = {DI14{ D2 D3 D4 D5*| D6 D7}
can be wused to prove many implicit properties of the world such as

IsOpen(Do(AttemptOpen, Do(AttemptUnlock, Sy))), many others such as
IsBlue(Do(AttemptOpen, Do(AttemptUnlock, Sy))) cannot be derived, implying that this

language is affected by the frame problem as well! To overcome it, SC must be structured into

'A many-sorted calculus is a logic in which objects of the language are divided into sorts, so that a variable of a
given sort can only take values in the corresponding sort. It is similar to what happens in strongly typed programming
languages.
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a more principled framework. Reiter’s intuition to solve the frame problem [54] is to transform
the effect axioms in T (i.e. those expressing the effect of an action on the world: axioms
and in this example) in a standardised form called successor state axioms. For instance, in
the door example, the successor state axiom for IsLocked can be written in the successor state
axiom form VaVs[IsLocked(Do(a, s)) <+ IsLocked(s) N a # AttemptUnlock|, which states that
the door is locked if and only if was already locked in the previous situation and the last action

was not an attempt to unlock it.

When Successor State Axioms are paired with a standard set of axioms for stating actions’
preconditions (known as Action Precondition Axioms) and some domain independent axioms
constitute what it is called a Basic Action Theory (BAT for short), a widely studied set of SC
theories which exhibit some desirable properties such as a solution to the frame problem. Al-
though they are not defined formally here, in the following example the Door Opening example
is translated into a BAT.

Example 2.5 (Door Opening in SC, continued). Axioms[D6%and[D7¥can be transformed into
Action Precondition Axioms by transforming the implication into an if and only if. Axioms
and can be transformed to Successor State Axioms as follows: axiom becomes
IsOpen(Do(a, s)) <+ a = AttemptOpen\IsOpen(s), and[D4*becomes ~IsLocked(Do(a, s)) <
a = AttemptUnlock \/ (—IsLocked(s) N\ a # AttemptLock); finally, axioms |D1* [D2* and [D5*

are a suitable set of initial conditions. These axioms, when considered together with domain-

independent axioms, constitute a Basic Action Theory.

2.1.3 The Event Calculus

The Event Calculus (EC for short), which was first introduced as a logic program in [38] and
then reformulated in classical logic (see e.g. [49]), is another well established language for
reasoning about actions and change. It consists of a set of axioms (typically including axioms
for N or R as an explicit representation of the timeline), some of which are domain independent
and serve to describe general principles relating to effects of actions, the frame and related
problems, and the others which constitute the domain dependent part of the theory.

Similarly to the Situation Calculus, EC models a part of reality through the use of fluents,
which can be initiated/terminated by performing particular actions. Unlike the Situation Calcu-
lus, which is based on a branching structure, EC is mainly narrative-based, meaning that it can
describe a narrative of events, i.e. a possibly incompletely specified set of actually occurring
events. This difference is exemplified in Figure [2.1]

Since this thesis is mainly aimed at extending the Event Calculus, this section introduces its
main formal definition alongside the intuition behind it. This adaptation is based on a functional
dialect of EC, introduced in [42]].

Definition 2.1 (Domain Language for EC). A domain language for EC is a sorted predicate

calculus, with a sort A for actions (variables a, a1, as, ...,a’,a”,...), asort F for fluents (vari-
ables f, f1, fo,..., f', f",...), asort T for time points (variables t,t1,to,...,t',t",...) and a
sort V for values of the domain (variables x,z1,xs,...,2',2”,... ). It uses five core predi-

cates/functions: Happens defined over A x T, ValueOf of the form F x T — V), CausesValue
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Do(A1,Do(A1,5)))
Do(Az,Do(A1,5)))

DO(AlaSO)
Do(A,, Do(Aq,5))
DO(Al, DO(AQ, So))
Do(As,Do(As, Sp))

Do(Aj, Sp)
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DO(AmaDO(A27SO))
DO(A1>D0(Am7SO))
Do(Az,Do(Am, So))

DO(Am,So)
Do( Ay, Do(Ap, So))
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Figure 2.1: A comparison between SC and EC. (a) The Situation Calculus and its branching structure.
In this example, exactly one out of m actions can occur in each situation, starting from Sy. As it has
branching time, basic SC is suitable for representing hypothetical actions rather than actual ones. (b)
The Event Calculus is narrative-based, and it can be visualised as a linear time line with actual (possibly
concurrent) events occurring. In this example, three actions occur at distinct time points.

over A X F xV x T, PossValue over F x V and < defined over 7 x 7. In addition there are
two auxiliary predicates: ValueCaused defined over F x V x T and OtherValCausedBetween
definedover F x V x T x T.

The intended meaning of Happens(A,T) is that action A is performed at time 7.
ValueOf (F,T) = V means that the value of the fluent F’ at the time point 7" is V. CausesValue
has a similar role to the one played by the pair Initiates and Terminates in prior versions of the
EC. CausesValue( A, F,V,T) means that if action A is performed at time 7" then the fluent F is
given cause to assume value V' from that time point on. PossValue restricts the set of values that a
fluent can take, i.e. PossValue(F, V') means that, in principle, F' can take value V', < is the usual
ordering relation between instants. ValueCaused(F,V,T) means that some action happens at
time 7" which gives cause for F to take value V. Finally, OtherValCausedBetween(F,V, Ty, T5)
means that some action occurs in the time interval [7'1,7'2) which gives cause for F' to take

value other than V.
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The five domain independent axioms are as follows:

Definition 2.2 (Domain Independent Axioms for EC). The five Domain Independent Axioms
for EC are:

(EC1) ValueCaused(f,v,t) <>
Jda(Happens(a,t) A CausesValue(a, f,v,t)),

(EC2) OtherValCausedBetween(f,v,t1,ts) <>
JaF' (ValueCaused(f,v',t) Nt1 <t <ta Av #')

(EC3) ValueOf(f,t2) = v +
[(ValueOf (f,t1) = vV ValueCaused(f,v,t1))A
t1 < ta A ~OtherValCausedBetween(f,v,t1,t2)]

(EC4) ValueOf(f,t2) # v <
[t1 < to A OtherValCausedBetween(f,v,t1,t2)A
—3t(t; <t <ty A ValueCaused(f,v,t))]

(EC5) PossVal(f,t) « ValueOf (f,t).

Axioms and [EC2] are shorthand definitions. Axiom [EC3|expresses the idea that the a
fluent has a particular value if it had the same value at an earlier time point and nothing happened
in the meanwhile giving cause for its value to change. Axiom[EC4]captures the idea that a fluent
does not have a particular value if it did not have that value at any earlier time point, and nothing
happened in the meanwhile giving cause for it to change to that particular value. Finally, axiom
appropriately restricts the value that a fluent can take by linking the predicate ValueOf to
information in the domain dependent part of the theory.

The following example shows how the domain dependent part of an EC theory can be re-

alised:

Example 2.6 (Rolling a die). In this example scenario, a die is rolled at time 2. To describe this,
a single fluent symbol (DieFaceShowing) taking values in the set {1,2,3,4,5,6} and an action
symbol (AttemptRoll) are sufficient. The domain dependent part of the theory consists of:

(R1) v=1Vv=2Vv=3Vv=4Vv=5Vv =056,
(R2) PossVal(DieFaceShowing,v),
(R3) CausesValue(AttemptRoll, DieFaceShowing, v, t),

(R4) Happens(AttemptRoll, 2).

The theory CIRC[A; CausesValue] N\ CIRC[SY; Happens| N\ CIRC[A; PossVal] A\ 3, where A
is the conjunction of CausesValue formulas, € is the conjunction of Happens formulas, A is the
conjunction of PossVal formulas and ¥ = {[ECI|| EC2|| EC3|| EC4| ECS]} is the set of domain in-
dependent axioms for EC, has 62 models, one for each possible initial value of DieFaceShowing

and one for each possible outcome of the AttemptRoll action.
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2.1.4 Action Languages

An alternative to the use of classical logic in the context of reasoning about action has been
the development of specialized action languages, with their own bespoke syntax and semantics.
The first two such languages to be introduced were STRIPS [22] and ADL [52], followed by
language A by Gelfond and Lifschitz [28]].

The following sections briefly discuss Language .4, on which many of the modern proba-
bilistic languages for reasoning about actions are based, as well as language £ which is extended

with probabilities in the present thesis.

Language A

Language A was kept intentionally simple and, similarly to most action languages, it models a
domain of the world using an appropriate set of propositions. Language A has a very simple
language constituted by a set F of fluents and a set A of actions. Its syntax includes propositions

of two kinds: c-propositions are used to state effects of actions and have the form
Acauses Lif Ly, Lo,..., L,

where A € Ais an action and L, Ly, Lo, . . ., Ly, are fluent literals (i.e., they are either a fluent
F € F or its negation —F), with “A causes L” being shorthand for the case m = 0. v-
propositions are used to state that a given literal is observed after a given sequence of actions,
and have the form

L after A1, Ay, ..., A

where L is a fluent literal and A;, Ao, ..., A,, is a possibly empty sequence of actions, with
“initially L” being shorthand for the case where m = 0.

Language A’s simple syntax can be demonstrated through a classic example:

Example 2.7 (Yale Shooting Problem). This example concerns a well-known scenario known
as the Yale Shooting Problem [31]] (YSP for short) using Language A. YSP is mentioned above
when talking about the frame problem (including Circumscription from section [2.1.1). It is also
known as Hanks-McDermott Problem, after the two researchers that invented it to highlight
flaws affecting some attempts to solve the frame problem. In YSP a gun is initially unloaded
and a human target is initially alive. The gun is then loaded and it shoots at the target. A possible

axiomatisation is as follows:

(YSP1) initially —Loaded,

(YSP2) initially Alive,

(YSP3) Load causes Loaded,

(YSP4) Shoot causes —Alive if Loaded,

(YSPS5) Shoot causes —Loaded,
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A set of such propositions is called a domain description for Language A. The seman-
tics of language A is given in terms of states and transition functions. Intuitively speaking, a
state is a description of which fluents hold in the world and which do not, while the transition
function specifies how states get updated when an action is performed. Starting from a domain
description D, Language .A’s semantics works out models of a domain description, each one
being a pair (S%,tp) where S% describes the initial state of the world (i.e., before any action
is performed) according to D and ¢p is a description of how states get updated according to the

causal information in D.

Example 2.8 (Yale Shooting Problem, continued). Let Dy =
{{YSP1 YSP2{ YSP3| YSP4 YSP5|}. The only model (S, ,tp, ) is the one specified by

S%Y = {Alive},
tpy (Load, S) = S U {Loaded},

S — {Loaded,Alive} if Loaded € S,
tpy (Shoot, S) =
S otherwise.

Since Dy has exactly one model it is said to be consistent and complete.
Language .4 has a notion of entailment which is demonstrated in the following example:

Example 2.9 (Yale Shooting Problem, continued). Dy entails (among others) v-propositions
“initially Alive, Loaded after Load” and “— Alive after Load, Shoot”.

Language £

Language £ [36] is an action language analogous to Language A, but based on a different on-
tology. Indeed, while Language A is similar to the Situation Calculus, Language £ is inspired
by the Event Calculus, from which it inherits the capacity of dealing with narratives. Its lan-
guage consists of a set F of fluents, a set A of actions, a set 7 of time points and a partial
(possibly total) ordering < between time points. Its syntax consists of three proposition types.

c-propositions are used to specify actions’ effects and have either the form
A initiates /' when L1, Lo, ..., Ly,

or the form
A terminates F'when L{, Lo, ..., L,,

where A € A, F € F and Ly, Ls,..., Ly, are fluent literals, with “A initiates /"’ and
“A terminates F”’ being shorthand for the case m = 0. Propositions to express event oc-

currences are called h-propositions in £ and have the form

A happens-at T’
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for A € Aand T € T. Finally, it is possible to express that a fluent literal holds at a given
time-point through r-propositions of the form

L holds-at T’

where L is a fluent literal and T" € T.
Any set of c-propositions, h-propositions and t-propositions is called a domain description.

Example 2.10 (Taking a Medicine). A patient is initially ill and a medicine is known to cure

this disease. A suitable domain description Dt for this scenario is the following:
(TM1) HasFlu holds-at 0
(TM2) TakeMedicine terminates HasFlu

Similarly to Language A, Language £’s semantics defines models of a domain description.
In this case, however, a model is a mapping F x 7 — {T,.L} that describes the state of
the world (in terms of which fluents are true) at every time point. A domain description that
has exactly one model is said to be consistent and complete. Finally, a domain description D
entails the v-proposition F' holds-at T" (also written D = F holds-at T') iff for every model H
of D H(F,T) = T, and entails the v-proposition —F" holds-at 7" iff for every model H of D
H(F,T)= 1.

Example 2.11 (Taking a Medicine, continued). D7), entails HasFlu holds-at T' for any time
point 7. Notice that if —HasFlu holds-at 1 is the goal, then {TakeMedicine happens-at 0}
is a good plan with respect to the goal, because it is the case that Dppr U
{TakeMedicine happens-at 0} = —HasFlu holds-at 1.

Amongst the several extensions of Language £ that have been developed along the years,
Modular-£ [37]] is a modular, elaboration tolerant extension of Language £ which is able to deal
with the frame, qualification and ramification problems in a robust way. The syntax used to

develop an Epistemic Probabilistic Event Calculus (EPEC) is inspired by that of Modular-£.

2.1.5 Epistemic Reasoning

In the context of RAA, Epistemic Reasoning allows the possibility of dropping the somewhat
unrealistic assumption that agents have perfect knowledge of the world by dealing with (possibly
imperfect) sensing and (possibly incomplete or approximate) states of knowledge. For example,
consider the generic modus ponens: From A — B and A one can infer B in plain propositional
logic. However, if an agent (aware of the rule A — B) has no direct access to the truth value of
A, s/he cannot conclude B until A is somehow sensed by the agent. Such sensing actions are a
core part of everyday life, especially from a planning perspective: to call my landlady, I need to
know her telephone number first, and in order to find out I might ask someone who knows her;
to know whether my car needs oil, I can check the oil gauge; and I can check the airport screens
to know which gate my plane departs from.

The need for knowledge producing (sensing) actions motivates the need for epistemic RAA

languages. Knowledge-oriented reasoning about actions has its roots in the work of Moore [50],
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whose work has been continued and extended in many directions. Amongst such contributions,
Levesque and Scherl’s situation calculus based work [56l [57] modelled states of knowledge
through the use of possible situations and provided a solution to the frame problem in this
context.

This section describes the Epistemic Functional Event Calculus [42]] which introduces the
ability to deal with partial states of knowledge in the (Functional) Event Calculus introduced in
Section2.1.31

The Epistemic Functional Event Calculus

The Epistemic Functional Event Calculus [42)] (EFEC for short) is based on the Functional
Event Calculus and is a possible-worlds approach to epistemic reasoning, as it uses the notion of
a world to represent the considered agent’s current state of knowledge. Worlds can be thought
of as timelines representing legal evolutions of the modelled environment. For instance, in a

rolling die example (similar to Example [2.6) worlds can be visualised as follows:

2 2 5 5 5 5 5 5 5
Wy } ® } } D } } } }

Wo : ® : .

@D

W3 — ° | |

P
@

instant: 1 2 3 4 5 6 7 8 9

AttemptRoll= ®
Sense(DieFaceShowing)= O

where bold numbers represent the value of functional fluent DieFaceShowing at different time-
points. An an action AttemptRoll is executed in all worlds and then the value of DieFaceShowing
is sensed through a sensing action Sense(DieFaceShowing), but then only in W3 action
AttemptRoll is executed again. In world W7, although at instant 3 the die is showing face 5
the agent has not yet sensed this and therefore believes that it could e.g. be in world W7, Wy or
Ws.

EFEC inherits all the sorts and domain independent axioms from EC as in Section [2.1.3]
plus two new sorts: a sort W for worlds and a sort Z for instants?] that are ordered with respect
to a partial ordering relation <. A mapping () : W x Z — T is introduced such that (W, I is
meant to represent instant [ in possible world W. A set of domain independent axioms ensures

that every time point 7" can be expressed in the form (W, I) and gives conditions under which

Notice that in EFEC instants from the sort Z coexist with time-points from the sort 7. These two sorts should
not be confused. The difference will be made clear later on.
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it is possible to compare two time points under <, namely (w, i) = (w’,’) when w = w’ and
i=14,and (w,i) < (w',i) whenw = w’" and i <7’

The core of EFEC is a function K used to specified the agent’s state of knowledge, hence
called an epistemic fluent. Fluent K (W) represents the accessibility relation of W, so that
ValueOf (K (W), (W', I)) = T means that IV is accessible from W' at instant I. Accessibility
relations are used in modal logics and can have different properties (e.g. reflexivity, symmetry,
transitivity) according to what is being modelled by them (see e.g. [24])). In the case of EFEC,
the accessibility relation models an agent’s knowledge. In modal logic this is usually modelled
through reflexive, symmetric and transitive equivalence relations, therefore some domain inde-
pendent axioms in EFEC make sure that K is an equivalence relation. Special actions of the
form Sense(F') where F' € F represent the agent’s sensing of the value of fluent 7. A domain
independent axiom ensures that when sensing actions are performed by the modelled agent, they
modify its accessibility relation by making inaccessible all those worlds having a different fluent
value from that which the agent sensed.

EFEC includes predicates (and corresponding axioms) to represent and use knowledge
gained from sensing actions. For instance, KnowsValuelsNot((W,I), F,I', V') expresses the
fact that an agent in world W at time I knows that the value of F' at instant I’ will not be V: this
is axiomatised by imposing that for every world W’ accessible from W at instant I, the value
of fluent " in W' at time I’ is not V. Other predicates such as KnowsValuels, KnowsValue,
KnowsHappens, KnowsNotHappens and KnowslfHappens are similar and their names self-
explanatory. Actions in EFEC may be conditioned on epistemic preconditions, meaning that
an action occurrence may depend on an agent’s knowledge of a specific fluent. This is realised
through a predicate PerformlfValueKnownls and a corresponding axiomatisation. Predicates
Perform and Triggered are also available for unconditional actions and triggered events respec-
tively. Finally, EFEC’s domain independent part ensures that the number of possible worlds is
big enough as to correctly represent lack of knowledge about the world. For instance, if the
initial value of N truth-valued fluents is unknown, at least 2/ worlds are needed, one for each
possible truth assignment.

The following example demonstrates some of EFEC’s features:

Example 2.12 (Taking Medicine, Epistemic Version). A person who might have contracted a
life threatening flu undergoes a test to find out. Since the available cure for this disease makes
the patient’s skin blue as a side effect, he decides to take the medicine only if he is actually

diseased. A suitable domain dependent axiomatisation for this scenario is the following:
(TM1%*) PossVal(HasFlu,v) <> (v=T Vv = 1),
(TM2%*) PossVal(HasBlueSkin,v) <> (v =T Vv = 1),
(TM3*) KnowsValuelsNot({0), f,0,v) <> f = HasBlueSkin N\v =T,
(TM4*) CausesValue(TakeMedicine, HasFlu, 1 ,t),
(TM5%*) CausesValue(TakeMedicine, HasBlueSkin, T ,t),

(TM6%*) Perform(a,i) <> a = Sense(HasFlu) Ni =1,
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(TM7%*) PerformlfValueKnownls(a, f,v,i) <> a = TakeMedicine N\ f = HasFlu \ v =
TAL=3

where axioms [TM1# and [TM27 state that HasFlu and HasBlueSkin are truth-valued fluents,
axiom describes the fact that it is known that at time O the patient’s skin is not blue,
axioms [TM4™ and [TM5% describe the effects of taking the medicine, and must be circumscribed
together with EFEC’s Sensing Axiom to address the frame problem. Axiom states that
the patient undergoes the test at time 1, and finally describes the conditional action of
taking the medicine at time 3 if the test is positive. Axioms for domain closure and Uniqueness

Names Axioms are also needed.
Circumscribing this theory along with the domain independent axioms for EC and EFEC

classically entails:
(ETM1%*) KnowsValuels((0), HasFlu,4, 1)
(ETM2%*) KnowsValue((2), HasFlu,0)
(ETM3*) —KnowslfHappens({0), TakeMedicine, 3)
(ETM4*) KnowslfHappens((2), TakeMedicine, 3)
(ETM5*) KnowsValue((2), HasBlueSkin, 4)

(ETM6*) KnowsValuels((2), HasBlueSkin, 2, 1)

Entailment can be seen as the goal of not having the flu at time 4. Entailment
represents a form of reasoning about the past: at time 2 the agent will have sensed the value

of HasFlu, hence he will also known whether he was diseased at time 0. Entailment
expresses uncertainty about the future: having not sensed HasFlu yet, the patient cannot know
whether he will have to take the medicine or not at time 3; however, this lack of knowledge is
curtailed as soon as HasFlu is sensed, as shown by entailment Finally, entailments
[=TM5% and [=TM6 state that the patient knows at time 2 whether he is condemned to have a

blue skin at time 4, although his skin is normal in the present.

2.1.6 Logic Programming

The languages introduced throughout this section are commonly implemented using a pro-
gramming paradigm known as logic programming. Programming languages belonging to this
paradigm, e.g. Prolog (see e.g. [8]) and Answer Set Programming (see e.g. [29]]), have a number
of desirable properties which make the implementation of RA frameworks very natural. Some
of these features are discussed below.

In logic programming, a (propositiona]Eb program is usually regarded as a set of Horn
clauses, i.e. rules of the form

H <+ By,By,...,B,

3For simplicity, this section is only concerned with the propositional case.



CHAPTER 2. BACKGROUND 28

for literals H, By, Bo, ..., B,, where H is called the head of the rule and By, Bs, ..., B, is

called the body of the rule. When n = 0 the previous clause takes the form
H

which is called a fact.

As already discussed above, RAA frameworks naturally rely on some form of non-
monotonic reasoning (for example, circumscription). In logic programming, non-monotonic
behaviour is usually obtained through the use of negation as failure (NF for short) which, in a
nutshell, consists in deriving not A from failure to derive A. For instance, from the following

set of Horn clauses
A+ B,

C « D, @.1)
B.

NF would allow the derivation of not C' and not D as it is impossible to show that they are true
on the basis of the program’s clauseﬂ

Although using only Horn clauses is convenient from a computational complexity view-
pointﬂ many problems cannot be represented this way: hence the need of introducing (proposi-

tional) normal logic programs, which use extended rules of the form
H < By,Bs,...,By,not Cy,not Co, ... not Cp,.
For example, the following set of clauses is a normal logic program:

Z < not X,notY,

2.2
W« Z. (2-2)

As Clark has shown [9], it is possible to give a semantics to such programs which captures
the meaning of NF in terms of the classical propositional negation operator —. This semantics,
known as completion semantics, involves a syntactical transformation of the program: every
not is transformed into —, every collection of <—s with the same head is transformed into a <,
and a formula —A is added for each proposition A such that A is not in the head of a rule or is
not a fact.

For instance, under completion semantics, (2.1]) becomes:

A+ B,
C+ D,
B,
-D.

“Notice that the word not is used in place of the negation operator — to differentiate between negation as failure
and classical negation.

3The problem of satisfying a set of Horn clauses can be solved in linear time, whereas the more general problem
of satisfying an unrestricted set of boolean formulas, sometimes known as SAT, is an NP-complete problem which,
if the P # N P conjecture is true, cannot be solved in polynomial time.
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which classically entails =D and —C as expected, and (2.2)) becomes:

Z + X, Y,
W & Z,
-X,
—Y.

which classically entails Z and W, as expected since X and Y cannot be inferred from the

program (2.2)).
Prolog is a well known logic programming language whose inference mechanism, called

SLDNF resolution, is consistent with completion semantics. It supports negation as failure, and

therefore it is straightforward to turn a normal logic program into a Prolog program.

Example 2.13. To show how situation calculus theories can be implemented in Prolog, consider
a simple scenario, very similar to Example |2.1| used to introduce the frame problem and the
situation calculus itself, in which a door can be opened, closed, locked and unlocked. The Basic

Action Theory is:
(D1#*%*) IsClosed(Sy),
(D2**) IsLocked(Sp),
(D3**) Poss(AttemptUnlock, s) < IsLocked(s),
(D4**) Poss(AttemptLock, s) <+ —IsLocked(s) A IsClosed(s),
(D5**) Poss(AttemptOpen, s) <> IsClosed(s) N\ —IsLocked(s),
(D6**) Poss(AttemptClose, s) <> —IsClosed(s),
(D7#**) IsClosed(Do(a, s)) <+ (a = AttemptClose) V (a # AttemptOpen A IsClosed(s)),
(D8**) IsLocked(Do(a,s)) <> (a = AttemptLock) \V (a # AttemptUnlock N IsLocked(s)).

where axioms [DI*% [D2*¥ describe the initial situation, axioms [D3*% [D4*% [D5*H and [D6*H
are Action Precondition Axioms and axioms are Successor State Axioms for Rela-
tional Fluents.

