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Delta Divergence: A Novel Decision Cognizant
Measure of Classifier Incongruence
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Abstract—In pattern recognition, disagreement between two
classifiers regarding the predicted class membership of an obser-
vation can be indicative of an anomaly and its nuance. Since,
in general, classifiers base their decisions on class a posteriori
probabilities, the most natural approach to detecting classifier
incongruence is to use divergence. However, existing divergences
are not particularly suitable to gauge classifier incongruence. In
this paper, we postulate the properties that a divergence measure
should satisfy and propose a novel divergence measure, referred
to as delta divergence. In contrast to existing measures, it focuses
on the dominant (most probable) hypotheses and, thus, reduces
the effect of the probability mass distributed over the non dom-
inant hypotheses (clutter). The proposed measure satisfies other
important properties, such as symmetry, and independence of
classifier confidence. The relationship of the proposed diver-
gence to some baseline measures, and its superiority, is shown
experimentally.

Index Terms—Classifier incongruence, divergence clutter,
f -divergences, total variation distance.

I. INTRODUCTION

D IVERGENCE in information theory has been intensively
studied and researched over the last six decades. On the

one hand, the massive interest in the subject has been driven
by the diversity of applications where divergence plays the key
role as an objective function. On the other hand, the investiga-
tion of the underlying theoretical properties of divergence has
motivated the discovery of new measures with tailor made
characteristics that are fine tuned for specific applications.
This dual drive has produced extensive families of divergences
which are encapsulated in the generic expressions presented,
e.g., in [15], with many specific examples listed in [27]. We
shall provide a very brief overview of these developments in
Section II and give representative examples in Section III-A.

The key designation of divergences is to measure differences
between two probability distributions. These distributions can
be related to discrete random variables such as symbols in
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communication systems, or continuous random variables when
comparing, for example, two density functions. The differ-
ences can also stem from comparing an empirical distribution
of some data, and its parametric model. In decision mak-
ing applications the two distributions could be a posteriori
class probability functions of observations to be classified. The
nuances of these different applications call for divergences of
different properties and the existing spectrum of divergence
measures bears witness to the endeavors in the field reported
over the decades.

In this paper, we focus on the use of divergences to measure
incongruence of two classifiers. The problem arises in com-
plex decision making systems which often perform sensor data
classification tasks using multiple classifiers. Examples of such
systems include classifiers processing different modalities of
data, ensemble of classifiers aiming to improve classification
performance, or hierarchical classification systems where the
base classifiers at one level feed their outputs to a contextual
classification level. At this decision level, the context pro-
vided by neighboring objects is used to improve performance,
or derive structural interpretation of the input data. These
multiple classifiers voice their opinions about a given set of
hypotheses, expressed in terms of a posteriori class probability
for each possible outcome.

In decision making systems engaging multiple classifiers,
one would normally expect all the classifiers to support the
same hypothesis. A classifier disagreement usually signifies
something abnormal; a subsystem malfunction, a sensor data
modality being absent, or some anomalous event or situation in
the observed scene. It is therefore desirable to monitor classi-
fier outputs with the aim of detecting “surprising” classifier
incongruence as a trigger for a deeper investigation of its
possible causes.

In information theory, the magnitude of surprise is inti-
mately linked to the probabilities of the outcome of an
experiment. In the decision making context considered in this
paper, the experiment outcome is the true class membership
of a given observation (i.e., finding out which class hypoth-
esis is correct). For outcomes of low probability the surprise
is huge, whereas for events that are certain (with probability
approaching unity) the surprise is null. The conventional way
of measuring the amount of information learned from an out-
come with probability P is using the logarithm of the inverse of
P. The information gain from an experiment is then measured
by averaging over all the possible outcomes.

In the case of classifier incongruence we are interested in
measuring the information gain from an outcome involving
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two or more classifiers. For the sake of simplicity, in this
paper we shall consider two classifiers only. More specifically,
we have two random variables representing class identities,
with their distributions, and the question is whether the clas-
sifiers agree in supporting the various class hypotheses, or
disagree. The nature of information gain from an experiment
changes to a comparison of the respective probabilities of
possible outcomes. Congruent classifiers would have similar
probability distributions over classes, whereas for incongruent
the distributions would be different.

Measuring the information gain from an experiment involv-
ing two classifiers is different from quantifying the gain from
learning the outcome involving a single classifier. What mat-
ters in the case of two classifiers is their comparison. Even if
the information gain associated with an experiment involving
a single classifier is huge, if two classifiers have the same a
posteriori class probability distribution, they will be congruent.

A common criterion used for comparison of the distribu-
tions of two random variables is divergence. The most popular
divergence measure is the Kullback–Leibler (KL) divergence,
referred to by Itti and Baldi [18] as Bayesian surprise mea-
sure. It has been used as a measure of classifier incongruence
by Weinshall et al. [44], but it is not ideal for a number of
reasons.

1) If the distributions are different, the value of incon-
gruence will depend on the actual class probability
distributions, rather than on probability differences only.

2) Measure is asymmetric, i.e., its value depends on
which of the two classifier distributions is used as a
reference.

3) Its values are unbounded, which makes it difficult to set
a threshold on congruence.

4) In multiclass problems the nondominant classes con-
tribute to clutter, which makes the divergence very
noisy.

Some of the above drawbacks have been addressed by
alternative divergence measures discussed in Section II. The
symmetrized KL divergence recovers the symmetry property.
The Jensen–Shannon divergence [28] is both, symmetric, and
bounds the range of its values to the interval [0, 1]. However,
neither of these measures address properties 1) and 4). In
search for more suitable candidates, one can consider the gen-
eral family of f -divergences [27]. It includes, the divergences
based on the Rényi [39] α-entropies, of which the com-
monly used Shannon entropy—the basis of KL divergence—is
a special case for α = 1. Another interesting member is,
for instance, the α-entropy, for α = ∞, defined entirely by
the probability of the most likely hypothesis, which is used
for decision making by each classifier. This choice would
avoid the problem of clutter in property 4), but this partic-
ular property migrates to the associated α-divergence family
in an undesirable way by focusing on the maximum ratio of a
posteriori probabilities, which can emanate from nondominant
hypotheses. This can potentially provide a highly misleading
information about classifier incongruence. The only measure
that addresses the problem of clutter is the decision cog-
nizant KL (DC-KL) divergence [38], but, as in the case of
KL divergence, its values are unbounded.

