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A. Assumptions

We next list the conditions that the total investment function R is assumed to satisfy throughout

the proofs. We emphasize that these conditions are sufficient but not necessary for our results.

Throughout we use the convention that the derivatives at the lower bound of the domain of a

function is taken as the right-derivative and at the upper bound as the left-derivative, without

further mention, for notational simplicity.

Assumption 1.

(i) Total investment is decreasing and sufficiently convex in both readmission rate and treatment

cost, specifically, Rr < 0, Rc < 0, Rrr > 0, Rcc > 0, and RrrRcc > (λ+Rcr)
2.

(ii) Reducing readmissions is more costly for lower values of treatment cost, i.e., Rrc ≥ 0.

(iii) We assume the following boundary conditions hold.

Rc(rmax, cmin)<−λ(1 + rmax),

Rc(rmin, cmax)>−λ(1 + rmin),

Rr(rmax, cmin)>−λcmin(1 + 1/rmax), and

Rr(rmin, cmax)<−λcmax(1 + 1/rmin).

In line with the literature (e.g., Shleifer 1985, Savva et al. 2018, Andritsos and Tang 2018),

Assumption 1(i) requires the investment cost R(r, c) to be sufficiently convex to ensure that regu-

lator’s and hospitals’ objective functions are concave in readmission rate r and treatment cost c.

Assumption 1(ii) implies that when a hospital has improved the operational efficiency to reduce

the treatment cost, it becomes even more costly to reduce readmissions by further operational

improvement. We use Assumption 1(ii) to show that when the treatment cost is optimally deter-

mined by regulator or the hospital (i.e., c= h(r)), it decreases as the readmission rate increases, see

Lemma A2 below. Finally Assumption 1(iii) guarantees that the regulator’s as well as hospitals’

optimal actions are not at the boundaries.
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B. Proofs of the results in Section 4

B.1. Preliminary results

In this section we prove preliminary results that we utilize in proving the results in §4. We first

show that given a readmission level there exists a unique associated marginal cost determined by

(5).

Lemma A1. For r ∈ [rmin, rmax] there exists a unique h(r) ∈ [cmin, cmax] that satisfies (5). In

addition h : [rmin, rmax]→ [cmin, cmax] is differentiable and strictly decreasing.

Proof of Lemma A1: Fix r ∈ [rmin, rmax] and let

g(c) = λ(1 + r) +Rc(r, c). (A1)

Then

g′(c) =Rcc(r, c), (A2)

where we use g′(c) = dg(c)

dc
throughout.

By Assumption 1(iii), limc↓cmin
g(c)< 0 and limc↑cmax g(c)> 0 for any r ∈ [rmin, rmax]. Moreover,

g′(c) > 0 since Rcc > 0 by Assumption 1(i). As a result, there exists a unique h(r) ∈ (cmin, cmax)

that satisfies (5). By implicit function theorem and (5) (Rcc > 0 by Assumption 1(i))

h′(r) =−λ+Rcr
Rcc

< 0, (A3)

where the inequality follows from Assumption 1(i) and (ii). Thus, h(r) is decreasing in r. �

Next we show that the marginal treatment cost in any equilibrium under HRRP, HRRP-I and

HRRP-II schemes is uniquely determined by the readmission rate. We utilize this result to focus

only on readmission levels in determining equilibrium outcomes.

Lemma A2. In any equilibrium under HRRP, HRRP-I, and HRRP-II, ci = h(ri) for all i =

1, . . . ,N , where h is defined by (5).

Proof of Lemma A2: Given the choices of all other hospitals, the objective of hospital i can be

written as

Π(ri, ci) = (c̄i− ci)(1 + r)λ− f(ri, r̄i, c̄i) + R̄i−R(ri, ci), (A4)

where f(ri, r̄i, c̄i) = π(ri|r̄i, c̄i) under HRRP, see (7), f(ri, r̄i, c̄i) = πI(ri|r̄i, c̄i) under HRRP-I, see

(9), and f(ri, r̄i, c̄i) = πII(ri|r̄i, c̄i) under HRRP-II, see (13). Clearly f does not depend on hospital’s

marginal cost ci under these three payment systems.

Consider hospital i’s objective under one of these payment schemes for a fixed readmission level

r ∈ [rmin, rmax], given the choices of all the other hospitals. Then the first derivative of the objective
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function with respect to ci is equal to −g(ci), see (A1). Also by (A2) and Assumption 1(i), ci ≡ h(r)

is the unique marginal treatment cost that optimizes hospital’s objective. This implies that in any

equilibrium under HRRP, HRRP-I or HRRP-II, ci = h(ri) for all i= 1, . . . ,N. �

For r > r̄, define

Φo(r|r̄) = (h(r̄)−h (r))(1 + r)λ−R(r,h (r)) +R(r̄, h(r̄)). (A5)

In words, Φo is the objective function of a hospital when Pcap = 0 under HRRP, HRRP-I, and

HRRP-II (note that these payment schemes are identical when Pcap = 0 by (7), (9), and (13))

assuming all the other hospitals pick (r̄, h(r̄)). We use the next result primarily to study the actions

of hospitals when Pcap is small.

Lemma A3. Fix r̄ ∈ [rmin, rmax).

(i) For any r ∈ [rmin, rmax]

dΦo(r|r̄)
dr

> 0. (A6)

(ii) For any r̄≤ r1 ≤ r2 ≤ rmax

Φo(rmax|r̄) ≥ (rmax− r2) (h(r1)−h(r2))λ. (A7)

Proof of Lemma A3: Let r ∈ [r̄, rmax]. By (5) and (A5),

Φo
r(r|r̄) = (h(r̄)−h(r))λ−Rr(r,h(r)), (A8)

where we set Φo
r(r|r̄) = dΦ(r|r̄)

dr
, and taking the derivative with respect to r again, we have

Φo
rr(r|r̄) = −(λ+Rrc)h

′−Rrr = (λ+Rrc)2

Rcc
−Rrr < 0, (A9)

where the second equality follows by plugging in h′, see (A3), and the inequality follows from

Assumption 1(i). From (A8) Φo
r(r|r̄)> 0 at r= rmax because h is strictly decreasing by Lemma A1

and Rr < 0 by Assumption 1(i). This combined with (A9) gives (A6).

Now for any r̄ ∈ [rmin, rmax) and r̄≤ r1 ≤ r2 ≤ rmax

Φo(rmax|r̄) = Φo(r̄|r̄) +

∫ rmax

r̄

Φo
r(u|r̄)du

(r0)
=

∫ rmax

r̄

Φo
r(u|r̄)du

(r1)

≥ (rmax− r2)(h(r̄)−h(r2))λ
(r2)

≥ (rmax− r2)(h(r1)−h(r2)))λ, (A10)

where (r0) above follows since Φo(r|r) = 0 (see (A5)), (r1) follows from (A8), from Rr < 0 by

Assumption 1(i), and the fact that h is strictly decreasing by Lemma A1, and the latter also gives

(r2) because r̄≤ r1 ≤ r2 ≤ rmax. �
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Consider the following function.

Ψ(r|r̄) = (h(r̄)−h (r))(1 + r)λ−h(r̄)λ(1 + r)
(r
r̄
− 1
)
−R(r,h (r)) +R(r̄, h(r̄)). (A11)

Note that Ψ is equivalent to the objective function of a hospital under HRRP-I by (1) and (9) if

all the other hospitals pick actions (r̄, h(r̄)). Also, the objectives of a hospital under HRRP-II and

HRRP are also equivalent to Ψ on a subset of their domain depending on the value of Pcap. We use

the following result in establishing the equilibrium outcomes under all of these payment schemes.

Lemma A4. Ψ(r|r̄) is concave in r and has a unique maximizer rΨ (r̄)∈ (rmin, rmax) satisfying

dΨ(rΨ (r̄) |r̄)/dr= 0.

Proof of Lemma A4: By (A11)

dΨ(r|r̄)
dr

= (h(r̄)−h(r))λ− 1 + 2r− r̄
r̄

h(r̄)λ−Rr(r,h(r)), (A12)

d2Ψ(r|r̄)
dr2

= −(λ+Rrc(r,h(r)))h′(r)− 2

r̄
h(r̄)λ−Rrr(r,h(r)). (A13)

By Assumption 1(i) and (iii), limr↓rmin
dΨ(r|r̄)/dr > 0 and limr↑rmax dΨ(r|r̄)/dr < 0. More-

over, d2Ψ(r|r̄)/dr2 < 0 by Assumption 1(i). Thus, there exists a unique rΨ (r̄) such that

dΨ(rΨ (r̄) |r̄)/dr= 0. �

B.2. Proof of Lemma 1

By (2), we have
∂S(r, c)

∂c
=−(1 + r)λ−Rc(r, c),

∂2S(r, c)

∂c2
=−Rcc(r, c).

By Lemma A1 there exists a unique h(r)∈ (cmin, cmax) that satisfies (4) for a given r ∈ [rmin, rmax].

Since S(r, c) is concave in c (Rcc > 0 by Assumption 1(i)),

S(r,h(r)) = sup
c∈[cmin,cmax]

S(r, c).

Next we show that there exits a unique r∗ ∈ (rmin, rmax) that satisfies

S(r∗, h(r∗)) = sup
r∈[rmin,rmax]

S(r,h(r)).

Let S(r) = S(r,h(r)) for notational simplicity. Then

dS(r)

dr
=−h′(r)(1 + r)λ−h(r)λ−Rr(r,h(r))−Rch′(r) =−h(r)λ−Rr(r,h(r)). (A14)
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Differentiating again with respect to r, we have

d2S(r)

dr2
=− (λ+Rrc)h

′−Rrr =
(λ+Rrc)

2

Rcc
−Rrr < 0, (A15)

where the second equality follows by plugging in h′, see (A3), and the inequality follows from

Assumption 1(i). Moreover, we have limr↓rmin
dS(r)/dr > 0 and limr↑rmax dS(r)/dr < 0 by Assump-

tion 1(iii). Thus there exists a unique r∗ ∈ (rmin, rmax) that satisfies (3) with c∗ = h(r∗). �

B.3. Proof of Proposition 1

(a) We establish hospital i’s best response given all the other hospital’s actions, and for the rest

of the proof we drop the hospital subscript “i” from our notation for simplicity.

First we argue that given (r̄, c̄) (see (6)) hospital i has a unique best response. By (1) and (9)

hospital i’s objective Π under HRRP-I is equal to Ψ defined in (A11). By Lemmas A1, A2, and

A4 for any (r̄, c̄) hospital i has a unique best response (r, c), and c= h(r).

Next we focus on symmetric equilibria. We first show that there exists at least one symmetric

equilibrium. Let

Γ(r) =
1 + r

r
h(r)λ+Rr(r,h(r)). (A16)

By Lemma A4 and (A12) if

Γ(r) = 0, (A17)

that is rΨ (r) = r, then (r,h(r)) is a symmetric equilibrium. By Assumption 1(iii), Γ(rmin)< 0 and

Γ(rmax)> 0. Thus, by continuity of Γ on [rmin, rmax], (A17) has at least one solution.

Next we prove that for any potential symmetric equilibrium (r̃, c̃), we have r̃ < r∗. Consider the

regulator’s objective S defined by (2) and let ΓS(r) =−dS(r,h(r))

dr
for notational simplicity. By (A14)

ΓS(r) = h(r)λ+Rr(r,h(r)). (A18)

Note that ΓS is increasing by (A15) and ΓS(r∗) = 0 by Lemma 1. Also Γ(r)> ΓS(r) for all r > 0

by (A16) and (A18). Thus

Γ(r)> ΓS(r∗) = 0, for all r≥ r∗, (A19)

proving that r̃ < r∗. By Lemma 1, c∗ = h(r∗), hence r̃ < r∗ implies c̃= h(r̃)> c∗ by Lemma A1.

(b) Next we prove that no asymmetric equilibrium exists when N = 2. Suppose on the contrary

that there exists an asymmetric equilibrium, where hospital i picks actions (ri, ci), i= 1,2. We have

r1 6= r2 because otherwise we have c1 = h(r1) = h(r2) = c2 in any equilibrium by Lemma A1 and

(ri, ci), i= 1,2, would not be an asymmetric equilibrium. Assume without loss of generality that

r1 > r2. Then by (1) and (9) objective functions Π1 and Π2 of hospital 1 and 2 can be written as

Π1 = (c2− c1)(1 + r1)λ− (r1− r2)(1 + r1)c2λ/r2−R(r1, c1) +R(r2, c2),

Π2 = (c1− c2)(1 + r2)λ− (r2− r1)(1 + r2)c1λ/r1−R(r2, c2) +R(r1, c1)
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by (A11). Thus

Π1 + Π2 =
(r1− r2)[c1r2(1 + r2− r1)− c2r1(1 + r1− r2)]λ

r1r2

.

Because r1 > r2, and c1 = h(r1)<h(r2) = c2, we have by (A3) c1r2(1+ r2− r1)< c2r1(1+ r1− r2).

Thus Π1 + Π2 < 0, which implies that at least one of the hospitals earns negative profits. However,

both hospitals can earn zero profits if they take identical actions, thus (ri, ci), i= 1,2 cannot be

an equilibrium. �

B.4. Proof of Proposition 2

We break the proof into four steps. In step (a) we prove part (iii) of the proposition then we

prove parts (i) and (ii) in steps (b)-(e). Specifically in part (b) we present the objective function of

hospital 1 when all the other hospitals take identical actions. In part (c) we show that there exists

no other symmetric equilibrium besides r̃ when Pcap > 0. In part (d) we present two preliminary

results. Finally we complete the proof in part (e) by showing that r̃ is an equilibrium point only if

Pcap is large enough.