To implement it, first consider the following set of Horn clauses:

IsClosed(Sy),
IsLocked(Sy),

Poss(AttemptUnlock, s) < IsLocked(s), IsClosed(s),
Poss(AttemptLock, s) < not IsLocked(s),
Poss(AttemptOpen, s) < IsClosed(s), not IsLocked(s)
Poss(AttemptClose, s) < not IsClosed(s),
IsClosed(Do(a, s)) < a = AttemptClose,
IsClosed(Do(a, s)) < not (a = AttemptOpen), IsClosed(s),
IsLocked(Do(a, s)) < a = AttemptLock, IsClosed(s),
IsLocked(Do(a, s)) < not (a = AttemptUnlock), IsLocked(s)
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which under completion semantics yields precisely {{DI**|D2*H|D3**| D4*%H| D5%**| D6**%
D7*4[D8*%}, which in turn can be straightforwardly transformed into the following Prolog

program:

[o)

% Definition of the situation sort:
situation (s0) .
situation( do(A,S) ) :— situation(S), action(A).
% Definition of the action sort:
action (attemptOpen) .
action (attemptUnlock) .
action (attemptLock) .
action (attemptClose) .
% Definition of executable situation:
executable (s0) .
executable( do(A,S) ) :—

situation(do(A,S)), poss(A,S), executable(S).
% Initial situation:
isClosed (s0) .
isLocked (s0) .
% Action Precondition Axioms:
poss ( attemptOpen, S ) :-—
situation(S), isClosed(S), \+ isLocked(S).

poss ( attemptUnlock, S ) :-

situation(S), isLocked(S).

poss( attemptLock, S ) :—
situation(S), \+ isLocked(S), isClosed(S).

poss ( attemptClose, S) :-—
situation(S), \+ isClosed(S).
% Successor State Axioms:
isLocked( do(A,S) ) :-—
situation(do(A,S)), A=attemptLock, isClosed(S);

isLocked( do(A,S) ) :-—
situation(do(A,S)), \+ (A=attemptUnlock), isLocked(S).
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isClosed( do(A,S) ) :-—
situation(do(A,S)), A=attemptClose.

isClosed( do(A,S) ) :-—
situation(do(A,S)), \+(A=attemptOpen), isClosed(S).

using Prolog’s convention that variable names are represented by names starting with a capital
letter, that negation as failure is represented by \ +, and that implication is represented by : —.
The definition of executable situations is used to cut out those situations that cannot be
reached by executing legal actions one after another, e.g. Do(AttemptOpen, Sp) is not a legal
situation as the door is locked in situation Sj.
Now that the Basic Action Theory is implemented, it is possible to query it. As an example,

it is possible to ask whether the door is open after having unlocked it:
?— \+ isClosed(do (attemptUnlock,sQ)) .

which evaluates to false. Notice that asking whether the door is open after having performed

an AttemptOpen action in Sy results in the following:

?-— \+ isClosed(do (attemptOpen,s0)).

true.
However, this situation is not executable:

?— executable (do (attemptOpen, s0)) .

false.
This implementation can be used to find (executable) situations in which the door is open:
?— executable(S), \+ IsClosed(S).

Of course, there are infinitely many such situations, so the result of this query can go on
indefinitely:

S=do (attemptOpen, do (attemptUnlock, s0));
S=do (attemptLock, do (attemptOpen, do (attemptUnlock,s0)));
S=do (attemptUnlock,

do (attemptLock, do (attemptOpen, do (attemptUnlock,s0))));

A more complex query is the following:

?— executable(S), action(d),

\+ isClosed(S), \+ isLocked(do(A,S)).

which looks for an executable situation .S and an action A such that the door is opened in S, and

it is unlocked in situation do( A, S). This results again in an infinite set of answers:
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n
Il

do (attemptOpen, do(attemptUnlock, s0)),
A = attemptOpen;

S = do (attemptOpen, do(attemptUnlock, s0)),
A = attemptUnlock;

S = do (attemptOpen, do(attemptUnlock, s0)),
A = attemptClose;

S = do(attemptLock, do(attemptOpen, do (attemptUnlock, s0))),
A = attemptUnlock;

Prolog is not an entirely declarative language: for instance, the order in which clauses ap-
pear can influence heavily the mechanism evaluating the queries, and in addition some operators
(such as the cut operator, !) which can modify its behaviour procedurally. For this reason, Pro-
log is sometimes said to be a proof-theoretic language, that is, a language based on a mechanism
which tries to derive a proof of a given sentence, hence putting an emphasis on computation.

An alternative is represented by model-theoretic languages, which try to build a model of a
theory in order to establish whether a given query logically follows from such theory. Answer Set
Programming (ASP for short) is one such model-theoretic language, and is built upon a recently
introduced semantics, known as stable models semantics [27]], which is not discussed here in
detail. ASP’s syntax is very similar to Prolog’s, but it also supports other useful constructs such
as choice rules, cardinality constraints and aggregates [60, [19].

In the following, an ASP implementation of the Event Calculus (see Section [2.1.3) is pro-
vided: the translation from the domain independent axioms [ECT|, [EC2| [EC3]| [EC4| and [EC3]| to
ASP is excerpted from [42].

time (0. .maxtime) .

lessThanEqualTo (T1l, T2) :— time(T1l), time(T2), Tl <= T2.
lessThan (Tl, T2) :- lessThanEqualTo(T1l, T2), Tl != T2.
$ EC1

valueCaused(F, VvV, T) :-—
happens (A, T), causesValue(A, F, V, T).

-valueCaused(F, V, T) :-—
possVal (F, V), time(T), not valueCaused(F, V, T).

% EC2
otherValCausedBetween (F, VvV, T1l, T2) :-
possVal (F, V), valueCaused(F, V_other, T),
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lessThanEqualTo (T1, T),
lessThan (T, T2),
V != V_other.

—-otherValCausedBetween (F, VvV, T1l, T2) :-—
possVal (F, V),
lessThan (T1, T2),
not otherValCausedBetween (F, V, T1l, T2).

% EC3

:— valueOf (F, T2, V_other), wvalueOf(F, T1l, V), lessThan(T1l, T2),
V_other != V, not otherValCausedBetween (F, V, T1l, T2).

% EC4

valueCausedBetween (F, VvV, T1, T2) :-
valueCaused(F, V, T),
lessThanEqualTo (T1, T),
lessThan (T, T2).

-valueCausedBetween (F, VvV, T1, T2) :-
lessThan (T1, T2),
possVal (F, V),
not valueCausedBetween(F, VvV, T1l, T2).

:— valueOf (F, T2, V), lessThan(T1l, T2),
othervValCausedBetween (F, VvV, T1, T2),
not valueCausedBetween (F, V, T1l, T2).

o°

ECS5
:— valueOf (F, T, V), not possVal(F, V).

$ AUX1
% make sure valueOf is a function.
1 { valueOf(F, T, V) : possVal(F, V) } 1 :-

fluent (F),time (T) .

Amongst the peculiarities of ASP’s syntax, notice the use of “~” for classical nega-
tion and the use of not for negation as failure; also, AUXI ensures that wvalueO f
is a function through the use of a particular ASP construct known as choice rule:
x{ atom_1, atom_2, ..., atom_n }y :— body means that when body is sat-
isfied, then some subset of { atom_1, atom_2, ..., atom_n } having cardinal-
ity between x and y must be included in the stable model as well. The syntax

1:11 : 12 : ... : 1n, forliterals 11, 12, ..., 1n is used to refer to the elements in
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theset {1 ]11,12,...,1n}, so for instance
r(a). r(b). r(c).
1{ p(a,X) : r(xX) }1.

reducesto 1{p(a,a), p(a,b), p(a,c)}l.
As an example of a problem which can be solved by EC once implemented, consider again
Example [2.6|of a rolling die:

Example 2.14. Consider the theory {|R/| | R4|} from example [2.6|and its circumscription

(see Section [2.1.T] for more details on circumscription). This is equivalent to the following ASP

implementation:

#const maxtime=3.

fluent (dieFaceShowing) .

action (attemptRoll) .

% R1, R2
possVal (dieFaceShowing, 1..6).

o

R3

causesValue (attemptRoll, dieFaceShowing, V, T) :-
time (T),

possVal (dieFaceShowing, V).

o\

R4
happens (attemptRoll, 2).

When queried together with the domain independent part of FEC using Clingo [26], a pop-
ular answer set solver and grounder, this program will terminate by saying that 36 models of the

given theory were generated:

$ clingo 0 fec.lp rollingDie.lp
clingo version 4.5.3

Reading from fec.lp...

Solving...

SATISFIABLE

Models : 36

Calls 1

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s

Unsat: 0.00s)
CPU Time : 0.000s
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2.2 Probabilistic Reasoning

2.2.1 The basics

Probability theory can be regarded as a scientific theory of dealing with events whose outcomes
cannot be predicted with certainty. A central concept in probability is that of a random variable.
A random variable takes value in a given (possibly continuous) domain with a given probability.
A random variable’s domain can be intuitively thought of as a set of possible outcomes of an
experiment. As this thesis is mainly concerned with discrete random variables, in the following
it is assumed that the domain of random variables is a discrete or finite set. Conventionally,
random variables are denoted by capital letters X, Y, ..., their domains are denoted by curly
upper case letters X', ), ..., and their values by lower case letters v, w, ... and the probability
of a random variable X taking value v in its domain is typically written p(X = v). It is common
practice to write p(.X') to denote the probability distribution over values in the domain of X, and
when the reference to the random variable X is clear from the context, it is possible to write
p(v) for p(X = v). For instance, the fact that a random variable C' associated with the outcome
of a coin flip has probability 1/2 to take value h (for heads) can be written p(C' = h) = 1/2
or equivalently p(h) = 1/2. The function p defines a probability distribution over a random
variable, and it is subject to the constraint

> ) =1 (2.3)

veEX

where X is the domain of X. It is said that p is a probability distribution over X.
When many random variables are considered, X7, . .., X,, say, their joint probability distri-

bution is written as p(X1, ..., X,,), and is subject to the constraint

> p(vr,... o) =1 (2.4)

UIEX17~~-7Un€Xn

where A7, ..., X, are the domains of X7, ..., X,, respectively. It is said that p is a probability
distribution over X1, ..., X,.

For example, if X7, X9, X3 represent the outcome of 3 distinct coin flips, then p(h,t,t)
denotes the probability of getting X; = h and X» = ¢ and X3 = ¢. Notice that the probability
of X; = h alone, in this example, can be intuitively calculated from the joint probability distri-
bution as Z%y p(h,z,y) = p(h, h,h) + p(h, h,t) + p(h,t, h) + p(h,t,t), which expresses the
intuitive fact that the probability of X to take value h should be equal to the sum of the proba-
bilities of getting X; = h with X5 and X3 taking any of their possible values. This property, in

a setting with n 4+ 1 random variables X, Y7, ...,Y,, can be generalised to:
p(X=x)= > pX=zYi=y,...,Y0=yn) 2.5)
Y1s--5Yn
where the sum ranges over all possible values of yi,...,¥y,. This is called the sum rule or

marginalisation rule, and p(X = z) is called the marginal probability.

A definition which plays a central role in this setting is that of conditional probability. X =
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x conditioned on’Y = yor X = x given Y = y is written p(X = z | Y = y). To understand
what this stands for, consider an urn containing two white balls and three black balls, and an
experiment which consists in blindly picking balls from that urn, without replacement. Two
random variables X1, Xo represent the probability of picking a white or black ball at the first
and second extraction respectively. The probability of picking a black ball on the first extraction
is intuitively given by favourable cases/total cases, which is 3/5 in this case. However, at the
second extraction, the number of favourable cases and total cases has changed according to the
result of first extraction. Hence, the probability of picking a black ball on the second extraction
having picked a white ball on the first extraction is 3/4, as the urn would be composed by 3
black balls and 1 white ball after the first extraction, while for similar reasons it would be 1/2
if a black ball was extracted instead. This can be written p(Xe2 = b | X; = w) = 3/4 and
p(X2 =b| X1 =b) = 1/2. Notice that the probability of extracting first a black ball and then
a white ball can be expressed as the probability of picking a black ball first and then a white ball
given that a black ball was picked at first attempt. This can be written p(X; = b, Xo = w) =
p(X2 = w | X1 = b)p(X1 = b), which in the case with n random variables X7, ..., X,, can

be generalised to

n

pXi =21, Xy =un) = [[p(Xe =ax | X1 =21,..., Xpoy =2421)  (26)
k=1

which is called the product rule.
When n = 2, (2.6) can be rearranged to get

pX=z|Y=y)= 2.7
if p(Y = y) # 0, and using the product rule again together with the symmetry property
p(X,Y) = p(Y, X) to represent the numerator as p(Y = y | X = x)p(X = z) and the
sum rule to represent the denominatoras >, p(Y =y | X = 2/)p(X = 2’) yields:

p(Y =y | X =2)p(X =)

pX=x|Y=y)= YupY =y | X =2)p(X =2) %

which is the fundamental Bayes’ theorem. Notice that when the value taken by a given random
variable X cannot affect the value taken by another random variable Y, as it happens in the case

of two distinct coin flips, conditioning X on Y does not change the distribution over X, i.e.
(X [Y) = p(X) (2.9)

which, using Bayes’ theorem, implies p(X,Y) = p(X) p(Y). If two random variables X and
Y satisfy this condition, then they are said to be independent.

2.2.2 Probability and Logic

Although it might seem strange to merge logic (which is qualitative, deductive and deals with

certain truths) with Probability Theory (which is quantitative and deals with uncertainty), it is
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possible to show that the latter can be used to provide an extended semantics for the former, also
preserving its classical semantics as a particular case. One well studied attempt can be found in
[51]; it considers a propositional language L and defines a probability function over sentences
of L as follows:

Definition 2.3 (Probability Function over L). Consider a language L and the relative set SL of
sentences of L (i.e., the closure of L under the propositional operators). A probability function
over a propositional language L is a function p : SL — [0, 1] such that the following properties
hold for any 6,1 in SL:

(P1) If = O then p(0) = 1,
(P2) If 0 = —p then p(6 V ) = p(0) + p(¢).

where |= is the classical propositional logical consequence relation. For p(i) # 0, we also

define the corresponding conditional probability function as

p(0 N Y)
p(y)

From this definition, one can infer the following properties:

p(0 | ¢) =

Proposition 2.1 (Properties of Probability Function). For any 6,1 in SL the following hold:
L. p(=0) = 1—p(0),
2. If = 0 then p(—0) = 0,
3. If 0 = 4 then p(0) < p(v),
4. If = 0 < 9 then p(0) = p(v¥),
5. p(0V ) =p(0) +p¥) —p(6 Av).
6. If p(¢)) # 0, then p(- | ¢») : SL — [0, 1] is a probability function.
Proof. See 51, Proposition 2.2]. O

Notation 2.1. In the remainder of this thesis, the expression probability function is used for a
function satisfying axioms [PJ] and [P2] from definition [2.3] whereas (joint) probability distribu-

tion is used to indicate a function as described in section [2.2.1] satisfying constraints (2.3)) and

24).

2.2.3 Probability as Belief

In Section [2.2.1 we made an appeal to intuition when defining the basic rules of probability
theory. The motivating examples there are mainly based on a naive understanding of probability
as the proportion of number of favourable cases over the number of total cases. However, this
interpretation is somewhat narrow, and requires a number of intuitive assumptions (e.g., the

cases must be intuitively mutually exclusive and equiprobable). A broader conception defines
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probability as a specification of the frequency at which an evenﬁ occurs in a high number of
trials, i.e. if we let » be the number of repetitions of an experiment, and E,, the number of
times an event occurred in those n trials, then the frequentist interpretation of probability states
that p(E) converges to the ratio F,,/n as n gets bigger. This is somewhat exemplified by the
expression
plE) = Jim =

where, however, one should be careful not to interpret the limit in its formal, mathematical
sense, but just as a symbol to express the intuitive, informal concept expressed above.

This interpretation, however, is only meaningful when it is possible to repeat an experiment
in very similar conditions. For this reason, the Bayesian interpretation of probability, which
sees an event’s probability as a measure of a (rational) agent’s degree of belief on the event
itself, can be seen as a further step in this context.

Several justifications for identifying belief and probability have been proposed and we dis-
cuss here a few popular ones.

The first justification is due to Cox [[10], and it shows that if a belief function Bel : SL —
[0, 1] over a set of propositional sentences of a language S L satisfies the following very reason-

able desiderata:
A: Degrees of belief are represented by real numbers,
B: Degrees of belief correspond to common sense,
C: Degrees of belief are handled consistently.

then such belief function is forced in a sense to be a probability function p satisfying axioms
and [P2] of definition [2.3] and, on the reception of new knowledge, the correspondent conditional
belief function is forced to be the conditional probability function associated with p.

A second justification is provided by Dutch Book Arguments 53| [12], which show that an
agent adopting a probability function p (which satisfies axioms and of definition
as its measure of belief on propositional sentences cannot be Dutch Booked, i.e. it can never
accept an unfair bet of the kind “If 8 is true you lose 10 pounds, while if 6 is false you owe me

10 pounds”, which would surely result in a win for the bettor’|

SThe reader should be aware of the difference between an event in a probabilstic setting and that of an event in
Reasoning about Actions. While in Probability Theory an event is a set of possible outcomes of an experiment, in
Reasoning About Actions formalisms as the Event Calculus, events are elements of a narrative, which occur along
the time line.

"National lotteries and football pools are tuned in a way such that the resulting bets are unfair to the bettors. For
this reason, Bruno de Finetti was used to refer to Lotto, a popular Italian national lottery, as a “tax upon stupidity”,
as all the Lotto players are explicitly Dutch Booked by the bookmakers — see e.g. [13l Chapter 6, Page 65].
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Language PEC+

In this chapter the syntax and semantics of PEC+, the non-epistemic variant of the probabilistic
RAA framework developed during this research, is defined.

With respect to the thesis contributions outlined in section PEC+ combines Reasoning
About Actions, Narrative Reasoning and Uncertain (Probabilistic) Reasoning, and therefore it
is similar to previous work such as PAL [4], Prob-EC and MLN-EC [61} 62]. However, in
addition to these languages, PEC+ adds support to triggered actions and will be shown to have a
sound and complete implementation in chapter[d] It is also worth noting that none of these other
languages offers simultaneous support for probabilistic events and probabilistic causal rules.

PEC+ is an extension of PEC, which was previously introduced in [11]. In the the context

of this thesis it is mainly used as a “building block” for EPEC, which is introduced in chapter[5]

3.1 Syntax

Definition 3.1 (Domain Language). A domain language for PEC+ is a tuple £ =
(F, A,V vals, T, <,0) consisting of a finite non-empty set F of fluents, a finite set A of actions,
a finite non-empty set V' of values such that {T, 1} C V, a function vals : F U A — 2V \ (), a
non-empty set Z of instants and a minimum element 0 € Z w.r.t. a total ordering < over Z. For
A € Aitisimposed that vals(A) = {T, L}.

Example 3.1. Scenario[I.5|can be modelled using a language
EC = <.FC,AC,VC,VGZSC,N, SN70>

where
Fco = {Coin},
Ac = {Toss},
Vo ={T, L, Heads, Tails},
valsc(Coin) = {Heads, Tails}

N is the set of natural numbers (including 0), and <y is the standard total ordering between

naturals.

39
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Example 3.2. Scenario[l.1|could be captured by a language
£A - <~FA7 AA? VAa ValSA7 N7 SN7 0>

where
Fa = {Bacteria, Rash},

Ay = {TakesMedicine},
Va ={T, L, Weak, Present, Resistant, Absent },
vals o(Bacteria) = {Weak, Resistant, Absent},
vals o(Rash) = {Present, Absent}

Example 3.3. An appropriate domain language for scenario|l.3|is
L = (Fr, Ar, Vr,valst, N<s0, <n_y,, 0)

where
Fr = {Tuberculosis},

Ar = {Exposure},
Vr = {T, L, Absent, Latent, Active},
valsy (Tuberculosis) = {Absent, Latent, Active},
N<so = {0,1,...,50}

and <y_,, is the total order between naturals equal or smaller than 50. The set of instants is

taken to represent the number of years passed from the first exposure reported by the patient.

In what follows, all definitions are with respect to a domain language £ =
(F, A,V vals, T,<,0).
PEC+ includes (fluent) literals and (fluent) formulas that are defined below. Literals and

formulas with a time information attached are called i-literals and i-formulas respectively.

Definition 3.2 (Fluent and Action Literals, i-Literals). A fluent literal is an expression of the
form F'=V for some F' € F and V' € vals(F'). A fluent is boolean if vals(F) = {T, L}.
An action literal is either A=T or A= _1. When no ambiguity can arise, Z =T is sometimes
abbreviated to Z and Z = 1 is abbreviated to -7 for Z a fluent or action. An i-literal is an

expression of the form [L]@I for some (fluent or action) literal L and some I € 7.

Definition 3.3 (Formulas, Fluent Formulas, i-Formulas). The set of formulas, denoted by O, is
the closure of the set of literals under A and — (with V and — being defined as shorthand in the
usual way). A formula 6 is said to be a fluent formula if it is formed from the set of fluent literals
by closure under A and —. The set of i-formulas, denoted by ®, is the closure of the set of i-
literals under A and —. The shorthand [¢]@I stands for the i-formula formed from the formula ¢
and the instant I by replacing all literals L occurring in § by [L]@I, e.g. [F=V — F'=V']Q3
is a shorthand for [FF=V]@3 — [F’=V']@3. When no ambiguity can arise, T stands for some
fixed tautological formula.

Example 3.4. In scenario[1.5]the i-literal [Coin = Heads]@3 indicates that the coin shows heads

at instant 3, while [—70ss]@2 indicates that the robot does not attempt to toss the coin at instant
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2. In scenario [Rash= Present]Q0 A [Bacteria=Absent \ TakesMedicine|@3 indicates that
the patient initially has a rash, and that she takes the medicine and the bacterial infection is

absent at instant 3.

Definition 3.4 (State, Partial State, Fluent State). A state S is a set of literals, exactly one for
each F' € F and A € A. A partial state is a subset X C S of a state S. Given a partial state X,
its subset containing all and only the fluent literals in X is a partial fluent state, and is denoted
by X [F. For S a state, S|F is called a fluent state. The subset of X containing all and only the
action literals in X is denoted by X [.A. The set of all states is denoted by S, the set of all partial
states is denoted by X'. Finally, the sets {S[F | S € S} and {X|F | X € X'} are denoted by
S and X respectively.

Example 3.5. One of the states that can be built with the elements of the
domain language (Fa, A, Va,valsa,N,<y,0) for scenario is 5% =

{Bacteria=Resistant, Rash=Absent, —~TakesMedicine}. Its associated fluent state is
SYIF = {Bacteria=Resistant,Rash=Absent}. ~ Any arbitrary subset of S}, e.g.
X1 = {Rash=Absent,~TakesMedicine}, is a partial state, whereas any arbitrary subset

of SLI.F, e.g. X} | F = {Rash=Absent}, is a partial fluent state.

Definition 3.5 (Outcome, Projection Functions). An outcome is a pair of the form (X' , PT)
where P € (0, 1]. The two projection functions x and 7 are such that for any outcome O =
(X, P*), x(O) = X and 7(O) = P*. The set of all outcomes X x (0, 1] is denoted by O.

Definition 3.6 (Weight of a Set of Outcomes). Given a finite set of outcomes
B ={01,09,...,0,}

the weight of B is defined as

m

n(B) =Y n(0).
i=1
Notation 3.1. The remainder of this thesis generally uses the following notation:

I,I' I,,I", I, ... to denote elements of Z,
A A AL A A, ... to denote elements of A,
F F' F\,F" F,,... todenote elements of F,
V, V.V, V", V5, ... to denote elements of V,
0,0',61,0",0,, ... todenote formulas,
0, ¢ 01,9, pa,... to denote i-formulas,
P,P' P, P" Ps,... todenote real values in [0, 1],
Pt P/, Py, ... todenote real values in (0, 1],
S,5’,81,5",8,, ... to denote elements of S,
X, X', X1,X" Xs,... todenote elements of X,
5,8, 51,5, S, ... todenote elements of S,
X, X', X1,X", X5, ... to denote elements of X,
0,0',01,0",09, ... to denote elements of O.
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The following definitions introduce the standard propositions of PEC+: v-propositions de-
clare which value a fluent may possibly take, c-propositions model the causal relationships of
a domain, i-propositions declare the initial conditions, p-propositions are used for the action

occurrences, and h-propositions state that a given i-formula holds.

Definition 3.7 (v-Proposition). A v-proposition has the form

F takes-values {V7,...,V,,} (3.1)
where m > 1 and {V1,...,V;,} = vals(F).
Definition 3.8 (c-Proposition, Head and Body of a c-Proposition). A c-proposition has the form

6 causes-one-of {O1,09,...,0,,} (3.2)

where, fori = 1,...,m, O; € O, x(0;) # x(0O;) when i # j, 6 is a formula such thalﬂ
0 = A=T foratleast one A € A, and 7({O1,...,0p}) = 1. The formula body(C) =6 and
the set head(C)={04y, ..., Oy, } are the body and head of C, respectively. Outcome O; is often
omitted from head(C') if x(O;) = 0 (leaving 7(O;) implicit since 7({O1,...,O0n}) = 1).