In this paper, we address the problem of measuring classifier
incongruence by first introducing the mathematical frame-
work and our baseline—the KL divergence. This classical
information theory divergence is critically assessed in the con-
text of classifier incongruence detection. The critical analysis
allows us to identify the properties that a divergence should
possess to be able to serve as a measure of classifier incon-
gruence effectively. A brief overview of the options offered
by existing tools, and their ability to satisfy the incongru-
ence measure properties identified provides the motivation for
a new measure, called delta divergence. Its basis is total vari-
ation distance, but we eliminate the clutter by noting that
classifier congruence assessment involves only at most three
outcomes of material interest: the two classes predicted by
the two classifiers, plus the possibility that the true class is
neither of the two. The proposed divergence is a function
of the absolute value of the difference of the a posteri-
ori class probabilities estimated by the respective classifiers
for the dominant hypotheses. It is shown to exhibit all the
required properties, i.e., being bounded, symmetric, decision
cognizant, and decision confidence independent. The relation-
ship of the proposed divergence with state-of-the-art classifier
incongruence measures highlight its advantages which are also
confirmed experimentally by showing the effect of clutter on
the KL divergence, as well as on other baseline measures.

This paper is organized as follows. The related literature
is briefly reviewed in Section II. Section III-A introduces the
mathematical framework and analyses the properties of KL
divergence from the point of view of detecting classifier incon-
gruence. As an outcome of this analysis the properties required
by any measure of classifier incongruence are postulated in
Section III-B. After a brief discussion of the properties of
other existing tools for measuring classifier incongruence, a
new divergence is proposed in Section III-C and its proper-
ties established in Section III-D. The novel, decision cognizant
formulation of the classifier incongruence detection problem
mitigates the clutter generated by nondominant class hypothe-
ses. This is first shown analytically and later experimentally
in Section III-D. In Section IV, we discuss the relationship of
the proposed divergence with some baseline criteria as well
as with the recently advocated heuristic measures of classi-
fier incongruence. Section V presents illustrative examples of
applications of classifier incongruence measures and demon-
strates the advantages of delta divergence on real data relating
to the problem of detecting incongruence of face and finger-
print modalities in a multimodal biometric system. Section VI
draws this paper to conclusions.

II. RELATED WORK

The introduction of the concept of divergence is attributed
to Jeffreys [19] who proposed it as a measure for compar-
ing the likelihood of two competing hypotheses in statistical
hypothesis testing. Jeffreys’ [19] divergence is defined as the
difference between the means of the log likelihood ratio com-
puted, respectively, under the two hypotheses. However, earlier
references to the notion of divergence can be traced back to
Mahalanobis [30] in his work on measures for comparing two
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statistical populations, and Bhattacharyya [4] who proposed
to measure the distance between two distributions using the
cosine of the angle between the vectors whose components are
constituted by the square root of the values of the associated
two probability distributions. The Bhattacharyya coefficient is
closely related to the Hellinger distance (see [33]) which dates
as far back as 1909.

In spite of the above credits, the key impetus of the
intensive study of the topic over the last six decades was
the information theoretic notion of divergence proposed by
Kullback and Leibler [26]. Inspired by the seminal work of
Shannon [41] on information theory, Kullback and Leibler [26]
conceived divergence as the relative gain in information
received from an experiment involving two probability dis-
tributions relating to the same random variable.

In their original paper, the authors define divergence as the
mean information for discrimination between two competing
hypotheses. They point out a link between divergence and
Fisher’s [13] information, and therefore the relevance of the
information theoretic notion of divergence to statistical esti-
mation theory. This paper also establishes basic properties of
KL divergence, including its nonnegativity and the conditions
that would need to be satisfied for divergence to exhibit the
property of transformation invariance.

One of the factors constraining the use of the KL diver-
gence involving probability densities is the requirement that
the probability distributions are absolutely continuous. To
overcome this problem, Lin [28] proposed an alternative, the
Jensen–Shannon divergence, which mitigates this problem and
renders his measure more generally applicable.

The information theoretic framework inspired immense
interest in theoretical properties of KL divergence and led
to its generalization using other entropy functions such as
α-entropy of Rényi [39], which includes the KL divergence as
a special case. An even broader generalization was proposed
by Csiszár [9] under the name of f -divergences. The fam-
ily of f -divergences is defined by various choices of convex
functions of the likelihood ratio of the respective probability
distribution values associated with the alternative hypothe-
ses [27], [33]. The family is included in the class of yet
more general divergences known as Bregman divergences
(see [42]).

The properties of the numerous divergences have been
intensively studied by [9], [27], and [37]. The studies investi-
gate divergence measure characteristics such as boundedness,
finiteness, additivity for independent observations, behavior
under transformation [36], symmetry, sensitivity to outliers,
treatment of inliers, uniqueness, range, behavior in the case
of the two distributions being orthogonal [14], convergence
of quantized divergences [17], and relationships between
divergences and their mutual bounds. For instance, some
divergence measures are less amenable to analytical simpli-
fication, and mutual bounds are useful to compare them with
those measures that can be analytically developed for certain
types of distributions (e.g., KL divergence for normal dis-
tributions). There is interest in establishing the existence of
metric properties, as well as topological and geometric prop-
erties. The study of topological and geometric properties of

f -divergences by Csiszár [10], [11] led to the advocation of
perimeter divergences [32] and their generalization proposed
by Österreicher and Vajda [34].

An interesting overview of the properties of f -divergences
is presented in [27]. The authors provide elegant derivations
of the well known properties based on the Taylor expansion
of f -divergences, rather than by resorting to the commonly
adopted approach based on Jensen’s inequality. The subject
of properties of divergence measures continues to gener-
ate interest even now, especially in the context of specific
applications [40].

Divergence measures have been used for diverse
applications in pattern recognition and related problems.
Kailath [20] investigated the relative merits of divergence
and Bhattacharyya distance as surrogate criteria for error
probability in signal selection for signal detection. In a similar
vein, Boekee and van der Lubbe [6] studied divergence as
a criterion for feature selection in pattern recognition and
Toussaint [43] advocated its use instead of error probability
for pattern classification. The use of divergence instead
of classification error probability may have computational
advantages. Most of all, the results in the literature are
normally applicable to two class pattern recognition problems
only, but some of the divergences, such as the Jensen–
Shannon divergence [28] support extension to multiclass
cases, including error bounds. In [35], KL divergence is used
for local image content clustering to reduce the complexity
of processing images of large resolution and in [1] for sensor
validation. Bregman divergences have also been used for
nonsupervised pattern classification and for data analysis
based on clustering [2].