Throughout the proof we only focus on potential symmetric equilibrium and the average read-

mission rate is identical to each hospital’s readmission rate in any symmetric equilibrium, therefore,

with a slight abuse of notation, we use r̄ to denote a hospital’s choice of readmission rate for nota-

tional simplicity. To prove that (r̃, c̃) is a symmetric equilibrium it is enough to show that for a

given hospital the best action is (r̃, c̃) if all other hospitals choose (r̃, c̃). Without loss of generality,

we focus on hospital 1 and drop the hospital index subscript from all mathematical expressions

throughout the proof. By Lemmas A1, A2, and A4 for any (r̄, c̄) hospital i has a unique best

response (r, c), and c= h(r) under HRRP-II and since this relationship uniquely determines c we

only focus on hospital’s readmission choice r and drop c from the notation.

(a) First we prove part (iii) of the proposition. Fix r̄ < rmax. By (1) and (13) hospital 1’s objective

is given by Φo(·|r̄) defined as in (A5). Then by Lemma A3(i), if r̄ < rmax, then

Φo(rmax|r̄)> 0.

In addition Φo(r̄|r̄) = 0. Thus such r̄ < rmax cannot be an equilibrium if Pcap = 0. Assume r̄= rmax.

By Lemma A3(i), hospital 1’s best response is rmax. Therefore, (rmax, h(rmax)) is an equilibrium.

(b) Next we present preliminary results we use in proving parts (i) and (ii). Define

Π(r|r̄) =

Ω(r|r̄) , if r < r̄ (1−Pcap) ,
Ψ(r|r̄) , if r̄ (1−Pcap)≤ r < r̄ (1 +Pcap) ,
Φ(r|r̄) , if r≥ r̄ (1 +Pcap) ,

(A20)
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where Ψ is defined as in (A11) and

Ω(r|r̄) = (h(r̄)−h (r))λ (1 + r) +h(r̄)λ (1 + r)Pcap−R (r,h (r)) +R(r̄, h(r̄)), (A21)

Φ(r|r̄) = (h(r̄)−h (r))λ (1 + r)−h(r̄)λ (1 + r)Pcap−R (r,h (r)) +R(r̄, h(r̄)). (A22)

By (1) and (13), hospital 1’s objective is given by Π(r|r̄) under HRRP-II, assuming all other

hospitals choose (r̄, h(r̄)). Throughout the proof, we write Π(r,Pcap|r̄) (instead of just Π(r|r̄))

when we need to make the dependence of this function on Pcap explicit and we follow the same

convention with Ω and Φ.

(c) Next we show that there exists no other symmetric equilibrium besides r̃ when Pcap > 0.

Recall that the symmetric equilibrium under HRRP-I is unique by Assumption 1. In addition by

(9) the objective of a hospital under HRRP-I is equal to Ψ. Therefore by Lemma A4,

rΨ (r̃) = r̃ (A23)

and r̃ is the unique readmission level that satisfies this equality, since r̃ is the unique Nash equi-

librium. By (A20), Π(r|r̄) = Ψ(r|r̄) for all r ∈ (r̄(1−Pcap), r̄(1 +Pcap)). By Lemma A4

dΨ(r̄|r̄)
dr

6= 0 (A24)

if r̄ 6= r̃, because r̃ is the unique Nash equilibrium by Assumption 1. Hence r̄ 6= r̃ cannot be an

equilibrium since hospital 1 can increase its profit by deviating from this point.

(d) To establish hospital 1’s best response we need to compare the values of Ω, Ψ, and Φ, since

they determine the hospital’s profit under different actions. To do this we first prove two preliminary

results. First result below (Lemma A5) shows that hospital 1 will never choose r < r̄ (1−Pcap)

(assuming it is feasible), hence we can restrict our attention to r ≥ r̄ (1−Pcap) when we establish

hospital’s best response. Then in Lemma A7 we show that for Pcap small enough hospital 1 can

earn positive profits even when its actions are restricted to r≥ r̄ (1 +Pcap). We later use this result

to argue that for such Pcap there is no symmetric equilibrium because hospital 1’s profit is equal

to 0 in any symmetric equilibrium.

The following result shows that hospital 1 will never choose r < r̄ (1−Pcap) (assuming it is

feasible).

Lemma A5. For any fixed r̄ ∈ [rmin, rmax] ,

dΩ(r|r̄)/dr > 0,

i.e., Ω(r|r̄) is increasing in r ∈ [rmin, rmax] .
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Proof: Note that

dΩ(r|r̄)
dr

= (h(r̄)−h (r))λ+h(r̄)λPcap−Rr (r,h (r)) , (A25)

d2Ω(r|r̄)
dr2

= −Rrr(r,h (r)) +
(λ+Rrc (r,h (r)))

2

Rcc (r,h (r))
< 0, (A26)

where inequality follows from Assumption 1(i). Hence Ω is concave. In addition, because h(r̄) >

h (rmax) by Lemma A1 and by Assumption 1(i)

dΩ(rmax|r̄)
dr

≥ 0.

This with concavity of Ω gives the desired result. �

Next we consider the objective of hospital 1 for r≥ r̄ (1 +Pcap). First for r̄ ∈ [rmin, rmax), let

Pm(r̄) =
rmax
r̄
− 1. (A27)

Note that if Pcap >Pm(r̄) then r̄(1 +Pcap)≥ rmax, hence hospital 1’s objective is never equal to Φ

by (A20). So we only consider Pcap ∈ [0, Pm(r̄)] in the next result. Fix r̄ ∈ [rmin, rmax) and let

Φ̂ (Pcap) = sup
r∈[r̄(1+Pcap),rmax]

Φ(r,Pcap|r̄) , for Pcap ∈ [0, Pm(r̄)]. (A28)

In words, Φ̂ (Pcap) is hospital 1’s maximum profit when its actions are restricted to r≥ r̄ (1 +Pcap).

We next establish two properties of this function, which we use below to prove Lemma A7.

Lemma A6. For r̄ ∈ [rmin, rmax), Φ̂ is decreasing and right-continuous on [0, Pm(r̄)).

Proof Lemma A6: The fact that Φ̂ is decreasing follows from the definition of Φ̂ (see (A28)),

from the fact that Φ(r,Pcap|r̄) is decreasing in Pcap for fixed r, r̄ ∈ [rmin, rmax] by (A22), and the

fact that the set [r̄(1 +Pcap), rmax] becomes smaller with increasing Pcap.

Next we prove Φ̂ is right continuous. Let Pn ↓ P ∈ [0, Pm(r̄)) as n→∞. We next show that for

any ε > 0

lim inf
n→∞

Φ̂ (Pn)> Φ̂ (P )− ε. (A29)

Because Φ̂(P ) is decreasing in P this implies it is right continuity since ε is arbitrary. Given ε > 0,

there exists δ > 0 such that for

Φ̂ε (P ) = sup
r∈[r̄(1+P+δ),rmax]

Φ(r,P |r̄)

we have

Φ̂ε (P )> Φ̂ (P )− ε (A30)
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since Φ(r,P |r̄) is continuous in r. Again by continuity, there exists rε ∈ [r̄(1 + P + δ), rmax] such

that

Φ̂ε (P ) = Φ(rε, P |r̄) .

Hence for n large enough so that Pn ≤ P + δ

lim inf
n→∞

Φ̂ (Pn)
(r0)

≥ lim inf
n→∞

Φ(rε, Pn|r̄)
(r1)
= Φ(rε, P |r̄) (r2)

= Φ̂ε(P ), (A31)

where (r0) follows from the definition of Φ̂ and the fact that Pn ≤ P + δ, (r1) follows from the

continuity of Φ, and (r2) follows from the definition of Φ̂ε. Clearly, (A30) with (A31) implies

(A29). �

Next result shows that hospital 1 can earn positive profits even when its actions are restricted

to r≥ r̄ (1 +Pcap).

Lemma A7. Let r̄ ∈ [rmin, rmax). One of the following holds.

i. For all Pcap ∈ [0, Pm(r̄)]

Φ̂ (Pcap)> 0. (A32)

ii. There exists P̄cap(r̄)∈ [0, Pm(r̄)] such that if Pcap ∈ [0, P̄cap(r̄)) then (A32) holds and if Pcap ∈

[P̄cap(r̄), Pm(r̄)] then

Φ̂ (Pcap)≤ 0. (A33)

Proof Lemma A7: We first argue that it is enough to show that there exists Pcap ∈ (0, Pm(r̄)]

such that

Φ̂(Pcap)> 0. (A34)

This follows from the fact that if (A34) holds then, because Φ̂(P ) is decreasing by Lemma A6,

Φ̂(P )> 0 for all P ∈ [0, Pcap]. Therefore, if Φ̂(Pm(r̄))> 0 and (A34) holds, then (i) holds because

Φ̂(P ) is decreasing by Lemma A6. If Φ̂(Pm(r̄))) ≤ 0 and (A34) hold, then for P̄cap(r̄) = inf{P :

Φ̂(P ) ≤ 0} part (ii) holds. (Note that Φ̂
(
P̄cap(r̄)

)
≤ 0 by right-continuity of Φ̂(P ) proved in

Lemma A6.) Therefore it is enough to show that (A34) holds.

To prove (A34) we next show that given r̄ ∈ [rmin, rmax)

Φ(rmax, Pcap|r̄)> 0 (A35)

for Pcap ∈ (0, Pm(r̄)] small enough. Clearly (A35) implies Φ̂(Pcap)> 0 by (A28).
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Fix r̄ ∈ [rmin, rmax). By (A5) and (A22)

Φ(r,Pcap|r̄) = Φo(r|r̄)−Pcap(1 + r)h(r̄)λ. (A36)

Let r∆ = r̄+ rmax−r̄
2

, denote the midpoint between r̄ and rmax. Because r̄ ∈ [rmin, rmax), we have

r∆ < rmax. By Lemma A3(ii)

Φo(rmax|r̄) ≥ (rmax− r∆)(h(r̄)−h(r∆))λ≡∆> 0, (A37)

where the inequality follows from h(r̄)−h(r∆)> 0 by Lemma A1 . Let

Pcap = min

{
∆

2h(r̄)(1 + rmax)λ
,Pm(r̄)

}
. (A38)

By (A36)–(A38), we have

Φ(rmax, Pcap|r)≥∆/2> 0,

giving (A35). �

(e) Finally we finish the proof by showing that r̃ is an equilibrium only if Pcap is large enough. We

show this by assuming all hospitals other than hospital 1 choose r̃ and then identifying conditions

under which r̃ is hospital 1’s best response.

Hospital 1’s profit Π(r|r̃) (given all other hospitals choose r̃) is given by (A20), where r̄= r̃. By

Lemma A5, hospital 1’s best response cannot be less than r= max(r̃ (1−Pcap) , rmin) . Hence it is

enough to consider r ∈ [r, rmax] to determine the best response of hospital 1.

We use Lemma A7 to complete the proof. First, for r̄= r̃

Φ̂ (Pm(r̃))
(r0)
= Φ(rmax, Pm(r̃)|r̃) (r1)

= Ψ(rmax, Pm(r̃)|r̃)
(r2)

≤ Ψ(r̃, Pm(r̃)|r̃) = 0, (A39)

where (r0) follows from (A28), (r1) follows from (A11), and (r2) follows from Assumption 1, as

otherwise r̃ would not be an equilibrium. Therefore, (A39) implies that Lemma A7(i) cannot hold

for r̄= r̃.

Set P̄cap = P̄cap(r̃), for P̄cap(r̃) defined as in Lemma A7(ii). By Lemma A7(ii) for Pcap ≥ P̄cap,

Φ̂ (Pcap) ≤ Ψ(r̃|r̃) = 0 and so by (A23) r̃ is the best response for hospital 1. Hence r̃ is a Nash

equilibrium. If on the other hand Pcap < P̄cap, then Φ̂ (Pcap)>Ψ(r̃|r̃) = 0 by Lemma A7(ii), hence

r̃ cannot be a Nash equilibrium. �
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B.5. Proof of Proposition 3

We proceed as follows. In steps (a)-(c) we prove part (i), and show that part (iii) follows from

part (i). In step (d) we prove part (ii) and finally in step (e) we prove part (iv). As in the proof of

Proposition 2, we use r̄ to denote a hospital’s choice to keep the notation consistent throughout the

proof, since in all symmetric equilibria each hospital’s choice is equal to the average readmission

rate. Also we focus on the objective of hospital 1 (without loss of generality), and use Π to denote

it under HRRP defined as in (8), unless otherwise stated, and drop the hospital index from all

mathematical expressions throughout the proof. To prove that (r̃, c̃) is a symmetric equilibrium it

is enough to show that hospital 1’s best action is (r̃, c̃) given that all other hospitals choose (r̃, c̃).

By Lemmas A1, A2, and A4 for any (r̄, c̄) hospital i has a unique best response (r, c) under

HRRP, and c= h(r) and since this relationship uniquely determines c we only focus on hospital’s

readmission choice r and drop c from the notation. Hence hospital 1’s profit, if all the other hospitals

pick (r̄, h(r̄)), is given by

Π(r|r̄) = (h(r̄)−h (r)) (1 + r)λ−
(

min

{
r− r̄
r̄

, Pcap

})+

h(r̄)(1 + r)λ

−R (r,h (r)) +R(r̄, h(r̄))

(A40)

by (8). Again, we write Π(r,Pcap|r̄) instead of Π(r|r̄) when we need to make the dependence on

Pcap explicit.

(a) We start with a preliminary result, which shows that given all other hospitals choose the

same readmission level r̄, hospital 1’s best response cannot be less than that readmission level

under the HRRP scheme.