Definition 3.9 (i-Proposition). An i-proposition has the form
initially-one-of {O1, 0>, ..., 0,,} (3.3)

where, fori = 1,...,m, 0; €0, 7({O1,...,0m}) =1, x(0;) €S, and x(O;) # x(O;) when
i#].
Definition 3.10 (p-Proposition). A p-proposition has the form

A performed-at I with-prob P if-holds (3.4

where 6 is a fluent formula, P € (0,1] and I is such that I < I’ for some other I’ € Z. When
a p-proposition p has the form (3.4), then it is said that p has instant I.

A performed-at I with-prob P*
is shorthand for the p-proposition

A performed-at I with-prob P if-holds T

and
A performed-at / if-holds 6

is shorthand for the p-proposition

A performed-at [ with-prob 1 if-holds ¢

"Here and in the following, literals of the language are to be interpreted as distinct propositions when using the
standard propositional entailment |=.
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and

A performed-at |

is shorthand for the p-proposition
A performed-at [ with-prob 1 if-holds T.

Notation 3.2. In the following, lowercase letters are generally used to denote propositions, e.g.

c,d,c1,c”, co, ... will be used for c-propositions.

Definition 3.11 (Domain Description). A domain description is a finite set D of v-
propositions, c-propositions, p-propositions and i-propositions such that: (i) for any two
distinct c-propositions in D with bodies 6 and 7, 6 is incompatible with 7 (i.e., there is
no state S such that S = 60 and S |= 7), (ii)) D contains exactly one i-proposition,
(iii)) D contains exactly one v-proposition for each F' € F and (iv) if a p-proposition
“A performed-at I with-prob P if-holds 6” belongs to D, then for all P’ € (0, 1] and for-
mulas 7 that are compatible with 6 (i.e. such that for some state S both S |= 6 and S = n
hold) there is no other p-proposition of the form “A performed-at I with-prob P’ if-holds 7"
that belongs to D.

Definition 3.12 (Action Narrative). An action narrative is any finite set of p-propositions. For

D a domain description, the action narrative narr(D) is the set of all p-propositions in D.

Example 3.6 (Coin Toss Domain). Scenario [I.5]can be modelled using the following domain

description D¢:
(C1) Coin takes-values {Heads, Tails}
(C2) initially-one-of {({Coin=Heads},1)}

(C3) Toss causes-one-of
{({Coin=Heads},0.49),
({Coin = Tails}, 0.49),
(0,0.02)}

(C4) Toss performed-at 1

where[Cl]is a v-proposition, [C2]is an i-proposition, [C3]is a c-proposition, [C4]is a p-proposition,
and narr(D¢) = {|C4]}.

Example 3.7 (Antibiotic Domain). Scenario can be modelled using the following domain

description D 4:
(A1) Bacteria takes-values { Weak, Resistant, Absent }
(A2) Rash takes-values {Present, Absent}

(A3) initially-one-of
{({Bacteria= Weak, Rash= Present},9/10),
({Bacteria=Absent, Rash=Present},1/10)}
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(A4) TakesMedicine N\ Bacteria= Weak
causes-one-of
{({Bacteria=Absent, Rash=Absent},7/10),
({Bacteria= Resistant, Rash=Absent},1/10),
({Bacteria= Resistant},2/10)}

(AS) TakesMedicine N\ Bacteria= Resistant
causes-one-of
{({Bacteria=Absent, Rash=Absent},1/13),
(0,12/13)}

(A6) TakesMedicine performed-at 1

(A7) TakesMedicine performed-at 3

where [A]] and [AZ] are v-propositions, [A3]is an i-proposition, [A4] and [A5] are c-propositions, [A6]
and|A7|are p-propositions, and narr(D ) = {|A6|A7]}.

Example 3.8 (Tuberculosis Domain). Scenario[I.3|can be modelled using the following domain

description Dr:
(T1) Tuberculosis takes-values {Absent, Latent, Active}

(T2) initially-one-of
{({Tuberculosis=Active},1/30),
({Tuberculosis=Latent},9/30),
({Tuberculosis=Absent},2/3)}

(T3) Exposure A Tuberculosis =Absent
causes-one-of
{({Tuberculosis=Active},4/100),
({Tuberculosis = Latent }, 76 /100),

(0,2/10)}

(T4) Reactivation A Tuberculosis = Latent
causes-one-of
{({Tuberculosis =Active}, 1)}

(T5) Reactivation performed-at I with-prob 8/10*
if-holds Tuberculosis = Latent

(T6) Exposure performed-at 0 with-prob 25/100

(T7) Exposure performed-at 2 with-prob 9/10

Given the convention that instants represent years from the beginning of the story told by
the patient, and since the first reported exposure was at age 30, the p-proposition [/6] refers to
an exposure when the patient was 30 and the p-proposition [I7/|refers to an exposure at patient’s

age 32.
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Notice that[T3]is a proposition scheme, i.e. it specifies a set of p-propositions, each of which
is obtained from [I3] by replacing / with an instant in Z7. Notice that since Zy is finite, this is
consistent with definition [3.11] which requires the set of propositions to be finite.

Numeric data in this example has been adapted from [1] (see also fig. @ but some sig-
nificant and possibly unrealistic simplifications have been made, namely: the probability of
infection upon exposure has been fixed to 80%), the initial probability of not having TB has been
assumed to follow the proportion 2 : 1 (based on the fact that ~ 2/3 of the population are not
infected). It has also been assumed that only 10% of those who are initially infected have active
TB (based on the fact that =~ 10% of people who are infected with TB develop active TB during
lifetime), and that people with latent TB have a 0.08% yearly probability of reactivation.

However, it should be noted that accurate data can be readily introduced in this model and
that PEC+ can account for many other sophistications. For example, the chance of reactivation is
known to be higher within 7 years of infection: this can be modelled through the use of a counter
and an appropriate set of p-propositions; when patients are exposed but remain uninfected, they
develop resistance to the pathogen, and become less vulnerable to it: this can be modelled using
a similar mechanism to that of example finally, HIV-positive patients with latent TB have
a =~ 10% yearly chance of reactivation, which is much higher than the assumed ~ 5% lifetime
risk of reactivation: this can be modelled by introducing a fluent indicating HIV infection and

conditioning p-propositions on it.
Finally, h-propositions are entailed by domain descriptions:

Definition 3.13 (h-proposition, conditional h-proposition). An h-proposition has the form
 holds-with-prob P 3.9
A conditional h-proposition has the form
given 1, © holds-with-prob P 3.6)

for i-formulas ¢ and .

For example, the following sections show the formal sense in which D¢ entails the h-
proposition [Coin = Heads|@2 holds-with-prob 0.51.

3.2 Semantics

For the remainder of this thesis, D is an arbitrary domain description.

Definition 3.14 (Worlds). A world is a function W : Z — S. The set of all worlds is denoted
by W.

Notation 3.3. In the following, W, W' , W" Wy, W5, ... denote worlds.

Definition 3.15 (Satisfaction of an i-formula, Logical Consequence for i-formulas). Given a
world W and a literal L, W satisfies an i-formula [L]QI, written W |}= [L]Q1, iff L € W (I )]

The symbols | = and |} should not be confused with |= and % which stand for classical propositional entailment
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Otherwise, W |~ [L]@I. The definition of ||= is recursively extended for arbitrary i-formulas
as follows: if ¢ and ) are i-formulas, W |E= o AY iff W |E= pand W || ¢, and W ||= —¢
ifft W | . Connectives V and — are defined as shorthand in the usual way, i.e. ¢ V 9 is
shorthand for —(—¢ A —)), and ¢ — 1) is shorthand for —(¢ A —)). Given a (possibly empty)
set A of i-formulas, W |= A iff W |= ¢ for all ¢ € A. Given an i-formula ¢ and a set A
of i-formulas A | ¢ if for all W € W such that W |= A, W | ¢ also holds. For two
i-formulas ¢ and 9, 1 |}= ¢ is shorthand for {¢'} |= ¢, and |[= ¢ is shorthand for ) |= .

Example 3.9. Three worlds for Scenario 1 can be specified as follows:
W1(0) = {Coin=Heads, Toss= 1},
Wi(1) = {Coin=Heads, Toss=T },
Wi (I) = {Coin=Tails, Toss= 1} forall I > 2.

W5(0) = {Coin=Tails, Toss= 1},
Ws(1) = {Coin=Heads, Toss= 1},
Wo(I) = {Coin="Tails, Toss=T } forall I > 2.

W5(0) = {Coin=Heads, Toss=_1},
Ws(1) = {Coin=Heads, Toss=T },
Ws(I) = {Coin=Heads, Toss=_1} forall I > 2.

Intuitively, 1/, and W3 match the domain description in example [3.6]as they represent a co-
herent history of what could have happened in scenario whereas W5 does not (e.g., changes
occur when no action is performed, an infinite number of actions is being performed, etc...).
This intuition will be made precise in what follows.

Since worlds are functions from instants to states, they can conveniently be depicted as

timelines:
{Coin=Heads, {Coin=Heads, {Coin=Tails,
Toss=_1} Toss=T} Toss=_1}
%) } } }
0 1 >2 7
{Coin=Tails, {Coin=Heads, {Coin=Tails,
Toss=_1} Toss= 1} Toss=T}
Wy } } }
0 1 > 2 i
{Coin=Heads, {Coin=Heads, {Coin=Heads,
Toss=_1} Toss=T} Toss=1}
W3 : : :
0 1 >2 7

Definition 3.16 (Closed World Assumption for Actions). A world W is said to satisfy
the closed world assumption for actions (or CWA for actions, for short) w.rt. D if it
satisfies the following conditions: (i) for all A € Aand I € Z, if W | [A]Q[
then there exists some PT € (0,1] and a fluent formula 6 such that W | [f]@QI and
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“A performed-at I with-prob P if-holds 6" is in D, (ii) if for some A € A, I € Z and for-
mula 6 the p-proposition “A performed-at I with-prob 1 if-holds 6” is in D and W ||= [#]@Q[
then it must be the case that W ||= [A]@Q[

Example 3.10. Let W, W5 and W3 be the worlds in example [3.9] and let D¢ be the domain
description in example [3.6f World W satisfies[CWA for actions| w.r.t. D¢ as Toss € Wy (I) if
and only if / = 1, which is consistent with[C4|being the only p-proposition in Dc. CWA is not
satisfied by W5 as ~Toss € Wa(1), i.e. W ||= [~Toss|@1, but this is not consistent with [C4]
W3 satisfies [CWA for actions| for the same reason as W7.

Example 3.11. Consider Dr as in example and consider the following worlds:
W'(I) = {Tuberculosis =Absent, Exposure= L, Reactivation= 1} forall I € Iy

W"(0) = {Tuberculosis = Absent, Exposure="T , Reactivation= 1}
W"(1) = {Tuberculosis=Active, Exposure= L, Reactivation="T }
W"(I) = {Tuberculosis=Active, Exposure= 1, Reactivation= 1} for 2 < I < 50

World W' satisfies [CWA for actions| as W' |= [-A]@QI for all A€ Ap and I € Zp

(which satisfies requirement (i) of definition [3.16) and since no p-proposition of the form

“A performed-at I with-prob 1 if-holds §” belongs to Dp (which satisfies requirement
(ii)). However, world W” does not satisfy (CWA for actions| as W |l= [Reactivation=T]Q1
but there is no p-proposition “Reactivation performed-at 1 with-prob P if-holds 0”

in Dp such that W’ [k [f]Ql. In fact, Dr contains a p-proposition
“Reactivation performed-at 1 with-prob 8/10* if-holds Tuberculosis=Latent”, but it is
not the case that W | = [Tuberculosis = Latent]Q1.

Definition 3.17 (Cause Occurrence). Let 6 be the body of a c-proposition ¢ in a domain de-
scription D and I € Z. If W |= [A]QI then it is said that a cause occurs at instant 1
in W w.rt. to D, and that the c-proposition c is activated at I in W w.rt. D. The set
ocep(W) is the set {I € Z | acause occurs at I in W}. The function cpropp with domain
{W,I) | W e W, I € occp(W)} is defined for instants I in its domain as cpropp (W, I) = ¢
where c is the (unique) c-proposition activated at I in world W.

Example 3.12. Let D¢ be as in example and Wy, Wy and W3 be as in example Since
Wi ||= [Toss|QI if and only if I = 1 (and similarly for W3), it follows that occp, (W) =
ocep, (W) = {1}, with cpropp,(W1,1) = cpropp,, (W3, 1) :- For Wy, ocep,, (W3) is
defined as {I | I € N, I > 2} with cpropp (W2, I) {for[ > 2.

Definition 3.18 (Initial Choice). Let D be a domain description and the unique i-proposition in
D be of the form (3.3). Each Oy, Oo, ..., O,, is called an initial choice w.r.t. D.

Definition 3.19 (Effect Choice). Let W be a world and D a domain description. An effect
choice for W w.r.t. D is a function ec : occp(W) — O such that for all instants I € occp(W),
ec(I) € head(cpropp(W, I)).
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Example 3.13. Let D¢ be as in example and Wy, W5 and W3 be as in example The
only initial choice w.r.t. D¢ is icy = ({Coin=Heads},1). The only effect choices for W,
w.rt. De are eci(1) = ({Coin=Tails},49/100), eca(1) = ({Coin=Heads},49/100) and
ec3(1) = (0,2/100). Notice that since occp, (W1) = ocep, (W3), all the effect choices
for Wy are also effect choices for W3. There are an (uncountably) infinite number of effect
choices for W5 w.r.t. D¢, each one mapping each instant I > 2 to ({Coin=Heads},49/100),
({Coin=Tails},49/100) or (0,2/100).

Definition 3.20 (Initial Condition). A world W is said to satisfy the initial condition w.r.t. D if
there exists an initial choice ic w.r.t. D such that W (0)|F = x(ic). If a world W satisfies the
initial condition w.r.t. D for some initial choice ic, then it is said that W and ic are consistent

with each other w.r.t. D.

Example 3.14. Let D¢ be as in example 3.6 and Wy, W5 and W3 be as in example [3.9] Since
icy = ({Coin=Heads}, 1) is the only initial choice w.r.t. D¢ as outlined in example %%
and W3 are consistent w.r.t. D¢ with it, since W1 (0)[F = W3(0)[F = x(ic1). Therefore, W;
and Wj satisfy the finitial Condition| w.r.t. D¢ Since Wa(0)[F # x(ic1), W2 does not satisfy
the [initial Conditionl

Definition 3.21 (Intervals). Given two instants I and I’ such that I < I, the intervals [I, I'],
[I,I'), (I,I'] and (I, ") are defined in the standard way w.r.t. the total order <. Also, [I, +00)
is shorthand for the set {I’ | I' € Z,I' > I}, (—oc, I] as shorthand for {I' | I' € Z,I' < T},
(I,+00) as a shorthand for [I,00) \ {/} and (—o0, I) as a shorthand for (—o0, I]\ {I}.

Definition 3.22 (Fluent State Update). Given a fluent state S and a partial fluent state X, the
update of S w.rt. X, written S @ X, is the fluent state (5 oX )u X, where S © X is the partial
fluent state formed by removing all fluent literals from S of the form F' = V for some F and V'
such that F = V' € X. The operator @ is left-associative, so e.g. S @ X @ X' is understood as
(SeX)a® X).

Definition 3.23 (Justified Change). A world W is said to satisfy the justified change condition
w.r.t. D if and only if there exists an effect choice ec w.r.t. D such that for all instants I and I’
with I < I’, ec maps the possibly empty set of instants in occp(W) N [I,I') = {I1,...,I,} to

01,09, ..., O, respectively, where I, ..., I, are ordered w.r.t. <, and
W(I')IF = (W(D)IF) @ x(01) ® x(02) @ -+ & x(On) 3.7)

If a world W satisfies the justified change condition for some effect choice ec, W and ec are

said to be consistent with each other w.r.t. D.

Example 3.15. Let D¢ be as in example [3.6] Wy, W5 be as in example [3.9] and ec; be defined

as in example[3.13]
For any two instants I, I’ € N with I < I', if [I,I') N occp, (W) = 0 then clearly

Wi(I")|F = Wi(I)|F. Otherwise, if [I,I")Noccp, (Wh) # 0,1.e. [I,I")Nocep, (W1) = {1}

then (3.7) holds as W1 (I)|F & x(ec1(1)) = {Coin=Tails} = W(I')]F. So the
[Change Condition|w.r.t. D¢ is satisfied by W7.
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For W5 to satisfy the [Justified Change Condition| w.r.t. D¢, equation (3.7) would require
Wo(0)[F = Wa(1)[F (as ocep, (We) N [1,2) = 0), but this is not the case. Hence, W does
not satisfy the Justified Change Condition|w.r.t. D¢

Definition 3.24 (Well-behaved Worlds). A world is said to be well-behaved w.r.t. D if it satisfies
[CWA for actions] the finitial condition| and the [Justified Change Condition| w.r.t. D. The set of
well-behaved worlds w.r.t. D is denoted by Wp.

Example 3.16. Let D¢ be as in example and Wy, W5 be as in example W7 is well-
behaved as it satisfies [CWA for actions| (see example [3.10), the [initial condition| (see exam-
ple and the Justified Change Condition| (see example w.rt. Dg. Wy is not well-
behaved as it fails to satisfy any of these conditions.

Definition 3.25 (D-entailment). Given an i-formula ¢ and a set A of i-formulas, A |FEp ¢ if
forall W € Wp suchthat W |= A, W |[= ¢ also holds. For two i-formulas ¢ and ¢, ¥ |=p ¢
is shorthand for {4} |l=p ¢, and |[=p ¢ is shorthand for () |Ep .

In the following two definitions, the symbol X is used to represent the period or point in time
“just before” the least instant 0, and therefore “just before” any action can occur. Intuitively, a

trace represents a “causal justification” for a world.

Definition 3.26 (Candidate Trace). A candidate trace is a function tr : dom(tr) U {X} — O
where dom(tr) C Z and X is a new symbol such that X ¢ Z. For readability, when dom(tr) is

finite, tr is sometimes written in the form
(tr(X)QY, tr([,)QI4,. .., tr(1,)QL,)

where dom(tr) = {I4,...,I,} and instants are ordered w.r.t. <. The shorthand dom™ (tr)
stands for dom(tr) U {X}.

Definition 3.27 (Trace). If W is a well-behaved world w.r.t. D, then a candidate trace tr is a
trace of W w.r.t. D if there exist an initial choice ic and an effect choice ec consistent with W
such that:

tr = (ic@X,ec(I)@I4, . ..,ec(In)) (3.3)

where {I1,...,I,} = occp(W). In this case, expression (3.8) can be shortened to tr =
(ic, ec).

For any W € W, TR} stands for the set of all traces of W w.r.t. D, and if W is not
well-behaved TR}y = (.

A well-behaved world can have multiple traces (i.e. multiple ways the world could have

been "caused"), as shown in the following example.

Example 3.17. Let D¢ be as in example [3.6] W3 be as in example [3.9]and ic1, eca, ecs be as
defined in example[3.13] World W3 has two distinct traces, ¢ = (ic1, ec) and trf = (icy, ecs),
which disagree on the effect choice: in one case the robot manages to toss the coin producing
Coin=Heads as a result (i.e., tr5(1) = ({Coin=Heads},0.49)) whereas in the other case the
robot fails to grab the coin (i.e., tr5(1) = (0,0.02)) leaving Coin= Heads to hold. These two

traces are also the only traces of this world w.r.t. D¢.
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However, for some candidate traces tr there exists no well-behaved world W such that ¢r
is a trace of W, e.g. there is no well-behaved world w.r.t. D¢ as in example [3.6] having trace
(({Coin=Tails},1)@X) as ({Coin="Tails}, 1) is not an initial choice for D¢

Definition is now generalised to domain descriptions:

Definition 3.28 (Trace of a Domain Description). Given a candidate trace tr, if there exists a
(well-behaved) world W such that ¢r € TR%V , then tr is said to be a trace of D. For a trace tr

of D, Wy, denotes the corresponding well-behaved world.

Definition 3.29 (Evaluation of a Trace). Let ¢r be a candidate trace. The evaluation of tr,

written €(¢r), is defined as:

e(tr) = [[r(tr(1)) (3.9)

Iedom™ (tr)

Definition 3.30 (Evaluation of a Narrative). Given a p-proposition p of the form
“A performed-at I with-prob P if-holds 6”, the evaluation of p w.r.t. W is defined as

1 it W || [9]QT
e(p, W)= ¢ P* if W || [9)QI and W |j= [A]QT (3.10)
1— Pt ifW | [f]QI and W |= [-A]QT

For an action narrative N (see definition [3.12)) the previous definition is extended to:

(N, W) =[] elp, ™). (3.11)
peEN

and ep (W) is shorthand for e(narr(D), W). Conventionally, €((), W) = 1 for all worlds W'.

Notice that, from eqgs. (3.10) and (3.T1)), it follows that p-propositions are only dependent
on the current state of the environment (see ¢ in eq. (3.10)), and that p-propositions of the form
“A performed-at I” (i.e. when 6 = T in eq. (3.10)) are independent from each other.

Example 3.18. Recall world W’ from example Since W' |F£ [Tuberculosis = Latent| QT
for all instants I € Zr, the precondition of axiom schema[T3|is never satisfied, hence e(p, W') =
1 for all instances p of[T5} Since W' |= [Exposure= 1]Q0, e(T6, W') = 1—25/100 = 75/100
and since W’ |= [Exposure=_1]@2, ¢(TZAW') = 1 — 9/10 = 1/10. Therefore, ep, (W) =
75/100 - 1/10 = 75/1000.

The two definitions that follow introduce functions that assign a numerical weight to each
world W € VW which is taken to represent the degree of plausibility of that world. While
definition defines the set of all such possible functions, definition defines a specific
function, called a model, which will later on be shown to satisfy the axioms of probability.

Definition 3.31 ([0, 1]-interpretation). A [0,1]-interpretation is a function from W to [0, 1].

Definition 3.32 (Model). A model of a domain description D is a [0, 1]-interpretation Mp such
that
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1. If W € W is not well-behaved w.r.t. D,

Mp(W) =0 (3.12)
2. W € W is well-behaved w.r.t. D,
Mp(W) =ep(W) - ) etr) (3.13)
treTRY

Example 3.19. Let D¢ be as in example [3.6) and W3 be as example 3.9] As discussed in
example 3.17, W3 has exactly two traces try = (ic1, ec) and trf = (ic1,ecs). Equations (3.9)

and (3.13)) yield:
Mp,, (Ws) = e(trh) + e(tr]) = 0.49 + 0.02 = 0.51

Similarly, Wi as in example B.9 has a unique trace
(({Coin=Heads},1)Qx, ({ Coin="Tails},0.49)@Q1), and therefore Mp, (W7) = 0.49.

Proposition 3.1. A domain description D has a unique model.

Proof. This can be derived from definition by considering that Mp (W) is calculated as a
product of functions of the states of . g

Definition 3.33. The model Mp is extended to a function Mp : & — [0, 1] over i-formulas in
the following way:
Mp(p) =) Mp(W) (3.14)
WikEe
If ¢ is an i-formula such that Mp()) # 0, then the function Mp(- | ) : & — [0,1] is

defined as follows:
Mp(p A1)

Mp (1)

Definition 3.34 (Entailment for Domain Descriptions). Given a domain description D and two

Mp(p | ¥) =

i-formulas ¢ and 1, the h-proposition “ holds-with-prob P is entailed by D iff Mp(p) = P.
This can be written
D |= ¢ holds-with-prob P

The conditional h-proposition “given 1), ¢ holds-with-prob P is entailed by D iff Mp(¢y |
1) = P and write
(D | ¥) | ¢ holds-with-prob P

or equivalently
D | given v, ¢ holds-with-prob P

Example 3.20. For D¢ as in example the only well-behaved world W such that W |=
[Coin=Heads|Q2 is W3. Definition and example yield

Mp, ([Coin=Heads|Q2) = Mp_(W3) = 0.51.
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Similarly, [Coin= Heads|Q0 yields
Mp,. ([Coin=Heads|Q0) = Mp,(W1) + Mp,(W3) =1

and from this it follows that D¢ entails the two following h-propositions:
[Coin= Heads|@Q2 holds-with-prob 0.51,

[Coin= Heads|Q0 holds-with-prob 1.

3.3 Properties of a model

As shown in section [3.2] worlds are possible histories of what could have happened in a given
scenario modelled by an appropriate domain description. Notice also that worlds are mutually
exclusive, in the sense that if one of them is believed to be the one representing the “true”
history, then the others cannot be believed to be also true. Therefore, given a domain D, belief
in a given world can be represented by a random variable (see section [2.2.1)) with domain the
set Wp of well-behaved worlds w.r.t. D. The remainder of this section aims at proving that the
model Mp is indeed a probability distribution satisfying constraint (2.3).

Furthermore, consider the following adaptation of definition [2.3]to the present context:

Definition 3.35 (Probability Function over i-Formulas). A probability function over i-formulas
is a function p : & — [0, 1] such that:

1. if |= ¢, then p(p) = 1,

2. if ¢ | = for two i-formulas ¢ and 1), then p(p V ¥) = p(p) + p(P).

The associated conditional probability of ¢ given v is defined as

plp A Y)

D
ple | ¥) = (@) (3.15)

for p(y) # 0.