In communication systems, divergence is used to measure,
for example, communication channel distortion rates and to
optimize channel and source coding (see [40]). Similarly,
divergences play a role in optimizing the quality of audio
and video material compression for storage and archival
purposes. In statistics, divergence measures have been used
for the analysis of contingency tables [16] and for estimat-
ing the parameters of model distributions [19], gauging the
consistency of observations with a hypothesized probability
distribution model [14], and comparing true distributions with
their approximations [7]. Bian et al. [5] used KL divergence
for regularization of an objective function for action recogni-
tion learning. Zhang et al. [45] compared a range of divergence
measures, including KL and Rényi divergences, in the con-
text of sensor planning for target classification. Most recently,
Lin et al. [29] employed KL divergence to search for effi-
cient approximation of a hash code distribution in a nearest
neighbor retrieval problem.

In this paper, our focus is on the application of divergences
for detecting classifier incongruence. Closest to this particu-
lar interest is the use of KL divergence for gauging classifier
incongruence by Weinshall et al. [44]. They adopted KL diver-
gence following Itti and Baldi [18] who used it as an objective
measure of surprise experienced by subjects reacting to a
stimulus induced by the content of a test video. In their experi-
ments, divergence was used to compare prior belief captured in
terms of a prior distribution, with a new stimulus represented
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by a posterior distribution. They referred to the KL divergence
in this context as “Bayesian surprise” measure. Some of the
deficiencies of the KL divergence as a measure of classifier
incongruence were addressed in [38] and by the heuristic mea-
sures proposed in [21] and [24]. In the next section, we provide
a more principled basis for classifier incongruence detection
and develop a novel measure, referred to as delta divergence,
which satisfies the set of desirable properties identified for this
specific application.

III. DELTA DIVERGENCE

We start the discussion by introducing the necessary math-
ematical notation. We then revisit the classical KL divergence
to establish a baseline and to point out some of its deficiencies
from the point of view of measuring classifier incongruence.
This will allow us to define the notion of classifier incongru-
ence and postulate the properties a divergence measure should
possess to support this particular application. We then consider
the spectrum of available divergences to identify a suitable
candidate and develop it to a novel classifier incongruence
measure that is classifier decision cognizant and reflects the
specified properties.

A. Baseline

Let us consider a pattern recognition problem where the
object or phenomenon to be recognized is represented by
a pattern vector x belonging to one of mutually exclusive
classes ωi, i = 1, . . . , m. Given observation x, we shall denote
the a posteriori probability of its membership in class ωi

as P(ωi|x). The automatic assignment of pattern vector x to
one of the classes is carried out by a classifier employing
an appropriate decision function. Regardless of the type of
machine learning solution, we shall assume that the classi-
fier effectively computes the a posteriori class probabilities
P(ωi|x), ∀i and engages a Bayesian decision rule to effect the
class assignment.

Let us assume that for the same object or phenomenon
there is another classifier which is basing its opinion about
the object’s class membership on its set of a posteriori class
probabilities P̃(ωi|y),∀i, this time based on observation y. The
observation could be the same as x but, in general, y can be
distinct. We are concerned with the problem of measuring the
congruence of these two classifiers in supporting the respec-
tive hypotheses given the observations x and y. In essence, we
have two probability distributions, and the classifiers would be
deemed congruent if the two probability distributions agree,
and incongruent, if the two probability distributions are dif-
ferent. For the sake of simplicity and notational clarity, in the
following we shall focus on a specific instance x, y and drop
referring to these observations explicitly, using a shorthand
notation for the class probabilities as Pi and P̃i, i.e.,

Pi = P
(
ωi|x) P̃i = P̃(ωi|y

) ∀i.

The basic concept in information theory is the notion of self-
information. It conveys the amount of information we gain by
observing an event ω which occurs with probability P(ω). If
the probability of occurrence is high, i.e., close to one, we

learn very little when the event occurs. However, when the
probability P(ω) is low, the amount of information we gain is
huge. Accordingly, self-information I(ω) is defined as

I(ω) = − log P(ω)

which takes values from the interval [0,∞]. I(ω) is referred to
as “surprisal,” as it quantifies the surprise of seeing a particular
outcome.

In general, when an experiment has a number of possible
outcomes ωi, i = 1, . . . , m, the uncertainty associated with the
experiment is expressed in terms of the average information
gain from observing the outcome. Let Pi be the probability
distribution over the events ωi. The information gain h(P) is
defined as

h(P) = −
m∑

i=1

Pi log Pi.

h(P) is known as entropy. It is interesting to note that, as a
result of the averaging process, the contribution to entropy
made by events with small probability values is low, as

lim
x→0

x log x = 0. (1)

Rather than measuring the information gained from an
experiment, here we are interested in assessing the degree of
agreement between two probability distributions P and P̃ esti-
mated over a set of hypotheses � = {ωi, i = 1, . . . , m} by two
different classifiers to gauge whether the classifiers agree in
supporting a particular hypothesis or not. This can be achieved
by comparing relative uncertainties associated with the two
probability distributions P and P̃. A disagreement in their opin-
ion about the identity of an object being classified would be
considered surprising. We therefore need a measure of surprise
which compares these two distributions. The classical measure
suggested for this purpose is the KL divergence

DK =
∑

i

P̃i log
P̃i

Pi
(2)

coined Bayesian surprise by Itti and Baldi [18], and used for
measuring classifier incongruence by Weinshall [44].

B. Notion of Classifier Incongruence

We know that classifiers compute class a posteriori proba-
bilities to make a decision, and that these probabilities must be
involved in the definition of classifier incongruence. However,
the notion of classifier incongruence is far from self evident.
It is not crisply defined as, for instance, classifier error, or a
particular shade of color. If the class probabilities output by
two classifiers are similar, then we would agree that the clas-
sifiers are congruent. However, by how much can they differ
before they cease to be congruent? If incongruence is like “dis-
tance,” then the concept is clearly a continuum, rather than a
discrete property, and the dichotomy between congruence and
incongruence can only be defined by an appropriate thresh-
old. However, what gauge should be used as an incongruence
measure?

To answer these questions and to develop a suitable met-
ric, we shall consider the classical KL divergence, as given
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(a) (b) (c)

Fig. 1. Scatter plots of KL divergence against the difference of the posterior class probabilities computed for the dominant class selected by one of the
classifiers. Given for (a) three classes, (b) six classes, and (c) ten classes.

in (2), in more details by elaborating a few special cases
that should give us insight regarding the essence of congru-
ence/incongruence.

1) Identical Probability Distributions: First of all, let us
start with the simplest case when all the a posteriori
class probabilities generated by the two classifiers are
identical. In such a scenario the KL divergence (DK)
will be zero, flagging the status of congruence of the
two decision making experts.