Corollary A1. Fix r̄ ∈ [rmin, rmax] and Pcap > 0. Under the HRRP scheme,

Π(r̄|r̄)>Π(r|r̄) for any r ∈ [rmin, r̄), (A41)

i.e., hospital 1’s profit at (r̄, h(r̄)) is higher than that at any other point (r,h(r)) if r ∈ [rmin, r̄).

This result follows from Lemma A3(i) because by (A40), Π(r|r̄) ≡ Φo(r|r̄) for r ∈ [rmin, r̄] (see

(A5) for the definition of Φo), since a hospital with lower-than-expected readmission rate does not

receive rewards.

(b) We first show that any (r̄, h(r̄)) ∈ Sp is a symmetric equilibrium. Assume that all hospitals

except hospital 1 pick (r̄, h(r̄))∈ Sp. By Corollary A1 it is enough to show that hospital 1’s profit

at (r̄, h(r̄)) is higher than that at any other point (r,h(r)), for r ∈ [r̄, rmax], that is,

Π(r̄|r̄)≥Π(r|r̄) for any r ∈ [r̄, rmax]. (A42)
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By (A40) and because (r̄, h(r̄))∈ Sp, Π(r|r̄) = Ψ(r|r̄), (see (A11) for the definition of Ψ), hence

the objective of hospital 1 is identical to that under HRRP-I if (r̄, h(r̄))∈ Sp. By Lemma A4, Ψ is

concave hence it is enough to show that

dΨ(r̄|r̄)
dr

< 0, for any r̄ > r̃. (A43)

To prove (A43) note that

dΨ(r̄|r̄)
dr

=−Γ(r̄), (A44)

where Γ is defined as in (A16), by (A12).

By (A43) and (A44) it is enough to show that Γ(r)> 0 for all r > r̃. To prove this we use the

following three results. (1) By Assumption 1, r̃ is the unique equilibrium under HRRP-I hence r̃ is

the only readmission level that satisfies Γ(r̃) = 0. (2) By (A19), Γ(r)> 0 for all r≥ r∗. (3) Function

Γ is continuous by the continuity of h and Rr. However if Γ(r) < 0 for some r ∈ (r̃, r∗) then Γ

cannot be continuous because r̃ is the unique point that satisfies Γ(r̃) = 0, a contradiction.

(c) Next we focus on the rest of the symmetric equilibria. First we explicitly define So ⊂S and

then show that any (r̄, h(r̄))∈ So is a symmetric equilibrium. Let

So = {(r̄, c̄) : c̄= h(r̄), r̄ ∈ [r̃, rp], sup
r∈[(1+Pcap)r̄,rmax]

Φ(r|r̄)≤ 0}, (A45)

where function Φ is defined as in (A22). (In words, Φ is hospital 1’s profit when its readmission

level r is large enough so that the readmission penalty is capped.) If So = ∅ then there is nothing

to prove, hence assume for the rest of the proof that it is non-empty.

Assume that all hospitals except hospital 1 pick (r̄, h(r̄)) ∈ So. As in part (b) it is enough to

show (A42) holds. First note that for r ∈ [r̄, (1 +Pcap)r̄], Π(r|r̄) = Ψ(r|r̄) by (A40). Then by (A43)

Π(r̄|r̄)≥Π(r|r̄) for any r ∈ [r̄, (1 +Pcap)r̄]. (A46)

If on the other hand r ∈ [(1+Pcap)r̄, rmax], then hospital 1’s profit is given by Φ(r|r̄). By definition of

So, Φ(r|r̄)≤ 0 for any r ∈ [(1 +Pcap)r̄, rmax]. In addition Π(r̄|r̄) = 0 by (8). Hence any (r̄, h(r̄))∈ So
is a symmetric equilibrium.

(d) Next we prove that (r̄, c̄) /∈ So ∪ Sp cannot be a symmetric equilibrium. Let r̄ ∈ [rmin, rmax]

and assume that all hospitals except hospital 1 choose (r̄, c̄) /∈ So∪Sp. If c̄ 6= h(r̄), then (r̄, c̄) cannot

be an equilibrium by Lemma A2, hence assume that c̄= h(r̄). Because (r̄, c̄) /∈ So ∪ Sp, either (1)

r̄ ∈ [rmin, r̃), or (2) r ∈ [r̃, rp] and (r,h(r)) /∈ So, by definitions of So and Sp.
Assume that r̄ ∈ [rmin, r̃). Then for r ∈ (r̄, (1 + Pcap)r̄], by (A40), Π(r|r̄) = Ψ(r|r̄). Hence it is

enough to show that

dΨ(r̄|r̄)
dr

> 0, for any r̄ < r̃. (A47)
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Proof of (A47) is identical to that of (A43) using (A44) and the fact that Γ(rmin) < 0 (which

follows from Assumption 1(iii)), hence we skip the details.

Assume now that r̄ ∈ [r̃, rp] and r̄ /∈ So, then as in part (c) of the proof, for r ≥ (1 + Pcap)r̄,

hospital 1’s profit is given by Φ(r|r̄). And by definition of So, Φ(r1|r̄) > Π(r̄, h(r̄)) = 0, for some

r1 ∈ [(1 +Pcap)r̄, rmax]. Hence such r̄ cannot be an equilibrium.

Note that (a)–(c) prove part (i) of the proposition. Part (iii) follows from the fact that rp = r̃ if

Pcap ≥ Pmax.
(e) We next prove part (ii) of the proposition. First, if Pcap < Pm(r∗), so that rp > r∗, then

Sp ⊂ {(r,h(r)) : r ∈ (r∗, rmax]} by (15). Hence for the rest of the proof we assume without loss of

generality that Pcap <Pm(r∗) so that rp > r∗ and show that So ⊂ (r∗, rmax] for Pcap small enough.

To prove So ⊂ {(r,h(r)) : r ∈ (r∗, rmax]}, we show that there exists ¯̄Pcap ∈ (0, Pmax) such that

Φ(rmax, Pcap|r̄)> 0, for all r̄ ∈ [r̃, r∗], and for Pcap ≤ ¯̄Pcap. (A48)

Note that (A48) implies that So ⊂ {(r,h(r)) : r ∈ (r∗, rmax]} for all Pcap ≤ ¯̄Pcap by (A45). To prove

(A48) we use an argument similar to that in the proof Lemma A7 .

By (A5) and (A22)

Φ(r,Pcap|r̄) = Φo(r|r̄)−Pcap(1 + r)h(r̄)λ, for r, r̄ ∈ [rmin, rmax] and Pcap > 0. (A49)

Let rδ = r∗+ rmax−r∗
2

, denote the midpoint between r∗ and rmax. By Lemma 1, rδ > r
∗ and rδ < rmax.

Since h is strictly decreasing in r by Lemma A1, h(r∗)−h(rδ)> 0. Therefore by Lemma A3(ii)

Φo(rmax|r̄) ≥ (rmax− rδ) (h(r∗)−h(rδ))λ≡∆> 0,

for any r̄ ∈ [r̃, r∗]. Let

¯̄Pcap = min

{
∆

2h(r̃)(1 + rmax)λ
,Pm(r∗)

}
. (A50)

By (A49)–(A50) and Lemma A1, we have

Φ(rmax, Pcap|r̄)≥∆/2> 0,

for any r̄ ∈ [r̃, r∗] and Pcap ≤ ¯̄Pcap, giving (A48).

(e) Finally, we prove part (iv) of the proposition. Suppose hospitals take asymmetric actions

(ri, ci), i = 1, . . . ,N . We prove that such a point cannot be an equilibrium. By Lemma A2, if

ci 6= h(ri) for some i then this point cannot be an equilibrium, so assume that ci = h(ri) for all

i = 1, . . . ,N . Without loss of generality, assume that r1 ≤ r2 ≤ . . . rN and r1 < rj for some j ∈
{2, . . . ,N}. By (8), hospital 1’s objective function is

Π(r1, h(r1)) = (c̄1−h(r1)) (1 + r1)λ−R(r1, c1) + R̄1,
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where c̄1 and R̄1 are defined as in (6). Now because h′ < 0 by Lemma A1 and r1 ≤ ri for all

i 6= 1, we have c̄1 < h(r1). Moreover, dR(r,h(r))/dr < 0 by our assumption, hence, R(r1, h(r1))>

R̄1 by (6) and so Π(r1, h(r1)) < 0. On the other hand R(r̄1, c̄1) ≤ R̄1 , because R is convex by

Assumption 1(i), and so (for hospital 1) Π(r̄1, c̄1)≥ 0 by (8). Hence these actions cannot constitute

an equilibrium. �

C. Proofs of the results in Section 5

Proof of Proposition 4: The proof is based on the simple observation that under m-HRRP

the difference between a hospital’s objective and the regulator’s objective is independent of that

hospital’s actions. More precisely, given the actions of all the other hospitals, by (1) and (16)

hospital i’s objective under m-HRRP is

Π(ri, ci) = (c̄i− ci) (1 + ri)λ+ (r̄i− ri) c̄iλ−R(ri, ci) + R̄i

= c̄i(1 + r̄i)λ− ci(1 + ri)λ−R(ri, ci) + R̄i, (A51)

where c̄i and R̄i are defined as in (6). By (2) and (A51), we have

Π(ri, ci)−S(ri, ci) = c̄i(1 + r̄i)λ+ R̄i−V (λ).

Therefore the difference between the objective of the regulator and hospital i does not depend on

ri and ci.

Since (r∗, c∗) is the unique maximizer of the social welfare S, it also maximizes hospital’s profit

Π under m-HRRP. That is, each hospital chooses r∗ and c∗ independent from other hospitals’

decisions. Therefore, (r∗, c∗) constitutes the unique equilibrium under m-HRRP. �

Proof of Proposition 5: We prove the result by showing that in any symmetric equilibrium,

FOCs of each hospital’s objective under m-HRRPW payment scheme coincide with those of the

regulator’s objective.

By (23), social welfare is given by:

S(ri, µi, ci) = Λ

∫ ∞
tWi

(x− tWi)dΘ(x)− ci(1 + ri)λi−Ri− ce(Λ−λi),

where Wi ≡W (ri, µi) and Ri ≡R(ri, µi, ci). Moreover, by (22) and (25), a hospital’s profit under

our proposed payment scheme is:

Π(ri, µi, ci) = (c̄i(1 + r̄i)− ce)λ̄i− (ci(1 + ri)− ce)λi− t(Wi− W̄i)λi−R(ri, µi, ci) + R̄i.
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Then, for any decision variable xi ∈ {ri, µi, ci}, we have

∂S(ri, µi, ci)

∂xi
=−tΛΘ̄(tWi)

∂Wi

∂xi
− ∂{[ci(1 + ri)− ce]λi +Ri}

∂xi

=−t∂Wi

∂xi
λi−

∂{[ci(1 + ri)− ce]λi +Ri}
∂xi

,

∂Π(ri, µi, ci)

∂xi
=−t∂Wi

∂xi
λi−

∂{[ci(1 + ri)− ce]λi +Ri}
∂xi

− t(Wi− W̄i)
∂λi
∂xi

.

In any symmetric equilibrium, we have Wi = W̄i; therefore, ∂Π
∂xi

= ∂Si
∂xi

for all xi ∈ {ri, µi, ci}. The

uniqueness of the symmetric equilibrium under m-HRRPW follows from the uniqueness of the

social optimum (r∗, µ∗, c∗). Also in this symmetric equilibrium each hospital makes non-negative

profit. �

D. Multiple monitored diseases

So far our analysis focused on a single disease model and we intrinsically assumed that if a regulator

needs to monitor multiple diseases a similar payment scheme can be used for each disease separately.

However the HRRP payment scheme CMS used actually monitors multiple diseases jointly and

financial incentives are tied to the cumulative performance on readmission rates for these diseases.

In this section we modify our model to study this payment scheme used by CMS and by leveraging

our results for the single disease model in §4 demonstrate that with J ≥ 2 monitored diseases there

are again uncountably many symmetric equilibrium outcomes under HRRP.

We use the notation introduced in §3 except we now use j to index the monitored diseases. For

example, λj denote the demand rate for patients with disease j and rij denotes the readmission

rate at hospital i for disease j. For notational simplicity we set J = {1,2, . . . , J}. As in our base

model for the single disease model in §3, we assume that hospitals choose treatment costs and

readmission rates for all diseases, and that there is ample capacity and all patients seek treatment.

We assume that investment cost associated with readmission and cost-reduction efforts is addi-

tively separable. More specifically if a hospital operates with readmission level rj ∈ [rmin, rmax] and

marginal treatment cost cj ∈ [cmin, cmax] for disease j ∈ J , then its total investment cost is given

by

R (r,c) =
∑
j∈J

R(j)(rj,cj),

where r = (r1, r2, . . . , rJ), c = (c1, c2, . . . , cJ), (we use bold letters to denote vectors) and cost func-

tions R(j), j ∈J , are assumed to satisfy all conditions in Assumption 1. The additivity assumption

enables us to utilize our results for the single disease case, specifically the equilibrium outcomes

when we remove the penalty-only and penalty cap provisions, i.e., the payment system HRRP-I,

the equilibrium outcomes are identical to the case when all the diseases are monitored separately.
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Thence we are able to compare the impact of the cap in these two cases. Although it is possible to

establish the equilibrium outcomes for more general investment functions, these outcomes depends

on the specific assumptions on the impact of the interaction between multiple diseases on the total

cost. We leave this for future research.

