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Abstract 

 

To date, numerical simulations of the brain tissue have been limited by their lack of realism and 

flexibility. The purpose of this work is to propose a controlled and flexible generative model for brain cell 

morphology and an efficient computational pipeline for the reliable and robust simulation of realistic 

cellular structures with application to numerical simulation of intra-cellular diffusion-weighted MR (DW-

MR) signal features. Inspired by the advances in computational neuroscience for modelling brain cells, 

we propose a generative model that enables users to simulate molecular diffusion within realistic digital 

brain cells, such as neurons, in a completely controlled and flexible fashion. We validate our new 

approach by showing an excellent match between the morphology (no statistically different 3D Sholl 

metrics, P>0.05) and simulated intra-cellular DW-MR signal (mean relative difference < 2%) of the 

generated digital model of brain cells and those of digital reconstruction of real brain cells from available 

open-access databases. We demonstrate the versatility and potential of the framework by showing a 

select set of examples of relevance for the DW-MR community. The computational models introduced 

here are useful for synthesizing intra-cellular DW-MR signals, similar to those one might measure from 

brain metabolites DW-MRS experiments. They also provide the foundation for a more complete 

simulation system that will potentially include signals from extra-cellular compartments and exchange 

processes, necessary for synthesizing DW-MR signals of relevance for DW-MRI experiments.     

 

Keywords: diffusion, Monte Carlo simulation, intracellular space, cell structure, tissue 

microstructure, brain, diffusion-weighted MRI. 

 

Highlights:  

• We propose a generative model for controlled and flexible modelling of brain cells 

• We simulate molecular diffusion inside digital cells with an unprecedented level of realism 

• Relevant examples for simulation of diffusion-weighted MR signal are shown 

• Excellent match between the morphology of real and digital brain cell models 

• Excellent match between the DW-MR signal from real and digital brain cell models 
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MAIN 

 

1. Introduction 

 

Virtual histology is an emerging paradigm in medical imaging. The ultimate goal is to estimate 

microscopic tissue properties at the macroscopic scale using non-invasive imaging techniques, such as 

MRI. The current generation of non-invasive microstructure imaging techniques are rapidly becoming 

part of the mainstream package of imaging tools used routinely in clinical studies and exams (1-7). They 

primarily employ diffusion-weighted MRI (DW-MRI), which uses pulsed magnetic field gradients to 

sensitize the MR image to the displacement pattern of particles, usually water molecules, within tissue 

(8, 9). In particular, self-diffusion of MR visible molecules in a magnetic field gradient generates a signal 

loss that depends on the characteristics of the gradients as well as on tissue features that hinder or 

restrict the diffusion process over time, like cell membranes. Thus, it is possible to infer microscopic 

tissue features from the macroscopic signal loss measured by DW-MR.  

 

Unfortunately, the relationship between the DW-MR signal and the microstructure of complex biological 

tissues like the brain is still not well understood. Over the last decade, a wide variety of mathematical 

and biophysical models have been proposed to describe this relationship (4, 7). However, the validity of 

their underlying model assumptions is still under debate. In fact, while the tissue microstructure is highly 

complex, the signal is so simple that the mapping from signal to microstructure is highly under-

constrained. As a result, the more complex the system, the more challenging the identification of the 

most relevant features (10). Objective data-driven assessment of these assumptions, which is often hard 

to conduct experimentally, remains an important, yet unsolved, challenge. 

 

In this context, advanced numerical simulations can provide a powerful tool to test the limits of a 

specific biophysical model or theory (11-13), aid the design of optimized experimental strategies (14-16); 

or even provide the basis of computational inverse models using modern machine learning techniques 

(17, 18). Numerical simulations and numerical phantoms play a unique role in validation that is 

complementary to other forms of phantoms (physical, in vitro, ex vivo and in vivo). Experiments with 

physical phantoms are expensive and time-consuming to set up, and often lack flexibility and sufficient 

realism. Experiments with fixed or excised-viable tissue lack a well-defined ground truth. On the other 

hand, accurate and complex numerical simulations can provide a well-defined ground truth mapping 
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between the relevant microstructural features and the diffusion MR signal. Although they necessarily 

represent a model of the real world based on our current understanding, they provide a framework for 

validation that is much more controlled (with known ground truth) than in vitro, ex vivo and in vivo 

phantoms, and is much more flexible than physical phantoms.  

 

A key limitation of simulations to date is that they are too simplistic or inflexible: those based on 

geometric primitives are not realistic; and those derived from histological images lack flexibility. The 

state-of-the-art simulators for DW-MR signal are based on Monte-Carlo methods to simulate spins’ 

diffusion within 3D digital models (substrates) representing the tissue (19, 20). These simulators are in 

principle able to manage complex substrates, but their usual applications have been limited to just 

configurations of simple geometric primitives such as cylinders and spheres (19, 21-28). Despite their 

simplicity, these models have been very useful to study different characteristics of brain white matter 

(WM) tissue. In fact, brain WM is comprised mostly of myelinated axonal bundles, and simple 

geometries like packed cylinders of poly-dispersed radii represent a valuable first-order approximation. 

For instance, these kind of models informed the analysis of DW-MRI measurements in both healthy and 

diseased conditions, helping investigating the contribution of different WM tissue features, like axonal 

permeability (17, 22, 28), undulations (29), beadings (30), fiber crossing (31), and so on. Few examples 

exist of generating more realistic substrates for WM. Some of them use complex 3D meshes 

reconstructed from histological images (32). Nevertheless, these approaches do not enable users to 

investigate, in a controlled fashion, all the possible geometrical configurations of a complex tissue 

microenvironment. To address this issue, a novel algorithm to design more realistic membrane 

geometries, better mimicking the structure of brain WM axonal bundles, has been recently proposed 

and embedded in the Diffusion Microscopist Simulator (DMS) simulator (33). However, there is still lack 

of a proper computational framework that enables the creation of realistic numerical phantoms of any 

brain tissue microenvironment.  

 

In particular, gray matter (GM) is still one of the most challenging microarchitectures to simulate. In fact, 

GM is comprised of complex shaped structures like brain cells (e.g. neurons and glia) densely packed 

together. In order to simulate a realistic substrate mimicking GM, first of all it is necessary to have a 

realistic digital model for the different cells in the brain. This is extremely challenging, because brain 

cells are complex branched structures, comprised of different connected parts, like cell body (namely 

soma) and cellular projections (namely neurites). Moreover, high quality meshes, ensuring correct 
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connectivity between these distinct compartments, are often essential to obtain accurate simulations, 

resulting in an exponential increase of the computational complexity. To date, only a few attempts to 

simulate more realistic brain cell structures for DW-MR applications have been published (34-37). 

However, they still rely on a simplistic description of the cell structure, for instance as 1D branched 

structure (36) and disconnected (34, 37) or connected cylinders (35).  