2) Identical Dominant Hypotheses and Their Probabilities:
Next, we consider the case when the classifiers agree on
the dominant hypothesis, idom. First of all, by dominant,
we understand the most probable hypothesis, i.e., the
class, indexed by idom, satisfying

Pidom = max
i

Pi.

In addition, we expect this class to dominate all the other
hypotheses by a reasonable margin between Pidom and
Pj = maxi,i�=idom Pi. Let us assume that the classifiers
support the common dominant hypothesis with identical
strength, i.e., Pidom = P̃idom . Clearly, the contribution to
the KL divergence due to the dominant class would be
zero. We would probably all agree that in such situation
the classifiers would be congruent. Yet the support for
the nondominant hypotheses, which we shall refer to as
clutter, given by the two classifiers

DK =
∑

i,i�=idom

P̃i log
P̃i

Pi

could be substantially different from zero, giving poten-
tially a high value to the KL divergence. It is apparent,
that for a given threshold, the KL divergence may give
rise to false rejections of congruent classifier outputs.

3) Different Dominant Hypotheses: As the next scenario,
we shall investigate the case when the two classifier
disagree on the dominant hypothesis, but support the
nondominant hypotheses in an identical way. Denoting
the respective dominant hypotheses by idom and ĩdom,
the KL divergence in this case will be

DK = Pidom log
Pidom

P̃idom

+ Pĩdom
log

Pĩdom

P̃ĩdom

. (3)

Note that in (3) the value of KL divergence in this “zero
clutter” case will depend on the actual dominant class
probabilities, reflecting the surprisal value in the relative
information gained.

We shall now observe some of these properties on artificially
generated data, where the a posteriori class distributions P and
P̃ are sampled, without loss of generality, as follows.

Step 1: Draw P1 from a uniform distribution defined on
the interval [0, 1] quantized to N values. If P1 = 1,
then set Pj = 0,∀j > 1 and break.

Step 2: For ∀i = 2, . . . , m, draw Pi from the uniform dis-
tribution defined on [0, 1−∑i−1

j=1 Pj]. If
∑i

j=1 Pj =
1 then set Pj = 0,∀j > i and break.

Step 3: μ = arg maxi Pi.
Step 4: If Pμ ≤ ε where ε is the minimum probability that

the dominant class should assume in order to make
a decision, then discard the sample distribution.

Step 5: Repeat steps 1–4 for P̃i.
We set N = 10 000, and create 1000 different P and P̃
distributions for three, six and ten class cases. Using all P
and P̃ combinations, we end up with a total of one million
pairs for each case. It is important to mention that values of
Pi ≤ 0.0001 in the denominator of KL divergence are replaced
by Pi = 0.0001 to avoid overflow and the results plotting
problems.

Having computed DK values for each P and P̃ pair, we plot
them, in Fig. 1, as a function of the difference between the a
posteriori probabilities corresponding to the dominant hypoth-
esis output by the reference classifier (μ). We can see that for
every choice of the difference, the range of KL divergence
values is large, even for � = Pμ − P̃μ = 0. The scatter plots
make it clear that KL divergence cannot naturally distinguish
the state of classifier incongruence from classifier congruence.
This is primarily due to the contribution to KL divergence
made by the nondominant hypotheses.

There are a number of conclusions that can be drawn from
this analysis. First of all we can see that while “perfect”
congruence is independent of the actual values of a poste-
riori class probabilities of the two distributions, as they are
identical, in the case of general congruence and incongru-
ence scenarios, the magnitude of the DK measure will exhibit
strong dependence on the probability distribution values. The
clutter induced by nondominant classes will create ambiguity,
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that will degrade the separability of notionally congruent and
incongruent classifier cases. It should also be noted that the
value of KL divergence will depend on the class probability
distributions used as a reference. If we choose P̃i instead of
Pi, the observed incongruence value will be different. This
is not a useful property for applications where the notion is
conceptually symmetric. Also the values of the incongruence
measure should be confined to a bounded interval to facilitate
the setting of a suitable threshold to dichotomize congruence
and incongruent cases.

From these observation the following desirable properties
of the ideal measure of classifier incongruence are beginning
to emerge.

1) Overriding focus on dominant hypotheses.
2) Independence of surprisal content.
3) Minimum clutter effect.
4) Symmetry (independence of the choice of distribution

as a reference).
5) Bounded range of incongruence measure values.

Properties 1) and 3) are linked, and suggest that the required
measure should concentrate on the dominant hypotheses, and
suppress the effect of nondominant classes. Thus the mea-
sure we seek should be decision cognizant as the DC-KL
divergence of Ponti et al. [38]. Property 2) suggests that clas-
sifier incongruence should be a function of differences in a
posteriori class probabilities, rather than some function of
their respective values. The choice of a divergence measure
should exhibit symmetry property 4) and yield values which
are bounded, as specified by property 5). In the following sec-
tion, we shall identify a suitable starting point and develop a
novel divergence measure which satisfies the above postulated
properties.

C. Delta Divergence Measure

Our aim is to develop a divergence that will have all the
above stated properties when used as a classifier incongru-
ence measure, namely boundedness, symmetry, being clutter
free, and ideally also of low sensitivity to probability esti-
mation errors. Heuristic attempts at finding incongruence
gauging measures satisfying these properties were presented
in [21] and [24]. The key idea in these two papers is to focus
on dominant classes as identified by the two classifiers and
ignore all the other hypotheses. More specifically, let ω =
arg maxi Pi and ω̃ = arg maxi P̃i. These decision dependent
measures are defined in [21] and [24], respectively, as

�∗ = 1

2

[∣∣Pω − P̃ω

∣∣+ ∣∣P̃ω̃ − Pω̃

∣∣]

and

�max = 1
2 max

{∣∣Pω − P̃ω

∣∣+ δ{ω, ω̃}∣∣P̃ω̃ − P̃ω

∣∣
∣∣P̃ω̃ − Pω̃

∣∣+ δ{ω, ω̃}|Pω − Pω̃|}

where δ{ω, ω̃} is defined as

δ{ω, ω̃} =
{

0 if ω = ω̃

1 if ω �= ω̃.

In contrast to these heuristic techniques, our objective is to
develop a classifier incongruence measure with a solid theoret-
ical underpinning by demanding that it is a proper divergence.