Regulator’s objective: Similar to (2), total social welfare with multiple monitored diseases is

given by

S(r,c) =
∑
j∈J

[
Vj(λj)− cj(1 + rj)λj −R(j)(rj,cj)

]
. (A52)

Note that total social welfare is separable and results for social planner’s problem from our single-

disease model hold for each disease. Therefore socially-optimal actions (r∗,c∗) satisfy{
(1 + r∗j )λj +R(j)

c (r∗j ,c
∗
j ) = 0, for j ∈J ,

c∗jλj +R(j)
r (r∗j ,c

∗
j ) = 0, for j ∈J , (A53)

by Lemma 1. In addition, for any readmission level r ∈ [rmin, rmax] the optimal treatment cost for

disease j is given by h(j) (r), which satisfies

(1 + r)λj +R(j)
c (r,h(j) (r)) = 0, for j ∈J , (A54)

by Lemma A1. For notational simplicity we set h (r) =
(
h(1) (r1) , h(2) (r2) , . . . , h(J) (rJ)

)
.

Hospital’s objective under HRRP: Next we present hospitals’ objective with J monitored

diseases under HRRP. Let ri = (rij, j ∈ J ), ci = (cij, j ∈ J ) denote the readmission rate and

marginal cost of each hospital and disease, for i= 1, . . . ,N and j ∈J . Let R
(j)
i ≡R(j)(rij, cij) and

c̄ij =
1

N − 1

∑
k 6=i

ckj, r̄ij =
1

N − 1

∑
k 6=i

rkj, and R̄
(j)
i =

1

N − 1

∑
k 6=i

R
(j)
k , for i= 1, . . . ,N and j ∈J ,

(A55)

similar to (6). Also we set r̄i = (r̄ij, j ∈ J ) and c̄i = (c̄ij, j ∈ J ). Similar to (1) hospital i’s profit

with J monitored diseases can be written as

Π̂(ri,ci) =
∑
j∈J

[
(c̄ij − cij)λj(1 + rij)

]
− π̂(ri|r̄i, c̄i)−

∑
j∈J

R(j)(rij,cij) +
∑
j∈J

R̄
(j)
i , (A56)

where

π̂(ri|r̄i, c̄i) = min

(∑
j∈J

c̄ijλj(1 + rij)

(
rij
r̄ij
− 1

)+

, Pcap
∑
j∈J

c̄ijλj(1 + rij)

)
, (A57)

and Pcap ≥ 0 denotes the penalty cap as before.

Hospitals’ objective is similar to the case with a single monitored disease except now it incorpo-

rates multiples diseases and in the incentive term π̂ penalty cap is determined based on the cumu-

lative readmission reduction effort of the hospital (in the single disease model penalty cap is deter-

mined separately for each disease, see term π in (8)). Term π̂ is based on HRRP payment scheme
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implemented by CMS, see Zhang et al. (2016), that monitors multiple diseases. The total penalty

is based on the “cost of excessive readmissions” for each disease, the term c̄ijλj(1 + rij)
(
rij
r̄ij
− 1
)+

,

but the total penalty is capped by the second term, Pcap
∑

j∈J c̄ijλj(1 + rij), based on the total

payments for the monitored disease. Our model is slightly different from HRRP implemented in

practice. Under HRRP the penalty cap is 3% of the total payments from Medicare, hence it does not

depends solely on the payments for the monitored diseases. However as we discussed in Remark 1

this can be incorporated in our model by increasing Pcap.

HRRP-I with multiple monitored diseases: As in the case with a single monitored disease,

the equilibrium outcomes under HRRP depends on the equilibrium outcomes when the penalty

cap and no-reward provisions are removed from HRRP, and we refer to the resulting payment

scheme again as HRRP-I. First by (A56), without the penalty cap (Pcap =∞), hospital’s profit

is separable in each disease and maximizing a hospital’s total profit is equivalent to maximizing

its objective from each single disease. This implies that results from our single-disease model for

HRRP-I scheme with reward and no penalty cap are valid for each disease. Specifically let (r̃, c̃)

be defined as follows {
(1 + r̃j)λj +R(j)

c (r̃j,c̃j) = 0, for j ∈J ,
1+r̃j
r̃j
c̃jλj +R(j)

r (r̃j,c̃j) = 0, for j ∈J . (A58)

By Proposition 1, under HRRP-I scheme, there exists symmetric (Nash) equilibrium and any

symmetric equilibrium (r̃, c̃) satisfy r̃j ≤ r∗j and c̃j ≥ c∗j for j ∈ J . We note that as in the single

disease model, there might be multiple symmetric equilibria when multiple diseases are monitored.

Therefore, in the remainder of this appendix, we assume that Assumption 1 holds, i.e., there exists

a unique symmetric equilibrium (r̃, c̃) under HRRP-I.

Equilibrium under HRRP with multiple monitored diseases: Next we characterize the

equilibrium outcomes under HRRP scheme. Unlike HRRP-I, hospital’s objective function is no

longer separable because of the penalty cap and so our results for a single disease cannot be

generalized in a straightforward manner. However, results in Section 4.3 can be extended to this

case with redefining the equilibrium sets. We present the details next.

First for fixed r̄ = (r̄1, r̄2, . . . , r̄J)∈ [rmin, rmax]
J we define

B(r̄)≡

{
r = (r1, r2, . . . , rJ) :

∑
j∈J

h(j)(r̄j)λj(1 + rj)

(
rj
r̄j
− 1

)+

≥ Pcap
∑
j∈J

h(j)(r̄j)λj(1 + rj)

}
.

In words, set B(r̄) includes all the readmission levels a hospital’s penalty under HRRP is will be

capped, assuming all the other hospital’s pick actions (r̄, h(r̄)). We also define

Ŝp ≡ {(r̄, c̄) :B(r̄) = ∅, c̄ = h (r̄) , r̄j ∈ [r̃j, rmax], for j ∈J }.
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We note that Ŝp is non-empty–indeed it has uncountably many points–for Pcap > 0 because for

r̄ = (r̄1, r̄2, . . . , r̄J), if r̄j ∈ [rmax/(Pcap + 1), rmax], and r̄j ≥ r̃j, for j ∈ J , then (r̄, h(r̄)) ∈ Ŝp. Set Ŝp
corresponds to set Sp in the single monitored disease case, see (15).

We note that Lemma A2 still holds for each disease because π̂ (see (A57)) does not depend on c,

hence c̄i = h (r̄i) for each hospital i. Using this fact, a hospital’s objective function can be written

(with a slight abuse of notation) as

Π̂(r = (r1, r2, . . . , rJ)|̄r) =
∑
j∈J

[(
h(j)(r̄j)−h(j)(rj)

)
λj(1 + rj)

]
− π̂(r|r̄, h(r̄))

−
∑
j∈J

R(j)(rj, h
(j)(rj)) +

∑
j∈J

R̄j(r̄j, h
(j)(r̄j)),

(A59)

by (A56) if all the other hospitals pick (r̄, h(r̄)). And define

Ŝo ≡

{
(r̄, c̄) :B(r̄) 6= ∅, c̄ = h (r̄) , r̄j ∈ [r̃j, rmax], for j ∈J , sup

r∈B(r̄)

Π̂(r|̄r)≤ 0

}
. (A60)

This set corresponds to set So in the single monitored disease case, see (A45).

The following result extends our main result Proposition 3 to the case with multiple monitored

diseases.

Proposition A1 (Equilibrium with multiple monitored diseases). Under the HRRP

scheme defined in (A59) with J ≥ 2 monitored diseases

(i) Any (r,c)∈ Ŝp ∪ Ŝo is a symmetric equilibrium and there does not exist any other symmetric

equilibrium.

(ii) If Pcap = 0, then (r̄ = (rmax, . . . , rmax), h(r̄)) is the unique symmetric equilibrium.

This results shows that there are uncountably many equilibria under HRRP with multiple mon-

itored diseases, paralleling our result for the case with single monitored disease. In addition part

(ii) shows that if Pcap = 0 hospitals have no incentive to invest in readmission reduction efforts.

Also the set of equilibrium outcomes is especially large because for Pcap large enough

Ŝp ∪ Ŝo ≡ {(r,c): c = h (r) , rj ≥ r̃j for j ∈J },

as in Proposition 3(iii). However Proposition 3(iv) does not extend to the case with multiple

diseases and we were unable to identify simple sufficient conditions.

Proof of Proposition A1: Throughout we focus on the symmetric equilibria. First, we focus on

the symmetric equilibria and show that any (r,c) /∈ Ŝo cannot be a symmetric equilibrium and

that any (r,c) ∈ Ŝo is a symmetric equilibrium. Then we show that (rmax, h(rmax)) is the unique

symmetric equilibrium if Pcap = 0. Without loss of generality we focus on the first hospital and
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drop the hospital index from our notation when it is clear from the context. Also recall that we

assume that the symmetric equilibrium (r̃, c̃) under HRRP-I that satisfy (A58) is assumed to be

unique, a fact we use throughout the proof.

To simplify the notation we define

S̃o ≡

{
(r̄, c̄) : c̄ = h (r̄) , rj ≥ r̃j for j ∈J , sup

r∈B(r̄)

Π(r|̄r)≤ 0

}
, (A61)

where we follow the convention supr∈B(r̄) Π(r|̄r) =−∞ if B(r̄) = ∅. Set S̃o is similar to set Ŝo but

does not impose the condition B(r̄) 6= ∅. It is easy to check that S̃o = Ŝp ∪ Ŝo.

(a) First, we will prove that any (r̄, c̄) /∈ S̃o cannot be a symmetric equilibrium. Suppose that all

hospitals except hospital 1 choose (r̄, c̄) /∈ S̃o. We show that hospital 1’s best response cannot be

(r̄, c̄), proving that (r̄, c̄) cannot be a symmetric equilibrium.

Lemma A2 still holds for each disease because π̂ (see (A57)) does not depend on c. Thus we can

assume without loss of generality that c = h(r). Because (r̄ = (r1, r2, . . . , rJ), c̄) /∈ S̃o then either (1)

r̄j < r̃j for at least one j ∈J or (2) r̄j ≥ r̃j for all j ∈J and supr∈B(r̄) Π̂(r|̄r)> 0.

Assume first, without loss of generality, that r̄1 < r̃1. Then there exists ε > 0 such that for

r̄ε = {(r1, r̄2, . . . , r̄J) : r1 ∈ [r̄1, r̄1 + ε]}, we have r̄ε ∩B(r̄) = ∅. In words, there exists a neighborhood

r̄ε of r̄ such that if hospital 1 chooses a readmission rate from this set r̄ε its financial penalty is

below the cap. This implies by (A59) that for r∈ r̄ε

Π̂(r|̄r) =
∑
j∈J

Ψ(j) (rj|r̄j) ,

where we obtain Ψ(j) after replacing R by R(j) in (A11). By Lemma A4, hospital 1 can improve

its profit by increasing the readmission level for disease 1 since r̄1 < r̃1.

If on the other hand r̄j > r̃j for all j ∈ J and supr∈B(r̄) Π̂(r|̄r)> 0, (implying B(r̄) 6= ∅), because

Π̂(r̄|̄r) = 0, hospital 1’s best response is in the set B(r̄) (specifically it would choose the point that

attains the supremum since Π̂ is continuous), and clearly r̄ /∈B(r̄).

(b) Next we prove that any (r,c) ∈ S̃o is a symmetric equilibrium. Assume that all hospitals

except hospital 1 choose (r̄, c̄)∈ S̃o. Then for r /∈B(r̄),

Π̂(r = (r1, r2, . . . , rJ)|̄r) =
∑
j∈J

Π(j)(rj|r̄j),

where Π(j) is defined as in (A40) for R = R(j). As in the proof of Proposition 3, specifically by

Corollary A1, (A43), and (A76), Π(j)(r̄j|r̄j)≥Π(j)(rj|r̄j), for any r /∈B(r̄). If r∈B(r̄) on the other

hand, by definition of the set Ŝo in (A61)

Π̂(r̄|̄r) = 0≥ Π̂(r|̄r), for all r∈B(r̄).
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(c) Finally if Pcap = 0 then

Π̂(r = (r1, r2, . . . , rJ)|̄r) =
∑
j∈J

Φo(j) (rj|r̄j) ,

for Φo(j) defined as in (A5) where R is replaced by R(j). Part (iii) then follows from

Lemma A3(i). �

E. When targets are exogenous

To put our results in a better perspective, we establish hospitals’ optimal actions when readmission

target and reimbursement level are chosen exogenously at socially optimal levels and hospitals

are reimbursed using a HRRP-like payment scheme with parameters set at these targets. (Similar

schemes have been analyzed in Bastani et al. (2016), Adida et al. (2016), among others; see §2 for

more details.)

Specifically we take the Modified HRRP payment scheme, set c̄i = c∗ and r̄i = r∗ for all i =

1, . . . ,N , and find the optimal actions for a hospital when there is no bonus payment and penalty is

capped. We focus on m-HRRP (see §5.1) to exclude the impact of the multiplier, which is already

shown to distort the actions of hospitals. The objective of a hospital (we drop the hospital subscript

for notational simplicity) under m-HRRP can be written as follows by (1) and (19).

Π(r, c) = (c∗− c)(1 + r)λ−
(

min
{ ri
r∗
− 1, Pcap

})+

r∗c∗λ+R(r∗, c∗)−R(r, c), (A62)

We first establish the optimal actions of a hospital when targets are exogenous and then compare

these results with those when they are endogenous, see Remark 4. We have the following result.

For the rest of this section we assume that Assumption 1 holds.

Proposition A2 (Optimal hospital actions under m-HRRP with exogenous targets).

Assume that the objective function of a hospital is given by (A62). Then there exists P̄ ′cap > 0 such

that

i. If Pcap ≥ P̄ ′cap, then the optimal action for a hospital is to set r= r∗ and c= c∗, and

ii. If Pcap < P̄
′
cap, then the optimal action for a hospital is to set r= rmax and c= h(rmax).