 

Here we present new algorithms enabling, for the first time, the construction of ultra-realistic brain cell 

micro-environments and the execution of diffusion simulations within them. Specifically, we introduce a 

novel generative model to design realistic digital substrates of brain cells. We address two main 

challenges in performing numerical simulation of diffusion process within realistic 3D digital 

representation of brain cell:  

 

1) Handling the large complexity of brain cell morphology, which requires a convenient digital 

representation that relies on a small set of controllable features, providing realism and 

flexibility; 

 

2) Ensuring correct connectivity between the distinct compartments comprising the system (like 

each branch of a dendritic tree, cellular projections and soma, different cellular entities, etc.) 

while minimizing the computational burden. 

 

We validate our new approach by showing an excellent match between the morphology of the 

generated digital model of brain cells and those of digital reconstruction of real brain cells from available 

open-access databases. As consequence of the high morphological similarity of the digital 

representations of cellular structures at multiple length scales, we also show high similarity in the 

corresponding synthetic DW-MR signals. 

 

The purpose of the present work is to introduce the new generative model and computational pipeline 

and provide proof-of-concept applications in DW-MR. Thus, the usage of the proposed computational 

framework for specific hypothesis testing and/or experimental design will be subject of future works, 

including eventually direct comparison with experimental data.      

 

2. Material and Methods 
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Here we propose a novel generative model to design realistic digital substrates of brain cells and an 

efficient and robust computational pipeline that enables users to perform numerical simulation of many 

particles diffusing inside ultra-realistic brain cellular structures. 

 

2.1 Computational pipeline 

 

The proposed pipeline is implemented in MATLAB (the Mathworks) and Python. In particular, it is 

designed to interface optimally with i) open-access databases of brain cell morphology, such as 

NEUROMORPHO (neuromorpho.org) and the Allen Brain Atlas (https://www.brain-map.org), ii) CAMINO 

(www.camino.org.uk) for the robust and reliable synthetic DW-MR signal computation, and iii) standard 

toolboxes to visualize and analyse neuronal cell morphology like the TREES toolbox for MATLAB 

(www.treestoolbox.org).  

 

A block diagram of the pipeline is shown in Figure 1, where the green blocks represent the original 

contribution of this work: new algorithms to construct ultra-realistic digital models of brain cells. 

Specifically, the cell-skeleton generator and reader blocks are implemented either to generate digital 

models of brain cells by using the proposed generative model (described in further details in the next 

section), or read digital reconstructions of real cells from experimental data or open-access databases. 

An efficient 3D surface mesh builder block is then designed to convert each skeletonized digital model in 

a 3D triangular mesh, suitable for interfacing with CAMINO or other toolboxes used in computational 

neuroscience, like TREES. Finally, the proposed computational pipeline is designed to accommodate a 

“synthetic tissue generator” module (see Figure 1) that can include different algorithms for context-

aware packing of the digital cells, either generated or imported from real data. However, in its current 

implementation, the synthetic tissue generator can be used to simulate only the intra-cellular molecular 

diffusion. Planned future developments will enable dense cellular packing and membrane permeability, 

in order to simulate ultra-realistic DWI voxels of the brain tissue, also considering the extra-cellular 

contribution.  

 

The modular structure of the pipeline guarantees that the synthetic substrate generator, the diffusion 

simulator and the DW-MR synthesizer operate independently, which can be an advantage due to the 

challenging task of creating a suitable complex geometry for spatial simulations. To compliment these 
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possibilities, compatibility with current developed standards such as Stockley-Wheal-Cole (SWC) (38), 

Polygon File Format (PLY) and Standard Triangle Language (STL) is also provided. Moreover, the modular 

structure supports straightforward parallelization of each block’s tasks leading to substantial 

computational performance-boosts. 

 

The pipeline accepts as input either a pre-built cellular skeleton, e.g. like those available on 

NEUROMORPHO, or an arbitrary skeleton built from scratch. A cellular skeleton generator based on an 

extension of the statistical model for complex cell morphology characterization introduced in (36) is 

implemented. 

  

2.2 A generative model of brain cell morphology  

 

To model complex cell structures with correct connectivity, we describe each cellular compartment as a 

branched structure (backbone), whose individual branch has a specific radius rsegment and each process 

(collection of branches sharing the same parent) radiates from the cell body (soma) of specific radius 

rsoma. The ensemble of backbone and sizes defines our cellular skeleton. The skeleton of digital cells can 

be either imported into the proposed framework from available public databases of real brain cell 

morphology or generated using the cellular skeleton generator provided. An example of 3D cell 

backbone and skeleton for a real Purkinje cell from NEUROMORPHO is shown in Figure 2. 

 

The cell generator enables us to define realistic cellular morphology a priori and thus to investigate 

different cellular/tissue scenarios/conditions in a controlled fashion. In order to obtain realistic brain cell 

structures with controllable priors on the cell morphology, it is necessary to develop a generative 

algorithm that respects both the cell morphology priors and natural laws regulating neuronal branching. 

We achieve this in two steps. 

 

First, extending the paradigm introduced in (36) from three 1D morphological features to twelve 3D 

ones, we incorporate a realistic 3D model of cellular structure, taking into account soma and cell fiber 

size, curvature, bifurcation angle and secondary structures like spines and leaflets. The overarching 

cellular architecture is defined by four morphometric statistics (each defined by a mean and standard 

deviation (SD)) accounting for the characteristic “tree-like” structure of neurons and glia: the number of 

projections Nproj leaving the soma (e.g., the dendrites or glial processes), the number of successive 
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embranchments (bifurcations) Nbranch along each process, the segment length Lsegment (in micrometers) 

for a given segment of process joining two successive branching points and the bifurcation angle θ. For 

each of these statistics, a Gaussian distribution conditioned to have positive values was assumed, 

parameterized by SDs SDNproj, SDNbranch, SDLsegment, SDθ (e.g. see Figure 1). Note that the morphometric 

statistics can be defined by using any kind of distribution, e.g. not necessarily Gaussian, but also Gamma 

or log-normal. This can be defined by the users, according to their specific requirement/application. This 

statistical model defines the basic backbone, that fully respects the desired priors on the cell 

morphology.  In order to define the final skeleton, rsoma and rsegment can be arbitrarily defined.  