The appropriate toolbox for measuring incongruence between
two discrete probability distributions is the family (h, φ) of
functions

h

[
∑

i

φ
(
Pi, P̃i

)
]

(4)

with h and φ being polynomial, logarithmic, polylogarith-
mic, quasi-polynomial, quasi-polylogarithmic functions [15],
or convex functions [9]. This family includes Bregman diver-
gences [42]

DB =
∑

i

[
f (Pi) − f

(
P̃i
)− (

Pi − P̃i
)
f ′(P̃i

)]

the Cziszar f -divergences [9] reviewed in [27] and [33]

DC =
∑

i

Pif

(
P̃i

Pi

)

(5)

and the Rényi [39] divergences parameterized by α

DR = 1

α − 1
log

[
∑

i

Pi

(
P̃i

Pi

)α]

.

For an overview the reader is referred to [15].
Armed with the toolbox, the key question of interest to us

is which member of the family would exhibit the properties
that reflect the notion of classifier incongruence discussed in
Section III-B. We already established in Section III-B that the
KL divergence does not. The Jensen–Shannon divergence [28]

DJ = 1

2

∑

i

[

Pi log
2Pi

Pi + P̃i
+ P̃i log

2̃Pi

Pi + P̃i

]

confines its values to a bounded interval, and is symmet-
ric. However, the contributions to divergence generated by
a difference in probabilities for a particular hypothesis are a
function of the probabilities themselves, which does not satisfy
property 2) in Section III-B. Most importantly, all the mea-
sures, including Jensen–Shannon divergence, are affected by
the divergence clutter injected by weakly supported hypothe-
ses. This clutter is also likely to aggravate the sensitivity of
these divergence measures to noise.

Herein we set to develop an incongruence measure which
is a member of the family of divergences in (4). This is the
most general family of divergences which has the potential to
source the starting point of our development. For the sake of
simplicity, we start by choosing

h(z) = z

in (4) and opting for the family of f -divergences in (5). In
this family, the bounded measures [required by property 5)]
are the ones whose functional form in the denominator terms
of the convex function f (P̃i/Pi) approaches zero as a function
of Pi at a linear rate, at most. These include, for instance, the
Cziszár and Fisher [12] and Matusita [31] divergences. Note
that the Jensen–Shannon divergence in [28] does not ensure
boundedness through the properties of the convex function
of the two probability distributions, but instead by measuring
divergence between one of the probability distribution func-
tions and the average of the two. However, none of these
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bounded divergences meets the requirement that the contri-
bution to divergence is dependent purely on differences in
probabilities, rather than their actual values [property 2)]. By
virtue of the 	1 norm, this characteristic is exhibited only by
the total variation distance, defined as

DT = 1

2

∑

i

Pi

∣∣∣∣
∣
P̃i

Pi
− 1

∣∣∣∣
∣
= 1

2

∑

i

∣∣P̃i − Pi
∣∣. (6)

This measure is symmetric [property 4)] and bounded, taking
values from the interval [0, 1].

The measure in (6) is still affected by clutter of nondominant
classes. The effect of clutter can significantly be reduced by the
following argument: when we compare the outputs of two clas-
sifiers, there are only three outcomes of interest: the dominant
class ω identified by the classifier with probability distribu-
tion P, the dominant class ω̃ identified by the other classifier,
and neither of the two, in other words ω̂ = � − ω − ω̃. We
thus define a new decision cognizant divergence D�, which
we name delta divergence, as

D� = 1

2

⎡

⎣
∑

iε{ω,ω̃}

∣
∣P̃i − Pi

∣
∣+ ∣

∣P̃ω̂ − Pω̂

∣
∣

⎤

⎦ (7)

which parallels the DC-KL divergence [38]

DD =
⎡

⎣
∑

iε{ω,ω̃}
P̃i log

P̃i

Pi

⎤

⎦+ P̃ω̂ log
P̃ω̂

Pω̂

.

Noting that the outcome ω̂ arises with the complement prob-
abilities, we can further analyze delta divergence, D�, in (7)
further by considering the cases when the labels of the dom-
inant classes identified by the two classifiers agree and when
they disagree.

1) Label Agreement: When the labels agree, i.e., ω = ω̃,
the complement probabilities for the event that the true class
is not ω are 1 − P̃ω and 1 − Pω. Then the delta divergence
in (7) can be expressed

D� = 1
2

[∣∣P̃ω − Pω

∣∣+ ∣∣1 − P̃ω − 1 + Pω

∣∣]

= ∣∣P̃ω − Pω

∣∣.

In other words, the classifier incongruence can be mea-
sured simply by comparing the probabilities of the dominant
hypothesis output by the two classifiers.

2) Label Disagreement: When the dominant labels iden-
tified by the two classifiers disagree, the probabilities of the
event ω̂ that neither of the two dominant classes is the true
class are given as

Pω̂ = 1 − Pω − Pω̃

P̃ω̂ = 1 − P̃ω − P̃ω̃.

In this scenario, the delta divergence becomes

D� = 1

2

[∣∣P̃ω̃ − Pω̃

∣∣+ ∣∣Pω − P̃ω

∣∣

+ ∣∣P̃ω̃ − Pω̃ + P̃ω − Pω

∣∣]

= 1

2
[|A| + |B| + |A − B|]. (8)

Note that the terms A and B can either be both positive, or one
of them positive and the other negative. It can be easily shown
that it is impossible for both terms to be negative. Consider, for
instance, the case A < 0, i.e., P̃ω̃ −Pω̃ < 0. Then, since Pω̃ <

Pω (ω being the dominant class for classifier with distribution
P), and P̃ω̃ > P̃ω (ω̃ being the dominant class for classifier P̃)
we have

0 < Pω̃ − P̃ω̃ < Pω − P̃ω.

The positivity of A when B is negative can be shown in the
same way.

Now suppose A is negative. Then A − B in (8) is also neg-
ative, and its absolute value is equal |A + B| = |A| + |B|. If,
on the other hand, B is negative, then −B is positive, and the
absolute value of A − B will again equal |A|+ |B|. Thus when
one of the terms, A and B is negative, delta divergence will
be

D� = [|A| + |B|] = [∣∣P̃ω̃ − Pω̃

∣∣+ ∣∣Pω − P̃ω

∣∣].

When both A and B are positive, the term A − B is either
positive, or negative, depending on the relationship of A and
B. If A > B, then the difference will be positive and we can
ignore the absolute value operation, i.e., |A − B| = A − B. If
A < B, then the difference will be negative and |A−B| = B−A.
Thus we can write for D� in (8)

D� =
{

A if A ≥ B
B if A < B.