Proof of Proposition A2. We break the proof into three steps. In steps (a)-(b) we characterize a

hospital’s locally optimal actions for r ∈ [rmin, r
∗(1+Pcap)] and r ∈ [r∗(1+Pcap), rmax], respectively,

and in step (c) we establish the hospital’s globally optimal action. In addition, we have c= h(r)

in any equilibrium by (A62) and the proof of Lemma A2 and since this relationship uniquely

determines c by Lemma A1 we only focus on hospital’s readmission choice r and drop c from the

notation.
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(a) The hospital’s objective Π(r,h(r)) defined as in (A62) reduces to Φo(r|r∗) defined as in (A5)

for r < r∗ and reduces to the objective under m-HRRP defined as in (17) for r ∈ [r∗, r∗(1 +Pcap)].

By (A6) and Proposition 4, the hospital’s optimal action for r ∈ [rmin, r
∗(1 +Pcap)] is r= r∗.

(b) For r ∈ [r∗(1 +Pcap), rmax], the hospital’s objective Π(r,h(r)) defined as in (A62) reduces to

Π(r,h(r)) = (c∗−h(r))(1 + r)λ− r∗c∗Pcapλ−R(r,h(r)) +R(r∗, c∗), (A63)

hence
dΠ(r,h(r))

dr
= (c∗−h(r))λ−Rr(r,h(r))> 0 for r ∈ [r∗(1 +Pcap), rmax], (A64)

where the inequality follows from: (i) Rr < 0 by Assumption 1(i), and (ii) c∗ = h(r∗) ≥ h(r) for

any r ≥ r∗ since h is decreasing by Lemma A1. By (A64), the hospital’s optimal action for r ∈

[r∗(1 +Pcap), rmax] is r= rmax.

(c) If Pcap ≥ rmax/r∗ − 1, r ∈ [rmin, r
∗(1 + Pcap)] for all r ∈ [rmin, rmax] hence by part (a) the

hospital’s globally optimal action is r= r∗. If Pcap = 0, it is optimal to choose r= r∗ for r ∈ [rmin, r
∗]

by part (a) and choose r= rmax for r ∈ [r∗, rmax] by part (b), hence the globally optimal action is

r= rmax. If Pcap ∈ (0, rmax/r
∗− 1), it is optimal to choose r= r∗ for r ∈ [rmin, r

∗(1 +Pcap)] by part

(a) and choose r = rmax for r ∈ [r∗(1 + Pcap), rmax] by part (b), hence the firm chooses r = r∗ iff

Π(r∗, h(r∗))≥Π(rmax, h(rmax)) or equivalently

Pcap > [(c∗−h(rmax))(1 + rmax)λ+R(r∗, c∗)−R(rmax, h(rmax))]/(r
∗c∗λ)≡ P̄ ′cap,

and chooses r = rmax otherwise. Finally we prove P̄ ′cap > 0. Since Π(rmax, h(rmax)) is strictly

decreasing in Pcap and is equal to 0 for Pcap = P̄ ′cap (both by (A63)), it suffices to show that

Π(rmax, h(rmax))> 0 for Pcap = 0. This holds because Π(r∗, h(r∗)) = 0 by (A62) and dΠ(r,h(r))

dr
> 0

for r ∈ [r∗, rmax] by (A64). �

We next show that no-bonus provision has no impact when the targets are set exogenously. The

proof is similar to that of Proposition A2 and thus is omitted.

Corollary A2. Assume that the objective function of a hospital is given by

Π(r, c) =

{
(c∗− c)(1 + r)λ−min

{
r
r∗ − 1, Pcap

}
r∗c∗λ+R(r∗, c∗)−R(r, c), if r≥ r∗,

(c∗− c)(1 + r)λ+ min
{

1− r
r∗ , Pcap

}
r∗c∗λ+R(r∗, c∗)−R(r, c), if r < r∗.

(A65)

Then the optimal actions of a hospital are identical to that given in Proposition A2.

In words, Proposition A2 and Corollary A2 imply that as long as Pcap is large enough, hospitals

would take socially optimal actions if the regulator were able to set the cost and readmission targets

to socially optimal levels (see footnote 1). Also, these results imply that no-bonus provision has no

impact on hospital actions when targets are set exogenously. In addition, the regulator can adjust
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the value of Pcap if (some) hospitals end up having much larger readmission levels than the target,

hence the negative impact of having low penalty caps can potentially be eliminated in practice.

These results are in stark contrast to those when these targets are set exogenously as done under

HRRP (see Remark 4). First, we have shown that, in the endogenous case, there are multiple

pure-strategy equilibria even when Pcap is (arbitrarily) large (see Proposition 3). Hence HRRP

cannot restore socially optimal outcomes. Second, no-bonus provision has a significant impact on

the ensuing equilibrium (see Propositions 2 and 3). Finally, because the equilibrium outcomes are

not clear (e.g., under a mixed equilibrium), the regulator would not be able to determine the

effective levels for Pcap.

F. Multiple Symmetric Equilibria under HRRP-I

In this section, we extend the analysis presented in §4.2-4.3 by establishing the equilibrium out-

comes under HRRP-II and HRRP in cases where Assumption 1 does not hold, i.e., HRRP-I induces

multiple symmetric equilibria. To this end, we adopt the following assumption in place of Assump-

tion 1 throughout this section.

Assumption 2. Under HRRP-I, there exist three symmetric equilibria.

We focus on the case with the three symmetric equilibria because it is the next simplest case after

the case with a single equilibrium; we show below that there cannot be two symmetric equilibria,

see Lemma A8. The analysis in this section can be easily extended to cases with more symmetric

equilibria and the results will not change qualitatively yet the required notation becomes much

more complex.

Next we introduce the notation we use in this section. Let (r̃i, c̃i), i = 1,2,3, denote the three

equilibrium points and assume without loss of generality that

r̃1 < r̃2 < r̃3. (A66)

By Lemma A2, c̃i = h(r̃i), for i= 1,2,3. To specify the equilibrium outcomes under HRRP-II we

set

Sm(Pcap) = {(r,h(r)) : r ∈ {r̃1, r̃2, r̃3}, P̄cap(r)≤ Pcap} (A67)

and

P̄cap = {P̄cap(r̃1), P̄cap(r̃2), P̄cap(r̃3)},

where P̄cap(r) is defined in Lemma A7 (we prove existence of P̄cap(r̃i), i = 1,2,3 in Lemma A11

below, hence P̄cap is non-empty). Let

P̄ 1
cap = min P̄cap,

P̄ 2
cap = min(P̄cap/P̄ 1

cap),

P̄ 3
cap = max P̄cap.
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In words, P̄ i
cap is the i-th smallest element of P̄cap hence

P̄ 3
cap ≥ P̄ 2

cap ≥ P̄ 1
cap. (A68)

The next proposition characterizes the equilibrium outcomes under HRRP-II defined as in (13).

Proposition A3 (Equilibrium under HRRP-II). Suppose Assumption 2 holds. Under

HRRP-II scheme:

(i) Three symmetric equilibria (i.e., (r̃i, h(r̃i)) for i= 1,2,3) exist if Pcap ≥ P̄ 3
cap.

(ii) Two symmetric equilibria (i.e., (r, c)∈ Sm(Pcap)) exist if P̄ 2
cap ≤ Pcap < P̄ 3

cap.

(iii) A unique symmetric equilibrium (i.e., (r, c)∈ Sm(Pcap)) exists if P̄ 1
cap ≤ Pcap < P̄ 2

cap.

(iv) No symmetric equilibrium exists if 0<Pcap < P̄
1
cap.

(v) (rmax, h(rmax)) is the unique symmetric equilibrium if Pcap = 0.

When there are more than one symmetric equilibrium under HRRP-I, adding a cap on the

readmission penalty/reward reduces the effect of readmission reduction financial incentive scheme

instead of nullifying it (as in the case of a unique symmetric equilibrium; see Proposition 2). In

fact, by parts (i)-(iv) the cap has no impact on the symmetric equilibria when it is large enough

and eliminates them one by one as it decreases. To see the intuition, first recall from the discussion

of Proposition 2 that a symmetric equilibrium is eliminated if the cap falls below a threshold

such that a hospital earns higher profits by exerting no readmission reduction effort and paying

the capped readmission penalty instead of choosing the equilibrium readmission level. In addition,

the thresholds for different symmetric equilibria are different in general because they depend on

equilibrium readmission levels which are different by (A66). As the cap decreases, these thresholds

are reached separately in a series hence the corresponding symmetric equilibria are eliminated one

by one. Finally, part (v) shows that if the cap decreases to zero, hospitals will exert no readmission

reduction effort in equilibrium, as in the case of a unique symmetric equilibrium under HRRP-I.

Next we establish the equilibrium outcomes under the HRRP scheme defined in (7), where hos-

pitals with lower-than-expected readmission rates do not receive bonus payments and the penalty

is capped.

We need to introduce additional terminology to specify the equilibrium outcomes in this case.

First let rpi = max{re, r̃i} for i = 1,3, where re is defined in (14). To specify the equilibrium

outcomes we set

S ′p = {(r,h(r)) : r ∈ [rp1, r̃2]∪ [rp3, rmax]} (A69)

and note that, if Pcap > 0, rpi < rmax by Proposition 1 and so S ′p is non-empty. Finally let

S ′ = {(r,h(r)) : r ∈ ([r̃1, r̃2]∩ [r̃1, rp1))∪ ([r̃3, rmax]∩ [r̃3, rp3))

and P ′max = rmax
r̃1
− 1. We have the following result.
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Proposition A4 (Equilibrium under HRRP). Suppose Assumption 2 holds. The following

hold under the HRRP scheme:

(i) For any Pcap ≥ 0, there exists S ′o ⊂S ′ (depending on Pcap), such that any (r, c)∈ S ′o ∪S ′p is a

symmetric equilibrium and there is no other symmetric equilibrium.

(ii) There exists ¯̄P ′cap ∈ (0, P ′max) such that for any (r, c)∈ S′o∪S ′p, r > r∗ and c < c∗ for Pcap <
¯̄P ′cap.

(iii) If Pcap ≥ P ′max, then any

(r, c)∈ {(r,h(r)) : r ∈ [r̃1, r̃2]∪ [r̃3, rmax]} (= S′ ∪S ′p)

is a symmetric equilibrium.

(iv) There is no asymmetric equilibrium if dR(r,h(r))/dr < 0 for all r ∈ [rmin, rmax].

Similar to the case of a unique symmetric equilibrium under HRRP-I, removing bonus payments

generates uncountably many equilibrium outcomes (i.e., any (r, c) ∈ S ′o ∪S ′p ) and the equilibrium

set shrinks as the penalty cap becomes smaller (see Proposition 3 for a detailed discussion). In

addition, the set of equilibrium outcomes is structurally more complicated in the case of multi-

ple symmetric equilibria (under HRRP-I)–it splits into two disconnected sets that are subsets of

{(r,h(r)) : r ∈ [r̃1, r̃2]} and {(r,h(r)) : r ∈ [r̃3, rmax]} respectively. No point in {(r,h(r)) : r ∈ (r̃2, r̃3)}

is an equilibrium because for r̄ ∈ (r̃2, r̃3), a hospital earns higher profits by increasing r beyond r̄

since the savings on readmission reduction cost outweigh the readmission penalty.

Propositions A3-A4 together show that if there are multiple equilibria under HRRP-I, HRRP-II

and HRRP generate qualitatively similar equilibrium outcomes as when HRRP-I has a unique

symmetric equilibrium. In addition, with multiple symmetric equilibria under HRRP-I, the impact

of the penalty cap on the equilibrium outcomes under HRRP-II is more nuanced, and the set of

equilibrium outcomes under HRRP is more complicated as it splits into disconnected sets.

F.1. Proofs of the results

F.1.1. Preliminary results In this section we prove preliminary results that we utilize in

proving the results in Appendix F. We first show that the number of symmetric equilibria under

HRRP-I must be odd.

Lemma A8. Under HRRP-I the number of symmetric equilibria must be odd.

Proof of Lemma A8. By Lemma A4 and (A12), (r̃i, c̃i) is a symmetric equilibrium under HRRP-

I iff r̃i satisfies

rΨ(r̃i) = r̃i (A70)

and c̃i = h(r̃i), i.e., the readmission rate in any symmetric equilibrium is a fixed point of rΨ. Below

we show that the number of fixed points is odd.
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Since rΨ is continuous by (A12), the number of fixed points of rΨ is equal to the times y =

rΨ(r) crosses the 45◦ line y = r for r ∈ [rmin, rmax]. Since there exists at least one symmetric

equilibrium under HRRP-I by Proposition 1, y = rΨ(r) crosses y = r at least once. Moreover, by

limr↓rmin
rΨ(r) > rmin from Lemma A4, the first time y = rΨ(r) crosses y = r is from above; by

limr↑rmax rΨ(r)< rmax from Lemma A4, the last time y= rΨ(r) crosses y= r is from above. Hence

y= rΨ(r) crosses y= r with odd times. �

Since HRRP-I generates an odd number of symmetric equilibria, the simplest case of multiple

symmetric equilibria is to have three symmetric equilibria. We focus on this case by adopting

Assumption 2 in Appendix F. The next lemma develops two properties of the symmetric equilibria

(r̃i, c̃i) for i= 1,2,3.

Lemma A9. c̃i = h(r̃i) for i= 1,2,3 and rmin < r̃1 < r̃2 < r̃3 < r
∗ < rmax.