The skeleton is built iteratively, node after node starting from the soma: 

 

1. A new node is drawn randomly according to the segment length and branching angle statistics; 

2. A new segment, connecting the two nodes, is built.  

3. The distance between the new segment and any other existing one that does not share any 

node with the new segment is computed by line-to-line distance, as described in (39): 

• New segment si = xfin
i
 - xini

i
, defined by initial node xini

i
 and final node xfin

i
; 

• Ncheck existing segments sj|j=1…Ncheck = (xfin
j
 - xini

j
)|j=1…Ncheck, defined by (xini

j
, 

xfin
j)|j=1…Ncheck nodes ≠ (xini

i, xfin
i); 

• Distance Dij between the new segment si and the existing Ncheck segments sj|j=1…Ncheck: 

��� = ������� − ����� 
 ∙ [(����� − ����� ) × (����� − ����� )]�
�(����� − ����� ) × (����� − ����� )� �

���…������
	 

4. If it exists at least a case j=j* where Dij* < rsegment
i
 + rsegment

j*
, then the new node/segment are 

deleted and other node/segment are randomly generated following steps 1-2.  

5. Steps 1-4 are iterated until the new node and corresponding segment are accepted;  

6. The branching number statistics determines whether the cell projection stops at this new node, 

or if this new node is actually a branching point where the projection divides into two new 

segments, which will then be drawn according to the segment length and branching angle 

statistics. 

7. On each new segment, steps 1-6 are repeated until a draw according to the branching number 

statistics imposes that there is no new division beyond the current node 

8. Steps 1-7 are iterated according to the number of cellular projections radiating from the soma, 

drawn according to the projection number statistics.  
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Note that the condition at step 4. ensure that no segment intersection/overlap occurs in 3D between 

segments that do not share any node. The cellular structure can be made more and more complex by 

arbitrarily defining for each cell projection the ratio η between the Euclidean distance and the path 

distance of two connected nodes, and/or the radius of curvature Rc. Dendritic spines and/or astrocytic 

leaflets (37) can also be added at arbitrary density ρsp and size of head hsp and neck nsp. 

 

Secondly, in order to improve the realism of the digital model for brain cells, the backbone is refined 

following the locally optimized graph approach proposed in (40). Specifically, a distance cost function 

is computed at every branching point, which is composed of two components and inspired by 

Cajal's laws of neuronal branching (40): 1) the Euclidean distance between that point and the 

nearest node in the graph located between the soma (root node) and that point, interpreted as 

a wiring cost; 2) the path length from the soma to the branching point under consideration, 

interpreted as a conduction time cost. A tunable parameter named balancing factor bf (varying 

between 0 and 1) weighs these two components against each other: distance cost = bf x wiring cost + (1-

bf) x path length cost. With bf=0 we have the shortest connection or minimum spanning tree 

network (using as little "wire" as possible), while with bf=1 we get the entirely compartmentalized 

stellate structure, where each given point is directly connected to the soma. If the initial backbone 

represents the configuration that minimizes the distance cost function with the chosen bf for each node, 

then it is preserved. Otherwise, a minimum spanning tree algorithm (41) is used to create the final 

backbone, that respects both the cell morphology priors and Cajal’s laws of neuronal branching. 

Specifically, the nodes of the initial backbone are disconnected and considered as a cloud of possible 

source points in space. Then, the minimum spanning tree algorithm is used to search for the optimal 

path connecting each node with a new node chosen from the set of source points to minimize the 

distance cost function. Additional penalty to the distance cost function is given to the connections that 

do not satisfy the morphological priors on Nproj, Nbranch, Lsegment and θ. An example of the initial backbone 

and the optimized one following this procedure is provided in Supplementary Material, Figure S0.  

 

2.3 Modelling cell body and branching point  
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The skeleton is saved in SWC format, one of the most widely used formats to store information on 

cellular morphology. Once a cellular skeleton is provided (imported or generated), the framework 

generates a 3D surface mesh of the whole structure, taking into account individual branch and soma size 

(Figure 2). Because high quality meshes are essential to obtain accurate simulation results, instead of 

developing our own mesh generator, we make use of well validated open-source mesh generation 

software, specifically here BLENDER (https://www.blender.org/). We use the BLENDER “SWC Mesh” 

add-on (https://github.com/mcellteam/swc_mesher) to create a fine surface mesh of the cellular 

skeleton (Figure 3-a). The add-on implements a solid modelling technique known as constructive solid 

geometry. The technique, by design, enables the creation of a complex, smooth surface from simple 

primitives using Boolean operations. Briefly, MetaBalls (42) implemented in BLENDER are chosen as the 

primitive (see Figure S1, a-c in Supplementary Material). They are placed along the backbone with radius 

given by the skeleton and an optimized overlap ratio, chosen to obtain a smooth cellular surface from 

the superposition of all the MetaBalls. Specifically, the first MetaBall is placed at the root node with 

radius given by the information within the SWC file. Then, starting from the root node, one MetaBall 

after another is placed along the branch connecting each parent node to the corresponding child node, 

according to the order and radius described in the SWC file, with a certain distance between MetaBalls. 

The inter MetaBalls distance can be tuned in order to achieve a smooth surface upon superposition of 

all the MetaBalls. In Figure S1 d-f, an example of MetaBalls placed along three connected branches of a 

simple cell skeleton is shown. When the inter MetaBalls distance is greater than the MetaBalls’ 

diameter, each MetaBall is clearly distinguishable from the others (Figure S1-e). When the inter 

MetaBalls distance is smaller than the MetaBalls’ diameter (i.e. some degree of overlap between 

MetaBalls is allowed), then a single surface is generated by the superposition of the MetaBalls (Figure 

S1-f, where the overlap is 50% the MetaBalls diameter). We empirically determined that an inter 

MetaBalls distance lower than 25% the diameter of the MetaBalls is usually enough to obtain smooth 

surface from the superposition of all the MetaBalls. In Figure S1-g it is shown an example of the 

resulting mesh for a simple cellular skeleton. Figure S1 g-o illustrates that this procedure ensures that 

the 3D surface mesh has smooth transition at critical points that connect different branches and/or the 

soma, even at small bifurcation angle (Figure S1 j-o).  

 

2.4 Surface mesh optimization  
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Because of the complexity of the cellular skeleton, the surface mesh obtained usually consists of millions 

of faces. In order to minimize the computational burden, a home-made python script is then used to 

refine the mesh by progressively smoothing, reducing and triangulating the mesh to reduce the number 

of faces to some thousands, while keeping the overall morphology unaltered (Figure 3-a and b). Of 

course, it is possible to reduce the number of faces even further. However, we experimentally evaluated 

that a few thousands faces are a good compromise between morphology preservation and memory 

load. This ultimately reduces the computational complexity of the diffusion process simulation step. 

  

The mesh generator outputs the 3D surface mesh in standard file formats, including PLY and STL, ready 

to be fed into CAMINO to start the numerical simulation of the diffusion process and then the 

corresponding DW-MR signal computation.  

 

2.5 Simulating diffusion process and DW-MR signal  

 

With the support for the PLY format, which is compatible with CAMINO, the framework enables DW-MR 

signal synthesis with one of the most popular simulators of diffusion process and DW-MR signal. 