In the remainder of this section it is proved that both Mp and Mp(- | ¢) are probability
functions.

In order to do so, some auxiliary definitions and prove intermediate results are introduced
first:

Definition 3.36 (Restricted Domain Description). If D is a domain description, D<; denotes
the domain description obtained from D by removing all the p-propositions occurring at instants
> I, and similarly D.; denotes the domain description obtained from D by removing all the
p-propositions occurring at instants > I. Finally, Dy denotes the domain description obtained

from D by removing all p-propositions, i.e. D<(—).
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Definition 3.37 (Fluent-indistinguishability, Indistinguishability). A world W is said to be
fluent-indistinguishable from W' up to an instant I if and only if W (I")[F = W'(I') | F for all
instants I’ such that I’ < I. W is said to be indistinguishable from W' up to an instant I if
and only if it is fluent indistinguishable from W’ up to I and if for all I’ < I it also satisfies
A e W(I')if and only if A € W/(I').

The following example illustrates the two concepts of restricted domain description and

indistinguishability:

Example 3.21. Let D’ be the domain description obtained from D¢ as in example [3.6]by adding

the following p-proposition:
(C5) Toss performed-at 2

and consider the following well-behaved world w.r.t. D’:
W'(0) = {Coin=Heads, —~Toss},
W'(1) = W'(2) = {Coin=Heads, Toss},
W'(I) = {Coin="Tails, —~Toss} for all I > 2

that can be visualised as follows:

{Coin=Heads, {Coin=Heads, {Coin=Heads, {Coin=Tails,
Toss=1} Toss=T} Toss=T} Toss=1}
1474 % % % %
0 1 2 >3

W' has exactly two traces:
(({Coin=Heads},1)QY, ({Coin=Heads},0.49)Q1, ({ Coin=Tails},0.49)Q2)

and
(({Coin=Heads},1)Q¥, ((,0.02)Q1, ({Coin=Tails}, 0.49)Q2)

Consider D’, and notice that it coincides with D¢. There is a unique well-behaved world
w.r.t. D¢ that is indistinguishable from W’ up to 2, and this world is W3 as in example

Definition 3.38 (Transition Set, Transition Function). Given a domain description D, a state S
and a fluent state S’, the transition set tsetp (S, S’ ) is defined as follows: if D contains a (unique)
c-proposition ¢ such that S entails body(c), then tsetp(S,S’) = {O € head(c) | (S|F) @
x(0) = S'} if there is no such c-proposition and S|F = S’ then tser(S,S') = {(0,1)};
otherwise, tsetp(S, S') = 0.

The transition function for a domain description D is the function tp : S x S — [0,1]
defined by tp (S, 5") = n(tserp(S, ) (recall deﬁnitionfor the meaning of 7).

Informally, the transition function gives the probability of moving from state S to the fluent
state S’ within D, independently of its particular narrative.

The transition function for example [3.6|can be visualised as follows:
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{Toss}, 0.49

{Toss}, 0.51 {Toss}, 0.51

{Toss}, 0.49

where the nodes represent fluent states (in this case the two nodes H and T' stand for the fluent
states {Coin=Heads} and {Coin=Tails} respectively), and if p = tp(S,5’) for some state
S and some fluent state S’, then there is an arrow from a node representing S|F to a node
representing S’ which is labelled S [ A, p. The arrow is omitted in some trivial cases (for instance
when the set of actions is empty). Similarly, the transition function for example can be
pictured as in fig.[3.1]

At this point it is worth recalling that the model of a domain description is a function over
worlds (i.e., entire time-lines). The transition function, on the other hand, describes how the
future of an agent in a particular state of the world can branch according to the specific action
being performed. The next proposition uses the transition function to illustrate the relationship
between the narrative and causal aspect of a domain by relating those worlds whose evolution
matches each others’ up to some instant and then diverges due to the execution of different
actions. This is done by using the transition function to conveniently express Mp (W) in terms

of the model of a well-behaved world w.r.t. an appropriately restricted domain description:

Proposition 3.2. Let D be an arbitrary domain description and W be a world such that
occp(W) = {I,...,I,} # 0 where I,..., I, are ordered w.r.t. <, and let ¢ be the c-
proposition activated in W at I, w.r.t. D. Then W is well-behaved w.r.t. D if and only if
(i) there exists a unique world W’ well-behaved w.r.t. D, which is indistinguishable from W
up to I, (i) for all I > I,,, W(I)|F = ngln where Sszn = (W(I,)IF) @ x(O) for some
outcome O € head(c), and (iii) W satisfies|CWA for actions| w.r.t. D.

Furthermore,

ep(W)

Moy = o )

Mp_, (W) -tp(W(I,),5%7) (3.16)
Proof. “Only if” subproof. Let W be well-behaved w.r.t. D. Let tr =
(tr(X)QX, tr(I1)@Iy, ..., tr(I,)@QlI,) be an arbitrary trace of W w.r.t. D and consider the can-
didate trace tr’ = (tr(X)QX, tr(I,)QI, ..., tr(l,—1)QI,_1).

Since W is well-behaved w.r.t. D, since D and D, differ only by one or more p-
propositions occurring at I,,, and since tr’ does not mention any instant strictly greater than
I,,—1, it is possible to construct a world W’ which has trace tr’ w.r.t. Dy, and which is fluent-
indistinguishable from W up to instant I,, by simply considering that W’ (0)[F = x(¢r' (X)) =
W (0)|F makes the [[nitial Condition| satisfied w.r.t. Dy, as both D and D, share the same

i-proposition, and a similar argument applies to the [Justified Change Condition| w.r.t. Dy, .

The [Justified Change Condition| w.r.t. D and D, guarantees that for all instants I < I,,,
W(IDF=trX)® - -®tr(l;) =tr'X)&---&tr'(I;) = W(I)|F for some i < n, hence W
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TM,1
TM,1/10
TM,1 RaB4
TM,1/13
Figure 3.1: Transition  function for example Node RpBpr represents
the  fluent state {Rash= Present, Bacteria = Resistant}, node RpBw represents
the  fluent  state {Rash= Present, Bacteria = Weak}, RAoBy represents the  flu-
ent  state  {Rash=Absent, Bacteria=Absent}, node  RaBgr  represents  the  fluent

state  {Rash=Absent, Bacteria=Resistant}, =~ node RpBa represents the fluent state
{Rash = Present, Bacteria=Absent}, and label T M represents {TakesMedicine=T }.

is fluent-indistinguishable from W’ up to I,,. Such a W/ might not be unique, but choosing W'
astosatisfty A € W(I) < Ae W/(I)forall I < I,and A ¢ W/(I)forall A€ Aand I > I,
guarantees the uniqueness of W’. Hence, (i) holds. Since W is well-behaved w.r.t. D and I,,
is the greatest element in occp, x(tr(I,)) = O for some O € head(c) and Justified Change
implies W (I)[F = (W (I,)|F) @ x(tr(I)) forall I > I,,, and since SZVLI is this unique fluent
state, (ii) is also satisfied. Finally, (iii) holds since by hypothesis W is well-behaved w.r.t. D.
“If” subproof. Let W’ be a well-behaved world w.rt. Dy, and let occp_, (W) =
{I,...,In—1}. Lettr’ = (tr(X)QX,tr([1)QI, ..., tr(I,—1)QI,_1) be a trace of W’ w.r.t.
D, and construct the candidate trace tr = (tr(X)QX, tr([;)@QIy,...,O0QI,) for the outcome
O € head(c) such that (W (I)[F) = (W(I,)|F) @ x(O) for all I > I,,. Since W' is well-
behaved w.r.t. D, and indistinguishable from W up to I,, by hypothesis (i), it is possible to
conclude that ¢r is a trace of W’ w.r.t. D by noticing again that both D and D, share the

same i-proposition, and a similar argument applies for the Justified Change Condition| w.r.t. D

(also using hypothesis (ii)). Since W also satisfies [CWA for actions| by hypothesis (iii), it is

well-behaved.

“Furthermore” subproof. Let S’E/In and c be as in the statement of the proposition. The
above proof implies that any trace tr of W w.r.t. D can be constructed from a trace ¢’ of an
appropriate W’ by letting tr(I;) = tr'(1;) for i < n and tr(I,) = x(O) for some O € head(c)
such that S'XVIn = (W(I,)|F) @ x(O) (and notice that there is at least one such outcome O
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since W is well-behaved), i.e. for some O € tsetp(W (1), S’E/In)
Definition [3.32| now implies

Mp(W) = ep(W) - _e(tr)

treTRY
ep(W) ~
= ey, (W) P s 1,).8%,)) - 3 et
" tTIGTR%V;In
ep(W)

= T ~win tD(W(In)> Szlfn) | €Dy, (W/) : Z 6(tT,)

€ M}/
P (W) tr'eTRY.
ep(W) SW /
= —F = - tp(W(l,),S - M W’).
6'D<In (W/) D( ( n)7 >In) D<In( )
which is well defined since e(N, W) > 0 for any action narrative N and world V. g

Corollary 3.2.1. Let D be any domain description and let I be any instant. Then W is well-
behaved w.r.t. D<; if and only if (i) there exists a unique world W’ well-behaved w.r.t. Do
which is indistinguishable from W up to I, (ii) for all I’ > I then W (I")[F = S’EVI where

(W(I)IF) ® x(0) for some O € head(cpropp_, (W, 1)) if I € occp_, (W)

v |
W(I)|F otherwise

and (iii) W satisfies (CWA for actions|w.r.t. D<;.
Furthermore, for 5’3’1” the unique fluent state taken by W at instants I > I;:

€ <1(W) / O
EDD;(VV') Mp_, (W) - tp(W(I), 5%)) 3.17)

MDSI (W) =
Proof. If I € ocep. , (W) then the corollary follows directly from proposition since the
domain description D« satisfies all of its hypotheses, so only need to consider the case in
which I ¢ occp_, (W). Proof (of the “if”, “only if”” and “furthermore” parts) is similar to that
of proposition in the easier case where the two worlds W and W’ can be taken to have the

exact same trace as no c-proposition is activated in W at I.
O

Lemma 3.1 (Transition Function Normalisation). For any D and any state S,
> tp(8,8) = 1.
S'es

Proof. By cases:

Case 1. If there is no c-proposition ¢ such that S entails body(c), then it follows from
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definition [3.38] that
> (S, 8) = tp(S, SIF) = w((0,1)) =1
S'eS
Case 2. Let ¢ be the unique c-proposition S entails body(c). Then, applying the definition
of tp from definition [3.38] gives

> tp(8,8) =) w(tserp(S, ")) (3.18)

SreS S'eS

Notice that for a fixed outcome O, it is impossible to have O € tserp(S,S’) and O €
tsetp (S, S") for two distinct fluent states S’, S as this would imply S’ = (S|F)&x(0) = 5.
Hence it is sufficient to show that {O € tsetp(S, S’) | ' € S} = head(c), as this implies that
the sum (3.18) equals 1 since w(head(c)) = 1 by definition of a c-proposition.

By definition of a transition set, {O € serp(S,5") | §' € S} C head(c). Conversely,
for any O € head(c), O € tsetp(S,S’) for S’ = (S|F) & x(O), hence head(c) C {O €
tsetp(S,S") | S’ € S} which ends the proof of lemma. O

Lemma 3.2 (Action Narrative Normalisation). Let D be any domain description, I be any
instant and N7 be the (possibly empty) action narrative that contains exactly those p-propositions
in D that have instant /. Let {W7, ..., W,,} be a maximal set of well-behaved worlds w.r.t. D
such that W;(I)[F = W;(I)[F forall 1 <i,j <mand W;(I) # W;(I) when ¢ # j. Then,
m
Z e(N,Wj) =1

J=1

Proof. Fix a maximal set {1, ..., W,,} as in the hypothesis and let S be the fluent state such
that S = W;(I)|F forall 1 < i < m. Let {pi,...,px} be a maximal set of p-propositions in
Ny such that S = 6; and PiJr < 1forall 1 < i < k, where each p; has the form

A; performed-at I with-prob P;' if-holds 6

From maximality of {1, ..., W,,} and [CWA for actions| it follows that m = 2¥, with
every world in this set having a different assignment of actions Ay, ..., A to truth values at

instant I. Let Z = (x1,...,zk) be a k-dimensional vector representing a specific assignment
of Ai,..., Ag to truth values, where each z; € {0,1}. Therefore the sum > 7", e(Ny, W)

evaluates to:

k k
Z (H(PZ—O—)JJL (1 _ Pi—i-)l—xq:) _ H (Pz+ + (1 _ F)Z-‘r)) -1
T =1 =1

O]

Definition 3.39 (hasInstant). For a p-proposition p, hasInstant(p) stands for the instant p has,
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and for an action narrative /N this is extended to:

hasInstants(N') = U hasInstant(p)
pEN

At this point, all the machinery to prove some important properties of the model of a domain
description is available.

The following proposition shows that adding p-propositions having instants I > I’ (for
some fixed /0) to a a domain description D does not affect the value of the model of i-formulas
[p)@r” for 1" < I

Proposition 3.3 (Causality). Let D and D' = D U Np be two domain descriptions,
where N is an action narrative such that all p-propositions in N have instant I’ >
max ez hasinstants(narr(D)) if narr(D) is non-empty, and it can take any value otherwise.

Then, for any I < I’ and any formula 6,
Mp ([0]@I) = Mp([#]Qrl)

Proof. For a generic domain description D, let [W’]5 be the set of well-behaved worlds w.r.t.
D that are indistinguishable from W’ up to I. Corollary and lemma [3.1] yield:

Mp([0)QI) =~ Mp/(W)
wiEplal
CormZ Z ED' - Mp(W') - tpr (W (I, S>I')
w'l=lolar WE[W’
— ZM Z GDI(W) o (W(I'),547)

W/
wiEBler  wewnl, (W)

According to corollary [3.2.1| every world in [W’]g, can be reconstructed from its state
at instant I’ and the unique state S’ that it takes at instants strictly greater than I’. Let
{Wh,..., Wy} be a maximal set of well-behaved worlds such that W;(I) = W;(I) when

i # j for 1 <i,j < m. Then, the above chain of equalities continues as follows:

w'|=[0)@r J=1

LnBAN Mp (W) = Mp([6]@T)
W'|=[g)Ql

and notice that it is possible to apply lemma since ig((v‘?,/f)) = e(Np, Wj). O]

Proposition 3.4 (Model is a Probability Distribution). Let D be any domain description. Then,
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= D is a probability distribution in the sense that it satisfies eq. (2.3) from section [2.2.1] i.e.

> Mp(W) =1

wew

Proof. Need to show that
> Mp(W)=> Mp(W) (3.19)
wew WewWp

evaluates to 1, where the second equality is guaranteed by the fact that Mp (W) = 0 when W
is not well-behaved.

(3.19) is proved by induction on the size of hasInstants(narr(D)) = {I1,...,I,} where
Ii,..., I, are ordered w.r.t. <.

Base case. Consider Dy first. Since there are no p-propositions in Dy, hasInstants(Dy) = 0,
ep, (W) = 0 for all worlds W, and the sum (3.19) becomes:

Sl Do) (3.20)

WeWp \ tre TRE,

Let “initially-one-of {O1, ..., O,,}” be the (unique) i-proposition in Dy. As a first step, it
is shown the well-behaved worlds w.r.t. Dy are exactly those W's taking the form W (I)[F =
Xx(O;) and = A € W(I) for all instants [ and all action symbols A.

If W has this form, then it satisfies (CWA for actions| (as there are no p-propositions in Dy,
and this is consistent with =A € W ([) for all I and A), it satisfies the [Initial Condition| w.r.t.
Dy as O; is an initial choice w.r.t. Dy and W (0)|F = x(O;) by definition, and finally it also
satisfies the Justified Change Condition|in the form as occp, (W) = (), which in turn forces
W(I)|F = W(I')|F forall I and I'. The proof that if W is well-behaved then it is of the form

above is an inversion of the previous chain of implications.

Notice that each of these well-behaved worlds is consistent with a unique trace (O;QX) for
some 1 < ¢ < m, and let W; denote the world having trace (0;@Qx) for 1 < i < m. Hence
Wp, = {W1,...,Wp}. For such W;,

> w(tr(x) = m(0;)

trETR;Vé
and (3.20) evaluates to:
m
> w(0) =D w(0) =1 (3.21)
WiEWDQ) =1

as m({O1, ..., Op}) = 1 by definition 3.9 of an i-proposition.
Inductive step. Assume that Mp_, (T) = 1 for some ¢ < n. Using proposition
MDSIZ- (T) = MD<I,L-(T) =L
O

An immediate consequence of the previous proposition is the following one:
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Corollary 3.4.1. For any given domain description D, Wp # ).

Notice that since 3y Mp(W) = 1 for any domain description D, it follows that for

any i-formula ¢ and any tautological i-formula T the following holds:
Mp(p) = Mp(p | T)

Finally, the following is the central result about Mp:

Proposition 3.5. Given a model Mp of a domain description D, its extension to Mp is a prob-

ability function.

Proof. 1t is sufficient to show that for any domain description, requirements [I| and [2] as in defi-
nition are always satisfied by a model of that domain description. Requirement [1|follows
directly from proposition For requirement [2] let ¢ and 1 be two i-formulas such that
¢ |[= . Obviously, since ¢ |= - if for some W € W, W |= ¢, then W | ¢ and

vice-versa, hence

Mp(pv ) => Mp(W)=> Mp(W)+>_ Mp(W) = Mp(p) + Mp(s).
WlEpVvy WlEe W=y

O]

Corollary 3.5.1. If ¢ is an i-formula such that Mp(v)) # 0, then Mp(- | 9) is a probability

function.

Proof. Follows directly from property [6] from proposition [2.T]and proposition [3.5] O

3.4 Example entailments

This section provides some example entailments from domain descriptions introduced in this

chapter.

Example 3.22. D¢ as in example [3.6]entails, among others:

(|EC1) T holds-with-prob 1

(|EC2) [Coin=Tails|@Q0 holds-with-prob 0
(|[EC3) [Toss=T]@1 holds-with-prob 1
(|EC4) [Coin=Heads|@Q2 holds-with-prob 0.51

(|[ECS5) [Coin=Heads|Q1 A [Coin=Tails)Q3
holds-with-prob 0.49

Example 3.23 (Decay and Persistence). Consider the following (abstract) domain description

DDPC

(DP1) F takes-values {T, L}
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Figure 3.2: Probability of [F'=T|QI in Dpp as in example

(DP2) initially-one-of {({F=T},1)}
(DP3) A causes-one-of {({F'=1},1/10)}
(DP4) A performed-at I, for I = {0,1,2} and I = {12,...,20}

Dpp entails the h-proposition “[F'=T]QI holds-with-prob P for the following instant-
probability pairs (see fig. 3.2): (0,1), (1,0.9), (2,0.81), (3,0.729), (4,0.729), (5,0.729),
(6,0.729), (7,0.729), (8,0.729), (9,0.729), (10,0.729), (11,0.729), (12,0.729), (13,0.6561),
(14,0.59049), (15,0.531441), (16,0.478297), (17,0.430467), (18,0.38742), (19, 0.348678),
(20,0.313811) and (I, 0.28243), for all I > 20.

This provides a first glimpse at how decay and persistence work in PEC. As it is evident
from the figure, repeated occurrence of action A from instant O to instant 2 and then again
from instant 12 to instant 20 makes the probability of F'=T decay in intervals [0, 3] and
[12,21]. A similar mechanism is exploited in the Tuberculosis example to make the proba-
bility of Tuberculosis = Latent decay. When no action is performed, the probability of F'=T

does not change as an effect of persistence, see intervals [3, 12] and [21, +o0].

Example 3.24. The following h-propositions are entailed by D4 as in example 3.7

(A1) [Bacteria= Weak]@0 holds-with-prob 0.9

(|FA2) [Bacteria= Weak N\ Rash=Absent]Q0
holds-with-prob 0

(|=A3) [Bacteria=Resistant|@Q2 holds-with-prob 0.27
(|EA4) [Rash=Absent|Q4 holds-with-prob 0.733846

(|EAS) [Bacteria=Absent \ Rash=Absent|@Q4
holds-with-prob 0.650769
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Notice that from [[[=A4| and || =AJS|it is possible to calculate the conditional probability that

the medicine has cured the infection at instant 4, i.e. [Bacteria=Absent]|@4, given that no sign
of rash is visible at the end of the treatment, i.e. [Rash=Absent]@Q4. Applying eq. gives
that this probability equals 0.650769/0.733846 = 0.8867923243. Therefore, using the syntax
for conditional entailment defined in definition [3.34]

D || given [Rash= Absent|@Q4, [Bacteria = Absent]@Q4 holds-with-prob 0.8867923243
or equivalently

(D | [Rash= Absent]Q4) |E= [Bacteria=Absent|@Q4 holds-with-prob 0.8867923243

3.5 Summary

This chapter introduces PEC+, an Event Calculus style action language for reasoning about
probabilistic causal and narrative information. Its action language style syntax, defined in sec-
tion [3.1} is similar to that of Language £ [36] and Modular-£ [37]. Its semantics is given in
terms of possible worlds which constitute possible evolutions of the domain starting from an
initial state, and builds on that of Epistemic Functional Event Calculus [42]. These worlds are
then assigned a weight by means of a model function (see definition [3.32)) which represents the
degree of plausibility these worlds have. This model function is then shown to satisfy some

properties, most importantly that it is a probability distribution (see proposition [3.4).



Chapter 4

ASP Implementation of PEC+

This chapter describes an implementation of PEC+. It presents a translation procedure from
PEC+ domain descriptions into ASP programs, and proves its correctness under stable models
semantics.

The idea is of first transforming a domain description into an ASP program in a such a
way that there is a one-to-one correspondence between answer sets of the ASP program and
traces of the domain description. This transformation is described in sections .T|and [4.2]and its
correctness is demonstrated in section #.3] In order to compute entailments of h-propositions,
these ASP programs are then augmented with an ASP translation of the i-formula contained
in the h-proposition of interest, called a query, and the answer sets of these augmented ASP
programs correspond to those traces of the domain description compatible with the query. Some
examples and brief remarks about the efficiency of this computational method conclude the
chapter in section 4.4}

For the purposes of translation, it is assumed that the underlying PEC+ domain language
has been adjusted so that the set Z of instants is a finite interval {0, 1,. .., maxinst} of N, with
0 = 0 and <=<y being the usual ordering relation between naturals. Furthermore, since in
logic programming lowercase letters are conventionally used for constants, we switch to that
convention by letting lower case letters be the logic programming counterparts of (upper case)
constants in PEC+ so that e.g. coin is the translation of the fluent Coin and f is the translation

of fluent F. Literals of the form X =V are translated into pairs of the form (x, v).

4.1 Domain-dependent part of the translation

4.1.1 An example translation
To aid the reader’s intuition, in this subsection we list the full domain-dependent part of the
translation of D¢ as in example

Example 4.1 (Translation of the Coin Toss Domain). Let D¢ be as in example The trans-
lation of D¢ results in the following set of axioms:

(TCO) fluent(coin).
action(toss).

instant(0..maxinst).

63
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(TC1) possVal(coin, heads).

possVal(coin, tails).

(TC2) belongsTo((coin, heads), idy).
initialCondition((id9,1)).

(TC3) belongsTo((coin, heads),id?).
causedOutcome((id},49/100), I) +
holds(((toss, true), I)).

(TC4) belongsTo((coin, tails), id}).
causedOutcome((id},49/100), I) +
holds(((toss, true), I)).

(TCS) causedOutcome((id},2/100),1) +
holds(((toss, true), I)).

(TC6) performed(toss,1,1).

where, informally, the set of axioms is the translation of the three sorts F, A and Z; ax-

ioms [TCI] [TC2] and [TC6| are the translation of propositions [C1] [CZ] and [C4] respectively; ax-
ioms to together give the translation of the c-proposition with each of them cor-

responding to one of its outcomes. The terms id$, id}, id3, idzl,) are new terms in the program as

explained in the next section.

4.1.2 The general domain-dependent translation procedure

The three sorts F, A and Z are translated to the three sets {fluent(f) | F' € F}, {action(a) |

A € A} and {instant(i) | I € T} respectively (see e.g. axiom[TC0|in example [4.1)).
Let ¢ be a c-proposition of the form (3.2)):

6 causes-one-of {O1,0s,...,0,,}

but first considering the case where 6 is a conjunction of the form X; = V3 A--- A X; =
Vj. Given a conjunction # of this form, we write holds([6]@1I) as a shorthand for the logic

programming conjunction

holds(((x1,v1),14)), - .., holds(((x;,v;),1)).

We fix an enumeration (without repetitions) of all the c-propositions in D. Let the c-
proposition ¢ referred to above be the nth proposition occurring in this enumeration. Then,

c 18 translated to:

{ belongsTo((x,v),id}) |i=1,...,m, X =V € x(0;) }U
{ causedOutcome((id}, p),I) <— holds([]QI) | i =1,...,m, P =w(0;)}
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where id7, . . ., id], are new constants in the underlying ASP language. Each of these constants
id}} represents the partial fluent state x(O;) in the body of the nth c-proposition, and belongsTo

represents the € relation between literals and partial fluent states.