Proof of Lemma A9. c̃i = h(r̃i) follows from Lemma A2. By Assumption 2 and monotonicity of

h(r) from Lemma A1, we have r̃i 6= r̃j for i 6= j—otherwise (r̃i, h(r̃i)) and (r̃i, h(r̃j)) represent the

same equilibrium. The proof is complete by

r̃1 = rΨ(r̃1)> rmin,

r̃3 = rΨ(r̃3)< r∗ < rmax,

where the equalities follow from (A70) and the inequalities follow from Lemma A4 and Proposi-

tion 1. �

By Lemma A9, below we refer to the three symmetric equilibria as (r̃1, h(r̃1)), (r̃2, h(r̃2)), and

(r̃3, h(r̃3)) satisfying rmin < r̃1 < r̃2 < r̃3 < r
∗ < rmax without loss of generality.

Next we present a preliminary result we will use in proving our main results in Propositions A3-

A4.

Lemma A10. rΨ(r) > r for r ∈ [rmin, r̃1) ∪ (r̃2, r̃3), rΨ(r) < r for r ∈ (r̃1, r̃2) ∪ (r̃3, rmax], and

rΨ(r) = r for r ∈ {r̃1, r̃2, r̃3}.

Proof of Lemma A10. The lemma follows from rmin < r̃1 < r̃2 < r̃3 < rmax by Lemma A9, the

fact that y = rΨ(r) crosses y = r three times (by Assumption 2), and the first and last crossings

are from above (by the proof of Lemma A8). �

F.1.2. Proof of Proposition A3 The proof of part (v) is the same as the proof of Propo-

sition 2(iii), hence below we prove the cases in which Pcap > 0, i.e., parts (i)-(iv), in the following

steps. In step (a) we show that there exists no other symmetric equilibrium besides (r̃i, h(r̃i)) for

i= 1,2,3, and in step (b) we show that (r̃i, h(r̃i)) is an equilibrium point if and only if Pcap ≥ P̄cap(r̃i)

(defined as in Lemma A7(ii) and we prove its existence in Lemma A11). Finally in step (c) we use

these results to prove parts (i)-(iv).
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Throughout the proof we only focus on potential symmetric equilibria and the average readmis-

sion rate is identical to each hospital’s readmission rate in any symmetric equilibrium, therefore,

with a slight abuse of notation, we use r̄ to denote a hospital’s choice of readmission rate for

notational simplicity. To prove that (r̃i, c̃i) is a symmetric equilibrium it is enough to show that

for a given hospital the best action is (r̃i, c̃i) if all other hospitals choose (r̃i, c̃i). Without loss of

generality, we focus on hospital 1 and drop the hospital index subscript from all mathematical

expressions throughout the proof. By Lemmas A1, A2, and A4 for any (r̄, c̄) hospital i has a unique

best response (r, c), and c= h(r) under HRRP-II and since this relationship uniquely determines c

we only focus on hospital’s readmission choice r and drop c from the notation.

(a) First we prove that any r′ /∈ {r̃1, r̃2, r̃3} cannot constitute a symmetric equilibrium because

hospital 1 can profitably deviate from r = r′. For r̄ = r′, hospital 1’s profit is Π(r|r′) = Ψ(r|r′)

for all r ∈ (r′(1− Pcap), r′(1 + Pcap)) by (A20); by Lemma A4, Ψ(r|r′) is concave and the unique

maximizer rΨ 6= r′ for r′ 6= r̃ by Lemma A10. Hence

dΨ(r′|r′)
dr

6= 0

and hospital 1 can increase its profit by deviating from r= r′, therefore r′ /∈ {r̃1, r̃2, r̃3} cannot be

a symmetric equilibrium.

(b) Next we characterize the necessary and sufficient conditions for (r̃i, h(r̃i)) to be a symmetric

equilibrium by testing if hospital 1 can profitably deviate from r = r̃i for r̄ = r̃i. By Lemma A5,

hospital 1 will never choose r < r̄ (1−Pcap) (assuming it is feasible) hence we only consider r ≥

r̄ (1−Pcap). For r ∈ [r̄(1− Pcap), r̄(1 + Pcap)), hospital 1’s profit is Π(r|r̄) = Ψ(r|r̄) by (A20) and

Ψ(r|r̃i) is maximized at r= rΨ(r̃i) = r̃i by Lemma A4 and (A70), hence it cannot profitably deviate

from r = r̃i for r ∈ [r̄(1 − Pcap), r̄(1 + Pcap)). For r ∈ [r̄(1 + Pcap), rmax], we only consider Pcap ∈

[0, Pm(r̄)] because otherwise [r̄(1 + Pcap), rmax] = ∅ by (A27). For Pcap ∈ [0, Pm(r̄)], hospital 1’s

maximum profit is Φ̂(Pcap, r̄) when its actions are restricted to r≥ r̄(1 +Pcap), where Φ̂ is defined

in (A28) and we make explicit its dependence on r̂ for the rest of this proof. In addition, since

Π(r̄|r̄) = 0 by (A4), hospital 1 can profitably deviate from r̃i iff

Φ̂(Pcap, r̃i)> 0. (A71)

Next result characterizes the condition for this to hold.

Lemma A11. For i= 1,2,3, there exists P̄cap(r̃i)∈ [0, Pm(r̃i)] such that if Pcap ∈ [0, P̄cap(r̃i)) then

(A71) holds and if Pcap ∈ [P̄cap(r̃i), Pm(r̃i)] then

Φ̂(Pcap, r̃i)≤ 0.
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Proof of Lemma A11. We use Lemma A7 to prove this lemma. First, for r̄= r̃i

Φ̂ (Pm(r̃i)|r̃i)
(r0)
= Φ(rmax, Pm(r̃i)|r̃i)

(r1)
= Ψ(rmax, Pm(r̃i)|r̃i)

(r2)

≤ Ψ(r̃i, Pm(r̃i)|r̃i) = 0, (A72)

where (r0) follows from (A28), (r1) follows from (A11), and (r2) follows from Assumption 2, as

otherwise r̃i would not be an equilibrium. Therefore, (A72) implies that Lemma A7(i) cannot

hold for r̄ = r̃i. By Lemma A7(ii), Φ̂ (Pcap|r̃i)≤ 0 for Pcap ≥ P̄cap(r̃i) and Φ̂ (Pcap|r̃i)> 0 for Pcap <

P̄cap(r̃i). �

By Lemma A11, (r̃i, h(r̃i)) is an equilibrium point if and only if Pcap ≥ P̄cap(r̃i).

(c) Finally we prove parts (i)-(iv). In part (i), Pcap ≥ P̄cap(r̃i) for i = 1,2,3 hence by part (b)

(r̃i, h(r̃i)) for i = 1,2,3 are three symmetric equilibria. In part (ii), there is nothing to prove if

P̄ 2
cap = P̄ 3

cap hence assume P̄ 2
cap < P̄ 3

cap. By (A67) and P̄ 2
cap ≥ P̄ 1

cap from (A68), Sm(Pcap) has two

elements for Pcap ∈ [P̄ 2
cap, P̄

3
cap) and they are symmetric equilibria by step (b). In part (iii), there is

nothing to prove if P̄ 1
cap = P̄ 2

cap, hence assume P̄ 1
cap < P̄ 2

cap. By (A67) and P̄ 3
cap ≥ P̄ 2

cap from (A68),

Sm(Pcap) has one element for Pcap ∈ [P̄ 1
cap, P̄

2
cap) and it is a symmetric equilibrium by step (b). In

part (iv), Pcap < P̄cap(r̃i) for i= 1,2,3 hence no symmetric equilibrium exists by step (b). �

F.1.3. Proof of Proposition A4 The proof of part (iv) is the same as the proof of Propo-

sition 3(iv), hence below we prove parts (i)-(iii) in the following steps. In steps (a)-(c) we prove

part (i), and show that part (iii) follows from part (i). In step (d) we prove part (ii). We use the

same notation as in the proof of Proposition 3. To prove that (r, c) is a symmetric equilibrium it is

enough to show that hospital 1’s best action is (r, c) given that all other hospitals choose (r, c). By

Lemmas A1, A2, and A4 for any (r̄, c̄) hospital i has a unique best response (r, c) under HRRP, and

c= h(r) and since this relationship uniquely determines c we only focus on hospital’s readmission

choice r and drop c from the notation. Hence hospital 1’s profit, if all the other hospitals pick

(r̄, h(r̄)), is Π(r|r̄) given by (A40). Again, we write Π(r,Pcap|r̄) instead of Π(r|r̄) when we need to

make the dependence on Pcap explicit.

(a) We first show that any (r̄, h(r̄)) ∈ S ′p is a symmetric equilibrium. Assume that all hospitals

except hospital 1 pick (r̄, h(r̄))∈ S ′p. By Corollary A1 it is enough to show that hospital 1’s profit

at (r̄, h(r̄)) is higher than that at any other point (r,h(r)), for r ∈ [r̄, rmax], that is,

Π(r̄|r̄)≥Π(r|r̄) for any r ∈ [r̄, rmax]. (A73)

By (A40) and because (r̄, h(r̄))∈ S ′p, Π(r|r̄) = Ψ(r|r̄), (see (A11) for the definition of Ψ), hence

the objective of hospital 1 is identical to that under HRRP-I if (r̄, h(r̄))∈ S ′p. By Lemma A4, Ψ is

concave hence it is enough to show that

dΨ(r̄|r̄)
dr

≤ 0, for any r̄ ∈ [r̃1, r̃2]∪ [r̃3, rmax]. (A74)
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Since Ψ(r|r̄) is concave and its unique maximizer rΨ satisfies dΨ(rΨ (r̄) |r̄)/dr = 0 (both by

Lemma A4), (A74) is equivalent to

rΨ(r̄)≤ r̄, for any r̄ ∈ [r̃1, r̃2]∪ [r̃3, rmax],

which holds by Lemma A10.

(b) Next we focus on the rest of the symmetric equilibria. First we explicitly define S ′o ⊂S ′ and

then show that any (r̄, h(r̄))∈ S ′o is a symmetric equilibrium. Let

S ′o = {(r̄, c̄) : c̄= h(r̄), r̄ ∈ ([r̃1, r̃2]∩ [r̃1, rp1))∪ ([r̃3, rmax]∩ [r̃3, rp3)), sup
r∈[(1+Pcap)r̄,rmax]

Φ(r|r̄)≤ 0},

(A75)

where function Φ is defined as in (A22). If S ′o = ∅ then there is nothing to prove, hence assume for

the rest of the proof that it is non-empty.

Assume that all hospitals except hospital 1 pick (r̄, h(r̄)) ∈ S ′o. As in part (a) it is enough to

show (A73) holds. First note that for r ∈ [r̄, (1 +Pcap)r̄], Π(r|r̄) = Ψ(r|r̄) by (A40). Then by (A74)

Π(r̄|r̄)≥Π(r|r̄) for any r ∈ [r̄, (1 +Pcap)r̄]. (A76)

If on the other hand r ∈ [(1+Pcap)r̄, rmax], then hospital 1’s profit is given by Φ(r|r̄). By definition of

S ′o, Φ(r|r̄)≤ 0 for any r ∈ [(1 +Pcap)r̄, rmax]. In addition Π(r̄|r̄) = 0 by (8). Hence any (r̄, h(r̄))∈ S ′o
is a symmetric equilibrium.

(c) Next we prove that (r̄, c̄) /∈ S ′o ∪ S ′p cannot be a symmetric equilibrium. Let r̄ ∈ [rmin, rmax]

and assume that all hospitals except hospital 1 choose (r̄, c̄) /∈ S ′o∪S ′p. If c̄ 6= h(r̄), then (r̄, c̄) cannot

be an equilibrium by Lemma A2, hence assume that c̄= h(r̄). Because (r̄, c̄) /∈ S ′o ∪ S ′p, either (1)

r̄ ∈ [rmin, r̃1)∪ (r̃2, r̃3), or (2) (r,h(r))∈ S ′ and (r,h(r)) /∈ S ′o, by definitions of S ′o and S ′p.

Assume that r̄ ∈ [rmin, r̃1) ∪ (r̃2, r̃3). Then for r ∈ (r̄, (1 + Pcap)r̄], by (A40), Π(r|r̄) = Ψ(r|r̄).

Hence it is enough to show that

dΨ(r̄|r̄)
dr

> 0, for any r̄ ∈ [rmin, r̃1)∪ (r̃2, r̃3). (A77)

Since Ψ(r|r̄) is concave and its unique maximizer rΨ satisfies dΨ(rΨ (r̄) |r̄)/dr = 0 (both from

Lemma A4), (A77) is equivalent to

rΨ(r̄)> r̄ for any r̄ ∈ [rmin, r̃1)∪ (r̃2, r̃3),

which holds by Lemma A10.

Assume now that (r,h(r)) ∈ S ′ and (r,h(r)) /∈ S ′o r ∈ S ′ and r /∈ S ′o, then as in part (b) of the

proof, for r≥ (1 +Pcap)r̄, hospital 1’s profit is given by Φ(r|r̄). And by definition of S ′o, Φ(r1|r̄)>

Π(r̄, h(r̄)) = 0, for some r1 ∈ [(1 +Pcap)r̄, rmax]. Hence such r̄ cannot be an equilibrium.
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Note that (a)–(c) prove part (i) of the proposition. Part (iii) holds because when Pcap ≥ P ′max,

rpi = r̃i hence S′p = {(r,h(r)) : r ∈ [r̃1, r̃2]∪ [r̃3, rmax]} and S′ = ∅.