3) Delta Divergence Overview: Combining the results for
these scenarios yields a surprisingly simple divergence mea-
sure for gauging classifier incongruence, i.e.,

D�

=

⎧
⎪⎪⎨

⎪⎪⎩

∣∣P̃ω − Pω

∣∣ ω = ω̃

max
{∣∣P̃ω̃ − Pω̃

∣∣,
∣∣Pω − P̃ω

∣∣} ω �= ω̃ A ≥ 0, B ≥ 0
[∣∣P̃ω̃ − Pω̃

∣∣+ ∣∣Pω − P̃ω

∣∣] ω �= ω̃

{
A < 0, B ≥ 0
A ≥ 0, B < 0.

(9)

In other words, the incongruence measure is defined either by
the maximum absolute value difference between the probabil-
ities output by the two classifiers for the respective dominant
hypotheses or by the sum of these differences.

The measure has attractive properties. It is zero, whenever
the a posteriori probabilities for the shared dominant class
are identical, regardless of the differences in the distribution
of the residual probability mass over all the other classes. As it
always involves the difference of two probability values, it is
symmetric. Also, its sensitivity to estimation errors should be
very low. It has a monotonic transition between the function
values for the label agreement and label disagreement cases.
In fact, as we move from the label agreement to the label dis-
agreement case, when another class for the second classifier
begins to assume the dominant role, delta divergence will con-
tinue increasing (potentially by a step change) by virtue of the
growing difference between the dominant class probability of
the first classifier and the support for this hypothesis voiced
by the second classifier.
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4) Two Class Case: In the specific two class case, when
the classifiers agree on the dominant hypothesis ω, delta
divergence is given as

D� = 1

2

[∣∣Pω − P̃ω

∣∣+ ∣∣1 − Pω − 1 + P̃ω

∣∣] = ∣∣Pω − P̃ω

∣∣.

(10)

In the label disagreement case, the set of nondominant
hypotheses is empty. Hence the delta divergence has just two
terms that are identical to those in (10). Thus the general for-
mula for D� in the case of agreement and disagreement is as
given in (10).

D. Properties of Delta Divergence

In this section, we briefly review the properties of delta
divergence and verify that it satisfies the characteristics spec-
ified in Section III-B. In addition, we shall determine the
conditions under which the proposed divergence measure is
a metric. This particular property is interesting in the context
of assessing incongruence of more than two classifiers.

1) Decision Cognizance Property: The delta divergence
proposed in (9) is defined in terms of the a poste-
riori class probabilities associated with the dominant
hypotheses identified by the two classifiers. The measure
therefore focuses only on the dominant class hypotheses
as required by property 1) in Section III-B.

2) Surprisal Independence: The proposed divergence is
defined in terms of differences in a posteriori class prob-
abilities of the dominant hypotheses, rather than their
respective values. Thus the value of delta divergence is
independent of the base level of these probabilities, and
consequently of the surprisal values.

3) Robustness to Clutter: The advantage of delta diver-
gence over total variation distance can be demonstrated
by comparing the contributions of the nondominant
hypotheses to these two measures. In the case of delta
divergence, the implicit contribution to “clutter” is given
by (1/2)|Pω̂ − P̃ω̂| where ω̂ represents the set of non-
dominant classes. In the case of total variation distance,
the clutter contribution becomes

1

2

∑

iεω̂

∣∣Pi − P̃i
∣∣.

Rearranging the clutter contribution to delta divergence
we have

1

2

∣∣Pω̂ − P̃ω̂

∣∣ = 1

2

∣∣∣∣
∣∣

∑

iεω̂

[
Pi − P̃i

]
∣∣∣∣
∣∣
≤ 1

2

∑

iεω̂

∣∣Pi − P̃i
∣∣.

(11)

Thus the sensitivity of delta divergence to clutter is sig-
nificantly lower than that of total variation distance. It
is interesting to note that if the first two terms in (8) are
considered as “pure incongruence measure” (PIM) and
the last term as a group clutter, D�clutter , then from (9)

we conclude

D�clutter =
⎧
⎨

⎩

1
2

∣∣P̃ω̃ + P̃ω − Pω − Pω̃

∣∣
{

P̃ω̃ − Pω̃ ≥ 0
Pω − P̃ω ≥ 0

1
2 × PIM elsewhere.

This shows that the contributed group clutter is equal to
the magnitude of PIM in most cases. When the labels
of the dominant hypotheses selected by the classifiers
disagree, and the difference between the probability for
the top ranking hypothesis rendered by the supporting
classifier relative to the other classifier is nonnegative,
the group clutter equals one half of the difference of the
two differences. Alternatively, the clutter is equal to the
difference between the support for the union of the two
hypotheses. Thus, in this particular case the clutter is
proportional to the difference between the residual prob-
ability masses associated with the nondominant classes.
The superiority of D� over DT from the clutter point of
view is also evident from the experimental results shown
in Fig. 2. After generating the a posteriori class proba-
bility distributions of the two classifiers as described in
Section III-B, we compute and record the clutter injected
in D� and DT as defined on the left- and right-hand
side of (11), respectively. The figure presents the scat-
ter plots of the clutter associated with DT against the
clutter of D�, for three, six, and ten class problems.
The plots show clearly that the DT clutter is almost
always greater than that of D�. It also be should be
noted that the effect of clutter on DT is less severe for
smaller number of classes, because the scope for clutter-
ing is considerably more limited. In the two class case,
the clutter disappears altogether. By the same token, in
pattern recognition problems involving a large number
of classes, the induced clutter can dominate the value
of total variation divergence and make it impossible to
detect classifier incongruence reliably.

4) Symmetry: As (9) involves only differences of a poste-
riori class probabilities, D� is symmetric in compliance
with property 4) of Section III-B.

5) Bounded Range: Inspecting (9), it is evident that its val-
ues satisfy 0 ≤ D� ≤ 1. Hence delta divergence is
bounded to interval [0, 1] in compliance with property 5
of Section III-B.

6) Metric Property: The total variation distance, DT , from
which the proposed divergence has been developed is
a metric. This can easily be checked by considering
three classifiers A, B, C with probability distributions P,
P̃, and P̂, respectively. The sum of variation distances
DAB and DBC can be written as

DAB + DBC = ∑
i

[∣
∣Pi − P̃i

∣
∣+

∣∣
∣P̃i − P̂i

∣∣
∣
]

≥ ∑
i

[∣∣∣Pi − P̃i + P̃i − P̂i

∣∣∣
]

= ∑
i

[∣∣∣Pi − P̂i

∣
∣∣
]

= DAC.