Example 4.2. Axioms[TC3|to are the translation of the c-proposition|[C3|from example[3.6]

As a further example, consider the c-proposition [A5] in example [3.7] and notice that two
outcomes occur in it, i.e. ({Bacteria=Absent, Rash = Absent},1/13) and (0),4/13). If we fix
the enumeration of c-propositions in D 4 such that proposition |A4]is first and proposition [A5|is

second, [AJ]is translated to:

(TA1) belongsTo((bacteria, absent),id?).
belongsTo((rash, absent),id?).
causedOutcome((id3,1/13),1) «

holds((takesMedicine, true), I),
holds((bacteria, resistant), I ).

(TA2) causedOutcome((id3,4/13),1) +
holds((takesMedicine, true), I ),
holds((bacteria, resistant), I ).

If 4 is not a conjunction of literals, then we represent it in Disjunctive Normal Form, i.e. in

the form 61 V - - - V 0, where 01, . . ., 0, are conjunctions of literals, and then translate ¢ to

{ belongsTo((x,v),id}) |i=1,...,m, X =V € x(0;) }U
{ causedOutcome((id}}, p), I) < holds([01)QI); ...; holds([0,|QI) |i=1,...,m, P =
m(0:) }

We write Cp for the set of all translated c-propositions in D.

The translation of i-propositions works in a very similar way: if J is an i-proposition of the

general form (3.3):
initially-one-of {O1,0s,...,0,,}

then its translation is given by the following set of axioms:

{ belongsTo((z,v),id}) |i=1,...,m, X =V € x(0;) }U
{initialCondition((id?,p)) | i = 1,...,m, P = 7(0;) }

and we write Ip for the set of all translated i-propositions in D.

Example 4.3. An example of a translated i-proposition is the set of axioms[TC2] that translate

the i-proposition[C2]as in example
The i-proposition [A3| from example [3.7]is translated to:

(TA3) belongsTo((bacteria, weak),idy).
belongsTo((rash, present), idY).
initialCondition((id9, 9/10)).
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(TA4) belongsTo((bacteria, absent), id9).
belongsTo((rash, present), id).
initialCondition((id3, 1/10)).

Any p-proposition of the form (3.4)) is translated to:
performed(a,i,pt) < holds([0]QI).

and we write Pp for the set of all translated p-propositions in D,

Finally, any v-proposition of the form (3.1)) is translated to:
{possVal(f,v;) |1 <i<n}

and we write Vp for the set of all translated v-propositions in D.

Example 4.4. The v-proposition|[C7|and p-proposition[C4|from from example [3.6]are translated

to axioms and in example [4.1] respectively, while propositions [A1] [A2] [A6] [A7] from
example 3.7 are translated to:

(TAS) possVal(bacteria, weak).
possVal(bacteria, resistant).

possVal(bacteria, absent).

(TA6) possVal(rash, present).
possVal(rash, absent).

(TA7) performed(takesMedicine,1,1).

(TA8) performed(takesMedicine,3,1).

Finally, p-propositions from the schema[I3]are translated to:

(TT1) performed(reactivation, i, 8/10%) «
holds(((tuberculosis, latent), 1)).

fori € {0,...,50}.

We write I1p for the set of translated propositions from D, e.g. if D¢ is as in example
IIp, = {TCOTCI, ... |TC6l}.

4.2 Domain-independent part of the translation
We define the domain-independent part of our theory to be:

(PEC1) possVal( A, true) < action(A).
possVal( A, false) < action(A).

(PEC2) fluentOrAction(X) < fluent(X); action(X).
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(PEC3) literal((X,V)) < possVal(X,V).

(PEC4) iLiteral(((X,V), 1)) < possVal(X, V), instant(I).
(PECS) definitelyPerformed(A, I) < performed(A,I,1).
(PEC6) possiblyPerformed(A, I) < performed(A, I, P).

(PECT) 1{ holds(((X, V), 1)) : iLiteral(((X, V), I)) }1
< instant(1), fluentOrAction(X).

(PEC8) inOcc(I) < instant(I), causedOutcome(O, I).

(PEC9) 1{ effectChoice(O,I) : causedOutcome(O,I) }1
«— inOcc(I).

(PEC10) 1{ initialChoice(O) : initialCondition(O) }1.

(PEC11) L « action(A), instant(I),
holds(((A, true), I)), not possiblyPerformed(A, I).

(PEC12) L < action(A), instant(1),
holds(((A,false),I)), definitelyPerformed(A,I).

(PEC13) L « initialChoice((S, P)), literal(L),
belongsTo(L, S), not holds((L,0)).

(PEC14) L « instant(I), effectChoice((X, P),I),
fluent(F), belongsTo((F, V), X),
not holds(((F,V),I + 1)), I < maxinst.

(PEC15) L « instant(I), fluent(F'), not holds(((F,V),I)),
effectChoice((X, P), I), not belongsTo((F,V), X),
holds(((F,V),I+ 1)), I < maxinst.

(PEC16) L < fluent(F), instant(I), holds(((F,V),I)),
not inOcc(I), not holds(((F,V),I + 1)),

I < maxinst.

(PEC17) eval(A, I, P) < action(A), instant(I),
performed(A, I, P), holds(((A, true),I)).

(PEC18) eval(A,I,1 — P) <« action(A), instant(I),
performed(A, I, P), holds(((A, false), I)).

Informally, axiom states that all actions are boolean (see definition [3.1); axiom [PEC2]
defines a characteristic predicate for 7 U.A; axioms[PEC3]and[PEC4|define literals and i-literals,
respectively. Axioms [PEC)| and [PEC6] define the two auxiliary predicates definitelyPerformed
and possiblyPerformed representing the sets of actions and instants such that A is certainly
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performed at I (i.e., with probability 1) and such that A might have been performed at I (i.e.,
with a probability greater than 0) respectively.
Axioms [PEC7| to [PECIS8]| correspond to the definitions introduced in the previous section,

namely: axiom corresponds to definition [3.14] axiom defines a characteristic pred-
icate for occp as in definition axioms [PECY| and [PECI4| to [PECI6| correspond to jus-
tified change, axioms [PECT0 and [PECT3| corresponds to the initial condition, axioms
and [PECI2|correspond to CWA for actions, axioms [PECI7|and [PECI8|implement eq. (3.10).

We denote the domain-independent part of our theory, i.e. axioms[PECI|to[PECIS] by I1;.
Notice that axioms [PECI I|to[PECI6|are constraints, and in the following will be referred to as
M.

4.3 Correctness

We now show that the provided translation is sound and complete with respect to the definitions
given in chapter 3] in the sense that there is a one-to-one correspondence between the traces of
a domain description and the answer sets of its corresponding ASP program. This proof relies

on the Splitting Theorem [41]], a useful tool to obtain the answer sets of a ground program.

4.3.1 Splitting Set Theorem

A set U of ground atoms is a splitting set for a ground program II if, for each rule in II, if U
contains some atom in the head of the rule, then it also contains all the atoms occurring in that
rule. For instance, if II' = {a < not b,b < ¢, c} then {a,b,c}, 0, {b, c} and {c} are splitting
sets for IT', whereas {a, b}, {a} and {b} are not.

A splitting set U splits an answer set program IT into a bottom program bot;; (I1) and a top
program topy;(II) = 1T\ boty (II). With the program IT’ defined as above, U’ = {c} splits I’
into boty: (II') = {c} and topy, (I') = {a + not b,b <+ c}. So boty (II) contains all the rules
of IT with a member of U as their head.

The splitting set theorem states that the answer sets of II are exactly those that can be ex-
pressed as X UY for some X that is an answer set of boty;(1I) and some Y that is an answer
set of ey (topy;(I1), X). The set egs(topy; (I1), X) denotes the partial evaluation of the program
topy; (IT) w.rt. U defined as follows: a rule r is in e/ (fopy; (I1), X) if and only if there exists a
rule 7’ € topy;(IT) such that (i) all positive literals that are both in the body of 7' and in U are also
in X, (ii) there is no negative literal in the body of 7/ whose corresponding atom is in both U and
X, and (iii) the rule r is obtained from 7’ by removing all literals from the body of 7’ whose cor-
responding atom is in U. If we consider II' and U’ again and let X’ be the only answer set {c}
of boty:(11') = {c}, 1" = ey (topy(I'), X') = {a < not b, b} and notice that now we can
split IT” itself. If we let U” = {b}, then bory» (I1") = {b} and 1" = ey (topyn (I1"), X") = 0
for the only answer set X" = {b} of bory» (I1"). The answer sets of the original program IT’ can
now be obtained as X’ U X" U X", where X’ = {c} is the answer set of bory (II'), X" = {b}
is the answer set of boty» (II") = {c} and X" = () is the answer set of IT"". Then, the program
IT" has only one answer set {b, c}.



CHAPTER 4. ASP IMPLEMENTATION OF PEC+ 69

instant (0) instant (1) instant (2) fluent (coin) possVal (coin, heads)
possVal (coin, tails) action(toss) possVal (toss,true) possVal (toss, false)
belongsTo ((coin, heads),id0) belongsTo((coin,tails), id2)
belongsTo ((coin, heads),id3) literal ((coin, heads))
literal ((coin,tails)) literal((toss,true)) literal ((toss, false))

iliteral (((coin,heads),0)) iliteral (((coin,tails),0))
iliteral (((toss,true),0)) iliteral (((toss, false),0))
iliteral (((coin,heads), 1)) iliteral (((coin,tails), 1))
iliteral (((toss,true),1l)) iliteral (((toss, false), 1))
iliteral (((coin,heads),2)) iliteral (((coin,tails),2))
iliteral (((toss,true),2)) iliteral (((toss, false),2))
initialCondition ((id0, 1)) holds(((coin, heads),0))
holds (((toss, false),0)) holds(((coin,heads), 1)) holds(((toss,true), 1))
holds (((coin, heads),2)) holds(((toss, false),2)) performed(toss,1,1)

initialChoice((id0, 1)) possiblyPerformed(toss, 1)
definitelyPerformed(toss,1l) fluentOrAction(coin) fluentOrAction (toss)
causedOutcome ( (1dl,2/100), 1) causedOutcome ( (1d2,49/100),1)
causedOutcome ( (1d3,49/100),1) inOcc (1) effectChoice ((1d3,49/100),1)
eval (toss,1,1)

Figure 4.1: An answer set of llp., UIl;, with D¢ defined as in example This answer set corresponds
to the trace ((Coin=Heads, 1)QX, (Coin=Heads, 0.49)Q1).

Finally, a remark about notation: if the considered language includes predicate symbols,
splitting a program II with respect to some predicates py, . . ., p, means splitting it with respect
to the set U of all groundings of py, ..., p,, and so in this context U = {p1,...,p,} signifies
this set of all groundings.

4.3.2 Basic Properties of Stable Models

In the following, we will use the fact that answer sets of a program consisting only of the
choice rule {a1,...,a,} are the power set {0, {a1},...,{an}, {a1,a2},....{a1,...,an}},
and that answer sets of a constrained choice rule X{ay,...,a,}Y are the answer sets of
{ai,...,a,} with cardinality > X and < Y. Also, we use the fact that the only answer set
of the program {p(X) : ¢(X),q(a1),...,q(an)}, where p(X) : ¢(X) is called a conditional
literal, is {p(a1),...,p(an),q(a1),...,q(ay)}. Notice that conditional literal and choice rules
can be combined so that e.g. answer sets of the program {¢(a,b), q(a,c), q(b,c), 1{p(X) :
q(a, X)}1} are {q(a,b),q(a,c),q(b,c),p(b)} and {q(a,b),q(a,c),q(b,c),p(c)}.  Finally,
constraints are used to eliminate answer sets that satisfy its body, e.g. answer sets
of the program {q(a,b),q(a,c),q(b,c),1{p(X) : q(a,X)}1, L« p(b)} are the answer
sets of {q(a,b),q(a,c),q(b,c),1{p(X) : gq(a,X)}1} that do not satisfy p(b), hence
{q(a,b),q(a,c),q(b,c),p(c)} is its only answer set.

Since the splitting set theorem can only be applied to ground programs, in the following we
will interpret non-ground axioms as shorthand for the set of all their ground instances, e.g. the
axiom p(X) < ¢(X,Y) from the program {p(X) < ¢(X,Y), q(a,b)} is shorthand for the set
{p(a) + q(a,a),p(a) < q(a,b), p(b) + q(b,a),p(b) +- q(b,b)}.

4.3.3 Stable Models of 11; U IIp

This section derives a characterisation of the stable models of the program I1p U I1;.
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Let IT be the program obtained by grounding IIp U I1; \ II-. We split IT with respect to
U = {fluent,action, instant, possVal}. The bottom boty; (1) is guaranteed by the translation
process to have a unique answer set Z, which includes a correct representation of the domain
language L, i.e. of the three sorts F, A and Z and of the function vals (note that the definition
of V is implicitly derived from that of vals and that our implementation is restricted to the case

where <=<y and 0 = 0), meaning that:

fluent(f) € Zp & F € F

action(a) € Zp < A€ A

instant(i) € Zp <1 €T
possVal(f,v) € Zp < F € FUA,V € vals(F)

Let I1y = ey (topy (1), Z) and split it using the set Uy = {fluentOrAction, literal, iLiteral}.
The bottom botyy, (IIy) consists of axioms to Evaluating it w.r.t. Z. gives that it
has answer set Z 4 characterised as follows:

fluentOrAction(x) € Zy < fluent(x) € Zp V action(z) € Zp < X € FUA
literal((x,v)) € Za < possVal(z,v) € Zp < X € FUA,V € vals(X)
iLiteral((z,v)) € Z A < possVal(x,v) € Zp Ninstant(i) € Zp < X € FUA,V €
vals(X),I € T

We now split the partially evaluated top IT; = ey, (fop;(Ily), Z ) using the set U; = {holds}.
The bottom boty;, (I1;) consists only of axiom and has answer sets that correspond to
any possible world in the domain language, i.e., according to the semantics of choice rules ax-
iom[PEC7] generates every possible function from instants to states, hence for a particular world
W € W we denote by Zyy the corresponding answer set of boty, (I11) which is characterised
by

holds(((z,v),1)) € Zw < W |E [X =V]QI

Notice that for any fixed W € W the three sets of propositions

1, = o0, (PECSPET) U Co, i)
I3 = ey, ({PECIO} U Ip, Zw)
I, = eUl(ﬂPEC5uPEC6uPEC]7uPEC]8H U Pp, Zw)

partition ey, (topy;, (I11), Zw) and are independent of each other, so we can evaluate their an-
swer sets separately.
We start with ITs and split it with the set Uy = {causedOutcome, belongsTo}. The transla-

tion procedure guarantees that its bottom botys, (I12) has answer set Cyyr such that
belongsTo((z,v),id}) € Cw < ¢, € D, 0; € body(cn), X =V € x(0;)
and

causedOutcome((id}, p),i) € Cw <
cn € D,0j € body(cy,), holds([head(cy,)|QI) € Zy, P = w(0;) <
cn € D,0; € body(cy,), W |= [head(cy,)|QI, P = w(0;) <
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fluentOrAction(coin)
fluentOrAction(toss)

instant(0) instant(1) literal((coin, heads))

instant(2) fluent(coin) literal((coin, tails)) holds(((coin, heads), 0))
action(toss) literal((toss, true)) holds(((toss, false), 0))
possVal(coin, heads) . literal((toss, false)) holds(((coin, heads), 1))
possVal(coin, tails) ltheral(((com heads), 0)) holds(((toss, true), 1))
possVal(toss, true) : holds(((coin, heads),2))
possVal(toss, false) iLiteral (((toss7 false),2)) holds(((toss, false), 2))
Z¢ ans. set of boty (I1) Z 4 ans. set of boty, (Ilp) Zw ans. set of boty, (I11)

belongsTo((coin, tails), ids)
belongsTo((coin, heads), id3)

causedOutcome((id,,2/100), 1)
causedOutcome((id2,49/100),1) performed(toss,1,1)
causedOutcome((ids,49/100), 1) belongsTo((coin, heads), idy) possiblyPerformed(toss, 1)
inOcc(1) initialCondition((idy, 1))  definitelyPerformed(toss, 1)
effectChoice((ids,49/100), 1) initialChoice((idy, 1)) eval(toss, 1,1)
CwUOwUE,. ans. set of 115 Ip U I;. ans. set of 113 Py U P{j‘, U Evyy ans. set of Tl

Figure 4.2: The answer set in fig. split into its components.

where ¢, € D is the nth c-proposition in the enumeration fixed during the translation process
(see sectiond.T] for reference).
Now consider the partially evaluated top I3 = ey, (Ils, Cyy) and split it using Us =
. 1 . . D O .
{inOcc}. The bottom program boty; (113) only consists of axiom and its answer set

Oy is characterised as follows:

inOcc(i) € Ow < Jo :i € Zr, causedOutcome(o,1) € Cy <
acause occurs at [ in W w.r.t. D < I € ocep(W)

We now need to evaluate and find the answer sets of I13 = ey (topy;y (I11), Ow) which now
consists only of a partially evaluated axiom |[PECY

The role of axiom [PECY|is to implement the effectChoice function. Indeed, for each instant
I such that I € ocep(W), exactly one atom of the form effectChoice(o, 1) is included in an
answer set of I3 for some o such that causedOutcome(o,i) € Cyy. Since this is consistent
with definition effectChoice(o,1) correctly represents its intended semantic counterpart
ec(I) = O where ec is an effect choice function for W w.r.t. D. For an effect choice function
ec for W w.r.t. D, we call the corresponding answer set that encodes it E,..

Applying the splitting theorem, we can now conclude that answer sets of I, are exactly
those given by the set {Cy U Ow U E,. | ec is an effect choice function for W w.r.t. D}.

Answer sets of II3 correspond to the initialChoice constant and can be worked out in a
similar way as in the effect choice function case. It can be shown that initialChoice(o) correctly
represents an initial choice ic as in deﬁnition and answer sets of II3 are given by {IpU I |

ic is an initial choice w.r.t. D} where I, encodes ic.
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Finally we need to derive answer sets of II4. We split it using Uy = {performed}. The
bottom boty, (I14) has answer set Py consisting of atoms of the form performed(a,i,p™) for
each p-proposition “A performed-at I with-prob P+ if-holds 6” in D such that W |= [0]@Q1.

Let II} = ev,(topy,(Ily, Pw), Pw) and  split it using U} =
{possiblyPerformed, definitelyPerformed}. The bottom boty (I1}) has an answer set P
characterised as follows:

possiblyPerformed(a, i) € PV’?, & Jpt, performed(a,i,pT) € Py <
30, PT,“A performed-at [ with-prob P+ if-holds 6” € D and W |[= [f]QT

and

definitelyPerformed(a, i) € PV‘{‘/ & dpT, performed(a,i, 1) € Py <
36, “A performed-at [ with-prob 1 if-holds 6” € D and W |= [f]Q]

We are now left with calculating answer sets of I3 = ey (topy (I}, P4, P3).
The aim of eval is that of implementing eq. (3.I0). It is important to notice here
that, thanks to requirement iv) in definition [3.11] it is possible to label a p-proposition
“A performed-at I with-prob P if-holds 6” using only A and I. Comparing eq. with
axioms IPECI 7| and lPEC] 8| immediately gives that the only answer set of 11, is Py U PV‘?, UEvyy

where

Evy = {eval(a, i,p) | A€ A I €T, “A performed-at I with-prob P if-holds 6” € D,
P=PtifW | [A]Ql,P =1— P+ otherwise}.
We are now able to calculate the answer sets of the whole program IT \ I, which are given
by the set:
{2cU 240 21 UCw UOW U Ee UL U T U P U P U Evy | W € W, ecis an effect
choice for W w.r.t. D and ic is an initial choice w.r.t. D}
and we write Z (L, D, W, tr) for it, where tr = (ic, ec).
Finally, we take into account the constraints I, whose effect is that of implementing the
Closed World Assumption and the effects of initialisation and persistence. Since axioms

to are constraints, they eliminate those answer sets of IT that satisfy their bodies.
Let Z be an answer set of II of the form Z(L,D, W, tr). Axioms [PECII|and |PECI2]

together with the correctness of translation of p-proposition’s preconditions ensure that:

W | [A]QI < holds(((a, true),i)) € Z = Tp, performed(a,i,p*) € llp <
36, A performed-at I with-prob P+ if-holds 0” € D and W |= [0]@QI

and, conversely

W | [0A]QI < holds(((a, false),i)) € Z = performed(a,i,1) ¢ IIp <
76, A performed-at I with-prob 1 if-holds §” ¢ D and W |= [9]Q[

therefore the world encoded in Zy, must satisfty CWA, i.e. definition
Let now “initially-one-of (O1, 0o, ..., O,,)” be an i-proposition in D and Zy be as before.
Axiom makes sure that:
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holds(((f,v),0)) € Zw < s : {initialChoice((s,p)), belongsTo((f,v),s)} C IIp <
30 :0€{0y,...,0n},S =x(0),[F=V]eS.

which satisfies the initial condition, i.e. definition(3.18

Finally we consider axioms [PECI4|to [PECI6| Let I, I’ be two instants with [ < I’ as in
definition [3.23} consider the world encoded in Zyy and let W (I)|F = S and W (I')|F = S'.
Assume that the effectChoice function encoded in Z maps instants in occp (W) N [I, ') to out-
comes Oy, 0o, ...,0,. Axiommakes sure that S cannot be altered if I ¢ inOccp(W).
Therefore S can only change at instants I € occp(W). We now show that S’ is actually equal to

S@ O1®02@ --- P O,,. If not, and considering that our implementation is restricted to a finite
set of instants, either (i) there is a fluent literal L € x(O) for some O € {O1,04,...,0,}
and an instant I” € [I,I') such that L € x(O) but L ¢ W(I” + 1), or (ii) for some
O € {01,04,...,0,} and a fluent literal L = F=V such that L ¢ O and L ¢ W (I"),
L € W(I" + 1). Both (i) and (ii) are forbidden by axioms |PECI5|and [PEC16|respectively, by

considering that the answer set Z correctly represents the semantic objects that it encodes.

4.3.4 Correctness Statement and Proof

Before proving the correctness of the implementation, we need to define a correspondence be-

tween answer sets and traces. This is the aim of the following definitions:

Definition 4.1 (Manifest Choice Element). We say that the choice element (X, P+)QI
is manifest in the answer set Z if and only if there exists a symbol id such that
effectChoice((id, p*),i) € Z and such that L € X if and only if belongsTo(l,id) € Z (re-
call that p™, 7 and [ are the ASP representations of P, I and L respectively).

Definition 4.2 (Trace of an answer set). Let Z be an answer set of IIp U II;. If Z is such
that for each I € 7 there is at most one choice element (X, PT)QI that is manifest in Z, then
the trace of Z is the trace <OX@X’ 0:1QI4,...,0,QI,) where OX@X’ 0,QI4,...,0,QI, are
exactly the manifest choice elements in Z ordered according to instants Iq, ..., I,,. Otherwise,

the trace of Z is undefined.

Proposition 4.1. A candidate trace ¢r is a trace of D if and only if there exists an answer set Z
of IIp U II; such that ¢r is a trace of Z.

Proof. 1t follows from the commentary in section by considering that Z is an answer set
of IIp U II; if and only if it has the form Z (L, D, W, tr) for W a well-behaved world w.r.t. D
and a trace tr of W w.r.t. D. Therefore, if ¢r is a trace of D by definition it is possible to find
a world W that is well-behaved w.r.t. D and has trace W, then just consider Z(L, D, W, tr)
for an answer set of II; U IIp such that ¢r is a trace of it. Conversely, if Z is an answer set of
II; U Ilp and tr is its trace, then there exists some world W € W well-behaved w.r.t. D such
that W has trace tr w.r.t. D, and therefore ¢r is a trace of D. O

4.4 Implementation

PEC+ has been implemented for the class of domains in which the bodies of c-propositions

are conjunctive formulas. The implementation and example domain descriptions can be found
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Figure 4.3: Schematic representation of the implementation of PEC+.

on GitHub at https://github.com/dasaro/pec. An overview of the implementation
is given in fig. @3] A translator turns a PEC+ domain description D into an ASP program
using the lexical analyser Flex and the parser generator Bison (see e.g. [40]). The output of the
translator together with an ASP formulation of the domain-independent part of the semantics
and a quer are then processed by Clingo (see e.g. [25]). This returns answer sets, each
of which represents a trace of the domain description which is compatible with the query (as
discussed in the introduction of this chapter) and the corresponding well-behaved world w.r.t.
D. A standard text processing tool, AWK (see e.g. [2]) then processes the resulting answer sets
and calculates the probability associated with the given query using eq. (3.14).

This section briefly presents some empirical results about this implementation and are sum-
marised in table and figs. to All the experiments in this chapter were run on an
Mid-2010 Apple MacBook Core 2 Duo 2.4 GHz.

Table and fig. are an application of the implementation to scenario and show
how it can handle some real-world domains (computation time never exceeded 1 second for all
queries).