(d) We next prove part (ii) of the proposition. First, if Pcap <Pm(r∗), so that rp3 ≥ rp1 > r∗, then

S ′p ⊂ {(r,h(r)) : r ∈ (r∗, rmax]} by (A69). Hence for the rest of the proof we assume without loss of

generality that Pcap <Pm(r∗) so that rpi > r
∗ and show that S ′o ⊂ {(r,h(r)) : r ∈ (r∗, rmax]} for Pcap

small enough. By (A75), to prove S ′o ⊂ {(r,h(r)) : r ∈ (r∗, rmax]} it suffices to show the existence of

¯̄P ′cap ∈ (0, P ′max) such that

Φ(rmax, Pcap|r̄)> 0, for all r̄ ∈ [r̃1, r
∗], and for Pcap ≤ ¯̄P ′cap. (A78)

Proof of (A78) is identical to that of (A48) with r̃ replaced by r̃1, hence we skip the details. �

G. Spillover Between Hospitals

So far we assumed that hospitals operate in non-overlapping catchment areas, which implies that

a patient requiring readmission (after an index hospitalization) would always return to the same

hospital. However, in practice the patient could be readmitted to others hospitals, see Zhang et al.

(2016). In this section we explore how our proposed payment schemes should be modified under this

assumption. Specifically, we show that when hospital capacity is ample m-HRRP still elicits socially

optimal actions from hospitals. However, when capacity is limited, hospitals operating in the same

area should be benchmarked using hospitals that do not. We propose a version of m-HRRPW

in the limited capacity setting which benchmarks each hospital i by hospitals from a different

catchment area (i.e., patients whose index admission is at hospital i do not visit those hospitals for

readmission purpose). We study spillovers under the simplifying (symmetry) assumption that that

each patient whose index admission is at hospital i and who requires readmission, visits hospital i

with probability ρ and each of the other hospitals with probability (1− ρ)/(N − 1).

G.1. Unlimited capacity

Under the symmetric spillover assumption hospital i’s total arrival rate is given by

λei = λ+ ρriλ+
1− ρ
N − 1

λ
∑
j 6=i

rj = λ+ ρriλ+ (1− ρ)r̄iλ, (A79)

where the second equality follows from (6). In words, the total arrival rate is the sum of the

arrival rates of initial admissions, λ, readmissions whose index admission is at hospital i, ρriλ, and

readmissions whose index admission is at one of the other hospitals, (1− ρ)r̄iλ. Following (1), the

objective function of hospital i is given by

Π(ri, ci) = Ti− ciλei −R(ri, ci). (A80)
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As in (2), the social welfare contribution of patients treated in hospital i is given by

Si = V (λ)− ciλei −R(ri, ci) (A81)

and the regulator’s objective is to maximize total social welfare, as given by

S =
N∑
i=1

Si. (A82)

We note that, unlike the case without spillovers, i.e. (2), we need to consider the total welfare (sum

of Si) in this case because Si now depends on other hospitals’ actions through λei . For the rest of

the analysis, we assume (analogously to Lemma 1) that there is a symmetric optimal solution for

the regulator’s optimization problem and we denote each hospital’s optimal actions as r∗ and c∗

and that FOCs of regulator’s objective function are necessary and sufficient for optimality.

Next we show that the proposed payment scheme m-HRRP still elicits socially optimal actions

from hospitals. With spillovers, the transfer payment Ti to hospital i under m-HRRP is

Ti = c̄iλ
e
i + (r̄i− ri)c̄iλ+ R̄i, (A83)

where c̄i, r̄i, and R̄i are defined as in (6). This transfer payment is equal to that with no spillovers

(see (16)) except that the total arrival rate changes from (1 + ri)λ into λei due to spillovers.

Proposition A5. Under m-HRRP there exists a unique equilibrium and each hospital chooses the

first-best readmission and cost levels (r∗, c∗) in this equilibrium.

Proof of Proposition A5: The proof is based on the simple observation that under m-HRRP

the difference between a hospital’s objective and the regulator’s objective is independent of that

hospital’s actions. More precisely, given the actions of all the other hospitals, by (A80)-(A83)

hospital i’s objective under m-HRRP is

Π(ri, ci) = (c̄i− ci)λei + (r̄i− ri)c̄iλ−R(ri, ci) + R̄i,

= c̄iλ+ c̄i
1− ρ
N − 1

λ
∑
j 6=i

rj + r̄ic̄iλ+ c̄iρriλ− ciλei − ric̄iλ−R(ri, ci) + R̄i (A84)

where c̄i and R̄i are defined as in (6). By (A79)-(A82),

S =NV (λ)− ciλei −
∑
j 6=i

λcj

(
1 + ρrj +

1− ρ
N − 1

∑
k 6=i,j

rk

)
− (1− ρ)ric̄iλ−

N∑
i=1

R(ri, ci). (A85)

By (A84)-(A85),

Π(ri, ci)−S =c̄iλ+
1− ρ
N − 1

λ
∑
j 6=i

rj + r̄ic̄iλ+
∑
j 6=i

λcj

(
1 + ρrj +

1− ρ
N − 1

∑
k 6=i,j

rk

)
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+
∑
j 6=i

R(rj, ci) + R̄i−NV (λ).

Therefore the difference between the objective of the regulator and hospital i does not depend on

ri and ci.

Since (r∗, c∗) is the unique maximizer of the social welfare S, it also maximizes hospital’s profit

Π under m-HRRP. That is, each hospital chooses r∗ and c∗ independent from other hospitals’

decisions. Therefore, (r∗, c∗) constitutes the unique equilibrium under m-HRRP. �

G.2. Limited capacity

Next we focus on the setting of limited capacity. In this case a direct extension of m-HRRPW (see

(25)) does not elicit socially optimal outcomes because of the interlink between hospitals’ arrival

rates. In particular, if a hospital increases its readmission rates, this would increase the arrival

rate of all the hospitals operating in the same catchment area. This in turn would reduce other

hospitals’ waiting time performance, increasing the waiting time target for the hospital itself. Hence

if we use m-HRRPW without altering the waiting time benchmarks, it would introduce perverse

incentives. Instead, we benchmark each hospital using the performance of hospitals operating in a

different catchment area, an idea first proposed in Savva et al. (2018).

For the rest of this section we use the notation we introduced in §5.2.1 with the following

natural extensions: the readmission rate, capacity, and cost per patient at each hospital are given

by r = (r1, r2, . . . , rN), µ = (µ1, µ2, . . . , µN), c = (c1, c2, . . . , cN), respectively, and the vector Σ =

(r,µ,c) captures all this information. We denote the (effective) patient arrival rate at hospital

i in equilibrium by λi(Σ), and let λ = (λ1, λ2, . . . , λN). For notational simplicity we set x−i =

(x1, . . . , xi−1, xi+1, . . . xN) for x∈ {λ, r,µ, c}.
We start by characterizing patients’ equilibrium joining rate λ for fixed Σ. Due to spillovers, the

total arrival rate at hospital i is given by

λei = λi + ρriλi +
1− ρ
N − 1

∑
j 6=i

rjλj. (A86)

As in the setting of unlimited capacity, the total arrival rate is the sum of the arrival rates of initial

admissions, λi, readmissions whose index admission is at hospital i, ρriλi, and readmissions whose

index admission is at one of the other hospitals, 1−ρ
N−1

∑
j 6=i
rjλj.

At fixed λ−i, hospital i’s equilibrium arrival rate λi is the unique solution of

λi = ΛΘ̄(tW (λei , ri, µi)). (A87)

Since λei depends on λ and r by (A86), (A87) determines hospital i’s equilibrium arrival rate λi as

a function of λ−i, r, and µi, which we denote by

λi =L(λ−i,r, µi). (A88)
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In words, due to the spillover effect the arrival rate at each hospital depends on the arrival rates

at all other hospitals, hence patients’ joining decisions form a simultaneous-move game, which we

characterize as below.

Let

L(x,r,µ) = [L(λ−1,r, µ1), . . . ,L(λ−N ,r, µN)].

For given r and µ, the equilibrium arrival rates λ is a fixed point of L, i.e.,

λ=L(λ,r,µ). (A89)

By continuity of Θ and W and using Brouwer’s Fixed Point Theorem (Ok 2007), at least one

solution to (A89) exists. In addition, we assume that the solution is unique.

Hospitals’ and regular’s objectives. Hospital i chooses readmission rate ri, marginal cost

ci, and capacity µi to maximize total profit Π as given by

Π(ri, µi, ci) = Ti− ciλei −R(ri, µi, ci), (A90)

and the regular’s objective is to maximize the total social welfare consisting of total patient utility

for those who access care, total cost of providing treatment, and the cost of some patients unable

to access care due to excess delays. Hence the social welfare contribution from hospital i is given

by:

Si =Λ

∫ ∞
tW (λei ,ri,µi)

(x− tW (λei , ri, µi))dΘ(x)− ciλei −R(ri, µi, ci)− ce(Λ−λi) (A91)

and total social welfare is given by:

S(r,c,µ) =
N∑
i=1

Si. (A92)

We assume that there is a unique solution (r∗,c∗,µ∗) to the regulator’s problem in which different

hospitals have the same actions, i.e., ri = r∗, ci = c∗, and µi = µ∗ for all i= 1, . . . ,N . We also assume

that FOCs are necessary and sufficient for optimality.

Reimbursement scheme. The proposed reimbursement scheme in the no-spillover setting (i.e.,

m-HRRPW, see (25)) cannot restore social optimum, because the waiting-time benchmark for each

hospital depends also on its own actions due to patient spillovers to other hospitals. To circumvent

this issue while still using a payment scheme that is relatively easy to implement, we propose to

benchmark a hospital using the performance of hospitals operating in a different catchment area,

as proposed in Savva et al. (2018) in a setting where hospitals compete for customers who are not

(endogenously) readmitted.

To demonstrate, consider a case with 2N identical hospitals, where hospitals 1 through N serve a

different catchment area than hospitals (N+1) through 2N in that patients whose index admissions
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are from hospitals in one catchment area do not seek treatment for readmission purpose from any

hospital in a different catchment area, possibility due to proximity consideration. For each hospital

i, we define sets Si and Di as the indices of hospitals who operate in the same catchment area

as hospital i, and of those in the other catchment area, respectively, for example, S1 = {1, . . . ,N}

and D1 = {N + 1, . . . ,2N}. Consider the reimbursement scheme with hospital i’s transfer payment

equal to

Ti = ceλi− t
(
W̄ S
i − W̄D

i

)
Nλi + R̄i +

(∑
j∈Di

cjλ
e
j −

∑
j∈Si,j 6=i

cjλ
e
j

)
− ce

(∑
j∈Di

λj −
∑

j∈Si,j 6=i

λj

)
, (A93)

where W̄ S
i , W̄D

i , and R̄i are given by

W̄ S
i =

1

N

∑
j∈Si

Wj, W̄D
i =

1

N

∑
j∈Di

Wj, R̄i =
1

N

∑
j∈Di

Rj, (A94)

and we use Wi and Ri to denote the expected waiting time and total lump-sum cost for hospital

i. There are two main differences between this payment scheme and the scheme proposed for the

no-spillover setting, see (25): (i) the waiting-time benchmark W̄D
i and the lump-sum payment R̄i

are based on a set of hospitals which patients of hospital i do not visit for readmission purpose,

and (ii) the relative performance-based financial incentive for waiting time is multiplied by the

number of hospitals in the same group, i.e., N . The first difference reinstates the power of relative

benchmarking which spillovers had eroded. The second difference amplifies the financial incentives

for a hospital to reduce expected waiting time, which due to spillovers, affects the expected waiting

times of all other hospitals from the same catchment area.

Proposition A6. Under the reimbursement scheme given in (A93), the unique symmetric equi-

librium is for each hospital i to pick ri = r∗, µi = µ∗, and ci = c∗.

Proof of Proposition A6. We prove the result by showing that in any symmetric equilibrium,

FOCs of each hospital’s objective under m-HRRPW payment scheme are equal to the corresponding

FOCs of the regulator’s objective.

By (A91)-(A92), total social welfare is given by:

S =
2N∑
i=1

Si =
2N∑
i=1

{
Λ

∫ ∞
tWi

(x− tWi)dΘ(x)− ciλei −Ri− ce(Λ−λi)
}
,

where Wi ≡W (λei , ri, µi), Ri ≡ R(ri, µi, ci), and λei is given by (A86) and (A88). For hospital i’s

any decision variable xi ∈ {ri, µi, ci},

∂S

∂xi

(r0)
=
∂Si
∂xi

+
∑

j∈Si,j 6=i

∂Sj
xi
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(r1)
= − tΛΘ̄(tWi)

∂Wi

∂xi
− ∂{ciλ

e
i − ceλi +Ri}
∂xi

+
∑

j∈Si,j 6=i

{
−tΛΘ̄(tWj)

∂Wj

∂xi
−
∂{cjλej − ceλj}

∂xi

}
(r2)
= − tλi

∂Wi

∂xi
− ∂{ciλ

e
i − ceλi +Ri}
∂xi

+
∑

j∈Si,j 6=i

{
−tλj

∂Wj

∂xi
−
∂{cjλej − ceλj}

∂xi

}
(r3)
= − tλi

∂Wi

∂xi
−

∑
j∈Si,j 6=i

tλj
∂Wj

∂xi
−
∑
j∈Si

∂(cjλ
e
j)

∂xi
+ ce

∑
j∈Si

∂λj
∂xi
− ∂Ri
∂xi

, (A95)

where (r0) follows from (A92) and the fact that any hospital j with j ∈Di operates in a different area

from hospital i, (r1) follows from (A91), (r2) follows from (A87), and (r3) follows by reorganizing

the terms.