CAMINO (43, 44) is an open-source software toolkit for diffusion MRI processing, containing a powerful 

and validated Monte-Carlo based molecular diffusion simulator. Briefly, the Monte-Carlo simulator 

engine models the population of spins as random walkers in a 3-D environment. A specific user-defined 

DW-MR sequence is also modeled to induce specific phase accrual of the spins as they follow their 

diffusing trajectories, which produces specific DW-MR measurements. The simulation is used to 

synthesize a set of noise-free measurements from diffusing spins in a specified substrate and DW-MR 

sequence, to which noise can then be added. Further details on the specific algorithm used to simulate 

spins diffusion within a given substrate, and to compute the corresponding DW-MR signal can be found 

elsewhere (19).  

 

We report here a select set of examples of relevance for the DW-MR community. The complex 3D 

surface mesh modelling the cell structure is fed into CAMINO to simulate the diffusion of 5x10
5
 non-

interacting spins (chosen to obtain high accuracy and precision on the synthetic DW-MR signal while 

limiting the computational burden, according to (19)), with diffusivity D0=2 µm
2
/ms and Monte Carlo 

time step εt = 20 ns. An illustrative Pulsed-Gradients-Spin-Echo (PGSE) experiment was simulated with: 

30 b-values=0-30 ms/µm
2 

obtained by changing only the diffusion gradient strength, 256 directions 
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(uniformly distributed over a sphere) per b value, δ=3 ms and 5 different ∆ values per each set of b 

values: ∆=11, 26, 46, 76, 91 ms. We note that these b and δ/∆ values are practically achievable with all 

pre-clinical scanners as well as with state-of-the-art human scanners, like the Connectom scanner (45).  

 

From the intra-cellular direction-averaged DW-MR signal at b=1 ms/µm2, the intracellular apparent 

diffusion coefficient (ADC) at each simulated diffusion time td = ∆-δ/3 was computed as ADC(td) = –

Ln[S(b=1, td)/S0]/1 , where S0 is the signal at b=0. 

 

The total computation time per cell was: ~1 hour using a single thread of a 2.4 GHz Intel Core i7; ~1.5 

min parallelizing the computation on a high-performance computing cluster. This computation time 

should be considered only as indicative, since it depends on the complexity of the cell and the details of 

the mesh used, as well as the simulator setting, such as the number of spins. 

 

2.6 Experiment I: studying the effect of mesh finish 

 

To assess the bias introduced by the mesh finish, we performed the PGSE experiment for the 

representative meshes of a Purkinje cell in Figure 3, using both a complex mesh of ~10
6
 triangles (Figure 

3-a) and an optimized minimal mesh of ~10
4
 triangles (Figure 3-b). To evaluate differences in the 

simulated intra-cellular signals as a function of b and ADC time dependences between the two mesh 

finishes, we computed the mean squared-difference (MSD) and the mean relative difference (MRD) as: 

 

MSD = < [Sref(b) – S(b)]
2 

>b [1] 

 

MRD = < |Sref(b) – S(b)| / |Sref(b)| >b [2] 

 

where <…>b denotes the mean computed over all the b values and Sref is the signal computed from the 

simulation of spins diffusion in the finest mesh in Figure 3-a, while S is the signal computed from the 

simulation of spins diffusion in the reduced mesh in Figure 3-b. Similar quantity was also computed and 

reported for the ADC. 

 

The computation time using a single thread of 2.4 GHz Intel Core i7 was ~50 hours for the finest mesh 

(Figure 3-a) and ~1 hour for the minimal mesh (Figure 3-b). 
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2.7 Experiment II: comparing simulation results in real and synthetic cell structure 

 

We show the potential of our new generative model by generating individual cells using the cell 

generator with different parameters, in order to obtain different cell morphologies and complexity in a 

controlled fashion. Specifically, we show that it is possible to simulate different brain cell types, using a 

set of archetypical neurons identified by Cajal (46): Purkinje cell, granule cell, motor neuron, tripolar 

neuron, pyramidal cell, chandelier cell, spindle neuron and stellate cell (Figure 4-a). 

 

The 3D models generated using the generative model are reported in Figure 4-b and the parameters 

used to generate them, obtained from trial-and-error, in Table 1 and 2. For comparison with histological 

“ground-truth”, the same cell types reported in Figure 4-a can also be imported from real 

reconstructions available on neruomorpho.org and the corresponding 3D generated models are 

reported in Figure 4-c.  

 

From the reconstructed real and synthetic cell structures in Figure 4-b and c, we chose three very 

different morphologies (Purkinje cell, motor neuron and pyramidal spiny neuron), as representative of 

the cell structure heterogeneity characterizing the brain tissue. We have specifically chosen these three 

cell types because they capture the typical morphological features seen in all other neurons, as well as 

highlighting how different shapes neurons can take. 

 

The overarching morphology of the three chosen cellular structures from real microscopy data and the 

corresponding synthetically generated ones are compared using dendrogram descriptors and the 3D 

Sholl analysis, as provided by the TREES toolbox. Dendrograms are frequently used to illustrate the 

arrangement and relationship of the nodes in a graph. Here we use dendrograms to show that the 

overall topology of the skeleton obtained from our generative model mirrors well that of real brain cells. 

 

To assess the similarity of the simulated intra-cellular DW-MR signal features between real and synthetic 

cell structures, we performed the PGSE experiment for the meshes of the three selected cell types. To 

evaluate differences in the simulated intra-cellular signals as a function of b and ADC time dependences 

between the real and synthetic cell structures, we computed the MSD and the MRD using equations [1] 

and [2], with Sref as the simulated intra-cellular signal from real microscopy data and S as the simulated 
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intra-cellular signal from the synthetic cell structure. Similar quantities were also computed and 

reported for the ADC. 

 

We also assessed the effect of the natural randomness existing within each cell population. We 

compared the 3D Sholl metrics and intra-cellular DW-MR signals and ADCs for a set of 30 real and 

synthetically generated cell morphologies corresponding to the three cell populations selected. Mean 

and variance among each set of cells belonging to the same cell population was computed and used to 

compare the similarity between real and synthetic cell morphologies, as well as DW-MR signal features. 

The morphological features were kept constant for the 30 synthetic cells. However, note that some 

degree of randomness in the synthetic cells comes from the statistical nature of the generative model. 

 

2.8 Experiment III: simulation results in synthetic cell structures 

 

Finally, we show an example of current relevance for the DW-MR scientific community. We use the 

computational framework to investigate whether, in ideal conditions of infinite SNR and under the 

experimental conditions chosen (see Section 2.5), different cell types like Purkinje cells, motor neurons, 

and pyramidal spiny neurons, characterized by very different morphological features, may provide 

different intra-cellular DW-MR features. 

 

The values of the 12 features chosen to generate the synthetic cell structures using the proposed 

generative model are reported in Table 1 and 2 and correspond to the cell types: A, C and E.   