The metric property does not extend to D� because of
the clutter reducing operation of merging all nondomi-
nant hypotheses into a single event, as the resulting sets
for the three classifiers can be different. However, in the
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(a) (b) (c)

Fig. 2. Scatter plots of the clutter contribution to DT versus the clutter contribution to D�. The values are computed for samples from a population of
probability distributions defined over (a) three classes, (b) six classes, and (c) ten classes.

(a) (b) (c)

Fig. 3. Scatter plots of values of total variation distance (DT ) against delta divergence (D�) obtained in the simulation experiment involving (a) three classes,
(b) six classes, and (c) ten classes.

two class case when the set of nondominant hypothe-
ses is empty, the delta divergence (7) will degenerate
to the total variation distance (6), and the incongruence
measure will become a metric.

7) Sensitivity to Estimation Errors: An important factor in
selecting a tool is its robustness to noise, which in the
current context means robustness to probability estima-
tion errors. An excessive sensitivity may render a tool
ineffective, even if its theoretical foundations are sound
and strong. An example of this is the brittleness of the
product fusion rule as compared with the sum fusion rule
in multiple classifier fusion [22]. An extensive experi-
mental study of delta divergence in [25] showed that it
retains its favorable properties even in the presence of
estimation errors.

IV. RELATIONSHIP OF D� TO OTHER MEASURES

The aim of the simulation studies reported in this section
is to show the relationship between delta divergence and two
baseline divergences, namely the total variation distance DT

and the KL divergence DK , over the full spectrum of scenar-
ios captured by sampling the classifier probability distributions
as described in Section III-B. Due to space limitations, we
only show the results for three, six, and ten class problems.
However, even this sparse sample is sufficient to demon-
strate the trend in the relationships as the number of classes
increases.

A. Total Variation Distance

As we have developed delta divergence from the total vari-
ation distance it is pertinent to elaborate the key differences
between these two divergences. The main distinguishing fea-
ture of delta divergence is the way it deals with clutter. Let
us denote by �+ the set of dominant hypotheses identified
by the two classifiers, which will have a single element for
label agreement and two elements for label disagreement.
The complement set �− is constituted by all the nondomi-
nant hypotheses, i.e., �− = � − �+ and the probability of
one of its members being the true class is P�− = ∑

iε�− Pi

and P̃�− = ∑
iε�− P̃i, respectively, for the two classifiers.

Referring to (6) and (7), we can bound D� as

D� = 1
2

[∑
iε�+

∣∣Pi − P̃i
∣∣+ ∣∣P�− − P̃�−

∣∣]

≤ 1
2

[∑
iε�+

∣∣Pi − P̃i
∣∣+∑

iε�−
∣∣Pi − P̃i

∣∣] = DT .

Thus D� ≤ DT , with equality only for the two class case
m = 2. Even for m = 3 the total variation distance will be
greater than delta divergence because the set of nondominant
hypotheses will contain more than one element in the case of
label agreement.

The relationship between these two divergences is demon-
strated experimentally in Fig. 3 which plots values of DT

against D�. It should be noted that for every value of D�

there are many possible values of DT and vice versa, as
already shown in Section III-D. These points are identified by
sampling the probability distributions P and P̃ with the proce-
dure described in Section III-B, and plotting the corresponding
divergence values against each other. It is apparent from the
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(a) (b) (c)

Fig. 4. Scatter plots of values of KL divergence DK against delta divergence (D�) obtained in the simulation experiment involving (a) three classes, (b) six
classes, and (c) ten classes.

(a) (b) (c)

Fig. 5. Scatter plots of values of DC-KL divergence DD against delta divergence (D�) obtained in the simulation experiment involving (a) three classes,
(b) six classes, and (c) ten classes.

plots that for higher number of classes, the distribution sce-
narios are much less heavily constrained, and this results in
much greater differences in the values of DT and D�.

Let us consider thresholds DDT = 0.5 and DD� = 0.5 that
could potentially be used to separate the states of congruence
and incongruence. In the case of m = 3 in Fig. 3, both thresh-
olds would achieve a good separation. However, for m = 6
and m = 10, the threshold DDT fails to dichotomizing congru-
ence and incongruence adequately. Among the samples falling
in the incongruence category there are many with low value
of D�. By virtue of the close link between delta divergence
and the difference of posteriors of the dominant classes, these
cases should clearly be deemed congruent. Thus, the clutter
makes it difficult for DT to discriminate between congruent
and incongruent cases.

B. Kullback–Leibler and Decision Cognizant
Kullback–Leibler Divergences

Next we compare delta divergence with KL divergence and
its decision cognizant variant, DC-KL. The same experiment,
involving the sampling of the space of probability distributions
P and P̃ is conducted for three, six and ten class problems. In
Fig. 4, DK is plotted against D�. We note that the range of
values exhibited by the KL divergence is much greater, which
makes it more difficult to set a suitable threshold between
classifier congruence and incongruence. The unbounded range
reflects the dependence of KL divergence on the surprisal
values of the additive terms in the expression for the KL
divergence.

The clutter and the surprisal value dependence are jointly
responsible for a significant overlap of KL divergence values
for the classifier congruence and classifier incongruence cases.
This can be seen by drawing horizontal lines cutting the scat-
ter plots at different KL divergence thresholds and noting the
resulting distributions (data scatters). For instance setting the
threshold to DK = 3 will retain many cases with a high value
of D� in the congruent category, leading to underdetection of
incongruence. Lowering the threshold to, say, 0.75 will miss
many cases with low value of delta divergence, resulting in a
high proportion of false positives.

In Fig. 5, we plot DC-KL divergence values against delta
divergence. Comparing Figs. 4 and 5, the effect of the sup-
pression of clutter in DC-KL is evident from the scatter plots.
However, the unboundedness and the dependence of DC-KL
on surprisal values still compromise the separability of the
states of congruence and incongruence.

V. RELEVANCE OF CLASSIFIER INCONGRUENCE IN

GENERAL AND OF D� IN PARTICULAR

The relevance of classifier incongruence measures was
demonstrated in [21] in the context of tennis video
interpretation. The output of a detector of visual events (player
actions, tennis ball hit, and tennis ball bounce) was moni-
tored and compared with the output of high level tennis game
interpretator to detect incongruences between noncontextual
and contextual decision making processes. Incongruence was
indicative of different types of anomalies, such as the deploy-
ment of an incorrect scene evolution model (game of singles
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(a) (b) (c) (d)

Fig. 6. A posteriori probability distributions belonging to the fingerprint modality of a test subject for all classes, computed for different values of a.