Figure {.4b| shows that there is a very high Pearson correlation (> 0.99) between computa-

tion time and number of traces, which is confirmed in the following experiment:

Example 4.5 (Decay). Let the set of instants for this example be {0,...,15} and consider a

domain description Dp consisting of the following propositions:
(D1) F takes-values {T, L}
(D2) initially-one-of {({F=T},1)}
(D3) A causes-one-of {({F'=_1},1/5)}
(D4) A performed-at I with-prob 1/2
and the two collections of queries [F'=T|QJ and [F'=_1]Q@J for I =0,...,15.

The essential feature of this example is that by varying [ in the query, between 0 and 15, one
can vary the number of traces of the domain description consistent with the query, and therefore

the number of answer sets generated. As shown in fig. 4.5] the Pearson correlation between

' A mechanism for translating arbitrary queries to ASP programs is not available yet but it is planned for future
work.
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(b) Scatter plots showing the relation between number of traces and total execution time. The plot on the
left refers to the computation of answers to the query “[Tuberculosis = Latent]QI” while the plot on the
left refers to the query “[Tuberculosis=Active]QI” for I € {0,1,...,50}. Correlation between number
of traces and total execution time is =~ 0.9946 for the plot on the left and ~ 0.9983 for the plot on the
right.

Figure 4.4

number of traces and total execution time is again very high (>0.99). In this example, average
execution time is much higher, almost reaching 1 hour for some queries. This is due to (un-
conditional) probabilistic actions which cause the number of traces to grow exponentially. This
problem can be somewhat circumvented if we consider that PEC+ satisfies the causality princi-
ple (see proposition [3.3) and therefore a truncated domain description D~ can be considered
when answering queries mentioning at most instant /. This causes dramatic improvements in
some cases, as shown in fig. [4.6]

Finally, it can be immediately seen from the execution times that Total Time—Solving

Time~0, meaning that the time spent on preprocessing and grounding is negligible.
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l Query: H [Tuberculosis = Latent] QI holds-with-prob P H [Tuberculosis = Active]@QI holds-with-prob P ‘

1 P n Traces | T Time S Time P n Traces | T Time S Time
0 0.3 204 0.479 0.44 0.0333333 4 0.034 0

1 0.426427 300 0.688 0.66 0.04024 10 0.037 0.01
2 0.426086 294 0.665 0.63 0.0405811 16 0.057 0.02
3 0.790545 384 0.868 0.84 0.060122 24 0.067 0.03
4 0.789912 376 0.91 0.87 0.0607544 32 0.081 0.05
5 0.78928 368 0.892 0.86 0.0613864 40 0.097 0.06
6 0.788649 360 0.885 0.85 0.0620178 48 0.112 0.08
7 0.788018 352 0.835 0.8 0.0626487 56 0.124 0.09
8 0.787388 344 0.818 0.79 0.0632791 64 0.136 0.11
9 0.786758 336 0.857 0.83 0.063909 72 0.16 0.13
10 0.786128 328 0.895 0.86 0.0645384 80 0.17 0.14
11 0.785499 320 0.835 0.8 0.0651674 88 0.184 0.15
12 0.784871 312 0.785 0.74 0.0657958 96 0.212 0.18
13 0.784243 304 0.753 0.72 0.0664236 104 0.232 0.2
14 0.783616 296 0.729 0.7 0.067051 112 0.249 0.21
15 0.782989 288 0.729 0.7 0.0676779 120 0.263 0.23
16 0.782362 280 0.728 0.7 0.0683043 128 0.287 0.25
17 0.781736 272 0.716 0.68 0.0689302 136 0.293 0.25
18 0.781111 264 0.696 0.66 0.0695556 144 0.293 0.26
19 0.780486 256 0.673 0.64 0.0701805 152 0.311 0.28
20 0.779862 248 0.651 0.62 0.0708049 160 0.333 0.3
21 0.779238 240 0.632 0.59 0.0714288 168 0.35 0.32
22 0.778615 232 0.593 0.56 0.0720522 176 0.367 0.34
23 0.777992 224 0.582 0.55 0.0726751 184 0.378 0.35
24 0.777369 216 0.554 0.52 0.0732974 192 0.408 0.38
25 0.776747 208 0.539 0.51 0.0739193 200 0.424 0.39
26 0.776126 200 0.513 0.48 0.0745407 208 0.462 0.43
27 0.775505 192 0.497 0.47 0.0751616 216 0.484 0.45
28 0.774885 184 0.483 0.45 0.075782 224 0.501 0.46
29 0.774265 176 0.482 0.45 0.076402 232 0.52 0.48
30 0.773645 168 0.441 0.41 0.0770214 240 0.545 0.51
31 0.773026 160 0.432 0.4 0.0776403 248 0.562 0.53
32 0.772408 152 0.407 0.38 0.0782587 256 0.571 0.54
33 0.77179 144 0.4 0.37 0.0788766 264 0.602 0.57
34 0.771173 136 0.352 0.32 0.0794941 272 0.607 0.58
35 0.770556 128 0.334 0.3 0.080111 280 0.624 0.6
36 0.769939 120 0.328 0.29 0.0807274 288 0.661 0.62
37 0.769323 112 0.301 0.27 0.0813434 296 0.672 0.63
38 0.768708 104 0.272 0.24 0.0819589 304 0.688 0.65
39 0.768093 96 0.265 0.23 0.0825738 312 0.679 0.65
40 0.767478 88 0.243 0.21 0.0831883 320 0.706 0.68
41 0.766864 80 0.221 0.19 0.0838023 328 0.686 0.66
42 0.766251 72 0.229 0.19 0.0844158 336 0.73 0.7
43 0.765638 64 0.194 0.16 0.0850288 344 0.754 0.72
44 0.765025 56 0.17 0.14 0.0856413 352 0.788 0.75
45 0.764413 48 0.169 0.13 0.0862533 360 0.808 0.77
46 0.763802 40 0.141 0.11 0.0868648 368 0.829 0.79
47 0.763191 32 0.122 0.08 0.0874759 376 0.852 0.82
48 0.76258 24 0.097 0.06 0.0880864 384 0.879 0.84
49 0.76197 16 0.069 0.04 0.0886965 392 0.863 0.83
50 0.761361 8 0.051 0.02 0.0893061 400 0.87 0.84

Table 4.1: Summary of results when running the implementation of PEC+ on the tuberculosis scenario.
“T Time” column refers to the total computation time in seconds, while “S Time” column refers to solving
time in seconds only (the difference between these two values is preprocessing+grounding time). Notice
that starting from instant 3, on query [Tuberculosis= Latent|QI (resp. [Tuberculosis=Active|QI), the
number of traces decreases (resp. increases) when I increases as a result of reactivation.
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| Query: || [F =T]QI holds-with-prob P [ [F = L]Q@I holds-with-prob P |

1 P n Traces T Time S Time P n Traces T Time S Time
0 1 14348907 | 3594.46 | 3594.45 0 0 0.009 0

1 0.9 9565938 | 2320.558 | 2320.55 0.1 4782969 | 1260.238 | 1260.23
2 0.81 6377292 | 1525.199 | 1525.19 0.19 7971615 | 2142.807 | 2142.8
3 0729 | 4251528 | 1015.366 | 101536 || 0271 | 10097379 | 2557.311 | 2557.3
4 0.6561 | 2834352 | 667.55 | 667.54 || 03439 | 11514555 | 270837 | 2708.36
5 0.59049 | 1889568 | 440.066 | 440.06 || 0.40951 | 12459339 | 2911.292 | 2911.28
6 0.531441 | 1259712 | 298.561 | 298.55 || 0.468559 | 13089195 | 3086.318 | 3086.31
7 0478297 | 839808 | 194.302 | 194.29 || 0521703 | 13509099 | 3147.04 | 3147.03
8 0430467 | 559872 | 127.822 | 127.81 || 0.569533 | 13789035 | 3208.477 | 3208.47

=]

0.38742 373248 84.424 84.42 0.61258 | 13975659 | 3251.099 | 3251.09
10 0.348678 248832 55.893 55.89 0.651322 | 14100075 | 3298.81 3298.8
11 0.313811 165888 37.206 372 0.686189 | 14183019 | 3316.877 | 3316.87

12 0.28243 110592 25.531 25.52 0.71757 | 14238315 | 3311.27 | 3311.26
13 0.254187 73728 18.965 18.96 0.745813 | 14275179 | 3338.228 | 3338.22
14 0.228768 49152 12.658 12.65 0.771232 | 14299755 | 3440.679 | 3440.67
15 0.205891 32768 8.88 8.86 0.794109 | 14316139 | 3368.671 | 3368.66

(a) Summary of results when running the implementation of PEC+ on the mock domain description de-
scribed in example “T Time” column refers to the total computation time in seconds, “S Time”
column refers to solving time in seconds only (the difference between these two values is preprocess-
ing+grounding time).
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(c) Scatter plots showing the relation between number of traces and total execution time. The plot on
the left refers to the computation of answers to the query “[F =T|QI” while the plot on the left refers
to the query “[F=_1]|QI” for I € {0,1,...,15}. Correlation is =~ 0.9997 for the plot on the left and
~ 0.9962 for the plot on the right.

Figure 4.5
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Chapter 5

Language EPEC

This chapter introduces EPEC (short for Epistemic Probabilistic Event Calculus), a language
that goes beyond PEC+ (introduced in chapter [3] and implemented in ASP in chapter ) in the
sense that it allows the agent to sense the environment through actions that produce knowledge
about the value of fluents rather than an effect on the environment. Furthermore, it allows for

the definition of actions that are conditioned on knowledge produced by sensing actions.

5.1 Syntax

The definition of Domain Language in EPEC is very similar to the definition of Domain Lan-
guage in PEC+. A slight difference is that the function vals now maps fluents and actions to
tuples of elements. This is to induce a “standard” ordering over values a fluent can take, which

is then exploited in the subsequent definitions.

Definition 5.1 (Domain Language). A domain language for EPEC is a tuple
(F, A, V,vals,T,<,0) consisting of a finite non-empty set F of fluents, a finite set A of
actions, a finite non-empty set V' of values such that {T, L} C V, a function vals mapping
elements in F U A to tuples of elements (without repetitions) from ), a non-empty set Z of
instants and a minimum element 0 € Z w.r.t. a total ordering < over Z. For A € A it is
imposed that vals(A) = (T, L) and for any X € F U A the expression V' € vals(X) means
that if vals(X) = (Vi,...,V,) then V =V, for some 1 < i < n.

Example 5.1. An appropriate domain language for scenario|l.6|is
(Fr, AL, Vr,vals,N, <y, 0)

where
Fr, = {Lighl‘} ,

Ap, = {Press, SenseLight},
Vi, ={T,L,0n,Off},
valsy (Light) = (On, Off)

where, as usual, N is the set of natural numbers (including 0), and <y is the standard total

ordering between naturals.

79
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In what follows, all definitions are with respect to a domain language (F, A, V, vals,Z, <
,0). Note that the syntax of EPEC borrows some elements from PEC+. For instance, the

definitions of i-proposition, c-proposition, formula, i-formula and (fluent) states are as in PEC+.

Definition 5.2 (s-proposition, Body of an s-proposition). Let X € F U A and vals(X) =
(Vi, ..., Vin). An s-proposition s has the form

0 senses X with-accuracies M 5.1

where 6 entails some A € A, and M is an m X m matrix with elements in [0, 1]. For an s-
proposition s of the generic form (5.1)), 6 is called the body of s and denoted by body(s), and X
is called the object of s. The pair (0, X) is called the signature of s and denoted by sign(s).
Intuitively, every element M; ; in M represents the probability that, given that V; is the real
value taken by X when the s-proposition occurs, V; is sensed instead.
M is subject to the conditio

m
Vi<i<m, » M;;=1 (5.2)
=1
or, in matricial form,
Mx1,, =1,
1

i.e. 1,, is a right eigenvector of M with eigenvalue 1, where 1,, is the m x 1 vector
The s-proposition
0 senses X with-accuracies I,

where I is the m x m identity matrix, is sometimes abbreviated to
0 senses X

Definition 5.3 (Epistemic p-proposition). An (epistemic) p-proposition p has the following
form:
A performed-at I with-prob P if-believes (0, P) (5.3)

for some action A, instant I, P+ € (0, 1], formula 6, and some (open, half-open or closed)
interval P with endpoints in [0,1]. The pair (0, P) is called the body of p and denoted by
body(p). When an (epistemic) p-proposition p has the form (5.3), then it is said that p has

instant I.

Definition 5.4 (o-proposition). An o-proposition o has the form
A occurs-at I with-prob P if-holds 6

for some action A, instant I, P* € (0, 1] and formula 6. The formula 6 is called the body of o

' A matrix satisfying this condition is sometimes said to be a right stochastic matrix.
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and denoted by body (o). When an o-proposition o has this form, then it is said that o has instant
1.

Definition 5.5 (Domain Description). A domain description is a finite set D of v-propositions,
c-propositions, p-propositions, o-propositions, i-propositions and s-propositions such that: (i)
for any two distinct c-propositions in D with bodies 6 and 7, 6 is incompatible with 7 (i.e.,
there is no state S such that S |= 6 and S |= ), (ii) D contains exactly one i-proposition,
(iii)) D contains exactly one v-proposition for each F' € F and (iv) if an o-proposition
“A occurs-at I with-prob P if-holds 6 belongs to D, then for all P’ € (0, 1] and formulas 7
that are compatible with € (i.e. such that for some state .S both S |= 6 and S |= 7 hold) there is
no other o-proposition of the form “A occurs-at I with-prob P’ if-holds 7" that belongs to D,

(v) no two s-propositions in D have the same signature.

Notation 5.1. For a fixed domain description D and each pair (#, X) there exists at most one
s-proposition s in D such that sign(s) = (0, X), therefore Mp (6, X) can be taken to denote the
matrix M such that the s-proposition “f senses X with-accuracies M” is in D. The subscript

D is sometimes dropped when the reference to the domain description is clear from the context.

The following definition defines an (often desirable) syntactical property of domains. In-
tuitively, a domain description satisfying it is meant to represent an agent that is aware of the

actions being performed.

Definition 5.6 (Awareness Property). An EPEC domain description D is said to satisfy the

awareness property if for each epistemic p-proposition
A performed-at I with-prob P if-believes (0, P)
in D there exists in D an s-proposition of the form
A senses A

If a domain description does not satisfy the awareness property, axioms can be added such that

the augmented domain description satisfies it. The macro
awareness-property-on

is a shorthand for the set of axioms that make the domain description satisfy the awareness

property.

Example 5.2. A suitable domain description Dy, for Scenario|1.6|is the following:
(L1) Light takes-values (On, Off)
(L2) initially-one-of {({Light=0n},0.5), ({Light=0ff},0.5)}
(L3) Press A Light=On causes-one-of {({Light=0ff},0.8)}

(L4) Press A Light= Off causes-one-of {({Light=0n},0.9)}
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(L5) SenseLight senses Light with-accuracies
0.15 0.85

0.95 0.05)

(L6) SenseLight performed-at (
(L7) Press performed-at 1 if-believes (Light= Off, [0.9, 1])

For the remainder of this chapter, D is an arbitrary domain description.

5.2 Semantics

The semantics of EPEC relies again on the concept of a world, which is exactly the same as in
PEC+. In addition, EPEC’s semantics makes use of sensing outcomes and histories, which are
intended to record the result of sensing actions performed by the agent. Pairs constiting of a

world and a sensing history are called h-worlds.

Definition 5.7 (Worlds). A world is a function W : Z — S. The set of all worlds is denoted by
W.

Definition 5.8 (Sensing outcome). A sensing outcome is a pair of the form ((0, X'), V') for some
signature (¢, X') and a value V' € vals(X).

Definition 5.9 (Sensing history, Indistinguishable sensing histories). A sensing history is a func-
tion H from [ to the power set of sensing outcomes. The set of all sensing histories is denoted
by H. Two sensing histories H and H' are indistinguishable up to (and excluding) I if and only
if H(I') = H'(I') for all I < I. The set consisting of all indistinguishable sensing histories
H' and H up to I forms an equivalence class and is denoted by [H].;. The class [H].; is

sometimes represented in the form
(H(L)Ql,...,H(I,)Ql,)
for instants Iy, ..., I, such that I; < I and H(I;) # () for 1 < i < n and notice that for any
H €M, () stands for [H]_g.
Notation 5.2. In the following, H, H', Hy, H" Hs, ... will denote sensing histories.

Definition 5.10 (h-world). An h-world is a pair (W, H) for a world W € W and a sensing
history H € H.

Example 5.3. Consider the following worlds:
W1(0) = {Light=On, —Press, SenseLight}
Wi (I) = {Light=On, —Press, —SenseLight} for I > 0

Wo5(0) = {Light=Off , ~Press, SenseLight}
Wy (I) = {Light= Off , ~Press, ~SenseLight} for I > 0

W35(0) = {Light=On, —Press, SenseLight}
Ws(1) = {Light=On, Press, —SenseLight }
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Ws(I) = {Light=Off, —~Press, ~SenseLight} for I > 1

W4(0) = {Light=Off, —Press, SenseLight }
Wy (1) = {Light=Off, Press, —SenseLight }
Wa(I) = {Light=On,—Press, ~SenseLight} for I > 1

W5(0) = {Light=On, —Press, SenseLight}
Ws(1) = {Light=On, Press, —SenseLight }
Ws(I) = {Light=On,—Press, ~SenseLight} for I > 1

Ws(0) = {Light=Off, —Press, SenseLight }
We(1) = {Light=Off, Press, —SenseLight}
We(I) = {Light=Off, —~Press, ~SenseLight} for I > 1

W+7(0) = {Light=On, —Press, ~SenseLight}
W+ (1) = {Light=0On, Press, SenseLight }
W+ (I) = {Light=Off , —~Press, ~SenseLight} for I > 1

and the following sensing histories:
H,(0) = {(sign(s), Light=0n)}
Hy(I)=0forI >0

Hj(0) = {(sign(s), Light=Off )}
Hy(I)=0forI >0

Hs(I) = {(sign(s),Light=0n)} for I <1
H3(I)=0forI>1

Hy(0) = {(sign(s), Light=0n)}

H,(1) = {(sign(s), Light=Of)}
Hy(I)=0forI>1

where s is the only s-proposition in Dy, i.e. (L5). Then, each (W, H;) for i € {1,2,3,6,7}
and j € {1,2,3,4} is an h-world for Scenario1.6]

The following definition is similar to definition [3.17)in PEC+:

Definition 5.11 (Sensing Occurrence). Let D be a domain description, € be the body of an
s-proposition s in D and I € Z. If W [= [0]QI then it is said that that a sensing action
occurs at instant I in W w.rt. to D, and that the s-proposition s is activated at I in W w.r.t.
D. Let (W, H) be an h-world. For any instant [ € Z, the set soccp((W, H), I) is defined
as {((6,X),V, V') | sign(s) =(0,X),W |E[0ANX=V]QI,((0,X),V') € H(I)} if there
exists at least one sensing proposition s that is activated in W at I w.r.t. D, and is empty

otherwise.



CHAPTER 5. LANGUAGE EPEC 84

The following definition plays a role similar to definition[3.16]in PEC+. H-worlds satisfying
it are those in which the sensing history is producing a result which is consistent with what the

agent decided to sense through the performance of a sensing action.

Definition 5.12 (CWA for Sensing Actions). An h-world (W, H) satisfies the closed world
assumption for sensing actions w.r.t. D (CWAS for short) if and only if for each s-proposition s
activated at I in W, (sign(s), V) € H(I) forsome V' € vals(F),and VV' # V, (sign(s), V') ¢
H(I).

Given a domain description D and world W, the set of histories
{H € H | (W, H) satisfies CWAS w.r.t. D}

is denoted by H%V .

Example 5.4. Recall the domain description Dy, from example and the h-worlds from Ex-
ample H-worlds (W7, Hy), ..., (W7, Hy) do not satisfy w.rt. Dy as only one
sensing action is being activated at 1 in W7, but H1(0), H2(0), H3(0) and H4(0) are all non-
empty. On the other hand, each (W, H;) fori € {1,2,3,4,5,6} and j € 1,2 satisfies [CWAS]
w.rt. Dr.

Definition 5.13 (Evaluation of a sensing history). Let D be a domain-description and (W, H)
be an h-world. The evaluation of H given W w.r.t. D is defined as

ey (H«e,X),vi,vj esocen((W. H).) M(a,X)m-) if (W, H) sat.[CWAS

0 otherwise

ep(H | W) =

and notice that satisfaction of [CWAS| w.r.t. D implies that socc((W, H),I) is non empty for
only finitely many instants, hence the above product is always well-defined. For a class [H|

of indistinguishable sensing histories up to I, the sum

> ep(H' | W)

H'€[H]<1
is denoted by ep([H]|<; | W).
Example 5.5. As shown in example [5.4] h-worlds (W1, Hy), (W1, Ha), (W2, Hy), (Wa, Hs),
(Wg, Hl), (Wg, HQ), (W4, Hl), (W4, HQ) satisfy CWAS|w.r.t. Dy,. Then,

ep, (Hy | W1) =0.95 ep, (Hy | Wa) =0.15 ep, (Hy | W3) =0.95 ep, (Hy | Wy) = 0.15
ep, (Hy | W1) = 0.05 ep, (Hy | Wa) =0.85 ep, (Ho | W3) = 0.05 ep, (Hy | Wy) = 0.85

Since h-worlds (W7, Hy), ..., (W7, Hy) do not satisfy [CWAS] they evaluate to 0.

In order to define what a well-behaved h-world is in this setting, some auxiliary definitions
and machinery is needed.

Recall that using the product rule (2.6), a joint probability distribution d over two random
variables X, Y can be written e.g. as d(X,Y) = d(Y | X)d(X) for some marginal probability
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d(X') and some conditional probability d(Y | X). Therefore it is possible to construct a joint
probability distribution over worlds and histories by simply defining the marginal d(W) and the
conditional d(H | W). This is the idea behind the following definition:

Definition 5.14 (Pre-model). Given an EPEC domain description D and a PEC+ domain de-
scription D', the pre-model ME of D w.rt. D' is a [0,1]-interpretation over W x H defined

ME (W, H) = Mp/(W) - ep(H | W).

As usual, MB' (W, [H]) is shorthand for

> ME (W, H)

He[H] <1
and Mg (¢, H) is shorthand for
Z ME (W, H)
WlkEe

Informally, Mg (W, H) defines a joint probability distribution over W x H by taking
Mp/(W) as the marginal distribution and ep(H | W) as the conditional distribution. The
following proposition is the first step towards showing that Mg / (W, H) is indeed a probability
function, and shows that the evaluation of a class of indistinguishable sensing histories only
depends on instants up to I’ (and compare this with definition [5.13):

Proposition 5.1. Let D be an EPEC domain description and (W, H) be a world satisfying
CWAS|w.r.t. D. Then,

ep([Hl<r | W) =]] 1T M6, x),

I'<I'\ ((6,x),v;,v)esocep(W, H),1)

Proof. By definition ,

ep([Hl<r |W) =) ep(H' |W)= > []] [T M@ X),

H'€[H]<1 H'elH]<r \1€L \ ((8,X),V;,V;)esocen (W, H'),I1)

Recall that [H].; is an equivalence class (meaning that if H', H” € [H]. then H'(I') =
H"(I') forall I' < I). Then, forany X € F UA, V; € vals(X) and I' > I,if ((6, X),V;) €
H(I') then for all V; # V; such that V; € vals(X) there exists some other H' € [H].; such
that (W, H') also satisfies[CWAS|w.r.t. D and ((¢, X),V;) € H'(I'). Therefore the above sum

can be rewritten as:

- 11 TT M. x| I] > > O M(6, X)i;

I'<I \ ((0,x),vi,vy)esocen (W, H),11y ) I'=1 \((0,X),Vi)eH(I') \j=1

common factor to all H € [H|

and since by eq. (5.2) >-"", M(¢, X); ; = 1 the proposition is proved. O
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Corollary 5.1.1. Let D be an EPEC domain description and W a world. Then,

> ep(H|W)=1.

HeH

Proof. Follows directly from proposition by considering the equivalence class [H ]<(—) =
H. O

Corollary 5.1.2. Let D be an EPEC domain description and D’ a PEC+ domain description.
The pre-model Mg of D w.rt. D' is a probability distribution in the sense that it satisfies
eq. (2.4) from section[2.2.1

Proof. Follows directly from the product rule (2.6) and the definition of ]\;[g " since My is a
probability distribution and for each W € W also ep(- | W) is a probability distribution (see

corollary [5.1.1). O

Given that Mg "isa probability distribution, it is possible to use the sum rule product
rule [2.6/and Bayes’ theorem [2.8|to derive some other quantities such as M5 (W | H), which
is particularly important as it represents the probability of W being the actual world from the

point of view of an agent that has sensing history H.

Definition 5.15 (Reduct of a p-proposition). Let “A performed-at I with-prob P if-believes
(6, P)” be an epistemic p-proposition and d some probability distribution (over
worlds). Then, this p-proposition reduces to a (non-epistemic) p-proposition
“A performed-at I with-prob P*” w.rt.  d if and only if Yy _gerd(W) € P,
and vice-versa “A performed-at I with-prob P™” is said to be the reduct of
“A performed-at I with-prob P if-believes (0, P)” w.r.t. d.