 

To assess differences in the simulated intra-cellular DW-MR signal features between the three selected 

cell types, we performed the PGSE experiment using the corresponding three synthetic meshes and we 

computed the synthetic normalized intra-cellular signal as a function of b (for different td), and the ADC 

as a function of td. To evaluate differences in the simulated intra-cellular signals as a function of b and 

ADC time dependences between the three cell types, we computed the three MSD and the MRD 

between pairs of signals using equations [1] and [2], with Sref as the simulated intra-cellular signal from 

one cell type (for example synthetic Purkinje cell) and S as the simulated intra-cellular signal from one of 

the remaining two (for example synthetic motor neuron). Similar quantities were also computed and 

reported for the ADC. 
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3. Results 

 

3.1 Effect of mesh finish on the simulated DW-MR features 

 

The logarithm of the intra-cellular direction-averaged DW-MR signals, normalized by the signal at b=0, 

for Experiment I is reported in Figure 3-c as a function of b for the two illustrative meshes chosen and 

δ/∆=3/11 ms (td = 10 ms). In the inset in Figure 3-c, the diffusion time dependence of the intra-cellular 

ADCs for the two meshes considered are also reported. The MSD and MRD between the simulated DW-

MR signals with the two meshes were found to be MSD ~ 10
-8

 and MRD ~ 1%. To obtain a MSD < 10
-8

 (or 

equivalently a MRD < 1%) between noise free and noisy signal, with a given finite SNR, we have 

estimated that SNR ≥ 10000 is needed. This suggests that for simulations were SNR < 10000, the two 

signals are indistinguishable. Similar results were obtained concerning the diffusion time dependence of 

the ADCs computed for the two meshes. 

 

For completeness, we report in Supplementary Material, Figure S2, the simulated signal for the two 

mesh finishes for long diffusion time, i.e. δ/∆=3/91 ms (td = 90 ms). Also in this case of long diffusion 

time, we found MSD < 10
-8

 and MRD < 1%. 

 

3.2 Comparing real and synthetic cell morphologies 

 

Results of Experiment II concerning the comparison between particular instances and a set of real and 

synthetic cell structures are reported in Figure 5 and 6, respectively.  

 

Specifically, the dendrogram descriptors for particular instances of real and synthetic cells are compared 

in Figure 5-a, while results from 3D Sholl analysis in Figure 5-b. From Figure 5-a we can see that the 

extent, complexity and width of the dendrograms from the synthetically generated cells match very well 

those from the real ones. Note, however, that individual dendrograms for each pair of synthetic versus 

real cells can look slightly different, due to the randomness inherent to the generation process, although 

they show the same overarching features overall. The good match between synthetic and real cells is 

further confirmed by Figure 5-b. Indeed, the distributions of 3D Sholl metrics from the individual 

instances of real and synthetically generated 3D cell structures are reported in Figure 5-b and were 

found to be not statistically significantly different (two-tailed t-test, P>0.05).  
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Results from the 3D Sholl analysis of a set of 30 cells belonging to the same population are reported in 

Figure 6-a, while the simulated population averaged DW-MR signals and ADCs are reported in Figure 6-b 

and c. We estimated the mean and variance of the population averaged distribution of Sholl metrics for 

the three real and synthetic cell populations (Figure 6-a). We found no statistically significant difference 

(two-tailed t-test, P>0.05).  

 

3.3 Comparing real and synthetic cell DW-MR features  

 

The logarithm of the intra-cellular direction-averaged DW-MR signals, normalized by the signal at b=0, 

for Experiment II are reported in Figure 5-c as a function of b for the three illustrative cell structures 

chosen and δ/∆=3/11 ms (td = 10 ms). The MSD and MRD between intracellular DW-MR signals 

computed from the simulation in real 3D cell structures and from the synthetically generated ones were 

found to be MSD ~ 10-7 and MRD < 2% for all three cellular structures considered. To obtain a MSD < 10-7 

(or equivalently, a MRD < 2%) between noise free and noisy signal, with a given finite SNR, we have 

estimated that SNR ≥ 4000 is needed. This suggests that for simulations where SNR < 4000, the two 

signals are indistinguishable.  

 

In the inset in Figure 5-c, the diffusion time dependence of the intracellular ADCs for the three cellular 

structures considered are reported. The MSD and MRD between intracellular ADCs computed from the 

simulation in real 3D cell structures and from the synthetically generated ones were found to be MSD ~ 

10-7 and MRD < 2% for all three cellular structures considered. Following the same argument as in the 

previous paragraph, for simulations where SNR < 4000 the two ADC time dependences are 

indistinguishable.  

 

The simulated population averaged (from a set of 30 cells belonging to the same population) DW-MR 

signals and ADCs are reported in Figure 6-b and c. Also taking into account the variance of the 

population averaged DW-MR signals, we still found the signals from real and synthetic cell population 

indistinguishable. Similar results were found for the corresponding ADC time dependences.   

 

3.4 DW-MR features from selected synthetic cell types  
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The intracellular direction-averaged signals as a function of b at different td for the three different cell 

types investigated in Experiment III are reported in Figure 7, while the intracellular ADC time 

dependence for the three different cell types are reported in the insets in Figure 7. The values of the 12 

features chosen to generate the synthetic cell structures using the proposed generative model are 

reported as radar plots in Figure 7.  We found that in the ideal case of infinite SNR and under the 

experimental conditions considered, the three cell types (Purkinje cells, motor neurons, or pyramidal 

spiny neurons) provide three different signatures in the b dependence of the intracellular direction-

averaged signal and in the time dependence of the intracellular ADC.  

 

The MSD and MRD for the simulated DW-MR signals between the Purkinje cell and motor neuron, and 

between the Purkinje cell and the spiny pyramidal neuron were found to be MSD = 0.15 – 0.25 and MRD 

= 600 – 1000 % (for td between 10 and 90 ms). This suggests that SNR > 2.5 is needed to be able to 

discriminate the signal associated with Purkinje cell from those associated with both motor neuron and 

spiny pyramidal neuron. On the other hand, the MSD and MRD for the simulated DW-MR signals 

between the motor neuron and the spiny pyramidal neuron was found to be MSD = 0.001 – 0.005 and 

MRD = 4 – 20 % (for td between 10 and 90 ms). This suggests that a much higher SNR (i.e. SNR > 40) is 

instead needed to be able to discriminate the signal associated with motor neuron from that associated 

with spiny pyramidal neuron.  

 

However, it is important to notice that the signals coming from the three cell types are likely to become 

less distinguishable in real DW-MRI experiments, due to the variable contribution of the extra-cellular 

diffusing water and possible exchange between intra- and extra-cellular space as well as between 

cellular compartments.    

 

For completeness, we report in the Supplementary Material, Figure S3, the comparison between the 

synthetic direction-averaged DW-MR signals for the three selected cell types for three diffusion times: td 

= 10, 45 and 90 ms. Also, in Figure S4 and S5, we report and compare the synthetic direction-averaged 

DW-MR signals and ADC time dependences for all the cell types simulated in Figure 4.    