TABLE I
FALSE NEGATIVE RATES FOR GIVEN TRUE NEGATIVE RATES AND “a” VALUES USING

(a) DELTA DIVERGENCE, (b) KL DIVERGENCE, AND (c) DC-KL DIVERGENCE

(a) (b) (c)

instead of doubles). Coppi et al. [8] used incongruence
between generic and specific object classifiers arranged in a
hierarchical structure to flag novel (unknown) subclasses of
object categories such as motorbikes, flowers, etc.

The effectiveness of delta divergence was shown in [25]
where KL and DC-KL divergences failed to detect incongru-
ence between noncontextual and contextual classifiers detect-
ing actions and activities in breakfast preparation videos.
The incongruences successfully detected by delta divergence
flagged anomalies such as missing steps due to occlusion and
the simultaneous presence of multiple actions (in the back-
ground and foreground). Similarly the deficiency of KL and
DC-KL divergences was observed in [23] in the context of
analyzing videos recording breakfast preparation activities.
This paper involved detecting incongruences between multiple
modalities (audio and visual). The use of delta divergence pro-
duced much lower rate of false positives than the KL-based
alternatives.

Here we provide further experimental evidence of the
advantages of delta divergence using real data in the appli-
cation domain of multimodal biometric person recognition.
We analyze the scores of two independent biometric modali-
ties for incongruence to inform operational decision making.
We use the NIST-BSSR1 dataset of raw matching scores
for the face and fingerprint modality. The data involves 517
subjects, whose biometric traits are matched against gallery
templates [3]. As the scores of the two modalities have vastly
different ranges, they are first normalized to the [0, 1] interval
and then converted to a posteriori class probabilities. Let the
normalized matching score for subject i for one of the modali-
ties be xi. Then the corresponding a posteriori class probability

is given by

Qi = exp{axi}∑
j exp

{
axj
} (12)

where a is a parameter of the score to probability conversion.
The probabilities Pi, P̃i,∀i computed for all the subjects

based on the face and fingerprint modalities, respectively,
provided an input to the KL, DC-KL and delta divergence
measures. Note that the ground truth labels (congruent, incon-
gruent) for the classifier outputs are available for the dataset.
The aim of the experiment is to measure the overlap of the
true congruent and false incongruent distributions. This is
accomplished by setting the confidence level for detecting
true congruences at 90%, 95%, and 99%, respectively, and
measuring the corresponding false incongruence rates.

The experiment was repeated for different values of the
parameter a. Note that when a = 0 the a posteriori class
probability distribution is uniform. At the other extreme, when
a = ∞, Qj = 1 for j = arg maxi xi and zero for all the others.
Thus a controls the relative magnification of the scores. Most
importantly, different values of a represent scenarios with dif-
ferent levels of clutter, that is the probability mass distributed
over the nondominant classes. These scenarios are illustrated
in Fig. 6 which shows the a posteriori class probability dis-
tributions for the fingerprint biometric trait of a single subject
for different values of parameter a. The false negative rates
corresponding to the three confidence levels for the different
scenarios are given in Table I. We can see in Table I that for
practically uniform probability distribution corresponding to
aε[0.1, 10] the delta divergence values for congruences and
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TABLE II
OVERVIEW OF THE PROPERTIES OF SELECTED DIVERGENCE MEASURES

incongruences overlap almost 100% as the concept of domi-
nance effectively breaks down. In the range aε[80, 160] where
the concept of dominance begins to apply, but the clutter is still
high, the overlap drops significantly and gradually diminishes.
When there is no clutter (a ≥ 200), the proposed incongru-
ence measure separates the categories perfectly, as expected. In
comparison, the overlap of the distributions of KL divergence
values obtained for the congruent and incongruent classifier
outputs for all values of a ≥ 80 is much greater, especially
for the high levels of the confidence threshold. The overlap is
lower for the DC-KL divergence, but still considerably worse
than that achieved by delta divergence. This demonstrates the
merit of the proposed classifier incongruence measure.

It is pertinent to ask, whether the proposed divergence would
also find applicability in the context of training deep neu-
ral networks for measuring incongruence between the target
and achieved probability distributions, and displace the KL
divergence (cross entropy). Interestingly, this is unlikely, as
an important consideration in adopting a loss function are
the characteristics of the loss function gradients. In this use
case, the KL divergence is preferable as it has the capacity to
drive the nondominant class probabilities to zero much more
forcefully than the delta divergence. The proposed measure
is appropriate for monitoring and comparing classifier outputs
with the aim of using the incongruence measure values in
subsequent reasoning, rather than for machine learning.

VI. CONCLUSION

The problem of detecting classifier incongruence was
addressed in this paper. It involves comparing the output of two
classifiers to gauge the level of agreement in their support for
a particular decision. As, in general, the output of a classifier
is a probability distribution over the admissible hypotheses,
classifier incongruence detection basically involves a compar-
ison of these distributions. The existing classifier incongruence
measures advocated in the literature include the Bayesian sur-
prise (KL divergence) [18] and the DC-KL divergence [38],
or the heuristic delta measures (�∗ and �max) introduced
in [21] and [24]. Unfortunately, the former two have unde-
sirable properties and the latter two are heuristic.

Measuring differences between two probability distributions
is a standard problem in information theory and statistics. The
key tool for this purpose is divergence. Many different diver-
gence functions have been proposed in the literature, each
exhibiting different properties. In order to adopt or develop a
suitable measure for detecting classifier incongruence it is of
paramount importance to understand the properties required
for this particular application. We argued that a classifier

incongruence measure should focus on differences in the
classifier support for the dominant hypotheses, be bounded,
symmetric, insensitive to surprisal, and insensitive to clutter
induced by nondominant hypotheses.

The list of required properties postulated in this paper can
be considered as an important contribution in its own right.
However, in the context of this paper, this was just a prereq-
uisite for the main task of developing a principled method of
measuring classifier incongruence. A review of existing diver-
gences established that none of them fully satisfied the list of
requirements. We adopted the total variation divergence as a
starting point, because of its insensitivity to surprisal values.
We then reformulated the problem of comparing two proba-
bility distributions by grouping all the nondominant classes
into a single event. This allowed us to develop the total
variation measure into a novel divergence, called delta diver-
gence, which is classifier decision cognizant. As a result of
this reformulation, the proposed measure is less sensitive to
clutter induced by nondominant hypotheses. By studying the
characteristics of the proposed measure we demonstrated that
it satisfied all the required properties. An overview of the
adherence of various classifier incongruence measures to these
properties is presented in Table II.

Finally, we conducted a number of experiments on real and
synthetically generated data to show the relationship of the
proposed delta divergence to baseline classifier incongruence
measures, and its robustness to clutter. The experiments con-
firmed its superiority as a measure of classifier incongruence.
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