Example 5.6. Consider the (only) epistemic p-proposition|L7]in Dy, i.e.
Press performed-at 1 if-believes (Light=0n,[0.9,1]),

let Wy and W5, be as in example[5.3|and d be a distribution such that d(W;) = 1 and d(W) = 0
for all W # W. Then, the reduct of [L7|w.r.t. d is

Press performed-at 1.

If instead d is the distribution such that d(W5) = 1 and d(W3) = 0 for all W # W5, then
[L71has no reduct w.r.t. d.

Definition 5.16 (Reduct of a Domain Description). Let D be an EPEC domain descrip-
tion, d be a probability distribution (over worlds and histories) and H a sensing history.
Then, the reduct of D w.rt. d and H is the PEC+ domain description obtained by remov-
ing all the s-propositions, o-propositions and epistemic p-propositions from D and (i) in-
cluding one p-proposition of the form “A performed-at I with-prob P if-holds 6" whenever
“A occurs-at I with-prob P if-holds 0” belongs to D, and (ii) including the reducts of each
epistemic p-proposition “A performed-at I with-prob P+ if-believes (6, P)” in D w.r.t. the
probability distribution d(- | [H]<7).
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Definition 5.17 (Candidate Reduct of a Domain Description). Let D be an EPEC domain de-
scription. If there exists a distribution d such that D’ is a reduct of D w.r.t. d, then D’ is said to
be a candidate reduct of D.

Example 5.7. Since there is only one epistemic p-proposition in Dy, there are only two candi-

date reducts of Dy, namely the PEC+ domain description D/ :

Light takes-values {On, Off }

initially-one-of {({Light=0n},0.5), ({Light=0ff},0.5)}
Press N\ Light = On causes-one-of {({Light=0ff},0.9)}
Press A Light = Off causes-one-of {({Light=0n},0.8)}
SenseLight performed-at 0

and the PEC+ domain description D :

Light takes-values {On, Off }

initially-one-of {({Light=0n},0.5), ({Light=0ff},0.5)}
Press A Light = On causes-one-of {({Light=0ff},0.9)}
Press A Light = Off causes-one-of {({Light=0n},0.8)}
SenseLight performed-at 0

Press performed-at 1

For any EPEC domain description D containing exactly n epistemic p-propositions, there

are at least 1 and at most 2" PEC+ domain descriptions that are candidate reducts of D.

Definition 5.18. Let D be an EPEC domain description and H a sensing history. Then, the set
R(D, H) is the set of PEC+ domain descriptions such that D' € R(D, H) if and only if (i) D’
is a candidate reduct of D, (ii) D’ is the reduct of D w.r.t. the pre-model Mg " and history H.

Example 5.8. There are two candidate reducts of Dy, hence one must consider the two pre-
models Mg LL and Mg LL where D and D/ are defined as in example There are two well-
behaved worlds w.r.t. D’L (namely, W7 and W5 as in example and four well-behaved worlds
w.r.t. D} (namely, W3 ... W as in example . Consider D’ . This is such that:

Mpy (W1) = Mp; (Wa) = 0.5

and now consider the two h-worlds (W1, Hy) and (W, H;) satisfying [CWAS| Evaluating
~ DI .
MpE(- | [Hi]<r) gives:

~ D 0.5-0.95
My, (W[ 1H<) = 55565+ 05 0.15 ~ 804

and
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D 0.5-0.15
MNP (W | [H — ~ 0.136
o, (W2 | [Hil<1) 0.5-0.95+0.5-0.15

and therefore MgLL([Light:Oﬁ]@l | [Hi]<1) ~ 0.136 ¢ [0.9,1]. Calculating the reduct of
Dr, w.rt. Mg% then gives D itself. Hence D} € R(Dy, Hy).
Now consider the two worlds (W;, H2) and (Ws, Hs) also satisfying CWAS]| Evaluating

~ D/ .
MpE(- | [Ho]<r) gives:

- D 0.5 0.05

My, (Wi 1Hel<1) = 55565+ 05 0.8~ 096
and

- 0.5 -0.05

Mp, (Wa | [Hal<1) = 52505 705 085 ~ 004

and therefore MgL,L([Light:0ﬁ]@1 | [H2]<2) ~ 0.944 € [0.9,1]. Calculating the reduct of
Dy w.rt. MELL then gives D7 . Hence D ¢ R(Dy, H>).
A similar reasoning leads to the conclusion that D} ¢ R(D, H;) and D] € R(D, H>),

where

~ 'Dl/ ~ D//

MDLL(W3 ‘ [HQ]<1) ~ 0.044 M’DLL (W4 | [H2]<1) ~ 0.85
~ D// ~ 'D//

MDLL(W5 | [H2]<1) ~ 0.011 MDLL(W6 | [H2]<1) ~ 0.094

Proposition 5.2. Given an EPEC domain description D and a sensing history H, R(D, H) is in

fact a singleton set.

Proof. By contradiction. Let D’ and D” be two distinct PEC+ domain descriptions in R(D, H).
Since they are different, one can consider the set of p-propositions for which they differ {p €
narr(D') U narr(D") | (p € D' ANp ¢ D")V (p ¢ D' Ap € D")}. Consider an ordering
of these p-propositions by their instants and let p be the first in such ordering. Without loss of
generality, let p have instant [ and p € D’ but p ¢ D”. By definition, p must be the reduct
of some epistemic p-proposition in D and let its body be (6, P). Since p € D’ and p ¢ D",
ME' (0 | [H)<r) € Pand ME" (0| [H]<s) ¢ P implying

MB (8)1, (H)<r)
3B (H)<r)

Mg:(W]@L [H]<r)
ME"([H]<1)

+

To prove that this is not the case, it suffices to show that MZ ([f]QI,[H]<;) =
ME"([0]QI, [H]) for an arbitrary 6, as this also accounts for M5 ([H]<;) = M5 ([H]<1)
by letting 0 be any tautology. Let {I¥1,..., W,,} be a maximal set of distinct representatives
of indistinguishable classes of worlds up to I and let [W1],. .., [W,,]r be the classes they rep-
resent. Also let o[y, be an i—formuleﬂ that “captures” the class of indistinguishable worlds up
tol,ie. W |= ppy), and W' [|= @pyy, if and only if 1/ and W’ are indistinguishable up to
I. Take ¢; as a shorthand for the conjunction [§]@Q1 A ¢w;], and notice that it only depends on

2This i-formula exists as it is possible e.g. to consider an appropriate conjunction of states in W up to I as to
match definition 3.37]
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instants < I. Then,
ME (10161, [H]<;) =Y _ep([H]<; | W)Mp (W)=Y | Y ep([H]<r | W)Mp/(W)
W|Eo|ar i=1 \W|kEe;

and notice that proposition [5.1| implies that ep([H]<; | W) only depends on values of W up
to instant . Therefore, ep([H|<; | W) has a constant value whenever W ||= ¢;, and let this

constant value be denoted by ep([H]<1 | ;). The above sum therefore continues as follows:

Z Hler @) | Y Mp(W) ZED J<1 | ¢i) Mp: (:)

Wik

But then, since the two domain descriptions D’ and D" disagree only on p-propositions having

instant > I, Mp/(p;) = Mpr(g;) forall 1 < ¢ < m and therefore the above sum continues

m
=2 enllHler | )Mo (90) =I5 (6. [H]<)
which proves the proposition.
O

Since R(D, H) is a singleton set, Dy can be taken to denote the unique domain description
in R(D, H).

Definition 5.19 (Well-behaved h-world). Let D be any EPEC domain description. An h-world
(W, H) is said to be well-behaved w.rt. D if and only if the following two conditions are
satisfied: 1) it satisfies CWAS, ii) W is well-behaved w.r.t. Dg.

Definition 5.20 (Model). We extend the concept of a model to h-worlds in the following way.
A model of a domain description D is a function such that, if (W, H) is well-behaved w.r.t. D
then

Mp(W, H) = M5" (W, H) (5.4)

for Dy defined as in Definition [5.19] and equals 0 otherwise.

Proposition 5.3 (Model is a Probability Distribution). Let D be an EPEC domain description.
Then, Mp is a probability distribution in the sense that it satisfies eq. (2.4) from section [2.2.1

Proof. The proof is similar to that of corollary since
Mup(W, H) = IR (W, H) = Mp,, (W) - ep(H | V)

with both Mp,, and ep(- | W) being probability distributions for any W € W. O
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Example 5.9. Using the results from example Mp, is defined as follows:

MpE(W, H) when H = H,
Mp, (VVv H ) =
MpE(W, H) when H = H,
The following definition introduces b-propositions, which are analogous to h-propositions
in PEC+ and are entailed by EPEC domain descriptions.

Definition 5.21 (b-proposition). A b-proposition has the form

at I believes ¢ with-probs {([H1]<1, B1, P1), ..., ([Hm]<1, Bm, Pm)}
for some instant I, i-formula ¢, equivalence classes [Hi|<r,...,[Hm]<s, reals
Bi,P,...,Bn, Py €[0,1] such that 1" | B; = 1.

Definition 5.22  (Entailment for  Domain  Descriptions). Given a  do-
main description D and an i-formula ¢, it is said that the b-proposition
“at I believes ¢ with-probs {([Hi|<1, B1, P1),...,([Hn|<1, Bm, Pn)}” is entailed by
Diff Mp(¢ | [Hi]<1) = P;and Mp([H;|<;) = Bifori=1,...,m.

Intuitively, if a domain description D entails a b-proposition
at I believes ¢ with-probs {([H1]<1, B1, P1), ..., ([Hm]<1, Bm, Pm)}

this means that at instant I the agent (according to the information in the domain D) believes
that the i-formula ¢ holds with one of the probabilities Py, ..., P, depending on the result
from its sensors, which is “recorded” in [H;]; which has an associated probability B; of being

actually experienced.

5.3 Example Entailments

Example 5.10. The domain description Dy, from example entails, among others, the fol-

lowing b-propositions:
(|[EL1) at 0 believes [Light=On]@Q0 with-probs {((),1,0.5)}
(|[EL2) at 0 believes [Light=On]@Q2 with-probs {((), 1,0.8625)}
(|EL3) at 0 believes [Light = Off|@2 with-probs {((),1,0.1375)}

(|[EL4) at 1 believes [Light=On]Q1 with-probs
{({(sign(s), Light=0On)@0), 0.55, 0.863),
{({(sign(s), Light = Off )@0), 0.45,0.05) }

(|[EL5) at 2 believes [Light = On]Q2 with-probs
({(sign(s), Light = 0n)@0),0.55,0.863),
({(sign(s), Light=Off)@0),0.45,0.861) }
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where s is the only s-proposition in Dy, i.e. [L3]

Among these entailments, is of particular interest. Indeed, if having the light turned
on at instant 2 is considered to be a “goal” (from a planning perspective), this b-proposition
shows that this goal has probability 0.8625, which is a significant improvement over the 50%

chance of having the light turned on initially.

5.4 Summary

This chapter introduces EPEC, which constitutes the main contribution of this thesis. EPEC
builds upon PEC+, and therefore has a similar syntax, and augments its possible-worlds seman-
tics with sensing histories to model sensing actions. A fixpoint semantics is also introduced,
which allows for modelling knowledge-conditioned actions in a probabilistic setting. Similar
properties to those of PEC+ are proved, i.e. that the model function is also a probability func-

tion in this setting.



Chapter 6

Approximate Computation of h-props

As demonstrated in chapter ] the provided ASP implementation of PEC+ performs temporal
projection in a reasonable time for some domains. However, when an exact computation of the
results is intractable, other strategies can be employed. This chapter deals with approximating

the result of a given query using a probabilistic programming language.

6.1 Approximating h-propositions

Sections 4.3.4| and show, through a proof of correctness, that if a domain description D
entails an h-proposition of the form

© holds-with-prob P 6.1

then the provided ASP implementation outputs the value P on query . However, this imple-
mentation is not suitable for those domains where the number of worlds grow in such a way as
to make automated reasoning intractable. In these cases, alternative techniques might be used
which trade-off computation time for precision. A largely applied technique is that of sam-
pling, i.e. extracting a set of samples from a given population which are then used to estimate
some parameters (e.g., mean, standard deviation) of the population itself that are difficult to
derive analytically. In PEC+ the main reasoning task is estimating the probability P such that
proposition (6.1) is entailed by some domain of interest D. In this case, the probability P is
the parameter to be estimated through sampling from the population of well-behaved worlds
w.rt. D. Let Wl, el W,, be sampled well-behaved worlds w.r.t. D that are drawn from the
probability distribution Mp (possibly with repetitions). The probability of sampling a world
W which satisfies the i-formula ¢ (i.e. W |E ¢) is P. Therefore, the process of sampling m
worlds and testing them for satisfaction of ¢ can be modelled using m independent Bernoulli

random variables with success probability P, i.e. random variables X7, ..., X,,, such that

1 with probability P
0 with probability 1 — P

X; =

92
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for every ¢ = 1,...,m. The probability of getting n successes among these m trials is given
by the random variable Y = X; 4 - -- + X,,, which is binomially distributed with parameters
P (the success probability) and m (the number of trials). It can be shown that Y has expected
value m P. Therefore, if P is estimated by the quantity

P=Y/m (6.2)

then the expected value for Pis mP/m = P, ie. P is an unbiased estimator for P. A
standard result from probability theory states that when m (the number of trials) is big enough,
the distribution of expected values for P is well approximated by a normal distribution with
mean P and standard deviation \/m meaning that the probability of getting an
estimate that deviates significantly from P decreases as m gets larger. , under this assumption of
normality, there is a 95% probability that the estimate P falls in the interval [P — €, P + €]

for ¢, = 1.96@, and notice that ¢,, — 0 when m — oco. Vice-versa, given sampled

worlds W1, . .., W,, and the associated estimates P and & = / P(1 — P)/m one can calculate
a confidence interval for P as []5 —26,P + 26|, where z depends on the required confidence
level (e.g. 95%). This means that one can be confident that the actual value P can be found in
the interval [P — z6, P + z6] with that confidence level.

Confidence intervals are introduced in PEC+ through the following definitions, which con-

stitute a progressive weakening of definition [3.34}

Definition 6.1 (Interval Entailment for Domain Descriptions). Given a domain description D,
and an i-formula ¢, it is said that the h-proposition “p holds-with-prob [P, P’|” is entailed by
D if 3P” € [P, P'] such that D |= ¢ holds-with-prob P”, and write

D | ¢ holds-with-prob [P, P']

By definition, if some domain description D is such that D |= ¢ holds-with-prob [P, P’],
then one can be 100% confident that the “true” probability P” lies within the interval
[P, P'], as this relies on the strict logical entailment of the “true” h-proposition D |
o holds-with-prob P. However, as it was shown in previous paragraphs, when probabilistic
approximation techniques are employed instead of strict logical entailment, 100% confidence
intervals would always degenerate into [0, 1] intervals. This motivates an even weaker defini-

tion:

Definition 6.2 (Confidence Interval Entailment for Domain Descriptions). Given a domain de-
scription D, an i-formula ¢, a confidence level ¢, an approximation technique a producing
confidence intervals at the confidence level ¢, the h-proposition “p holds-with-prob [P, P’]”
is entailed by D at the confidence level c by the approximation technique a if a run of the ap-
proximation technique produces [P, P’] as a confidence interval for the probability P” such that
D |E= ¢ holds-with-prob P”. This is also written

D |F(c,a) ¢ holds-with-prob [P, P']
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The shorthand
D |=. ¢ holds-with-prob [P, P']

can be used when a is implicit.

Example 6.1. Table [4.1] shows that the tuberculosis domain description Dy as in example

entails

[TB = Active]@50 holds-with-prob 0.0893061 (6.3)
and consider a sampling procedure that produces the following worlds:
{TB=Absent, {TB=Absent, {TB=Absent, {TB=Latent,
Exposure=TT, Exposure= 1, Exposure=TT, Exposure=_1,
Reactivation= 1} Reactivation= 1} Reactivation= 1} Reactivation= 1}
W % % % %

! 0 1 2 >3
{TB=Latent, {TB=Latent, {TB=Latent, {TB = Latent,
Exposure="T, Exposure= 1, Exposure=T, Exposure= 1,

Reactivation= 1} Reactivation= 1} Reactivation= 1} Reactivation= 1}
W % % % %

? 0 1 2 >3
{TB=Latent, {TB=Latent, {TB=Latent, {TB=Latent,
Exposure="T, Exposure= 1, Exposure="T, Exposure= 1,

Reactivation= 1} Reactivation= 1} Reactivation= 1} Reactivation= 1}
W % % % %

’ 0 1 2 >3
{TB=Absent, {TB=Absent, {TB=Absent, {TB=Absent,
Exposure="TT, Exposure= 1, Exposure="TT, Exposure= 1,

Reactivation= 1} Reactivation= 1} Reactivation= 1} Reactivation= 1}
197 % % % %

! 0 I 2 >3
{TB=Active, {TB=Active, {TB=Active, {TB=Active,
Exposure="T, Exposure= 1, Exposure=T, Exposure= 1,

Reactivation= 1} Reactivation= 1} Reactivation= 1} Reactivation= 1}
W % % % %
i 0 1 2 >3
In example, only one world out of five generated satisfies the i-formula

[Tuberculosis =Active] @50, therefore this procedure approximates the correct probabil-
ity Mp, ([Tuberculosis=Active]@50) = 0.0893061 by 1/5 = 0.2.
a 95% confidence range for the “true” probability can be calculated in this case as

[max(0.2 — 1.96 - 1/0.2-0.8/5,0), min(0.2 + 1.96 - \/0.2-0.8/5,1)] ~ [0,0.55], but

notice that this is unreliable as the number of sampled world is small (m = 5) and therefore the

As an example,

normal approximation is not a good one.



CHAPTER 6. APPROXIMATE COMPUTATION OF H-PROPS 95

inputD.pec
query.pec

translatedD.clj

translatedQ.clj | Anglican im-
plementation result

Translator
(Flex and

approx

Bison)

Figure 6.1: Schematic representation of the Anglican implementation of PEC+.

6.2 Architecture of the implementation

To produce more reliable estimates, more samples must be generated and to this aim some
automated procedure is needed. In this thesis, this task is performed by Anglican [63], a
recent probabilistic programming language based on Clojure (see e.g. [23l]). Anglican per-
forms this task from a specification of a probabilistic model (given by Mp in definition [3.32]
in the context of this thesis) and then applying one of its several built-in techniques. The
architecture of the implementation is similar to the ASP one (see fig. [.I). Flex and Bi-
son transform a PEC+ domain description (compatible with the ASP implementation) and a
(conditional) query into an Anglican-readable format. This is then given on input to an An-
glican implementation whose task is that of creating a probabilistic model reflecting the in-
put domain description and query, and then extracting a (user-specified) number of samples
from that. An estimate P for the probability of the given query is then produced on out-
put, from which confidence intervals can be calculated using the usual normality assumption
and the associated formula. This implementation, currently under active development, is avail-
able at https://github.com/dasaro/pec—-anglican. An implementation of EPEC
based on PEC+’s Anglican implementation is also being developed and will be available at

https://github.com/dasaro/epec—anglican.

6.3 Experiments

All the experiments below were generated using Monte Carlo for sampling, but Anglican read-
ily allows for the use of other methods (e.g. Importance sampling, Markov Chain Monte Carlo).
These experiments are used to provide some empirical evidence for the correctness of this im-

plementation.

Example 6.2. As a first example, consider the simple Decay domain description from exam-
ple Figure represent estimates for the probability of [F'=T|QI for I = 0,...,15
calculated using Anglican and the corresponding 95% confidence ranges. The plot on the left
refers to sampling 100 worlds whereas the plot on the right refers to sampling 1000 worlds.
Notice how the number of samples impacts the confidence ranges. “True” probabilities were
calculated using the ASP implementation. Also note that in both cases, 14/15 times the “true”
value falls within the 95% confidence intervals. Clearly, even more precision can be achieved if

even more worlds are sampled.

Example 6.3. Figure show estimates and true probabilities (calculated using ASP) for the


https://github.com/dasaro/pec-anglican
https://github.com/dasaro/epec-anglican
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Figure 6.2: A graphical representation of the confidence intervals [P, P'] such that Dp |Fos%
[F'=T]QI holds-with-prob [P, P'| for I = 0,...,15. While the plot on the left refers to sampling
100 worlds, the plot on the right refers to sampling 1000 worlds. The true value, calculated using ASP,
is also plotted for reference.
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Figure 6.3: The plot on the left represents confidence intervals [P, P'] such that Dp |Egs%

[Tuberculosis = Latent] QI holds-with-prob [P, P'] for I = 0,...,50. The plot on the right represents
confidence intervals [P, P'] such that Dy, |\=g9.73% [Tuberculosis = Latent|@QI holds-with-prob [P, P’]
for I =0,...,50. The true value, calculated using ASP, is also plotted for reference.

probability of [Tuberculosis = Latent|@QI for I = 0,. .., 50 in the Tuberculosis domain descrip-
tion from example [3.8] The same set of samples of cardinality 5000 is shown in both figures,
but plotted confidence ranges are 95% for the figure on the left and 99.73% for the one on the
right. Notice that while interval estimates on the left are very small, ones on the right are bigger

as to guarantee a 99.73% confidence level.

For what regards computational time, every query requires a pre-processing time mainly
depending on the size of the domain description, and a sampling time which linearly depend
on the number of generated samples. It is important to note that computational time does not
depend on the number of traces like in the ASP implementation. Some results about average
sampling time on different domain description is shown in fig. [6.4] Loading time was found to
be constant in both the tuberculosis and decay scenario, with an average loading time of 0.15 sec
for the Decay domain description and 0.66 sec for the tuberculosis scenario.

This suggests that the Anglican implementation can be employed to approximate the correct

answer to a query even when the ASP implementation does not provide an answer for compu-
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Figure 6.4: Average time spent on generating a given number of samples using different domain descrip-
tions. The plot on the left refers to the Decay domain description, while the plot on the right refers to the
Tuberculosis domain description.
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Figure 6.5: A graphical representation of the confidence intervals [P, P'] such that Dp |FEgs%
[F'=T]QI holds-with-prob [P, P'| for [ = 0,...,50. 500 samples were generated for each query.

tational complexity reasons. This is demonstrated in the following example.

Example 6.4. In the Decay experiment (see fig. it was shown that ASP can take up to about
1 hour to provide an answer to some queries. However, Anglican does not suffer from the same
problem and therefore can be used in cases where exact reasoning is intractable. In fig.[6.5] 95%
confidence intervals for the probability of [F'=T]QI for I = 0, ..., 50 are shown based on an
Anglican-generated set of 500 samples. “True” values are again calculated using ASP but are
unavailable for I > 15 due to complexity reasons, so the ground truth was calculated by hand
when I > 15. It is worth noting that, in Anglican, every query required on average 1.732 sec to

be performed.



Chapter 7

Related Work

This chapter describes some recent languages for RAA that also support some form of prob-
abilistic reasoning. It provides a high-level overview of these languages and compares them
to PEC+ and EPEC by commenting on their similarities and differences. While Situation
Calculus-based formalisms have a stronger tradition and generally focus on planning (as al-
ready mentioned in sections and and fig. 2.1, Event Calculus-based formalisms are
more recent and oriented to dealing with narratives. This chapter is partitioned into two section

so as to reflect these two approaches.

7.1 Situation Calculus formalisms

7.1.1 BHL

The BHL framework [3] (here named after its authors: Bacchus, Halpern and Levesque) is
perhaps the first attempt to integrate a language for RAA with some model of uncertain and
epistemic reasoning. BHL is based on Reiter’s formulation of the Situation Calculus discussed
in section [2.1.2] and therefore inherits its ontology and is formulated in terms of second-order
logic axioms.

Just like EPEC, this framework is general enough to support different models of belief such
as probabilistic, possibilistic or Dempster-Schafer belief functions, but just like in this thesis its
authors chose to focus on the probabilistic case. Their way of encoding probabilities is by using
a functional fluent p(s’, s) that, for any two situations s and s’, represents the degree of belief
that an agent in situation s assigns to the situation s’ being the actual situation. Similarly to the
extension of a model to a function over formulas in EPEC, an appropriate function BEL(0, s)
over formulas is then defined on top of the functional fluent p as the normalised sum of weights
of those situations in which 6 holds from the point of view of an agent in situation s. This is
then shown to satisfy the axioms of probability.

BHL can model both noisy effectors (i.e., actions whose effects are uncertain) and noisy
sensors (i.e., sensing actions whose outcomes are imperfect). These loosely correspond to c-
propositions and s-propositions in EPEC respectively. As an illustration, consider a simple
scenario in which objects can be dropped. As a result of dropping there is a chance they will

break if they are fragile. This is implemented in BHL though the following set of axioms:

98
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(BHL-D1) Poss(DropBreak(x),s) <+ Holding(z, s) A Fragile(x, s)
(BHL-D2) Poss(DropNotBreak(x), s) <> Holding(x, s)
(BHL-D3) [(DropBreak(x),s) = if Fragile(x) then 0.8 else 0
(BHL-D4) [(DropNotBreak(x),s) = if Fragile(z) then 0.2 else 1

Axioms [BHL-D]| and [BHL-D2| define the precondition of the two actions DropBreak and
DropNotBreak, whose effect is governed by the successor state axiom

Poss(a, s) — Broken(x,Do(a, s)) <+ a = DropBreak(x) \V Broken(x, s)

and axioms and state what the likelihoods of success of the two actions are.
The agent cannot execute these two actions directly, he can only perform an action Drop(z)
which non deterministically activates one of DropBreak(z) or DropNotBreak(z). This is loosely

equivalent to the following c-proposition in PEC+:
(PEC-D1) Drop A Holding=T A Fragile="T causes-one-of {({Broken=T},0.8)}

Although PEC+ allows for a more compact representation (this is often the case when comparing
action languages with classical logic formalisms), BHL is a second order formalism and can
therefore use a more expressive language e.g. to express parametrised actions such as Drop(z).
This can also be simulated in PEC+ as long as the parameter takes value in a finite domain.