 

4. Discussion  

 

4.1 The first ultra-realistic simulator of brain cell structure for DW-MR  
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The main contribution of our work is the introduction of a new generative model of brain cell 

morphology (green blocks in Figure 1), by making substantial, and non-trivial, extension to previous 

work, like (36). Specifically, we incorporate a realistic 3D model of soma and cell fiber branching for the 

first time. Furthermore, it is the first time that the cellular structure is finely modelled in 3D, taking into 

account fiber size, curvature, bifurcation angle and secondary structures like spines and leaflets as well 

as Cajal’s laws of neuronal branching.  

 

Here, we demonstrated how this enables for the first time the design of numerical simulations for DW-

MR of digitalized ultra-realistic brain cell structures, achieving a new standard in fidelity. The qualitative 

and quantitative similarity between the structure of real brain cells reconstructed from microscopy (and 

publicly available on NEUROMORPHO) and that of the synthetically generated ones, using the 

generative model, is evident from Figures 5 and 6. The presented framework enables us to use these 

digital reconstructions as the basis for a potentially unlimited range of simulations, each representing an 

in silico experiment. Here we show just an example of relevance for the DW-MR scientific community 

(Figures 6 and 7): the simulation suggests that different cell types, like Purkinje cells, motor neurons, or 

pyramidal spiny neurons, characterized by very different morphological features, may provide different 

outcomes of DW-MR experiments like time dependence of the intracellular ADC (Figure 6c and insets in 

Figure 7) or high b value dependence of the intracellular direction-averaged signal (Figure 6b and 7). 

This suggests that it is possible to use the simulation framework to design and optimize DW-MR 

protocols to be the most sensitive to specific features of cell morphology, like for instance the cell body 

(soma) size and density (47), cell projections curvature (48), dendritic tree orientation dispersion (49), 

etc. In its current version, the new computational pipeline introduced here already provides MR 

scientists and engineers with a tool for exploring a large range of brain cell microstructure scenarios in a 

flexible and controlled fashion. Moreover, the remaining small differences (e.g. the branch lengths of 

motor neurons, see Figure 6a) could be reduced by further optimizing the tunable parameters of the 

generative model, by for example learning the 12 features directly from real reconstructions rather than 

from trial-and-error. We will explore ways to automate this aspect in future works.  

 

4.2 A new generative model for controlled cell morphology modeling 
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This work introduces a new paradigm for ground-truth controlled studies of brain cell structure. The 

generative model introduced here enables users for the first time to study in a controlled fashion the 

link between DW-MR measurements and specific aspects of the brain cell morphology, like the 

complexity of the dendritic tree, the degree of curvature and branching of cell fibers, soma size 

contribution, short range disorder of synaptic boutons, spines and leaflets and much more. By 

describing the complex morphology of brain cells using only a small number of tunable features (12 in 

the current implementation), our generative model based strategy represents a unique tool for 

investigating selective structural alterations due to specific diseases, helping disentangling the impact of 

a particular disease on specific features of the cell morphology.  Also, it may represent the basis for 

novel machine learning applications, helping pushing the current limits of biophysical modelling of 

experimental data. Finally, it is also possible to expand the variety of numerical simulators, for example 

by integrating also powerful molecular dynamic simulators like LAMMPS (http://lammps.sandia.gov), 

which would make it possible to realistically simulate the interaction of specific molecules within the 

cellular space with the cell membrane or with other molecules, for example water-water, water-

proteins, water-lipid layer, metabolites-metabolites, etc. 

 

4.3 Faster simulation of DW-MR features with optimized 3D mesh 

 

As it is easy to imagine, performing numerical simulations of the dynamics of thousands of spins in the 

kind of ultra-realistic cell structures shown in Figure 2 can be extremely computationally expensive. In 

order to minimize the computational burden, we included in our computational pipeline an optimized 

3D mesher that allows us to reduce the number of faces comprising the 3D mesh of a single cell of a 

factor 10
2
-10

3
, without compromising the performance of the simulation. In Figure 3, we provide an 

example of two meshes, one comprised of ~10
6
 triangular faces (Figure 3-a) and an optimized one, 

comprised of only ~10
4
 triangular faces (Figure 3-b). The overall morphology of the cellular mesh is 

perfectly preserved, even though its complexity is reduced of a factor 10
2
. Figure 3-c shows that the 

simulated DW-MR features computed in the two meshes are practically indistinguishable, but the use of 

the less complex mesh reduced the computational time on a single computational core by a factor ~50. 

Optimized 3D meshing together with parallelization make possible simulations of up to thousands of 

different ultra-realistic cells in less than 5 minutes (these estimates are of course indicative, since the 

exact computational time depends on many factors like the specific characteristics of the computing 
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cluster used, the complexity of the cell and the details of the mesh used, as well as the simulator setting, 

such as the number of spins).  

 

4.4 Potential applications 

 

The computational pipeline introduced here represents a unique tool to test the validity of basic 

assumptions in current biophysical models used to estimate specific brain microstructural features such 

as neurites density and dispersion. Indeed, the full power of our new computational framework lies in 

hypothesis testing and experimental design. For example, to model the intracellular direction-averaged 

DW-MR signal in GM, often the dendritic tree of brain cells is modelled as independent randomly 

oriented sticks (50-52) or cylinders (34, 53). In reality, it is comprised of long curved and branching 

fibers. The computational framework introduced here can help validating the underlying hypotheses of 

these models showing whether or not, under specific experimental conditions, the effect of cell fibers 

branching and curvature is negligible. The ground-truth realistic digitalised models of brain cells 

introduced here can be hereafter devised for investigating many experimental questions that remain 

mostly unanswered, like (10): what causes the observed time dependence of intracellular biological 

water diffusivity along the fibers or in the gray matter? Is it varicosities, beads, synaptic boutons, 

undulations, or something else? Which of these structural units’ changes in pathology could be 

detectable?  

 

Taking into account its limitations (further described in the next section), this work potentially leads to 

interesting brain studies where the contribution of extra-cellular space, cell packing and membrane 

permeability can be considered negligible, like in metabolites DW-MR spectroscopy experiments (5, 36, 

53-55). In fact, some brain metabolites such as (but not only) N-Acetyl-Aspartate, Myo-Inositol, Choline, 

Creatine are mostly intra-cellular and do not cross cell membrane. Consequently, the total signal in a 

spectroscopic voxel is the coarse-grained average of the intra-cellular signal coming from each individual 

cellular structure. The methods developed in this work, enable users to model each cellular 

compartment with high fidelity, opening the possibility to combine the contribution from different cell 

types together and helping the interpretation of DW-MR spectroscopy data in terms of cell morphology. 