By (A90) and (A93), hospital i’s objective is

Π(ri, µi, ci) =−t
(
W̄ S
i − W̄D

i

)
Nλi +

(∑
j∈Di

cjλ
e
j −
∑
j∈Si

cjλ
e
j

)
− ce

(∑
j∈Di

λj −
∑
j∈Si

λj

)
−Ri + R̄i,

(A96)

hence

∂Π

∂xi
=− t∂W̄

S
i

∂xi
Nλi− t(W̄ S

i − W̄D
i )N

∂λi
∂xi
−
∑
j∈Si

∂(cjλ
e
j)

∂xi
+ ce

∑
j∈Si

∂λj
∂xi
− ∂Ri
∂xi

=−
∑
j∈Si

tλi
∂Wj

∂xi
−
∑
j∈Si

∂(cjλ
e
j)

∂xi
+ ce

∑
j∈Si

∂λj
∂xi
− ∂Ri
∂xi
− t(W̄ S

i − W̄D
i )N

∂λi
∂xi

, (A97)

where the second equality follows from (A94).

In any symmetric equilibrium, xi = xj for any xi ∈ {ri, µi, ci} and j 6= i, hence

λi = λj, λei = λej , Ri =Rj, and Wi =Wj, for any j 6= i (A98)

by (A86)-(A87), and

W̄ S
i = W̄D

i and Ri = R̄i for i= 1, . . . ,2N (A99)

by (A94) and (A98). By (A95)-(A99),

∂S

∂xi
=
∂Π

∂xi

for all xi ∈ {ri, µi, ci} and i= 1, . . . ,2N . Because FOCs are assumed to be necessary and sufficient to

obtain hospitals’ optimal actions, (r∗, µ∗, c∗) is a symmetric equilibrium. Because (A95) determines

a unique solution, so does (A97); hence (r∗, µ∗, c∗) is the unique symmetric equilibrium. Finally,

by (A96), (A98), and (A99), each hospital earns null profit in any symmetric equilibrium. �
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H. Inpatient Prospective Payment System

In this appendix, we explain the connection between our model and the Inpatient Prospective

Payment System (IPPS) and HRRP CMS uses. First, in §H.1 we delineate how CMS determines

the reimbursement amounts per discharge under IPPS and explain how c̄i and R̄i in our model

are obtained from CMS’s reimbursement payment per discharge under our assumptions. Then, in

§H.2, we explain the connection between the HRRP penalty CMS uses and the one we use in our

model (also referred to as HRRP in the paper).

H.1. Reimbursement payment per discharge under IPPS

The reimbursement amounts under IPPS for each diagnosis-related group (DRG) are based on

(i) operating and capital base rates, and (ii) DRG weights. Operating and capital base rates,

respectively, represent the average operating and capital cost for a typical Medicare inpatient

stay and do not involve case-mix, area wages, and teaching costs (Guterman and Dobson 1986).

Base rates were initially set based on average cost information and are updated annually.1 Under

IPPS, CMS adjusts the base rates by DRG weights to determine the per-admission payment for

each DRG. Through a process called recalibration, DRG weights are determined annually based

on average standardized charges for each DRG. These averages are calculated by summing the

standardized charges for all cases in a DRG for CMS patients and then dividing that amount by the

number of cases classified in that specific DRG.2 In addition, CMS further adjusts the base rates

for each hospital for various other factors, e.g., geographic location, disproportionately indigent

patient populations, use of high-cost technologies in treatment, etc., see CMS (2019).

In line with the literature (e.g., Shleifer 1985, Tanger̊as 2009), we make simplifying assumptions

in modelling IPPS to make the analysis tractable. First, to abstract away from all the adjustments

regarding patient population, geographic location, and other factors, we assume that all hospitals

are identical. Second, we only focus on a single DRG. (See Remark 1 in the paper for our reasons to

make these assumptions.) Under these assumptions, the reimbursement amount per discharge for

the DRG we consider (i.e., DRG weight× operating base rate) is equal to c̄i, which is the average

DRG-adjusted operating cost across all hospitals. In addition, we use R̄i to capture the capital

payments.

There are three main differences between per-discharge reimbursement payment in our model

and the one in practice. First, CMS uses all discharges to find the average cost whereas we use

hospital averages, following Shleifer (1985). This simplifies the analysis and notation, and does not

1 See Federal Register, Sections D&M, 42 CFR Part 412, 2004, https://ecfr.io/Title-42/cfr412_main.

2 See Federal Register , Section C, Vol. 64, No. 146, 1999, page 41498, http://govinfo.gov/content/pkg/

FR-1999-07-30/pdf/99-19334.pdf

https://ecfr.io/Title-42/cfr412_main
http://govinfo.gov/content/pkg/FR-1999-07-30/pdf/99-19334.pdf
http://govinfo.gov/content/pkg/FR-1999-07-30/pdf/99-19334.pdf
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affect our results as the symmetric equilibria in our model and under CMS’s approach are the same.

Second, when calculating base rates, unlike our model, CMS uses a mix of average cost information

and updates based on annual expected cost increase. However, CMS’s approach is similar, in spirit,

to using average cost information as in our model (MedPAC 2017). Third, unlike our model, CMS

does not make lump-sum payments and reimburses capital expenses per discharge basis. However,

our lump-sum payment can be made per discharge by dividing it by number of discharges, i.e.,

R̄i/(λ(1 + ri)), and it can be interpreted as the capital payments made by CMS to hospitals as

explained above.

H.2. HRRP penalty

Our model is based on the version of HRRP implemented between 2012 and 2018 financial year

(FY) (old-HRP, hereafter), which was when this project was conducted. A new version of HRRP

(new-HRRP, hereafter) came into effect in 2019 FY. We did not modify our model since the new-

HRRP only changes the way risk-adjustment is done under old-HRRP and does not affect our

analysis under homogenous hospitals assumption (see below for more details). The new-HRRP

primarily uses the same incentive scheme as old-HRRP (which is the main focus of our work).

To explain this in detail, we first clarify the connection between our model and old-HRRP below.

Then, we explain the changes new-HRRP brought and their implications for our analysis.

A hospital’s profit function in (8) is the same under old- and new-HRRP, except the penalty

term π. Let πold−HRRP and πnew−HRRP denote the penalty under old- and new-HRRP, respectively.

H.2.1. Old HRRP. The penalty of a hospital under old-HRRP is given by (see CMS (2017)

for a general overview and MedPAC (2013) for a detailed explanation):

πold−HRRP = DRGP ×min

{∑
j∈CDRGPj × (ERRj − 1.0)+

DRGP
,Pcap

}
, (A100)

where (a)+ =max{a,0}, C is the set of conditions monitored by CMS, 3 DRGP is the total DRG-

based operating payments to the hospital for all (monitored and unmonitored) conditions, DRGPj

is the total DRG-based operating payments to the hospital for condition j, Pcap is the penalty cap

(currently equal to 3%), ERRj is the excess readmission ratio of the hospital for condition j.4

Next, we argue that, under our assumptions, πold−HRRP in (A100) reduces to HRRP penalty

π in (7). We again use subscript i for hospital i. Recall from §H.1 that per-admission operating

3 As of 2019 FY, CMS monitors only six conditions under HRRP, namely, Acute Myocardial Infarction (AMI), Heath
Failure, Pneumonia, Chronic Obstructive Pulmonary Disease (COPD), Total Hip/Knee Arthroplasty (THA/TKA),
and Coronary Artery Bypass Graft (CABG) Surgery.

4 Excess readmission ratio (ERR) is the adjusted actual number of readmissions predicted at the hospital over the
expected number (at an average hospital) of readmissions.
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DRG payment to hospital i is equal to the average operating cost of all other hospitals c̄i. Also,

our base model assumes identical hospitals and focuses on a single disease/condition so that λ is

the demand rate for all hospitals and there is only one element in C. (Recall that we extend our

model to multiple diseases in Appendix F and to heterogeneous hospitals in §5.3.) As a result,

DRGP =DRGP1 = c̄iλ(1 + ri) when hospital i’s readmission level is ri.

CMS uses a logistic Hierarchical Generalized Linear Model (HGLM) to determine the relative

hospital performance ERRj (see Section 2.6 in Horwitz et al. (2012)), whereas we use ri/r̄i in our

model.5 In our model, we ignore the potential errors that the estimation procedure introduces and

assume that estimates from the model are accurate estimates of hospitals’ true readmission rates.

Also, we assume that hospitals treat homogenous patients so that ri/r̄i is the true estimate of the

hospital i’s relative performance –see, for example, Zhang et al. (2016), Andritsos and Tang (2018),

Adida and Bravo (2019), for similar assumptions.

Under these assumptions, the penalty for hospital i under old-HRRP in (A100) reduces to:

πold−HRRPi = min

{(
ri
r̄i
− 1

)+

, Pcap

}
c̄iλ(1 + ri)

=

(
min

{
ri− r̄i
r̄i

, Pcap

})+

c̄iλ(1 + ri), (A101)

which is identical to π(ri|r̄i, c̄i) in (7).

H.2.2. New HRRP. In order to improve the risk-adjustment procedure used in old-HRRP,

new-HRRP stratifies hospitals into five peer groups based on the proportion of dual eligible6

patients a hospital treats. Then, a hospital’s performance is assessed relative to the performance of

the hospitals within the same peer group. Under the simplifying assumptions stated above, specifi-

cally under the identical hospitals and homogenous patients assumptions, all hospitals in our model

would fall into the same stratified group. Another change new-HRRP introduced is that a relative

performance target is set using the median hospital performance but not the average performance

as is the case in old-HRRP (see below for more details). In a symmetric equilibrium, the median

and mean readmission rates within a peer group are identical. Thus, if all hospitals are assumed

to be in the same peer group, any symmetric equilibrium under old-HRRP in our model is also a

symmetric equilibrium under the new-HRRP so that all our results in the paper continue to hold

under the new-HRRP.

5 Under certain assumptions, the estimates of HGLM are consistent, i.e., the parameter estimates of the model
converges to the true values in probability as the sample size goes to infinity, see Nie (2006).

6 A hospital’s dual proportion is the proportion of Medicare fee-for-service (FFS) and managed care stays where the
patient was dually eligible for Medicare and full-benefit Medicaid.
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Furthermore, our results continue to hold, even when one assumes that hospitals are divided

into different peer groups, under the assumptions that hospitals in the same group are identical

and are treating a homogenous group of patients. We will demonstrate this next.

First, new-HRRP changes the relative performance comparison from ERRj − 1.0 used in old

HRRP to ERRj − ERRj,pgmed, where ERRj,pgmed is the median ERR of all hospitals within

the peer group for condition j. Also, new-HRRP applies a neutrality modifier (NM), which is a

multiplicative factor that, when applied to hospital payment adjustment factors, equates to total

Medicare savings under the old and new HRRP (CMS 2017). To calculate NM, CMS estimates the

total Medicare savings across all hospitals under the old HRRP as well as under the new HRRP

(in the absence of a modifier). The penalty of a hospital under new-HRRP is given by:

πnew−HRRP =DRGP ×min

{∑
j∈C NM×DRGPj(ERRj −ERRj,pgmed)+

DRGP
,Pcap

}
. (A102)

Now, assume that hospitals are divided into five peer groups, where hospitals in the same peer

group treat homogenous patients, and focus on one peer group (i.e., group 1). Under above assump-

tions, πnew−HRRP in (A102) reduces to:

πnew−HRRPi =

(
min

{
NM×

(
ri− r̄i

¯̄ri

)
, Pcap

})+

c̄iλ(1 + ri), (A103)

where r̄i is the median readmission rate of hospitals in peer group 1 and ¯̄ri is the average readmission

rate of all hospitals other than hospital i. There are three differences between πnew−HRRP and

πold−HRRPi (see (A101)); (i) πnew−HRRP has a new term NM; (ii) old-HRRP uses ri−r̄i
r̄i

to determine

the relative performance of hospital i whereas new-HRRP uses ri−r̄i
¯̄ri

; and (iii) in new-HRRP r̄i is

the median readmission rate instead of average used in old-HRRP.

We next argue that, under certain assumptions, our main results based on old-HRRP continue

to hold when the penalty calculation follows πnew−HRRPi . First, because median and average are

identical in a symmetric equilibrium, our analysis focusing on symmetric equilibria does not need

to be modified for using medians. Also, we assume that NM is exogenous to hospital i’s actions, in

a way similar to that we assume r̄i and c̄i are. In addition, we assume that c̄i and R̄i for hospital i

are calculated using data only from hospitals in the same peer group –CMS does indeed increase

the reimbursement amounts based on a hospital’s share of low-income patients, see CMS (2019).

Under these assumptions, it is easy to demonstrate the differences between old- and new-HRRP

by focusing on the payment scheme obtained from each one after we remove the cap and the no-

bonus provisions. In particular, if we remove the cap and the no-bonus provisions from (A103), the

new penalty term becomes

πnew−HRRPi = (ri− r̄i) c̄iλ
(1 + ri)×NM

¯̄ri
, (A104)
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corresponding to HRRP-I. Hence, the multiplier is equal to (1+ri)×NM
¯̄ri

under new-HRRP –recall

that it is equal to (1+ri)

r̄i
under old-HRRP, see πI(ri|r̄i, c̄i) in (9).

Using this, one can easily show that Proposition 1 still holds, if NM(1+ri)
¯̄ri

> 1. This is a reasonable

condition under the current estimates; NM for 2019 FY is estimated to be 0.9481 (CMS 2018) and

readmission rates are typically around 20%, see, for example Chen and Savva (2018). Based on

this result, using the same arguments in the paper and assuming Assumption 1 is valid for some

(potentially different) r̃(< r∗), it can be shown that Propositions 2 and 3 continue to hold.
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