However, BHL cannot represent narratives and therefore there is no p-proposition or o-
proposition equivalent, as the main focus of this work was exploring how noisy effectors and
sensors interact and impact the agent’s belief as a result. This work has since then served as
an inspiration for other similar frameworks, see e.g. [43l], and has been further developed in
many ways. For instance, [6] adds support for continuous probability distributions, and [7]]
applies BHL and these extensions to to the problem of localisation, i.e. to the case where an
agent moves in a multi-dimensional world and can sense its position. The problem of extending
BHL with a modality known as only knowing, which allows for the modelling of a precise
specification of what is and what is not known within a logical theory of actions, has also been
tackled in [5]].

7.1.2 Language PAL

Language PAL (for Probabilistic Action Language) is a probabilistic extension of Language
A, which is described in section [2.1.4] It is an action language, and, just like Language A, is
purposely simple. A distinguishing feature of PAL is that it is elaboration tolerant, i.e. new
knowledge can be added to domain descriptions without having to revisit them entirely. This
feature is usually overlooked in probabilistic RAA languages (including PEC+ and EPEC) and
is a consequence of how probabilities are represented in PAL. As an example, c-proposition

from example|3.8|can be translated to PAL in the following way:
(PAL-T3.1) probability of A is 4/100

(PAL-T3.2) probability of L is 76/100
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(PAL-T3.3) Exposure causes Active, ~Latent, ~Absent if Absent, A
(PAL-T3.4) Exposure causes —Active, Latent, —Absent if Absent,—A, L

This example can be used to illustrate some characteristics of PAL. The two propositions
T3.1|and[PAL-T3. | are called Probability Description Propositions and define two random vari-

ables A and L and their associated probability distributions. Random variables in PAL are sim-

ilar to fluents (which however cannot be affected by actions) and are of two kinds: inertial and
non-inertial. In both cases their value is picked at random according to the specified distribution,
with the difference that inertial random variables persist whereas non-inertial random variables
do not, and therefore their values are re-sampled whenever a new situation is reached. Random
variables defined through Probability Description Propositions are always assumed to be inde-
pendent from each other. In this example, it makes sense for both A and L to be non-inertial
random variables.

Propositions [PAL-T3.3] and [PAL-T3.4] are called Dynamic Causal Laws and specify what

the effect of an action is under some (possibly probabilistic) preconditions. Since PAL is non-

functional, in this example the three possible values for Tuberculosis are represented as separate
boolean fluents. In this example, the two effects of Exposure (i.e., Active, —Latent, —Absent and
—Active, Latent, ~Absent) are probabilistic as the preconditions of propositions and
depend not only on the fluent Absent but also on the two random variables A and L
and therefore on their sampled values.

Now suppose that one wanted to enrich the domain description by adding a new outcome
for the action Exposure to account for the possibility of the patient developing a resistance to

tuberculosis after being exposed to it. In PAL this would require adding the following axioms:
(PAL-T3.5) probability of / is 1/100
(PAL-T3.6) Exposure causes Immune if Absent, =L, —A, I

whereas in PEC+ one would have to change proposition [13|to

(T3*) Exposure N\ Tuberculosis = Absent
causes-one-of
{(Tuberculosis=Active,4/100),
(Tuberculosis = Latent, 76,/100),
(Immune, 1/100),
(0,19/100)}

which shows how PAL is fairly elaboration tolerant when compared to PEC+.
PAL also deals with ramifications (i.e., knock-on effects of actions) through static causal
laws of the form

1) causes ¢

for a fluent formula v and a formula ¢ of fluents and inertial variables.

PAL can also handle executability conditions through propositions of the form

impossible A if 0
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for an action A and a formula € of fluent and unknown variables. Both static causal laws and
executability conditions cannot be expressed in PEC+ and EPEC.
To illustrate PAL’s semantics, it is convenient to use a simple ball-drawing example. Con-

sider the following domain description:

(PBD1) AttemptDraw causes Red if U,
(PBD2) AttemptDraw causes —Red if —U,

(PBD3) probability of U is 1/4.

This domain description describes an experiment in which balls are drawn with replacement
from an urn, and its interpretation changes according to whether U is inertial or non-inertial. If
U is inertial, the balls in the urn are all of the same colour, either blue (with probability 3/4) or
red (with probability 1/4). If U is non-inertial, the balls in the urn are red and blue in proportion
1:3.

Similar to many other situation calculus RAA frameworks, the semantics of PAL is given in
terms of states and transitions and builds a probability function P that is similar to the concept
of a model in PEC+. In a nutshell, states are interpretations of every fluent and variable in the

language. In the ball-drawing example these are:
{Red,U},{—Red,U},{Red,—U},{—Red,~U}

The probability P of a given state is then calculated on the basis of (domain-dependant)
probabilities of unknown variables and assuming that fluent states (that is, interpretations of all
fluents in the language) are equiprobable to each other. In the example above P(U) = 1/4,
P(=U) =3/4, P(Red) = P(—Red) = 1/2 and

P({Red,U}) = P({~Red,U}) = 1/8, P({Red,~U}) = P({~Red, ~U}) = 3/8

The transition from a state to another represents the probability of transiting from one state
to another due to a sequence of actions. It depends only on the non-inertial variables and the
effect of actions on fluents (since inertial variables cannot change their values from a state to
another). In the ball-drawing example, if U is inertial a transition from {—Red, =U } to {Red, U }
due to AttemptDraw is given probability 0 because it is not possible for a inertial variable to
change value. If U is non-inertial this same transition is given probability 1/4.

PAL uses queries to express what is the probability of a formula after the execution of a

sequence of actions. They are of the form
probability of [¢) after A;,..., A,]isp

where 1) is a formula of fluents and unknown variables. A query of this form is entailed by
a domain description iff p equals the sum of probabilities of a transition from any initial state

s to another state in which 1 holds after actions Ay, ..., A, are executed, weighted on the
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probability P(s) of starting from state s. In the ball drawing example, the query
probability of [Red after AttemptDraw, . .., AttemptDraw) is 1/4

is entailed by the corresponding domain description (regardless of U being inertial or non-
inertial).

Finally PAL can also deal with hypothetical observations, and perhaps even more interest-
ingly it is also able to deal with narratives.

Hypothetical observations in PAL have the form
1) obs-after A{,..., A,.

and are hypothetical in the sense that they did not really happen. Real observations are dealt with
in a narrative extension of the language that, building upon [48]], extends PAL with time-points

and allows for the expression of propositions of the form
¢ att

and

o occurs-at ¢

for a fluent formula ¢, a (possibly empty) sequence of actions « and time-point ¢.

Although they are based on different ontologies, PAL and PEC+ are on a par for what regards
representation of narratives, the only difference being that PEC+ can handle probabilistic event
occurrences (of the form “A happens-at I with-prob P*”) while PAL cannot. However, unlike
in EPEC, there is no way to model sensing actions in PAL.

7.1.3 Language £+

Language £+ [33]], not to be confused with language £ discussed in section [2.1.4] is a proba-
bilistic action language with an epistemic component. It is mainly based on the action languages
C+ [30] and PC+ [18]]. Its distinguishing aspect is that it is able to express both probabilistic
and non-deterministic actions, alongside (perfect) sensing actions. As many situation calculus
formalisms the main focus of £+ is put on planning. Since it does not support imperfect sensing
(unlike PEC+ and EPEC), £+ is suitable for domains in which it is reasonable to assume that
sensing actions produce perfect knowledge about the world. This shows a crucial difference
in focus between £+ and the frameworks proposed in this thesis, as some domains that EPEC
is able to model (see e.g. scenarios [[.2]to [I.4) cannot be realistically modelled in £+. In the
remainder of this section, some characteristics of its syntax and semantics are outlined.

Its basic language is made of fluents and actions, with the latter being partitioned into phys-
ical actions and sensing actions. Physical actions are further divided into deterministic, non
deterministic and probabilistic actions.

It allows for the definition of several types of propositions: precondition axioms are used
to express the conditions under which a (physical or sensing) action is executable. Conditional

effect axioms express the effects of an action when the world satisfies certain conditions; in
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particular, non deterministic effect axioms specify the possible outcomes of that physical ac-
tion, while probabilistic effect axioms attach a probability to each effect, which are considered
mutually exclusive. Sensing effect axioms are used to specify which literals a sensing action
produces knowledge about. Default frame axioms serve to specify which features of the world
persist when a particular action is executed. Finally, domain constraint axioms are used to
describe background knowledge which is invariant to the execution of an action.

The semantics of £+ is based on the concept of a state and epistemic state: as in other
languages described in this thesis, a state is an interpretation of fluents in the language, while an
epistemic state is a set of states representing what the agent thinks it might be true in the actual
world: for instance, the epistemic state {{ £, =G}, {F, G}} can be used to represent ignorance
about the truth value of G. It plays a role analogue to that of the Epistemic Fluent K (w) in
EFEC, with a significant difference: an Epistemic State can only represent the instantaneous
accessibility to a set of states (i.e., no temporal information is taken into account), while the
Epistemic Fluent represents an accessibility relation to entire worlds, which bear information
about events and when they take place.

The epistemic part of £+ is implemented through a directed graph G = (V, E') where the
set V of vertices consists of all the epistemic states and there is an edge from S to S’ labelled
o if and only if the action « is executable on the epistemic state .S (meaning that .S satisfies all
the Precondition Axioms) and produces S’ as a result. In the case where « is a physical action,
the result of executing it on .S will produce a new epistemic state S’ (called successor epistemic
state of S) where all the following conditions are satisfied: i) S’ includes all the physical effects
of a mentioned in the corresponding Conditional Effect Axioms whenever their preconditions
are satisfied by the current epistemic state S, ii) S’ satisfies all the indirect effects encoded in the
Domain Constraint Axioms, iii) S’ satisfies the inertial constraints encoded in the Default Frame
Axioms. The case of « being a sensing action is similar: instead of taking into account physical
effects, the successor epistemic state has to be consistent with the outcome of the corresponding
sensing actions. Under the assumption that no probabilistic or non deterministic actions are in
the domain description, such a successor epistemic state, if one exists, is unique

Notice that since the graph G includes only epistemic states, all the preconditions are to be
interpreted as epistemic preconditions, that is, it does not matter whether a fluent precondition is
true in the actual environment: it is impossible to execute an action until such this precondition
is known to hold.

Every non deterministic and probabilistic effect axiom is to be considered (logically or prob-
abilistically) independent of every other axiom, so if we are given an action «, an epistemic state

S and the maximal set of Probabilistic Conditional Effect Axioms

caused 11 : p1.1, ... V10, : P1n, after o when ¢y,
caused 121 : p2.1,... Y2, : P2.n, after o when ¢o,

* )

caused 1y 1 : Dk 1, - - Yk, : Pk, after « when ¢y

in the domain description such that all the ¢; are satisfied in .S, the semantics calculates the

probability that o will trigger a transition from .S to a new epistemic state such that exactly one
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effect 1; ;, has been picked foreach i = 1,2,...,kas ) Hle Di j;» where the sum is over all
possible choices of effects that lead to S (clearly, if the axioms are non deterministic instead,
no probability is calculated). Conversely, all the successor epistemic states of a state .S take the
form of a state S’ which has been formed from S by taking into account inertia, indirect effects,
and some combination of direct effects.

Typically, an initial state description d7, in the form of a fluent conjunction, is also taken
into account: semantically speaking, this has the effect of restricting the graph G = (V, E) to a
graph G5, = (Vj,, Es,) where only successor epistemic states of the initial epistemic state are
considered.

In [33], the authors focus on developing algorithms for planning using £+-. They define the
quality of a conditional plan (in the form of a sequence of actions) as the lower probability that
such a plan will reach one of the epistemic states satisfying a desirable goal, typically a fluent
conjunction. An algorithm to generate an optimal plan (i.e., such that its probability is minimal)

18 also introduced and discussed.

7.2 Event Calculus Formalisms

7.2.1 MLN-EC and Prob-EC

As mentioned earlier, the Event Calculus had not been merged with some form of probabilistic
reasoning until recently. The first attempt to do so is MLN-EC [62]], followed by the closely
related Prob-EC [61]].

These two languages give a probabilistic semantics to EC, respectively using Markov Logic
Networks (MLN, for short) and a recent probabilistic dialect of Prolog called ProbLog [14]]. In
the following, their characteristics are briefly discussed. Both of them are based on a discrete-
time reworking of the EC that is close to that presented in section As a case-study, they
were both applied to the realisation of a system for recognizing human activity given a symbolic
representation of video content from security cameras, but can be applied in general to the task
of recognising a set of Long-Term Activities (LTAs for short) given as input a set of timestamped
Short-Term Activities (STAs for short). They have both been shown to be particularly effective
when dealing with event recognition in highly noisy environments, especially when compared
to plain EC.

MLN-EC

The syntax of MLN-EC supports the assignment of weights to formulas in the knowledge base.
This induces a ground MLN, which then defines a probability distribution over worlds accord-
ingly. In MLN-EC, input weights are assigned to the causal axioms of EC. As an example,

consider a simple theory with only one fluent F'. Four implications can be weighted separately:
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holdsAt(F, T + 1) < [Initiation Conditions

—holdsAt(F,T + 1) <— —holdsAt(F,T') N\ —[Initiation Conditions
—holdsAt(F,T + 1) < [Termination Conditions

holdsAt(F, T + 1) < holdsAt(F,T) A —=[Termination Conditions

]
]
]
]
where the initiation (resp. termination) conditions are user-defined.

Depending on which axiom is weighted, several behaviours can be obtained. If all of the
axioms above are hard constrained (i.e., they are all assigned co as a weight), the result is in-
distinguishable from plain EC. If the axioms that specify what holds after an initiation (resp.
termination) are soft-constrained (i.e. they are assigned weight < co) then the initiation (resp.
termination) of a fluent increases (resp. decreases) the probability of that fluent holding. This is
similar to defining probabilities of c-proposition outcomes in PEC+. Soft-constraining persis-
tence formulas generalise the law of inertia, so that the probability of that fluent holding might

increase or decrease over time even when it is not initiated or terminated.

Prob-EC

Prob-EC’s core, called Crisp-EC, is close in spirit to the original formulation of the Event Calcu-
lus as a logic program of [38]]. Since ProbLog syntax is largely compatible with that of Prolog,
only a few transformations had to be applied to Crisp-EC axioms in order to port it.

As a complete description of the system is out of the scope of this thesis, only the domain
dependent part of their Crisp-EC theory devoted to recognising an LTA of type Moving (which
is a fluent supposed to be true when two people are moving together) from a video stream is

presented here:

InitiatedAt(Moving(P1, P2) = true,T') <
HappensAt(Walking(P1),T),
HappensAt(Walking(P2),T),
HoldsAt(Close(P1, P2,34) = true,T),
HoldsAt(Orientation(P1) = 01, T'), HoldsAt(Orientation(P2) = 02, T),
|61 — 02] < 45°

meaning that a Moving LTA is initiated whenever both people P1 and P2 are Walking (where
Walking is an input STA), they are Close enough (Close(P1, P2,34) means that P1 and P2
are at most 34 pixels far from each other in the video frame) and they are heading roughly to the
same direction (this is what the Orientation input predicate is for). The termination condition is

given as
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TerminatedAt(Moving(P1, P2) = true,T') <
HappensAt(Walking(P1),T),
HoldsAt(Close(P1, P2,34) = false, T')

i.e. Moving is terminated when at least one of P1 and P2 is walking and they are not close to
each other anymore.

An input flow of input STAs annotated with probabilities is then considered, such as the

following:
0.70 :: HappensAt(Walking(mike), 1)
0.46 :: HappensAt(Walking(sarah), 1)
0.73 :: HappensAt(Walking(mike), 2)
0.55 :: HappensAt(Walking(sarah), 2)
0.70 :: HappensAt(Walking(mike), 3)
0.38 :: HappensAt(Walking(sarah), 3)
0.61 :: HappensAt(Walking(mike), 4)
0.39 :: HappensAt(Walking(sarah),4)

Notice how this is similar to assigning probabilities to p-propositions in PEC+.

The degree to which Moving holds at a given time point for Mike and Sarah is then calculated
by combining all its previous initiations and terminations. For instance, in this case the probabil-
ity of a Moving LTA at time 3 can be calculated as the probability that Moving has been initiated
(and not terminated) at one of the previous time points: HoldsAt(Moving(mike, sarah), 3) is then
given probability equal to 0.70 - 0.46 4- 0.73 - 0.55 — 0.70 - 0.46 - 0.73 - 0.55 = 0.594, under the
assumption that they are Close and heading the same direction. A property of Prob-EC is that if
no initiations or terminations for given fluent are in the input stream in a time period, then the
probability that the fluent holds persists through inertia, i.e. it does not change. This is similar
to the behaviour of PEC+ shown in fig.[3.2]

While Prob-EC relies on ProbLog for probabilistic inference, MLN-EC uses state-of-the-art
approximation techniques (including e.g. Markov Chain Monte Carlo), making both approaches
highly scalable. In terms of features, Prob-EC is currently a subset of PEC+, but the generalisa-
tion of the law of inertia provided by MLN-EC is a step ahead both PEC+ and EPEC. However,
an advantage of EPEC over both these frameworks is that it supports imperfect sensing actions

and conditional events.



Chapter 8

Discussion

This chapter provides a summary of the main contributions of this work, and suggests some

possible directions for further research.

8.1 Contributions

This thesis contributes to the field of Artificial Intelligence. These contributions are mainly in
the areas of Reasoning About Actions, Knowledge Representation, Probabilistic and Epistemic
reasoning. Two new action languages are introduced, PEC+ and EPEC, able to reason about an
agent’s degree of belief.

While most work in the area of Reasoning About Actions is focused on planning and based
on the Situation Calculus (see section @]), the main aim of this thesis is to develop a narrative
formalism based on the Event Calculus (see section 2.1.3). PEC+ and EPEC contribute to
this field by integrating and extending epistemic, probabilistic and narrative reasoning. For
example, EPEC’s representation of conditional actions (with its associated fixpoint semantics)
is an advance over previous work, as it is able to model actions that can be conditioned on
the strength of belief in a given property of the domain, even when the agent can only sense
imperfectly. This is particularly appropriate for planning under high levels of uncertainty (see
e.g. the medical scenarios described in section [I.2)), where perfect sensing is not a realistic
approximation. Within the set of EC formalisms, PEC+ and EPEC have pushed forward the
integration of the original EC with probabilistic reasoning by generalising some typical EC
features to the probabilistic case, for instance triggered actions. It is also worth mentioning that
EPEC is the only probabilistic EC-based formalism to date which supports epistemic reasoning.
This implies that its focus and potential areas of application differ from previous probabilistic
EC languages which, as noted in section[7.2] are mostly used as event recognition tools.

This thesis also shows how ASP, a logic programming language, can be used to implement
PEC+ using only a minimal amount of pre-processing and post-processing. The correctness
of this implementation is then also proved. The thesis shows empirically (see section {.4)) that
this implementation is not suitable for some domains (for example those with triggered actions)
where the number of worlds grow in such a way as to make automated reasoning intractable.
However, the implementation scales adequately for domains where various features such as

the number of actions performed do not cause an explosive growth of the number of worlds.

107
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To overcome computational difficulties in other cases, an alternative implementation of PEC+
is also provided, which uses a probabilistic programming language to perform approximate
reasoning. Chapter [6] demonstrates that this implementation provides an approximation of the
correct results, as it is validated against the ASP implementation where tractable, and that it also
scales well for domains where a correct computation of the results is intractable.

This thesis also makes a contribution to the field of Explainable A in the sense that it pro-
vides frameworks for transparent reasoning in uncertain time-dependent domains. The validity
of reasoning based on PEC+ or EPEC rests upon the validity of three components: the domain
description, the domain independent assumptions (e.g., Closed World Assumption, Persistence
and Justified Change) and the axioms of Probability Theory. The logical nature of these com-
ponents makes the reasoning easily explainable in human terms, and in particular Probability
Theory provides a rational mechanism for explaining degrees of uncertainty.

To summarise, this thesis contributes to the field of Artificial Intelligence by introducing a

novel combination of

e Reasoning About Actions

Narrative Reasoning

Uncertain Reasoning

Epistemic Reasoning

Support for Belief-Conditioned Actions
in the form of two new action languages, namely:

e PEC+, which can represent a mix of uncertain information about specific event occur-
rences and initial conditions, triggered actions, and uncertain information about general

causal rules.

e EPEC, which constitutes the main contribution of this thesis, builds upon PEC+ and can
reason about future belief conditioned actions and their consequences in domains with

imperfect sensing.

whose syntax and semantics constitute the formal contributions of this thesis. On the other hand,

the computational contributions are two implementations of PEC+, namely:
e A provably correct ASP implementation

e A scalable, approximate implementation in Anglican

'In a nutshell, Explainable Al is a branch of Artificial Intelligence that is able to explain and justify its actions
in a human-understandable way. As pointed out in section [2.2.3] there are strong arguments in support of the use
of probabilistic belief functions (e.g., an agent using a probabilistic belief function is “rational” in the sense that it
cannot be Dutch Booked and satisfies Cox’s axioms). This is in contrast to other types of Artificial Intelligence which
employ complex, non-transparent algorithms that make it hard to explain their decisions even for their developers.
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8.2 Further work

This thesis constitutes a further step towards the establishment of a probabilistic epistemic Event
Calculus, able to reason about a comprehensive spectrum of complex domains. There are many
ways in which this work could be fruitfully continued. Some possible extensions and variations
are described below.

If needed, PEC+ and EPEC allow for non-probabilistic extensions which could be employed
to capture heuristic ways of reasoning. For instance, [64] shows how fuzzy sets theory can be ap-
plied in the context of narrative modelling and understanding. Employing such non-probabilistic
belief functions could then enable PEC+ and EPEC to model aspects of common sense rea-
soning that are not captured by probabilistic reasoning alone. However, this would somewhat
weaken the degree up to which PEC+ and EPEC computations are explainable and justifiable,
as non-probabilistic models do not always come with a justification in terms of rationality.

Some of the formalisms presented in chapter [7|have been extended with features that PEC+
and EPEC do not support. Some effort could be spent on implementing these ideas in PEC+
and EPEC. Among these features, supporting continuous probability distributions and handling
ramifications would be an interesting next step.

The implementations of PEC+ and EPEC provided in this thesis focus on temporal projec-
tion. It would be interesting to embed these implementations within an abductive framework,
for example to tackle tasks such as planning and explanation generation in uncertain domains.
Algorithms could be developed, for example, to find (sub-)optimal plans to achieve a given goal
with (near-)maximum probability.

Much of the work described in the thesis relies on a precise specification of the domain being
fully specified a priori. As it is a probabilistic formalism, it is feasible to learn the parameters of
the underlying probabilistic model from observations believed to derive from the same domain,
e.g. in the context of the tuberculosis example medical records of treatments of past individuals.
A related challenge is to discover the structure of a domain itself, e.g. by learning c-propositions
outcomes, or adding new propositions, or enriching the underlying language of actions and
fluents. Again this would require observations relating to the same domain.

Since PEC+ and EPEC are not tied to any specific programming language, they could be
re-implemented in other languages to exploit their specific features (especially to overcome
computational complexity issues). For example, the ASP implementation provided in this thesis
could be rewritten in L PMLN [39], a recent generalisation of the stable models semantics to the
probabilistic case based on Markov Logic Networks.

In both the Situation Calculus and the Event Calculus there is a long tradition of using
classical logic to extend the theories. It should be possible to express the semantics of both
PEC+ and EPEC in classical logic, and this might be advantageous as regards exploring its
formal equivalences to other frameworks under certain conditions. The ASP implementation of
chapter ] provides a good foundation for this idea.

Finally, the integration between logic and probability within Reasoning about Actions gives
a new perspective on long standing issues such as the ramification and qualification problems.
While the ramification problem is already tackled in other probabilistic work (see e.g. PAL and
&+ from chapter[7)), the qualification problem has not yet been explored in this context, although
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it has been studied in non-probabilistic EC e.g. in [37], where it is discussed in the context of
elaboration tolerance. Non-probabilistic EC often copes with domains that are underspecified
e.g. in terms of the initial state of the world using non-determinism. But in the probabilistic case
it is not clear what to infer from domains that e.g. do not specify a probability distribution over
initial states of the world (in EPEC terms, do not have an i-proposition). Exploring such domains
constitutes an interesting challenge, and incorporating corresponding solutions in PEC+ and

EPEC would arguably be a step forward in reflecting aspects of human reasoning.
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