 

4.5 Limitations 
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The effects of T1/T2 relaxation have not been taken into account for all the performed simulations, 

although they clearly influence the SNR when long echo times are chosen. Also, although it is possible 

with CAMINO to simulate the actual level of noise corrupting the signal of real acquisitions, in this work 

we did not perform any systematic study of SNR impact since the aim of the work is not to study how 

different tissue microarchitecture impact the DW-MR signal, but it is to provide a proof-of-concept 

demonstration of the many potential applications offered by the novel simulation framework proposed. 

The study of how different cellular or tissue microarchitectures impact the DW-MR signal with realistic 

SNR will be a topic of future studies where the new simulation framework can be used and exploited at 

its full potential.  

 

Moreover, for similar reasons, cell membrane permeability has not been considered in the simulations 

reported here. However, it is important to underline that it is possible to include cell membrane 

permeability in the simulation of the diffusion dynamics, using CAMINO. Furthermore, it is also possible 

to assign different cell membrane permeability to different cell types or cell subparts within the same 

substrate. This can be useful for studies aiming at investigating the effect of brain cell membrane 

permeability on water diffusion in a more realistic way, since it has been shown that, for instance, the 

membrane of glial cells and neurons have different permeability properties (56). 

  

One more limitation of the proposed computational framework, in its current implementation, is that it 

can be used to study many different brain cells, but only considering them as independent and non-

interacting parts of the whole brain tissue. How we can extend the current framework to multiple 

packed cells, including extra-cellular space, is addressed in the following section. Here, we would like to 

underline how, even in its currently limited implementation, the proposed computational framework 

already represents a valuable tool for the MRI community. It is the very first framework for ultra-realistic 

cellular structure simulation, designed specifically for the MRI community. As such, it represents a first 

step, from which starting a collaborative effort to push further the current limitations of numerical 

simulations, and opens the way towards a unique alternative to expensive physical phantoms and 

invasive/destructive histology sampling.     

 

4.6 Future perspectives: towards an ultra-realistic simulator of the brain tissue for DW-MR 
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The morphologies of the brain cells are highly diverse and variant (see Figure 4). The variance, 

presumably, originates also from their constraining arrangement in a densely packed brain substrate. 

Thus, in order to generate a digital representation of the brain tissue realistically, it is necessary to 

develop an efficient context-aware cell packing algorithm. Indeed, being able to perform Monte Carlo 

simulations in realistic extra-cellular space taking also into account membrane permeability is an 

important step to be able to compare simulated data to acquired DW-MR data. We have estimated that 

to reach a cellular packing fraction equal to 80% (i.e. 20% volume fraction occupied by the extra-cellular 

space), for simulating a realistic DW-MR voxel of 200x200x200 µm
3
, a number of about 100 realistic 

cellular structures is needed. Multi-scale approaches such as (57, 58) can be very useful to accomplish 

this task by maintaining reasonable computation times. This represents the main direction of our future 

work.  

 

5. Conclusion  

 

In this work, we presented two main new contributions:  

 

• The introduction of a novel generative model to design controlled and flexible realistic 3D digital 

substrates of brain cells;  

• The design of a computational pipeline to perform reliable and robust numerical simulation of 

diffusion process within realistic 3D digital representation of brain cell, with an exemplar 

implementation and its performance analysed. 

 

We showed that this computational framework addresses for the first time a major challenge in 

performing numerical simulation of diffusion process within realistic 3D digital representation of brain 

cell: ensuring correct connectivity between the distinct compartments comprising the system (like each 

branch of a dendritic tree, cellular projections and soma, different cellular entities, etc.) minimizing the 

computational burden.  

 

We demonstrated the versatility and potentiality of the computational framework by showing a select 

set of examples of relevance for the DW-MR community. Current limitations were identified and 

discussed as well as possible future applications and developments. 
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 This work represents the first necessary step towards enabling the investigation of how the morphology 

of brain cells may influence the DW-MR signal and derived metrics like the ADC. However, to perform 

such kinds of numerical studies, there are still some important open challenges, like dense cellular 

packing, extra-cellular space and membrane permeability, which go behind the scope of the current 

study and represent the main direction of future work. 
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Tables 

 
 Table 1. Set of tunable parameters describing the morphology of the 3D cellular structures in Figure 4b. Nproj: 

number of cellular projections radiating from the soma; Nbranch: number of consecutive bifurcations; Lsegment: length 

of each individual segment comprising the cellular projections (in µm); θ: bifurcation angle (in radiants); Rc: radius 

of curvature of individual segments (in µm); η: direct over path ratio of individual segments; bf: balancing factor in 

the extension to the minimum spanning tree algorithm. 

 

 

 
Table 2. Set of tunable parameters describing the sizes of the 3D cellular structures in Figure 4b. rsoma: radius of the 

cell body, namely soma (in µm); rsegment: radius of each individual segment comprising the cellular projections (in 

µm); ρsp: density of spines/leaflets (in µm
-1

); hsp: radius and length of the spines/leaflets head (in µm); nsp: radius 

and length of the spines/leaflets neck (in µm). 

 

Cell type 
Nproj 

(mean ±±±± SD) 
Nbranch 

(mean ±±±± SD) 
Lsegment 

(mean ±±±± SD) 
θθθθ 

(mean ±±±± SD) 
Rc 

(mean ±±±± SD) 
ηηηη 

(mean ±±±± SD) bf 

A 
purkinje cell 

1 ± 0 10 ± 2 10 ± 5 π/6 ± π/8 500 ± 100 0.80 ± 0.1 0.5 

B 
granule cell 

2 ± 0 3 ± 1 20 ± 10 π/8 ± π/16 100 ± 20  0.70 ± 0.1 0.5 

C 
motor neuron 

20 ± 5 6 ± 1 80 ± 20 π/4 ± π/16 500 ± 100 0.85 ± 0.1 0.5 

D 
tripolar neuron 

2 ± 0 3 ± 1 30 ± 10 π/4 ± π/8 500 ± 100 0.85 ± 0.1   0.5 

E 
pyramidal cell 

10 ± 5 4 ± 1 60 ± 30 π/8 ± π/8 500 ± 100 0.95 ± 0.1 0.5 

F 
chandelier cell 

10 ± 5 3 ± 1 40 ± 10 π/4 ± π/16 100 ± 20 0.70 ± 0.1 0.5 

G 
spindle neuron 

2 ± 0 2 ± 1 30 ± 15 π/16 ± π/32 100 ± 20 0.90 ± 0.1 0.5 

H 
stellate cell 

8 ± 2 3 ± 1 40 ± 10 π/4 ± π/16 50 ± 10 0.60 ± 0.1 0.5 

Cell type rsoma 

rsegment 

(mean ±±±± SD) 
ρρρρsp 

(mean ±±±± SD) 
hsp 

(mean ±±±± SD) 
nsp 

(mean ±±±± SD) 

A 
purkinje cell 

25 1 ± 0.5 0 ± 0 n. a.  n. a. 

B 8 0.5 ± 0.1 0 ± 0 n. a.  n. a. 
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Figures captions 
 

Figure 1. (Center) Schematic of the proposed computational framework. The toolbox we developed is comprised of 

the green blocks. It accepts as input either a pre-built cellular skeleton, like those available on NEUROMORPHO 

(neuromorpho.org), or an arbitrary skeleton built from scratch using a novel generative model. (Left) We show 

some examples of using the digital cell generator to generate cell structures of increasing complexity in a 

controlled fashion from morphometric statistics priors: different values of mean and standard deviation of Lsegment, 

Nbranch and Nprocess, and fixed values of θ, radius of branches and soma. (Right) The toolbox outputs a 3D mesh of 

the whole digital cell (in the figure the scale-bars refer to 100 µm). This 3D is saved in suitable format for 

interfacing with CAMINO or other toolboxes used in computational neuroscience, like TREES. 

 
Figure 2. Example of 3D cell backbone, skeleton and mesh for a reconstructed Purkinje cell from the 

NEUROMORPHO database (neuromorpho.org). The color encodes cellular fibers and soma diameter (in µm).   

 

Figure 3. a) complete triangular mesh (~ 10
6
 triangular faces) obtained from the 3D mesher block from the 

reconstructed Purkinje cell reported in Figure 2. b) reduced mesh (~ 10
4
 triangular mesh) after progressive 

smoothing, reduction and triangulation of the more complex mesh in a). c) Direction-averaged normalized DW-MR 

signal as a function of b for the two meshes in a) and b), as computed from the simulation of 5x10
5
 non-interacting 

spins, with diffusivity D0=2 µm
2
/ms, and a PGSE sequence with 30 b-values=0-30 ms/µm

2 
obtained by changing 

only the diffusion gradient strength, 256 directions (uniformly distributed over a sphere) per b value, δ/∆=3/11 ms. 

c) - inset, the ADC as function of diffusion time as computed from the simulation of 5x10
5
 non-interacting spins, 

with diffusivity D0=2 µm
2
/ms, and a PGSE sequence with b=1 ms/µm

2
, 256 directions (uniformly distributed over a 

sphere), δ=3 ms and 5 different td values per each set of b values: td =10, 25, 45, 75, 90 ms. 

 

Figure 4. a) Set of archetypical neurons identified by Cajal (46): (A) Purkinje cell, (B) granule cell, (C) motor neuron, 

(D) tripolar neuron, (E) pyramidal cell, (F) chandelier cell, (G) spindle neuron and (H) stellate cell. b) 3D digital 

model of the same cell types in a) as generated using the generative model with the parameters in Table 1 and 2. 

granule cell 

C 
motor neuron 

10 0.5 ± 0.1 0 ± 0 n. a.  n. a. 

D 
tripolar neuron 

8 0.5 ± 0.1 0 ± 0 n. a.  n. a. 

E 
pyramidal cell 

25 0.5 ± 0.1 20 ± 10 0.5 ± 0.25 0.12 ± 0.06 

F 
chandelier cell 

5 0.5 ± 0.1 0 ± 0 n. a.  n. a. 

G 
spindle neuron 

12 0.5 ± 0.1 0 ± 0 n. a.  n. a. 

H 
stellate cell 

10 0.5 ± 0.1 0 ± 0 n. a.  n. a. 
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c) 3D reconstruction from histological data of the same cell types in a) from open-source database 

neuromorpho.org.    

 

Figure 5. a) Comparison of the dendrograms of the morphology of three selected cell types (Purkinje cells, motor 

neuron and spiny pyramidal neuron) obtained from 3D reconstruction from histological data of real cells (named 

Real) and the digital model obtained using the generative model (named Synthetic). b) Comparison of the 

probability density distributions of 3D Sholl metrics for the real and synthetic cells. c) Comparison of the direction-

averaged normalized DW-MR signal as a function of b for the three real and synthetic cells, as computed from the 

simulation of 5x10
5
 non-interacting spins, with diffusivity D0=2 µm

2
/ms, and a PGSE sequence with 30 b-values=0-

30 ms/µm
2 

obtained by changing only the diffusion gradient strength, 256 directions (uniformly distributed over a 

sphere) per b value, δ/∆=3/11 ms. c) - inset, Comparison of the ADC as function of diffusion time as computed 

from the simulation of 5x10
5
 non-interacting spins, with diffusivity D0=2 µm

2
/ms, and a PGSE sequence with b=1 

ms/µm
2
, 256 directions (uniformly distributed over a sphere), δ=3 ms and 5 different td  values per each set of b 

values: td =10, 25, 45, 75, 90 ms. 

 

Figure 6. a) Comparison of the probability density distributions of 3D Sholl metrics for a set of 30 real and synthetic 

cells per cell type. Red lines represent average distributions among the set of cells. Mean µ and variance σ of the 

average distributions are also reported for comparison b) Comparison of the mean direction-averaged normalized 

DW-MR signal (error bars represent standard deviation) for each set of cell populations as a function of b for the 

three real and synthetic cells, as computed from the simulation of 5x10
5
 non-interacting spins, with diffusivity D0=2 

µm
2
/ms, and a PGSE sequence with 30 b-values=0-30 ms/µm

2 
obtained by changing only the diffusion gradient 

strength, 256 directions (uniformly distributed over a sphere) per b value, δ/∆=3/11 ms. c)  Similar comparison of 

the ADC as function of diffusion time (mean ± standard deviation over the set of cells per each population) as 

computed from the simulation of 5x10
5
 non-interacting spins, with diffusivity D0=2 µm

2
/ms, and a PGSE sequence 

with b=1 ms/µm
2
, 256 directions (uniformly distributed over a sphere), δ=3 ms and 5 different td values per each 

set of b values: td =10, 25, 45, 75, 90 ms. 

 

 

Figure 7. Example of possible application of the proposed simulation framework to investigate the DW-MR signal 

features originating from three very different digital cell models (corresponding to Purkinje cells, motor neuron 

and spiny pyramidal neuron) obtained using the controlled and flexible generative model using the parameters 

value reported in the radar plots and in Table 1 and 2. Direction-averaged normalized DW-MR signal as a function 

of b and ADC as function of diffusion time (inset) for the three digital model of brain cells, as computed from the 

simulation of 5x10
5
 non-interacting spins, with diffusivity D0=2 µm

2
/ms, and a PGSE sequence with 30 b-values=0-

30 ms/µm
2 

obtained by changing only the diffusion gradient strength, 256 directions (uniformly distributed over a 

sphere) per b value, δ=3 ms and 5 different td values per each set of b values: td =10, 25, 45, 75, 90 ms. 
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